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Single pion production in neutrino-nucleon interactions
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This work represents an extension of the single pion production model proposed by Rein [Z. Phys. C 35,
43 (1987).]. The model consists of resonant pion production and nonresonant background contributions
coming from three Born diagrams in the helicity basis. The new work includes lepton mass effects, and
nonresonance interaction is described by five diagrams based on a nonlinear ¢ model. This work provides a
full kinematic description of single pion production in the neutrino-nucleon interactions, including resonant
and nonresonant interactions in the helicity basis, in order to study the interference effect.
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I. INTRODUCTION

Neutrino-nucleon interactions that produce a single pion
in the final state are of critical importance to accelerator-
based neutrino experiments. These single pion production
(SPP) channels make up the largest fraction of the inclusive
neutrino-nucleus cross section in the 1-3 GeV range, a
region covered by most accelerator-based neutrino beams.
The NuMI (NOvA) and proposed LBNF (DUNE) beams
[1,2] both peak near 2 GeV, while the lower energy T2K
and BNB [3,4] beams have a significant portion of their
flux in this region.

Models of SPP cross section processes are required to
accurately predict the number and topology of observed
charged-current (CC) neutrino interactions and to estimate
the dominant source of neutral-current (NC) backgrounds,
where a charged (neutral) pion is confused for a final-state
muon (electron). These experiments make use of nuclear
targets. The foundation of neutrino-nucleus interaction
models are neutrino-nucleon reaction processes like the
one described in this paper.

Single pion production from a single nucleon occurs
when the exchange boson has the requisite four-momentum
to excite the target nucleon to a resonance state which
promptly decays to produce a final-state pion (resonant
interaction) or to create a pion at the interaction vertex
(nonresonant interaction). These interactions are distin-
guished from the lower four-momentum exchange quasie-
lastic (QE) processes by the production of a final-state pion.
However, they still resolve the nucleon as a whole, unlike
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the higher four-momentum exchange deep-inelastic scat-
tering (DIS) interactions which interact with the nucleon’s
constituent quarks.

The SPP processes have been modeled in the A
resonance region (W < 1.4 GeV, where W is invariant
mass) [5-7], and updated to include more isospin %
resonance states [8,9]. However, models for neutrino
interaction generators such as NEUT (the primary neutrino
interaction generator used by the T2K experiment) [10]
require that all resonances up to W = 2 GeV be included to
accurately predict neutrino interaction rates.

The Rein and Sehgal (RS) model [11] does include these
higher resonances, but does not include a reliable model for
nonresonant processes and related interference terms, and
also neglects lepton mass effects. NEUT and GENIE use
the RS model for SPP by default, although they have made
minor tweaks and improvements to their implementations,
like NEUT includes charged lepton masses [12] and a new
form factor [13]. In a later paper [14], Rein suggests how to
coherently include the helicity amplitudes of the nonreso-
nant contribution to the helicity amplitudes of the original
RS model which is derived from a relativistic quark model
[15]. This update still neglects lepton mass effects.

In this work, we improve upon the ideas put forth by
Rein by incorporating the nonresonant interactions intro-
duced by Hernandez, Nieves, and Valverde (the HNV
model) [6]. The previously neglected lepton mass effects,
as well as several other features that make this model
suitable for neutrino generators, are also included. The
resulting model has a full kinematic description of the final-
state particles, including pion angles, for CC neutrino-
nucleon and antineutrino-nucleon interactions,

v, +p = puprt, Dy+n—utnn,
0 - 0

v, +n— upa’, Uy +p—ptna,

v, +n— unz’*, Uy+P—yupr,
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as well as for NC neutrino-nucleon and antineutrino-
nucleon interactions,

v+ p— opa°,

v+n— onad,

v+ p — vpn,

v+ p - vnxt,

0

v+n—vna, v+ p—onnt,

v+n—uvpn, UV+n—vuvpr.

II. GENERAL FRAMEWORK

Single pion production in neutrino-nucleon interactions
can be generally defined as

v(ky) + N(p1) = U(ky)N(p2)n(q), (1)

where [ is the outgoing charged lepton (neutrino) in CC
(NC) interactions. The diagram in Fig. 1 shows the
momenta for each particle in the SPP interaction. The
incoming and outgoing lepton four-momenta are k; and k-,
respectively. The nucleon four-momenta, similarly, are
given by p; and p,, and the final-state pion four-momenta
is denoted by g. The momentum transfer is thus defined by
k = k, — k,, giving 0> = —k? = —(k; — ky)*.

The transition amplitude for SPP (1) can be written as

M(N = IN'%) = %aep<N’ﬂ|Jp|N>, (2)

where €” is leptonic current and a is either the cosine of the
Cabibbo angle for CC interactions or 1 for NC interactions,
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While the hadronic currents for CC and NC interactions are
different, they can both be decomposed into vector and
axial vector currents: J, = J/‘,/ - J;‘.

Calculations of the cross sections are simplified by
working in the isobaric (or Adler) frame. This is defined
as the rest frame of the nucleon-pion system, where

v(ky) [(k2)

N(p1)

FIG. 1.

N(p2)

Single pion production off nucleons.

q+p=k+p; =0 (4)

As can be seen in Fig. 2, when the momentum transfer is
taken to be along the Z axis in the Adler frame, the angle
between the momentum transfer and pion direction can be
used to define the polar () and azimuthal (¢) angles of
the pion.

A. Lepton current

For CC interactions the outgoing charged lepton is
massive, while in the NC case it is massless and
ko = k,. The massive lepton of the CC case can have
both right-handed and left-handed helicities, and the lepton
current can be defined as

&) =iy, (ky)y” (1 —ys)uy, (ky). (5)

where 1 = —(4) for a left-handed (right-handed) lepton.
The components of the lepton current are thus related to 4,
and when expressed in the isobaric frame as shown in
Fig. 2, they are

€) =21A;V'1 — Acos§,
koy — AK
el :2/1A/1017|2|\/1+/10036,

K|
€2 = 2iA;V'1 + Acosd,
k K
e = ZlAl%ﬂ”ﬂ\/l — Acos 8, (6)

where

Ay = ko (kpy F |Ks)). (7)

The neutrino energy is kg;, and the angle between the
neutrino and the charged lepton in the Nz rest frame is
denoted by 6. For simplicity, the xz plane is defined such
that lepton momentum k;, = kp, = 0.

(]Afl X];:Q) X k

FIG. 2. Isobaric frame or the zN center-of-mass frame.
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The lepton current €’ can be interpreted as the inter-
mediate gauge boson’s polarization vector

6J [CL,leL + CR e + Cﬂ ] (8)

where e; and ey are the transverse polarizations (i.e.,
perpendicular to the momentum transfer), and e; is the
longitudinal polarization which is along the z direction of
the isobaric system. This gives

1
eg:\ﬁ(o 1 —i 0),
1
e%:ﬁ(o -1 —i 0),
1
ef =——=——= (] 0 0 &) (9

and
[ 2
Cp, = \/_5(61 + ie7),
1 .
Cr, = =5 (e} = e},
Cir = /1) = ()’ (10)

B. Hadron currents

Hadronic currents can be decomposed into vector and
axial vector parts:
(Na|J?|N) = (Nz|Jy, = J3IN). (11)
We can further decompose the vector and axial vector
parts as

6
Tyep =" Vils.t,u)ay (p2) 0% (V)uy (py).

k=1

Jhep = ZAk s. 1, u)iy(p2) O™ (Ap)uy(p). (12)

where /1, stands for the gauge boson’s polarization, ¢;, ey,
or e;. The Dirac equation allows for 16 independent
Lorentz invariants O(V,;) and O(A;). However, vector
current conservation reduces the number of O(V,) to
six. Lorentz invariants are given in Ref. [5] and can also
be found in Appendix A. Invariant amplitudes V; and A,
can be calculated once the interactions and their associated
diagrams are defined. They are generally a function of the
following invariant Mandelstam variables:

= (p1 +k)* = W2,
and u=(q-p1)* (13)

s =(py+q)*
t=(k-q)

Using the representations of Dirac matrices and spinors in
terms of two-dimensional Pauli matrices and spinors, we
can rewrite the right-hand side of Eq. (12) in terms of 2 x 2
matrices X, and Ay,

ey = Z]:k 8 LW
=1

They —ng(s LA (14)

where y; (y,) is the Pauli spinor of the incident (outgoing)
nucleon.

Definitions for X; and A, as well as F; and G, which
are related to the invariant amplitudes, are given in
Appendix A.

C. Helicity amplitudes

Helicity amplitude can be defined with three indices:
incident nucleon helicity (4;), outgoing nucleon helicity
(4,), and gauge boson’s polarization (pions are spinless).
From Egs. (5) and (2), we have

G
Mecc(vN — [,N'z) = 7%005 Oc(N'z|exd ,|N)

Gr
— \/_ECOS Oc(N'z|Cp el J,
+CR;6RJ/)+C16,{J |N> (15)

where there are four independent gauge boson’s polar-
izations from Eq. (9), i.e., ¢;, eg, and e. Using Eq. (15),
we can define the helicity amplitudes for vector and axial
currents,

=
FAZ,/II (Nz|é] V|N>

A n
G, = (Nzle) A IN), (16)

where 4, stands for gauge boson’s polarizations and

1
V=__J",

1
A=_—JA 17
M (17)

2M

For each vector and axial current, we can define
2x2x4=16 helicity amplitudes, Ffékgl and ngi) ,
respectively. The final results for all helicity amplitudes
are summarized in Table. VI.
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D. Cross section

A general form of the differential cross section for single pion production is'

do(wN — INz) Gy 1 |q] —
dik*dwdQ, 2 (2z)* 4 (k')?

x Y {ICL(FL, (0.4) = G5t (0.9)) + Cr_(F5E, (0.¢) — G3%, (6,0)) + C_(F,, (6.4) - G, (0.9))
o
+|Cy (F5t, (0.0) = G5t (0.)) + Cr (F55, (0.0) = G5, (0.)) + C(F3, (0.4) = G52y, (0.90)) ).
(18)

For antineutrino interactions, one needs to swap Cp,
with Cp, . An equivalent differential cross section with an
explicit form for the angle ¢ is given in Appendix C.

1. Multipole expansion

Helicity amplitudes are invariant under ordinary rotation;
therefore, it is always possible to expand them over angular
momenta [16,17]. To do this first we need to have a
standard® form for helicity amplitudes [14]:

Fu0.¢),  Gu0.9), (19)
with two indexes
3 113
)v—/{k—ﬂl, /17_5’_5’5’57
11
p=dg=da=—h,  p=-3.5 (20)

where 1, is the polarization of the gauge bosons;
A(er) = =1, A(eg) = +1, and A (e;) = 0. The helicity
of the pion, 4, is zero.

There is a simple relation between the standard helicity
amplitudes of Eq. (19) and the helicity amplitudes used in
Eq. (18):

M(g ¢) — ol [/1175+/17(ﬂ+2¢

ﬂ/l(e ¢) — [/117[+/12(Jr+2¢

v (0.0),
G, (0. ). (21)

The standard helicity amplitudes allow for the use of
multipole expansion [14,16]:

Z (2j + 1)d], (0)e¢

Guu(0.4 =ZGfM (2] + )], (O)e 9, (22)
J

'F (G) is a function of E, W, 02,0, and ¢, but here we only
show @ and ¢ in comparison with F/ (G/) in Eq. (22), which is not
a function of pion angles.

*The helicity amplitudes in Eq. (16) are not independent.

where /2Ed) (0)e!“~#¢ are mutually orthonormal func-

tions [16]. The same multipole expansion can be used for
0, ~(£)0
(G )

ITII. RESONANCE CONTRIBUTION AND
NONRESONANT BACKGROUND

A. Single pion production via resonance decay

The RS model [11] describes SPP in neutrino-nucleon
interaction via resonance decay, and it is based on helicity
amplitudes derived from a relativistic quark model [15].
The quark model had been extended to neutrino inter-
actions by Ravndal [18]. The original RS-model [11]
includes 18 resonances up to Mp <2 GeV. However,
according to Ref. [19] one is no longer in use. The
remaining 17 are given in Table I. The RS model also
neglected the mass of the charged lepton but it has been
restored in Refs. [12,20,21]. The helicity amplitudes in
Ref. [11] are referring to a single resonance with a well-
defined angular momentum, isospin, and helicity. Each
helicity amplitude defines a specific resonance and its
subsequent decay into the Nz final state:

<Nﬂ',/12|€a]a|N,ll> = <N7T,/12|RAR> <RﬂR|€aJa|N/11>. (23)

For the vector component of resonant production,
we have

/1 . (9 ¢> _ e—t[llzr-kﬂz ﬂ+2¢
142

F,.(0.4)

—i[l w2 (742¢)]

Z A(2j+1

= e

d},,(0.4)e 0. (24)

and similarly for the axial component [Gﬁ’l‘ 4, (0.)]. The
G/’;’ , are given in [14]. According to the

RS model [11], the decay amplitudes are

forms of Fi,z and
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TABLE 1. Nucleon resonances below 2 GeV/c2.

Resonance My Iy 1E P N
P33(1232) 1232 117 1 + 0
P,,(1440) 1430 350 0.65 + 2
D5(1520) 1515 115 0.60 - 1
S11(1535) 1535 150 0.45 - 1
P33(1600) 1600 320 0.18 + 2
S51(1620) 1630 140 0.25 + 1
S11(1650) 1655 140 0.70 + 1
D,5(1675) 1675 150 0.40 + 1
F5(1680) 1685 130 0.67 + 2
Dy5(1700) 1700 150 0.12 - 1
D33(1700) 1700 300 0.15 + 1
P, (1710) 1710 100 0.12 - 2
P3(1720) 1720 250 0.11 + 2
F35(1905) 1880 330 0.12 - 2
P3,(1910) 1890 280 0.22 - 2
P33(1920) 1920 260 0.12 + 2
F3;(1950) 1930 285 0.40 + 2

Resonances are identified with isospin (/) and angular momentum
(J); Lyjp;. The Breit-Wigner (BW) mass (Mgz[MeV]), BW full
width (I'j[MeV]), and zN branching ratio (yg) are reproduced
from Ref. [19]. The decay signs (¢”) and the number of oscillators
are from Ref. [11].

DI(R) = (N7, 1,|RAg) = 6P Coyi/ZEKChof pws  (25)

where ¢” and y are given in Table I and C}, are the

isospin Clebsch-Gordan coefficients given in Table II for
CC and NC interactions. The signs of the angular momen-

tum Clebsch-Gordan coefficients are denoted as C{vn as
they are defined in Ref. [14].

As it is explained in [14], the cross section given
in [11] is slightly different from what was given
in Eq. (18). Therefore a factor, k, is defined for the
identification:

TABLE II.  Isospin coefficients for RS model CC and NC (anti)
neutrino channels.
v channels v channels C?V/”Z C}\,/f
vp = I prt vn - I"ng~ V3 0
vn = I~ pa° vp = ITna’ _h \ﬂ
3 3
vn = I"nxt vp = ITpn~ f \/2
3 3
v 0 - =00
p = Vpw vp = vpr \/2 _\/1
3 3
vp = vnx’t vp - onx’t _\ﬁ _\/2
3 3
vn — vna® on — ona® \/2 \/1
3 3
vn = vpn~ on - vpr~ \/1 _\/2
3 3

w2 o2 1\
K= 27[2—,—— N 26
( M? 2j+1q|> (26)

and

font =\ (o) @

is the Breit-Wigner amplitude with

Tr =To(la(W)l/la(Mg))*. (28)

where 'y and My are given in Table 1.

The helicity amplitudes of the resonant interaction as a
function of @ and ¢ are summarized in Table III where
D/(R) is the decay amplitude given in Eq. (25) and f 41(R)

and f(()i) (R) are given in [11] for both CC and NC neutrino
interactions.

The resonance production amplitudes depend on the
vector and axial form factors which have a dipole form in
the RS model. In this work we use the form factors
proposed by Graczyk and Sobczyk (GS) in Ref. [13] for
the A resonance. However, for higher resonances (N # 0)
we use a slightly different form factor, similar to Ref. [14],
but with same assumptions in Ref. [13]:

2y 1 k2 : K>\ >
rov) =3 (1-Gre) (- 5am)
X \J3(GL (W) + (Gl (W)

W2 + k2 _M2
x {1 —T} CH (k). (29)

where N is given in Table I and G (W, k?) and G (W, k?)
are given in Ref. [13]. C4(k?) has a dipole form with two
adjustable parameters, M, and C4(0), that can be fitted to
data:

A C4(0
C3(k?) = (153’;—8)2 (30)

B. Nonresonant contribution

Nonresonant interactions are defined by a set of
Feynman diagrams as shown in Fig. 3. The pseudovector
NN vertices are determined by the HNV model [6]. It is
an effective chiral field theory based on the nonlinear o
model [22].
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TABLE III. Helicity amplitudes of resonant interaction.

% A P (0.9) = Gty (0.) i (0.0) = G, (0.4)

; ; F 3 DIR)S (R = 1= 1)dy(0)e” %2 DR R ] = =) (0)e

-3 3 F U DR (R = 1£1)d],(0)e¥ T DR (RU = 1+ >>dg(9>

; -3 £3 DI R)f 1 (R(1j = 14 )} (0) -5, Df( )R j = 1= 1)l (0)e*?

-3 2 qcz_f”—*lDJ'(R)fH(R(Lj:l +3))d],(0)e' Z,z’“D’(R)f (R = 1£7)d)(0)e™
Fi,(0.0) = Gy (0.4) o (0.0) = G2, (0.9)

: : LA DIR) £ (R < d=1ED))d | (6) Ve 21“@1( RYf§ (R(1j =1 D)d,_,(0)

-3 3 ,‘L;zjzf—jgpf(R)fo;( (1.j=1%Y)d] (6)e" ! z TADIR) S (R(Lj = 1) (0)e™

: ~z i}%z-ﬂmmﬁﬂmu,j:Zia)dt%( et "“ PSS DIR) £ (R j = 1£3)d](0)e™

2 2 M5 DI RS (R = 1 £ 9)d(0) S S E DRI (R = 14 9)d,(0)

The corresponding amplitudes are

g I
MPE = CNP cos O \/—TAﬁrmu(Pz)ﬂ}’s(ﬂl + K+ M)
x e[F) = Falu(py),
ga 1 —
MCNP CCNP CosechﬂzﬁM(P2>€ﬂ[FX —Fﬁ]
X (P = K+ M)dysu(p).
1 _
MEe = CPFCOSHC \/-f,,l— IZ[FPF(k )i(pa)
X y5[2qe — ke]2Mu(p,),
1

MEL = CT cos 6 i(py)ety, [gaF Y, (k?
cc C\/Ef,, (p2) 7, [QA cr( )Ys

- Fp((k - Q)z)]u(pl),

k
MEL = CPP cos O <

1
\/_T]‘,,u(m)lcz——nﬁ,ku(pl)’ (31)

where

Vi12
<FVv:=z[fY<%wwt—ﬂvf5<k)bm,m],

2M
= =Gu)|prs + o Ehen) o)
The vector form factors are
1
FY(R) = 5 (FL(R) - F{(R)),
1
pyFy (k) = E(MpFé’(kz) — a5 (k).  (33)

Similar to the HNV model [6], the parametrization of
Galster et al. [23] is used. The axial form factor for
nonresonant interactions is

(kz) ga

where for this work My, = 0.84 GeV and M, = 1.05 GeV.
In addition,

—1/(1-1/M3), (35)

FIG. 3. Nonresonant pion production diagrams: (a) nucleon
pole (NP), (b) crossed nucleon pole (CNP), (c) pion-in-flight
(PIF), (d) contact term (CT), and (e) pion pole (PP).
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TABLE IV. Isospin coefficients for neutrino and antineutrino
channels.

CC Channels CNP CCNP CPF = CCT = CPP
vp = I"pr* 0 1 1

vn — I~ pz° % _\/Li -2

vn = I"nxt 1 0 -1

on — I"nn~ 0 1 1

- + 5770 1 1

vp = I'nn v 7 V2

vp = ITpn~ 1 0 -1

where m, = 0.7758 GeV, as proposed in Ref. [6].
Conservation of vector current (CVC) requires that
Fpp(k*) = Fgr(k?) = 2F{ (k). (36)

Isospin coefficients CNP, CENP CPF CCT, and CPP are

given in Table IV for different neutrino and antineutrino
channels.

To calculate the helicity amplitudes of the above dia-
grams at Eq. (31), first the invariant amplitudes (V; and Ay)
need to be calculated from transition amplitudes,

(Nz|end IN) = "an(p2)[Vils. 1,u) O(Vy)
k

— Ai(s, 1, u)O(A)Juy (p1), (37)

for each channel. The vector and axial vector invariant
amplitudes for two CC channels are given in Table V.

Isospin symmetry allows us to find Vf”o (AY ') in terms of
VI”TJr AP”Jr d mer Ann* .
k ( k ) an k ( k ):

vp—=lpn (W<1.4 GeV)

10%
8F- 4 ANL data
« TE
S F
= 5
£
S 4
G
g 3
(o}
2 2
1
0 S T TR NN SN SR TR NN SR ST SO RN T ST S |
0 0.2 0.4 0.6 0.8 1
Q? [(GeV/c)?]

FIG. 4. (Q?-differential cross section ANL data with invariant
mass cut, W < 1.4 GeV. The prediction of the model with fitted
parameters is shown with a solid red curve. The shaded area
accounts for the variation of the results when M, changes within
its error interval.

0
VP” _ _[VP” _ Vnﬂ ]
k V2
1 + N
AP = AP _ pnm], 38
k \/i[ k k ] ( )
Knowing invariant amplitudes allows for straight-
forward calculation of the isobaric amplitudes,

Fr and G, by using the required relations given in
Appendix A. All helicity amplitudes for nonresonant CC
interaction in terms of F; and G, are given in Table VI of
Appendix B.

Isospin symmetry also allows the calculation of helicity
amplitudes for NC interactions from the CC helicity

TABLE V. Invariant amplitudes.
Amplitude v, +p— uprt v, +n— punat
2 k2 " k2
Vi \}Af (4M Fy(K?) + 2/4vF.( )) \/yff (i]j\lxl/IzF (k) + 2sz( ))
Vs \/J—} ﬁu e (kz) f—’*f ﬁg e Fl(kz)
2 g

Vs A (S Fa(R) — B (2P () + (2 T35 )

g 2 2)\ —
V4 _\/_Af u— M2 (k) _\/g‘Af (2/'[VF2251];))541£I/12
Vs \/QTAA#[E/Z (k) J%f At[Al;Ir m2 Fy(k?)
A - A k) i Gl
Aj \/%‘f (2M5GA(K?)) —\}Af G (k)
A4 _\/%-”%GA(ICZ) +WF/)((k - q)Z) \/_f MGA(kz) Mf /)((k q) )
Aq \/g—/} k2 kz GA(kz) _\/J‘} m2 GA(k2)
As — e (1 25 Ga (k) ~Hrwe (1+88)G,(k)
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)
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E(GeV)
O.5j -
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. 04l ?04:
c o L’ A
g I s v T
© + 0 3] B
2 o Zoaf
o (3] L
€ C /. e [
[3) L 4 3}
8 02 -+- 8 o2k
o [ /i _+_ o™ - BNL
S _+_ + + —=— BNL = —e— ANL
0.1 —— ANL 0.1F
-+ ---- NEUT 5.3.6 — Model
3 | | | = Model » T NEUT 5.3.6
© 05 1 15 2 25 3 0 05 1 15 2 25 3
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FIG. 5.

Total cross section for the vp — upa™ (top), vn — unx* (bottom left), and vn — upz® (bottom right) channels.

Reanalyzed ANL and BNL data are from [28,29], and data from BEBC and FNAL, with an invariant mass cut W < 2 GeV, are
from [30,31,33]. Curves are predicted cross sections by the model (solid black) and NEUT 5.3.6 (dashed green), with an invariant mass

cut W < 2 GeV.

amplitudes [6]. The helicity amplitudes for e™ polarization
in Table VI are zero since the outgoing lepton in NC
interactions is neutrino.

IV. RESULTS AND COMPARISON
WITH EXPERIMENTS

The model described in this work includes a full
kinematic description of the final-state particles for CC
and NC (anti)neutrino-nucleon interactions. It has been
calculated in the helicity basis which is very suitable for
implementation in event generators.

The full model includes resonant and nonresonant
interactions, as well as interference effects. The resonance
part of the model (which is based on the RS model)
includes 17 resonances up to M =2 GeV (see Table I),
and it is therefore valid up to W = 2 GeV. For nonresonant
interactions, the model is based on chiral symmetry and it is
not reliable at high W. A practical solution [24] for a

complete model with resonant and nonresonant interactions
is to multiply a form factor’ by the virtual pion propagator
of the PIF diagram in Fig. 3. CVC requires the inclusion of
this form factor for several other amplitudes. This will
reduce the nonresonant contributions smoothly in the
1.4 GeV < W < 1.6 GeV region; therefore, the nonreso-
nant interaction will have no effect at W > 1.6 GeV. The
dipole form factor in Eq. (30) is a function of Q2.
Therefore, it is suitable to fit the adjustable parameters

The proposed form factor in this work is

Fyi(W)
1 if W<1.4GeV
={ —2331W?+64.92W—-442 if 1.4GeV<W<1.6GeV.
0 if W>1.6GeV

(39)
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FIG. 6. Total cross section for two channels on — u*nz~ (left) and op — p* pa~ (right), as a function of neutrino energy. Data are
from BEBC [30] and Gargamelle [33], and curves are predicted cross sections by the model (solid black) and NEUT (dashed green),

with an invariant mass cut W < 2 GeV.

to differential cross section measurements in Q2. The ANL
experiment provided a measurement for the v, p — u~pa™*
channel with the selections 0.5 GeV < E < 6 GeV and
W < 1.4 GeV [25]. The best-fit values for the parameters
can be found from a y* minimization fit to averaged
do/dQ* over the ANL flux [26]. The results are

My = 0.733 £0.068 GeV,

Cg‘ =0.993 + 0.101 GeV. (40)
The Gaussian correlation coefficient, » = 0.858, shows that
the parameters are strongly anticorrelated. Figure 4 shows
that the results of the fit with ANL data are within lo
error bars.

For the rest of this section, we will show a comparison
between the model predictions and bubble chamber CC and
NC (anti)neutrino data. The RS model is the default model
for SPP in NEUT [10]; therefore, the NEUT predictions are
also shown for comparison.

A. Model and NEUT comparison
with bubble chamber data

In this section, the model defined in this paper and
NEUT 5.3.6 are compared with bubble chamber data for
SPP channels. The SPP model in NEUT 5.3.6 is the RS
model with GS form factor [13], including the isospin 1/2
background contribution with an adjustable coefficient
defined in the original paper [11].

Several bubble-chamber experiments have measured
the total cross section as a function of neutrino energy.
The ANL [25] and BNL [27] experiments have measured
the CC neutrino channels with a low energy neutrino beam.
These data have been reanalyzed recently [28]. Figure 5
shows the reanalyzed ANL and BNL data from [28,29],
as well as data from BEBC [30] and FNAL [31] which
utilize higher energy neutrino fluxes. The model and NEUT

predictions with an invariant mass cut of W <2 GeV are
also included for comparison.

For antineutrinos, the BEBC experiment [30] on a
deuterium target and the Gargamelle experiment [32] on
a propane target measured the total cross section for the
Up — utpr~ and in — pTna~ channels. Figure 6 shows
the data, model, and NEUT predictions with an invariant
mass cut of W < 2 GeV. Gargamelle data are normalized
to the proton and neutron cross sections based on Ref. [33].
There are few available bubble-chamber data for NC SPP
channels. These are from ANL [34] (deuterium target)
and Gargamelle (propane). For the vn — vpz~ channel,
the model and NEUT predictions are compared with
Gargamelle and reanalyzed ANL data (based on [29]) in
Fig. 7. There are also a few measurements for other NC
neutrino and antineutrino channels, by Gargamelle [35] and
the Aachen-Padova spark chamber [36]. The model and
NEUT predictions are compared with all available data
in Fig. 8.

vnovp 1 (W<2 GeV)

©,

1
E 'i —
& 08
g F " /
© 06 - '1)/ —4— ANL (reanalyzed)
04l / —+— GGM
C ,'/1
02— g —— Model
C &/ === NEUT 5.3.6

4 5 6 7
E(GeV)

o

FIG. 7. Total cross section as a function of neutrino energy for
the vn — vpzx~ channel. The model (solid red) and NEUT
predictions (dashed blue) have an invariant mass cut W < 2 GeV.
Data are from [39].
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Total cross section for NC (anti)neutrino channels. Data are from [39], and curves are model (solid red) and NEUT (dashed
blue) predictions, with an invariant mass cut W < 2 GeV.

ANL also measured the pion momentum distribution
in the lab frame for two CC channels: v, + p — upa™
and v,n — unx" [37]. To compare the model to predictions
in the lab frame, one needs to generate events in the
isobaric frame and boost it to the lab frame. This is
done with an implementation of the model in NEUT

Number of events

80

60

40

20

Vppoupmt

—— ANL

] Model x2=14.02
F---] NEUT5.3.6 x2=33.11

200

300

p, (MeV)

400

[10] and the plots are made by NUISANCE [38] as shown
in Fig. 9.

Number of events

25

20

&)

B. W distribution

Distribution of the invariant mass of the hadronic system,
W, provides information about individual resonance

.
v,nounm

—— ANL
F--] NEUT5.3.6 y2=10.42

] Model y>=7.07

M R
200
p, (MeV)

P IR
300

FIG.9. Pion momentum distribution for the vp — pupr™ (left) and vn — puna* (right) channels from ANL [37]. Model (solid red) and
RS model (dashed blue) predictions of flux-averaged p,-differential cross sections (with W < 2 GeV cut), normalized to data, are also
presented for the two channels.

013002-10



SINGLE PION PRODUCTION IN NEUTRINO-NUCLEON ...

PHYS. REV. D 97, 013002 (2018)

contributions, where each resonance has a peak around its
own resonance mass. The BEBC experiment measured the
W distribution with neutrino and antineutrino beams. The
relatively high (anti)neutrino energy flux in this experiment
showed clear patterns for the different channels. A shape
comparison requires an area-normalized flux averaged [33]
over do/dW. Figure 10 shows the model comparisons with
BEBC data [30]. To demonstrate the effect of the non-
resonant background, the model prediction without the
nonresonant contribution is also shown for comparison. It
is apparent that the vp — upx™ channel, with isospin 3/2
contributions, is dominated by A(1232) resonance produc-
tion. Other channels are a combination of both isospin 1,/2

vp—o>up nt

—+— BEBC 90

— Model

200

180

160

""""" Model w/o BKG

# of Events per 0.04 GeV/c?

o]
o
JEY L L L L L LI DL LI LR

W(GeV/c?)

vh-unrt
45

40

35

N N W
[=) [$)] o

# of Events per 0.04 GeV/c?
o

-
o

(4]

1 1.2 14 16 18 2
W(GeV/c?)

and 3/2 resonances. Therefore, few bumps appear at higher
W due to the isospin 1/2 resonances.

At lower energy, the same comparison with ANL [25]
data is shown in Fig. 11. The model predictions with and
without nonresonant background show the effects of the
nonresonant contributions and its interference with
resonances.

C. Angular distribution

Polar () and azimuthal (¢) angles are shown in the Nz
rest frame in Fig. 2. The O-distribution of an individual
resonance is symmetric in the Nz rest frame; therefore, any
modification from the symmetric pattern is caused by

vhosup

# of Events per 0.04 GeV/c?
[\*)
a

N
o
N R R R AR RN RN RN RRRR

70—

60—

50

40

30

# of Events per 0.04 GeV/c?

20—
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.
01|_|’||||||||||||||||||||
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W(GeV/c?)

FIG. 10. W distribution for different neutrino and antineutrino CC channels from Ref. [30]. Curves are the model predictions with

(solid red) and without (dashed blue) background.
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FIG. 11.
without (dashed blue) background.

interference effects. The @-distribution for the vp — pupr™
channel has been measured by the ANL [25] and the BNL
[27] experiments in the A region (W < 1.4 GeV). The data
are compared with the flux-averaged differential cross
section predicted by the model in Fig. 12. For these
comparisons, the model was area normalized to the data.
The symmetric prediction of the model without the non-
resonant background contribution is also included for
comparison.

To show the effects of nonresonant interactions as well as
interference with resonances, the full model (resonant and
nonresonant up to W =2 GeV) and the resonance con-
tribution of the model for CC neutrino channels are shown
in Fig. 13. The symmetric A contributions are also included
for comparison. The differential cross section averaged
over the T2K flux is shown for all these models.

It is apparent from Fig. 13 that the nonresonant inter-
ference has a significant effect on the 6 distribution
(compare the solid red curves with the blue dotted curves).
The interference between resonances has a non-negligible
effect, especially on channels with isospin 1/2. In the

W distribution for different neutrino CC channels from Ref. [25]. Curves are the model predictions with (solid red) and

vp — vpr' channel, only resonances with isospin 3/2 can
contribute and the A is dominant. Therefore, the effects of
other resonances are negligible for this channel.

In terms of pion angles, neutrino generators like NEUT
[10] and GENIE [40] only have a contribution from the A
resonance. They are missing all the other resonances and
their interferences, as well as the nonresonance effects.
Comparing shapes between this model and the A resonance
contribution in Fig. 13 also shows the difference between
the model and what is currently in generators.

The azimuthal angle (¢) in the plane perpendicular to the
momentum transfer (see Fig. 2) is sensitive to interference
effects. It is also a good observable to extract form factors.
For the RS model and resonant interactions, there are two
available form factors: the dipole (RS) form factors from

the original RS model [11], and the GS form factors®
introduced in Eq. (29).

It is called a GS form factor, but in fact, Eq. (29) is different
from the GS form factors in Ref. [13] for higher resonances.
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FIG. 12. Event distribution in the pion polar angle for ANL
(left) and BNL (right) with invariant mass cut, W < 1.4 GeV,
from Refs. [25,27]. Curves are flux-averaged, area-normalized
predictions of the model (solid red) and the model without
background (dashed blue).

Figure 14 shows ANL [25] and BNL [27] event
distribution in ¢ with model predictions for two form
factors which are notably different. The model predictions
without nonresonant background are also included,
where they produce different shapes than the full
model.

According to [41], the shape of the ¢ distribu-
tion is almost unaffected by nuclear effects.
Therefore, experiments with a nuclear target are
sensitive to the axial form factors, while bubble
chamber data are not precise enough for this
purpose.

D. Conclusion

The model proposed in this work provides a
differential cross section, a’o/dedeQ, for single
pion production up to W = 2 GeV. It consists of resonant
and nonresonant interactions and includes interference

effects.

Bubble-chamber data are used to extract the
axial form factor of the resonant contribu-
tions. The model has good agreement with all

available bubble chamber’s data for CC and NC
(anti)neutrino channels over a wide range of neutrino
energy.
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FIG. 13.

The differential cross section averaged over T2K flux in terms of the polar angle. The dotted blue curve shows the model

prediction for resonant interaction (up to W = 2 GeV), while the dashed green curve is only for the dominant A resonance. The solid red

curve shows the full model.
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APPENDIX A: INVARIANT AND ISOBARIC
FRAME AMPLITUDES

Reference [5] provides the following linearly indepen-
dent Lorentz invariants for vector and axial currents:

0% (V1) = S7s[(re) (k) — (rh) (reh)]

0% (V) = ~213[(Pe)(gh) — (PK)(ge)]

0%(V3) = ys(re*)(qk) = (rk)(ge™)]

0% (V) = 215[(e4)(PK) = (7R (PeH)]
= Mys[(re*)(vk) — (vk)(re™)]

0% (Vs) = ~rs(ke®)(gh) — K(qe™)]

O*(Vs) = ys[(ke™) (vk) — K*(yeh)]

0% (A1) = 3 [(ra) (re™) ~ (e ) rg)]

O*(A,) = 2(eMP)

0% (A) = (ehq)

O0*(A,) = Mye*

0% (As5) = =2(7K) (e P)

0*(Aq) = =(rk)(e*q)

0% (A7) = (k)

0% (Ag) = ~(Ph) (HK), (A1)

where P = 1/2(p; + p,) and ek = ek, — e k.
In the isobaric frame, the following bases are used from
Ref. [5]:
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- . K|
Ay = —(ke)—
6 (ke) ko
A = —(GQ)(UUR)(GIC)//CO
Ag = —(ek)/ ko, (A2)
where
Ac = Alo; = Alo| + A%, + A’cs. (A3)

The relation between Lorentz-invariant SPP amplitudes V,
A in Eq. (12) and F;, G; in Eq. (14) is given in the
following way:

‘Fl = KIV'FI(Z. — 1, ...,6)

Gi=KA\Gi(i=1,...8), (A4)
with
KV =W_0,, K =qW,0,
KYy=W,0_ K{=1/0,,
KY =¢W,0,.  K!=1/0,_ (AS)
and
K} = |q|0,; K§ =0,
K3 =|q|05- K§ =0,
K3 =|q|0,_ K3 =0,_
K4 =1ql0,, Ki=0,.. (A6)
where
Wo=W+M
014 = [(W2 — R2)(W2 — m2)]t/2W
Oae = [(W2 = K3) /(W2 — m2). (A7)

F;’s for the vector part are

Fy=V+(V3=V4)(qgk)/W_+V,W_=Vek*/W_,
Fy==V i+ (V3=V4)(qk) /W, +V W, =Vl /W,
F3=V3=V,+Vys/W,,

Fy=V3=V4=Vys/W_,

Fs=V (W2 —k2)/2W =V, (qk) (W2 — K2+ 2WW_) /2W
(V3= V) (W o= (gk)) + Va (W2 —K)W_/2W
—Vs(qk)ko— V(Wi —k*)W_/2W +¢o Vs,

Fo==V (W2 —K?)/2W +V,(qk) (W2 - K> +2WW_)/2W
+(V3=Va)(W_qo—(qk)) +Vo(W2 = k*)W  /2W
+Vs(qk)ko = V(W2 =K )W /2W = o Vs, (A8)

and G;’s for the axial part of (A4) are

G, =W.A, — MA,,
G, =-W_A; —MA,,
Gy =A1+ Ay —As+ (A5 — Ag) W,
Gy=—A - Ay + A3+ (As —Ag)W_,
Gs=[A+ (W3 —m2)/2W + 2WkoW /(W2 — k?)]A,
+ (A4 por + W)Ay + (g0 — A)A;
= M[W_/(po1 = M)]A4 + W [(A+ por + W)As
+ (g0 — A)Ag),
Ge = —[A+ (W2 —m2)/2W + ZWkOW_/(W%_ —k*)]A,
+ (A+ por + W)A; = (g0 — A)A;
=MW, /(por + M)]As + W_[(A+ por + W)As
+ (g0 — A)Ag).
Gy = (W3 —mz)A/2W + (po1 + Po2)Az + qoAs — MA
+koA7 + W [(Po1 + Po2)As + qoAs + koAsg),
Gy = —(W2 —mz)A,/2W — (po1 + Po2) Az — qoAs
— MA4 = koA7 + W_[(po1 + Po2)As + qoAs + koAs],
(A9)

where

V25 = W+W_V2 + kZVS
A = ko(qoko — (qk))/kz-

APPENDIX B: HELICITY AMPLITUDES

(A10)

According to the isobaric frame which is shown in Fig. 2,
the momentum vectors are

k=[k|(0 0 1)

q = |q|(sinfcos¢ sinfOsing cosh), (BI)
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and the nucleon spinors are

Using Eq. (16), the helicity amplitudes in the isobaric frame can be obtained which are displayed in Table VI.

am=(1) aw-(7)

B sin@/2 (e cos6)2
x(1) = (—ei"’ cos9/2)’ x() = < sinf/2 >

The explicit form of the diy (@) functions for j =/ —l—% are given in Eq. (B4):

0
d]:(l+1) cosZ(P;Jrl P))

1
2

0
d_% =(+1)" s1n—(P}+1 +P))
[+
dﬁz (I+1)~ sm—(ﬁlJr 1+1+\/ P’)

— l+ /
d_2_;—(l+1 COS_(“Z—# P +4/ P>

where P; are Legendre polynomials and P} = dP;/d cos0.

APPENDIX C: DIFFERENTIAL CROSS SECTION

Equation (18) can be expanded by using Table VI:

do(vN — INz)

dk2dWdQ,

where

Gy 1 ldf - : -

== {ICLIF3E, (0) = Gt (0)* + |CrIPF3%, (6) = G35, (6)
2 (2”) kL)z; L Aok Aok R A Jody
+[C_]? |F/12 (@) - /12/11( )P+ C P |F/1211 ) =G, (O)F

+2cosp{C, C_N]

(6
(F; gl (9)—Ghl @) (Fi (9) GZ}] @))]
+ Cr C_R[(F3, (6) = )

Gi, (0))"(F5,,(0) = Gi, (0)]

o (0))7
+Cp CLR[(FiL, (0) = G, (0))*(F, (0) — éj;](e))}
+ Cp CLR[(F32, (0) = G%, (0))" ( 1(0) =G ()]}
+2sing{-C,_C [( 0 (0) - ( ) (Fi, (0) = Giyy, (0))]
+Cr C ~‘[(F/1R,1 (0) - 1(‘9)) ( o (0) = éj;ll (0))]
-Cr, C+\$[( (9) 12/11 (9))*(F§;11 (@) - NZZAI (0))]
+ Cr, CL3[(F3Y, (0) = G35, (0)) (5, (0) = Gy, (0)])
+2c0s2¢(C; CR +C7, CR+)§R[( ZzL/ll (0) - G,a v (9)>*(F?,{ 0) - G; 5, O)]

~25in2¢(C;_Cr_+ Cp, Cr,)S[(F3L, (6) = GiLy (0))(F%, (0) = G35, (0)])

|CL(R)‘2 = |CL(R)_|2 + |CL(R)+|2'
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TABLE VI. Helicity amplitudes.

Hadronic vector current

Hadronic axial vector current

= \/L-e %t sin @ cos§ (F3 + Fy)

Mi:—ﬁ e sin@sing (F5 — F,)
~f;z V2e™ W[cos§ (F) — F,) —3sinOsin§ (F5 — Fy)]
~2_3=—\/_[51n (Fi+ Fy) +1sin@cosh (Fs + Fy)]

Fif = —V2[sing(F, + F,) +LsinOcos§ (F5 + F,))
Fé5, = —/2e?[cos§ (F) — Fp) — LsinOsing (F3 — Fy)]
22

Fa)

f’*l :ﬁe”/’smé’sm (Fs—
I:"e”_ :7§e2i¢sinﬁcos§(f3+f4)

oo

F%‘ = e cos§ 2 (koe) — |K|e} ) (Fs + Fs)
FeT_; = —sin§ ¢ (koe) — [K|e} ) (Fs — F)

é% = —sin§& (koe] — |Kklef )(Fs = F)
i’i*%_% = —e'? cos§ & (koe} — |kl|e; )(Fs + Fe)
F;* =7 cosgci (koeR [k|e3)(Fs + F)
Fi*% = —sin§&- (koe} — |kle})(Fs — Fe)
~§i%:—singc%( — [k|ex)(Fs = Fs)
~i;_% =—e COS%%(’%% klex)(Fs + F)

G = \/Eeid’[cosﬁ (G — G») —%sin0sin§ (G; — Gy)]
Gity = V2[sin§ (G + o) + §sinOcos§ (G + Gy))

m

= —V2[sin§ (G, + G,) + 3sinOcos§ (G + Gy)]

i’i_; =V2e?[cos (G, — G,) —Lsin@sing (G — G,)]

6;25% = J5¢sin0sing (G — Gu)

~iRH =~ J5¥sinfcos§(Gs + Ga)

Gy = 7t cos Sl (K63 (G5 + Go) + (koe) — Kle3 ) (G + Gs)]
Gy =sin§ HkleL(gs o) + (koe} — [k|e2)(G7 — G)]
G-y = = sing i [Kled (G5 = Go) + (koel) = [K|e}) (G5 - G)]
Gi;_% = e cos§ i [[klep (Gs + Go) + (koe) — [kle7 ) (G7 + Gs)]
Gy = e cos§elp [IKlek(Gs + Go) + (koek — klex)(Gr + Gs)]
Get; = szc % [[K|e3(Gs — Go) + (koek — |K|ex)(G7 — Gs)]

G, = —Slngﬁ[lklﬁe(gs = Gs) + (koek — [K|ez)(G7 — G)]
~2i;—% = ¢ cos§li- (ke (Gs + Gs) + (koek — [Kler) (Gr + Gs)]
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