
 

Polarization transfer in weak pion production off the nucleon
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Polarization transfer (PT) observables in the single pion production induced by the charged current
interaction of the neutrino with the nucleon are examined. The polarization components of the final nucleon
and the charged lepton are calculated within two models for the pion production. The predictions are made
for neutrino energy of the order of 1 GeVas well as for the T2K energy distribution. It is demonstrated that
the PT observables, the degree of polarization and the polarization components of outgoing fermions, are
sensitive to assumptions about the nonresonant background model. In particular it is shown that the normal
components of the polarization of the outgoing nucleon and the lepton are determined by the interference
between the resonant (RES) and nonresonant (NB) amplitudes. Moreover, the sign of the normal
component of the polarization of the charged lepton is fixed by the relative sign between the RES and the
NB amplitudes.
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I. INTRODUCTION

The first theoretical studies of the single pion production
(SPP) in neutrino-nucleon (νN) scattering were performed
more than 40 years ago. A historical review of the topic can
be found in [1]. The latest developments of the accelerator
neutrino oscillation experiments [2–5] have triggered new
interest in SPP processes.
Further progress in the investigation of the fundamental

properties of neutrinos (the oscillation phenomenon, the
CP-violation in the lepton sector, and the mass hierarchy)
requires an improvement of the experimental techniques
for the measurement of the interactions of neutrinos with
different nuclear targets [6] as well as a development of
the theoretical models describing the neutrino-nucleus
scattering [7].
The measurement of the neutrino oscillation parameters

and extraction of the CP-violation phase are made based
on the analysis of the quasielastic (QE) neutrino-nucleus
scattering; however, the SPP processes contribute to the
background for the detection of the QE-like events as well
as the electron neutrinos in the far detector. Hence the SPP
contribution cannot be neglected in the analyses of neutrino
scattering data. Additionally, the investigation of the SPP in
the νN interactions allows us to study the weak excitation
of the nucleon to the resonance states.

A first natural step in modeling the SPP in ν-nucleus
scattering is the construction of the theoretical description
for the ν-nucleon scattering. In this work we focus on
the interactions of neutrinos with a free nucleon target.
Two mechanisms for the pion production in the νN
scattering can be distinguished: a resonant (RES) and a
nonresonant mechanism. In the first, the nucleon is excited
to the resonance state, N�, which subsequently decays to a
πN system. In the other, there is no N → N� transition.
This contribution can be modeled by the so-called non-
resonant background (NB) amplitudes allowed by the
symmetries [8].
The choice of the degrees of freedom of the SPP model

depends on the energy range in which it is applicable. If
neutrino energy is relatively low, E ∼ 1 GeV, it is enough
to consider the contribution to the scattering amplitude
from the first resonance region. For larger energies one has
to include also the resonance states from the second and
third resonance regions, as well as higher order NB terms.
In this work we discuss neutrino energy of the order of
1 GeV, which is a kinematic domain typical for the long and
short baseline experiments with an accelerator source of
neutrinos [2,3].
There are many phenomenological models describing

the SPP in νN interactions [9–20]; for a more complete list,
see [7,21]. One of the main difficulties in modeling the
pion production is proposing a consistent description of
both the RES and the NB contributions. The analysis of
the unpolarized cross section data does not allow us to
distinguish between the RES and NB contributions.
Moreover, the main information about the SPP in νN
scattering is obtained from the analysis of the data collected
by two bubble chamber experiments Argonne National
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Laboratory (ANL) [22] and Brookhaven National
Laboratory (BNL) [23], in which the neutrino-deuteron
scattering was investigated. There are newmeasurements of
the SPP in the ν-nucleus scattering, e.g., by Minerva [24]
experiment. But in the analysis of these data, the nuclear
structure effects must be included, which makes the studies
complicated and model dependent.
In this work we propose to study the polarization

properties of the particles in the SPP processes. We shall
show that the polarization transfer (PT) observables
contain the nontrivial information about the resonance
and the nonresonace transition. In particular we demon-
strate that the investigation of the normal polarization
components of the charged lepton and the final nucleon
give knowledge about the relations between the RES
and NB contributions. Indeed the normal polarizations
are proportional to the interference of the RES and NB
amplitudes.
The PT observables have been studied experimentally

and theoretically in electron scattering off the nucleon/
nuclei in past years. More than 40 years ago, Akhiezer
et al. [25,26] (see also [27–29]) showed that from the
measurement of the PT observables in the elastic electron
scattering off the proton, the form factor ratio Gp

E=G
p
M

(Gp
E=M is the electric/magnetic proton form factor of the

proton) can be obtained. This is an alternative method for
the measurement of the elastic form factors to the famous
Rosenbluth method. The ratio Gp

E=G
p
M obtained from the

PT data turned out to be inconsistent with the Rosenbluth
measurements. It triggered off more detailed experimental
and theoretical studies of the elastic electron-nucleon
scattering. A recent review of the topic can be found
in [30].
The investigation of the polarization properties of final

particles in the νN scattering is not a new idea. The PT
observables in the QE νN scattering were discussed in [1].
Recently the problem has been refreshed in Refs. [31–33].
Moreover, in Refs. [34–36] the polarization properties
of the τ lepton produced in the QE and inelastic νN
interactions were studied. Additionally, in [37] the impact
of the nuclear effects on the polarization of the τ lepton
produced in the QE neutrino-nucleus scattering was
investigated.
The polarization properties of the τ lepton in the SPP

induced by the ντN scattering processes were studied by
two groups: Hagiwara et al. [35] and Naumov et al. [34].
However, the discussed SPP models did not contain the NB
contribution. In our work the NB contribution plays a
central role. We show that the PT observables are sensitive
to the NB contribution. We discuss the charged current
interactions of the muon and the tau neutrinos with the
nucleons. Eventually we investigate also the polarization
properties of the final nucleon produced in the SPP process.
This problem has been not studied before.
We show that the PT observables are sensitive to the

various details of the SPP models, in particular the

description of the NB contribution. In order to study the
model dependence of the predictions of the PTobservables,
we consider two phenomenological approaches for the
SPP: the Hernandez-Nieves-Valverde (HNV) model as
formulated in [8] and the Fogli-Nardulli (FN) model as
described in [11]. Both approaches are similar in con-
struction but it is demonstrated that small differences in the
treatment of the NB contribution give rise to disparities in
the predictions of the PT observables.
The paper is organized as follows: Section II introduces

kinematics and the cross section formula, in Sec. III the
polarization observables are given, Sec. IV contains a short
review of the HNV and FN models, and in Sec. V the
numerical results are presented and discussed. We sum-
marize in Sec. VI. Additionally, we include three
appendixes.

II. KINEMATICS AND CROSS SECTION

We consider the SPP induced by the charged current
(CC) νN interaction

νlðkÞ þ NðpÞ → l−ðk0Þ þ N0ðp0Þ þ πðkπÞ; ð1Þ

where l ¼ μ, τ; kα ¼ ðE;kÞ; and k0α ¼ ðE0;k0Þ are the
four-momenta of the initial and the final leptons, respec-
tively, while pα ¼ ðEp;pÞ; p0α ¼ ðEp0 ;p0Þ; and kαπ ¼
ðEπ;kπÞ denote the four-momenta of the incoming nucleon
(N), the outgoing nucleon (N0), and the pion, respectively.
Notice that Ex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þM2

x

p
.M, m, and mπ denote masses

of the nucleon, charged lepton, and pion, respectively.
The four-momentum transfer is defined as

qα ≡ kα − k0α ¼ ðω;qÞ; ð2Þ

and the invariant hadronic mass W is given by

W2 ¼ ðpþ qÞ · ðpþ qÞ≡ ðpþ qÞμðpþ qÞμ ¼ ðpþ qÞ2:
ð3Þ

Let us also define

Q2 ≡ −q2: ð4Þ

The scattering angle between lepton momenta is denoted
θ≡∠ðk;k0Þ, while the spherical angle (depending on θ) is
denoted by Ω; ϕπ is the angle between the scattering plane
(spanned by k and k0) and the plane spanned by the pion
and the final nucleon momenta (see Fig. 1).
The differential cross section for the process (1) reads

dσ ¼ 1

4MEk

X
spins

X0

spins

d3k0

2Ek0 ð2πÞ3
d3p0

2Ep0 ð2πÞ3
d3kπ

2Eπð2πÞ3

× ð2πÞ4δð4Þðp0 þ kπ þ k0 − k − pÞjMfij2: ð5Þ
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Sum over the spins of the leptons and the nucleons is
denoted by

P0
and

P
, respectively. We systematically

omit the spin notation in this section.
The scattering matrix, in the one-boson exchange

approximation and for −q2 ≪ M2
W, reads

Mfi¼−
GFffiffiffi
2

p cosθCūðk0Þγμð1−γ5ÞuðkÞhπ;N0jJ μjNi; ð6Þ

where GF ≈ 1.16639 × 10−5 GeV−2 is the Fermi constant,
while θC is the Cabibbo angle and cos θC ≈ 0.97427.
The expectation value of the CC weak hadronic current
operator J μ reads

Jμ ≡ hπ; N0jJ μjNi: ð7Þ

Distinct phenomenological models can contain different
numbers of diagrams contributing to the total scattering
amplitude. Hence the total hadronic current can be given by
the sum

Jμ →
X
a∈S

CaJμa; ð8Þ

where Ca is the Clebsch-Gordan coefficient; see Table I.
The total amplitude in the HNV model is described by

seven Feynman diagrams, hence

SHNV ¼ fNP;CNP;CT; PP; PF;ΔP;CΔPg: ð9Þ

An explanation of the notation in the parentheses can be
found in Fig. 2 and Ref. [8].
In the FN model, the total amplitude is given by four

diagrams:

SFN ¼ fNP;CNP; PF;ΔPg: ð10Þ

The structure of the amplitudes in the HNV and FN
models is the same; hence, we introduce

Jμa ¼ hπ; N0jJ μ
að0ÞjNi ¼ ūðp0ÞRμ

auðpÞ; ð11Þ

where Rμ
a ¼ rμa and Rμ

a ¼ ~rμ for the HNV and the FN
models, respectively.
Eventually it is convenient to introduce the notation

Ma ¼ −
GFffiffiffi
2

p cos θCūðk0Þγμð1 − γ5ÞuðkÞRμ
a; ð12Þ

and then

Mfi ¼
X
a∈S

Ma: ð13Þ

III. POLARIZATION TRANSFER
OBSERVABLES

We consider two types of PT processes. In the first, the
polarization of the final lepton is examined, namely,

νlðkÞ þ NðpÞ → l⃗−ðk0; ξÞ þ N0ðp0Þ þ πðkπÞ: ð14Þ

In the other, the polarization of the final nucleon is the
subject of study:

νlðkÞ þ NðpÞ → l−ðk0Þ þ N⃗0ðp0; ζÞ þ πðkπÞ: ð15Þ

Notice that ξ and ζ are the four-vector spins of the final
lepton and the nucleon, respectively.
A spin four-vector sμ of a 1=2-spin fermion of mass M

has three independent components. At rest it has the form

FIG. 1. Angular distribution of the particles, in the laboratory
frame, in the process (1). The momenta k and k0 denote the
neutrino and the charged lepton, respectively. The target is at
rest, while kπ and p0 denote the pion and the outgoing nucleon
momenta. The vectors ξ and ζ in green, blue, and red denote
longitudinal, normal, and transverse components of the charged
lepton and the nucleon, respectively.

TABLE I. Clebsch-Gordan coefficients.

Process NP CNP CT PP PF ΔP CΔP

νlp → l−pπþ 0 1 1 1 1 1 1

νln → l−pπ0 1ffiffi
2

p − 1ffiffi
2

p −
ffiffiffi
2

p
−

ffiffiffi
2

p
−

ffiffiffi
2

p
−

ffiffi
2

p
3

ffiffiffi
2

p

νln → l−nπþ 1 0 −1 −1 −1 1
3

3

ν̄ln → lþnπ− 0 1 1 1 1 1 1

ν̄lp → lþnπ0 − 1ffiffi
2

p 1ffiffi
2

p
ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
2

p ffiffi
2

p
3

−
ffiffiffi
2

p

ν̄lp → lþpπ− 1 0 −1 −1 −1 1
3

3
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sμ ¼ ð0; ŝÞ; where ŝ2 ¼ 1: ð16Þ

In a frame in which a particle moves with the velocity
p=Ep, the spin vector reads [38–40]

sμ ¼
�
ŝ · p
M

; ŝþ p
ŝ · p

MðM þ EpÞ
�
: ð17Þ

In any frame,

s · p ¼ 0: ð18Þ

It is convenient to introduce longitudinal (L), transverse
(T), and normal (N) components of the spin,

ξμ ¼ ξμL þ ξμT þ ξμN; ð19Þ

ζμ ¼ ζμL þ ζμT þ ζμN; ð20Þ

where we choose the coordinates so that (see Fig. 1)

ξμL ¼ hl

�jk0j
m

;
Ek0

m
k0

jk0j
�
; ð21Þ

ξμN ¼ hl

�
0;

k × q
jk × qj

�
; ð22Þ

ξμT ¼ hl

�
0;

k0 × ðk × qÞ
jk0 × ðq × kÞj

�
; ð23Þ

and hl ¼ �1 as well as

ζμL ¼ hN

�jp0j
M

;
Ep0

M
p0

jp0j
�
; ð24Þ

ζμN ¼ hN

�
0;

p0 × kπ

jp0 × kπj
�
; ð25Þ

ζμT ¼ hN

�
0;

p0 × ðp0 × kπÞ
jp0 × ðp0 × kπÞj

�
; ð26Þ

and hN ¼ �1.
For the process (14), the differential cross section reads

dσ ∼
1

2
jMfij2ð1þ Pμ

l ξμÞ; ð27Þ

while for the process (15) the cross section has the form

dσ ∼
1

2
jMfij2ð1þ Pμ

NζμÞ; ð28Þ

where jMfij is summed over the spins.
The four-vectors Pl

μ and PN
μ describe the polarization

of the charged lepton (l) and the final nucleon (N).
The components of polarization are given by the ratio
[28,41]

PY
X ¼ dσðsμXÞ − dσð−sμXÞ

dσðsμXÞ þ dσð−sμXÞ
¼ Pμ

YsXμ; ð29Þ

(a) (b)

(c) (d)

(e)

(f) (g)

FIG. 2. Diagrams for the SPP in νN scattering. The NB
contribution is given by (a) nucleon pole (NP); (b) crossed
nucleon pole (CNP); (c) contact term (CT); (d) pion pole (PP);
(e) pion in flight (PF). The RES contribution is given by (f) delta
pole (ΔP); (g) crossed delta pole (CΔP). ~N denotes a virtual
nucleon.
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where X ¼ L (longitudinal),N (normal), and T (transverse)
components of the polarization of the final fermion;
Y ¼ l, N; and s ¼ ξ, ζ.
Finally we define the degree of polarization of the

particle:

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

L þ P2
N þ P2

T

q
: ð30Þ

Notice that 0 < P < 1. If P ≈ 0, then the particle is
unpolarized, while for a fully polarized particle, P ≈ 1.

IV. SPP MODELS

We consider the interactions of the neutrinos of energy
of the order of 1 GeV with the free nucleon target.
The dominant RES contribution is given by the weak
N → Δð1232Þ transition. In both the HNVand FN models,
the N → Δð1232Þ transition is described by the same
formalism, but in the FN model, the weak vertex NWþΔ is
oversimplified. In phenomenological approaches, the NB
contribution is described by some number of diagrams
allowed by a symmetry; however, in the FN model the
number of diagrams is smaller. In the next two subsec-
tions, the main features of both descriptions are shortly
reviewed.

A. HNV model

We consider the HNV model as it is formulated in [8];
however, we notice the latest developments of the approach
in Refs. [42,43]. The NB contribution is described by
five diagrams; see Fig. 2. They are determined from the
nonlinear sigma model. The main idea was to obtain, on
the tree level, the axial and the vector currents from the
nonlinear sigma model and to associate them with their
phenomenological counterparts. The resonance contribu-
tion is given by two diagrams describing the weak
N → Δð1232Þ transition. The Δð1232Þ resonance is mod-
eled by the 3=2-spin Rarita-Schwinger field [44].

1. Nonresonant background

The NB contribution is generated by five hadron
currents:

rμNP ¼ −
igAffiffiffi
2

p
fπ
=kπγ5SNðpþ qÞΓμ

NðqÞ ð31Þ

rμCNP ¼ −
igAffiffiffi
2

p
fπ

Γμ
NðqÞSNðp0 − qÞ=kπγ5 ð32Þ

rμCT ¼ −
iffiffiffi
2

p
fπ

γμðgAFV
1 ðqÞγ5 − Fρðq − kπÞÞ ð33Þ

rμPP ¼ −
iffiffiffi
2

p
fπ

Fρðq − kπÞ
qμ

q2 −m2
π
=q ð34Þ

rμPF ¼ −FV
1

2igAMffiffiffi
2

p
fπ

2kμπ − qμ

ðkπ − qÞ2 −m2
π
γ5; ð35Þ

where

SNðPÞ ¼
=PþM
P2 −M2

ð36Þ

is the nucleon propagator.
The electroweak nucleon vertex reads

Γμ
NðqÞ ¼ FV

1 ðqÞγμ þ iFV
2 ðqÞ

σμνqν
2M

− GAðqÞ
�
γμ þ =qqν

m2
π − q2

�
γ5; ð37Þ

where FV
k ðq2Þ is the vector nucleon form factor [see (B1)],

GA is the axial nucleon form factor [see (B2)], gA ¼ 1.26
is the axial nucleon coupling, and the form factor Fρ is
given by (B7).

2. Δð1232Þ contribution
The N → Δð1232Þ resonance transition currents have

the form

rμΔP ¼ i
ffiffiffi
3

p f�

mπ
kαπSαβðpþ qÞΓβμðp; qÞ ð38Þ

rμCΔP ¼ iffiffiffi
3

p f�

mπ
γ0½Γαμðp0;−qÞ�†γ0kβπSαβðp0 − qÞ; ð39Þ

where f� ¼ 2.14.

SαβðpÞ ¼ −
ð=pþMΔÞ

p2 −M2
Δ þ iMΔΓΔðpÞ

×

�
gαβ −

1

3
γαγβ −

2

3

pαpβ

M2
Δ

þ 1

3

pαγβ − γαpβ

MΔ

�
ð40Þ

is the 3=2-spin particle propagator, MΔ ¼ 1232 MeV,
while ΓΔðpÞ is the resonance width, which in the HNV
model is given by (C1).
The electroweak vertex for theWþðqÞNðpÞ→ Δðpþ qÞ

transition has the vector þ axial form, namely,

Γνμðp; qÞ ¼ ½Vνμ
3=2ðp; qÞ þ Aνμ

3=2ðp; qÞ�γ5: ð41Þ

The vector part of (41) reads [45]
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Vνμ
3=2ðp; qÞ ¼

CV
3

M
ðgνμ=q − qνγμÞ

þ CV
4

M2
ðgνμq · ðpþ qÞ − qνðpμ þ qμÞÞ

þ CV
5

M2
ðgνμq · p − qνp0μÞ: ð42Þ

The vector form factors are given by the fit form [46];
see Appendix B 1.
The axial part of the vertex (41) reads [47]

Aνμ
3=2ðp; qÞ ¼

�
CA
3

M
ðgνμ=q − qνγμÞ

þ CA
4

M2
ðgνμq · ðpþ qÞ − qνðpμ þ qμÞÞ

þ gνμCA
5 þ CA

6

M2
qνqμ

�
γ5: ð43Þ

The axial form factors are obtained from the analysis of
the neutrino scattering data. However, the data are not
accurate enough to get information about the four inde-
pendent form factors [48]. Therefore the following sim-
plifications are made:

(i) CA
3 ðQ2Þ ¼ 0, as it is suggested by simple quark

model (see, e.g., [49]);

(ii)

CA
4 ðQ2Þ ¼ −

CA
5 ðQ2Þ
4

; ð44Þ

as it is supported by dispersion analyses [9];
(iii) CA

6 is a function of CA
5 , namely,

CA
6 ðQ2Þ ¼ M2

m2
π þQ2

CA
5 ðQ2Þ; ð45Þ

as it is obtained from the partially conserved axial
current (PCAC) hypothesis.

For the numerical analyses, we take the CA
5 fit from [46];

see Appendix B 1.

B. Fogli-Nardulli model

The FN model1 formulated in [11] describes the
pion production in the first and second resonance regions.
But in this paper we consider only the first resonance
region.

1. Nonresonant background

The NB contribution is described by three diagrams: the
pion in flight (PF), the same as in the HNV model, and
two nucleon pole diagrams, NP and CNP. But in the latter,

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  1.1  1.2  1.3  1.4

d2 σ/
(d

W
dQ

2 ) 
 [1

0-3
8 cm

2 /G
eV

3  ]

  W[GeV]

 νμ + n → μ- + π+ + n 

all diagrams HNV
ΔP and CΔP HNV
background HNV

interference terms HNV

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  1.1  1.2  1.3  1.4

W[GeV ]

 νμ + n → μ- + π+ + n 

all diagrams FN
ΔP FN

background  FN
interference terms FN

FIG. 3. The differential cross section and its pure resonance (dotted line), pure nonresonant (dashed-dotted), and the interference
between resonant and nonresonant amplitude (dashed-dotted-dotted) contributions in the HNV (left) and FN (right) models. The pure
resonance contribution is given by jMΔP þMCΔPj2 and jMΔPj2 in the HNV and FN, models respectively. The neutrino energy
E ¼ 0.7 GeV and Q2 ¼ 0.1 GeV2.

1A short review of the FN model can be found in [50].
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the pseudoscalar pion-nucleon coupling was implemented,
while in the HNV model the pseudovector pion-nucleon
coupling is discussed:

~rμNP ¼ i
ffiffiffi
2

p
gNNπγ5SNðpþ qÞΓμ

NðqÞ ð46Þ

~rμCNP ¼ i
ffiffiffi
2

p
gNNπΓ

μ
NðqÞSNðp0 − qÞγ5 ð47Þ

~rμPF ¼ −i
ffiffiffi
2

p
gNNπγ5

2kμπ − qμ

ðkπ − qÞ2 −m2
π
Fπðkπ − qÞ; ð48Þ

where gNNπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14.8 · 4π

p
(see, e.g., [51]), and the Fπ form

factor is given in Appendix B 1.

2. Δð1232Þ contribution
In the FN model, only one diagram describes the SPP

induced by the N → Δð1232Þ transition. The structure of
this current is the same as in the HNV model:

~rμΔN → rμΔN: ð49Þ

However, it is assumed that

CV
5 ðQ2Þ ¼ CA

4 ðQ2Þ ¼ CA
3 ðQ2Þ ¼ 0; ð50Þ

as well as

-1.5
-1

-0.5
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CV
4 ðQ2Þ ¼ −

M
W

CV
3 : ð51Þ

The width of the Δð1232Þ resonance is given by (C3).

V. NUMERICAL RESULTS

A. Unpolarized cross sections

Most of the SPP models, including the HNV and FN
approaches, reproduce the cross section data for the
νμp → μ−pπþ process with reasonable accuracy. The
agreement with the data is achieved by appropriately tuning
the values of the parameters of the CA

5 axial form factor
[11,16,46,50,52]. The main problem is to obtain coherent
model predictions for all three CC channels. Indeed, the
ANL data for the νn → μ−nπþ process seem to be incon-
sistent with the other channels [46]. This can be caused by

oversimplified treatment of the deuteron structure effects
in the analysis of the ANL data (see [53]), incomplete
description of the Δð1232Þ resonance propagation (see
[43]), and/or low quality of the data.
It seems that critical studies of the SPP models can be

performed only if new, more precise measurements of the
interactions of the neutrinos with the free nucleon target
will be delivered. Moreover, the information about the
SPP dynamics hidden in the total and single differential
cross sections (like dσ=dQ2) and even double differential
cross sections is limited because important features of an
approach are integrated out. Hence, the analysis of these
cross-section data does not allow us to verify which model,
among many in the market, is the closest in description
to reality. It is illustrated in Fig. 3, where we plot the
d2σ=dWdQ2 distribution and its partition into
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FIG. 9. Separation of the normal component of the polarization of μ− into various interference contributions. The solid black (dotted
red) line represents the HNV (FN) model predictions. The contribution from the jMaj2 are on the diagonal while below the diagonal the
interference terms 2ℜðMiM�

jÞ are plotted (j indicates the column and i the row).
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(i) pure resonance contribution;
(ii) interference between the RES and the NB

amplitudes;
(iii) pure NB contribution.

Although the RES and NB contribute differently in both
models, the shape and the magnitude of d2σ=dWdQ2

obtained within both approaches are very similar. The
significant disparities between the predictions of both
models manifest when the triple differential cross sections
are examined. In Fig. 4 we plot d3σ=dE0dΩdEπ and its
partition into all possible interference terms calculated at
particular kinematics. At a low scattering angle, the FN
cross section increases rapidly while the HNV model
predictions fall down. The low-θ behavior of the FN’s
cross section is determined by a jMNPj2 contribution. In the
HNV model, the contribution from the NP diagram is
smaller and it is suppressed by the contribution missing in
the FN model, namely, the interference terms:MCΔPM�

NP,
MCTM�

PF, and others.
Certainly inspection of the triple differential cross

sections, and their dependence on the ϕπ angle, may deliver
valuable information about the RES and NB dynamics. Let
us also mention that additional constraints on the NB
contribution can be obtained from the combined analysis of
various mass distributions. It is demonstrated in Ref. [16],
where a detailed discussion of the WðNπÞ, WðμNÞ, and
WðμπÞ event distributions of the ANL and BNL experi-
ments is given. However, in the next section we shall
demonstrate that the PT observables contain unique infor-
mation about the dynamics of the SPP.

B. Polarization transfer observables

We start the presentation of the PT results from the
discussion of the polarization properties of the charged
lepton produced in process (14). In Figs. 5 and 6, the
longitudinal, normal, and transverse components, as well
as the degree of polarization of the μ− and μþ leptons,
are shown. Additionally, Fig. 7 includes the plots of μ−

polarization components calculated for an averaged T2K
[3] experiment neutrino energy, E ¼ 0.6. In Fig. 8, the
polarization components of the μ− lepton averaged over
the T2K energy flux [54] are shown. The muon lepton is
a light particle and hence it should be almost polarized.
However, we notice that for some kinematics, namely,
at a low scattering angle, the μ� lepton can be partially
polarized.
Unique information about the SPP dynamics is hidden

in the normal component of the polarization. Indeed,
this observable is dominated by the interference of the
MΔP and MCΔP amplitudes with the NB diagrams.
Therefore, the sign of the normal component is defined
by the relative sign between the RES and NB contri-
butions. This property is illustrated in Fig. 9, where we
plot the partition of the normal component into all
interference terms.

Now let us review the polarization properties the τ
lepton produced in the ντN scattering. The mass of the
τ is large; hence, it can be partially polarized. Indeed, in
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Fig. 10 we plot the predictions of the degree of polari-
zation. It varies from 0.3 to 1.0. Let us remark that the
polarization vector of the τ lepton is one of the variables
which describes the angular distribution of the products

of its decay. The model dependence of the predictions of
the polarization vector of the tau lepton on the SPP model
assumptions seems to be stronger than in the case of the
muon lepton.
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FIG. 12. The same as Fig. 11, but for ν̄μN scattering.
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Interesting conclusions are obtained from the analysis of
the polarization properties of the final nucleon produced in
process (15). In Figs. 11 and 12, the angular dependence (in
the ϕπ angle) of the polarization components and the degree

of polarization of the nucleon produced in the νμN and ν̄μN
interactions are plotted. Similarly as for the discussion
of the lepton polarization properties, we show also the
predictions of the polarization components for the T2K
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FIG. 13. The same as Fig. 11, but for the neutrino energy E ¼ 0.6 GeV and the energy transfer ω ¼ 0.2 GeV.
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neutrino averaged energy in Fig. 13 and for the T2K-flux
averaged in Fig. 14. Notice that the resonance parts of the
normal, transverse, and longitudinal polarization compo-
nents have a sinusoidal character, which is distorted by the

inclusion of the NB contribution. At some kinematics the
normal polarization of the nucleon is large—it reaches
the value 0.5. Similarly as in the lepton polarization case,
the interference of the RES with the NB diagrams gives a
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FIG. 14. The same caption as in Fig. 11 but T2K-flux averaged.
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sizable contribution, which for some kinematics becomes
dominant. It is illustrated in Fig. 15.

VI. SUMMARY

We discussed polarization properties of fermions pro-
duced in the SPP processes induced by the charged current
neutrino-nucleon scattering. The components of the polari-
zation vector of the outgoing charged lepton and the
nucleon were calculated. In order to make the discussion
more realistic, we have made the predictions of the
polarization properties for the T2K experiment. It turned
out that the PT observables are very sensitive on the details
of the SPP model. In order to investigate how a change in a
model’s assumptions affects the predictions of the polari-
zation components, we considered two SPP approaches.
It was demonstrated that the most interesting information
about the SPP dynamics is hidden in the normal component
of the polarization of the outgoing lepton and the nucleon.
In particular, the sign of the normal polarization of the
charged lepton is determined by the relative sign between
the NB and RES amplitudes.
Eventually we conclude that the investigation of the

polarization transfer observables in the SPP in νN scatter-
ing should deliver a complementary (to the spin-averaged
cross sections) knowledge about the resonance and non-
resonance contributions.
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APPENDIX A: NORMALIZATION

The Dirac field of a 1=2-particle of mass M and
momentum p is normalized so that

ūðp; sÞuðp; s0Þ ¼ 2Mδss0 ðA1Þ

uðp; sÞūðp; sÞ ¼ 1

2
γ5=sð=pþMÞ; ðA2Þ

where =p≡ pμγ
μ.

One particle fermion/scalar state is normalized so that

hp0; s0jp; si ¼ 2Epð2πÞ3δss0δð3Þðp − p0Þ; ðA3Þ

where jp; si≡ a†ðp; sÞj0i, and a† is the creation operator
of the particle with momentum p and spin s.

APPENDIX B: TRANSITION FORM FACTORS

The vector nucleon form factors FV
1 and FV

2 are
expressed in terms of the electromagnetic neutron, Fn

k ,
and proton, Fp

k , form factors, namely,

FV
k ðqÞ ¼ Fp

k ðqÞ − Fn
kðqÞ; k ¼ 1; 2: ðB1Þ

We consider the same nucleon form factors as in [8].
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FIG. 15. The angular dependence in θ of the normal component of the polarization (left) and the degree of polarization (right) of the
recoiled proton in the process νμ þ p → μ− þ pþ πþ. The predictions are obtained within the HNV (black) and FN (red) models. The
RES (full model) contribution is denoted by the dotted (solid) line. The neutrino energy E ¼ 0.7 GeV, the energy transfer ω ¼ 0.5 GeV,
and the pion energy Eπ ¼ 0.25 GeV. The resonance contribution is given by jMΔP þMCΔPj2 and jMΔPj2 in the HNVand FN models,
respectively.
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The axial nucleon form factor reads

GAðqÞ ¼
gA

ð1 − q2

M2
A
Þ2
; ðB2Þ

where MA ¼ 1.00 GeV and gA ¼ 1.26.

1. HNV model

The vector N → Δð1232Þ transition form factors are
given by [46]

CV
3 ðQ2Þ ¼ CV

3 ð0Þ
1þ AQ2 þ BQ4 þ CQ6

· ð1þ K1Q2Þ; ðB3Þ

CV
4 ðQ2Þ ¼ −

M
W

CV
3 ðQ2Þ · 1þ K2Q2

1þ K1Q2
; ðB4Þ

CV
5 ðQ2Þ ¼ CV

5 ð0Þ
ð1þD Q2

M2
V
Þ2
; ðB5Þ

where MV ¼ 0.84 GeV, and parameters K1, K2, A, B, C,
and D are given in Table II.
The axial form factor CA

5 ðQ2Þ has the form

CA
5 ðQ2Þ ¼ CA

5 ð0Þ
ð1þ Q2

M2
AΔ
Þ2
; ðB6Þ

where MAΔ ¼ 0.85 GeV and CA
5 ð0Þ ¼ 1.10 as obtained

in Ref. [46].
Fρ is given by [8]

FρðqÞ ¼
1

1 − q2=m2
ρ
; ðB7Þ

where mρ ¼ 0.7758 GeV.

2. FN model

The CV
3 vector form factor for the N → Δ transition

reads [56]

CV
3 ðQ2Þ ¼ 2.07 exp

�
−3.15

ffiffiffiffiffiffi
Q2

p
GeV

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 9

ffiffiffiffiffiffi
Q2

p
GeV

�s
:

ðB8Þ

The axial form factor CA
5 ðQ2Þ is parametrized by (B6)

with parameters [11] MAΔ ¼ 0.75 GeV and CA
5 ð0Þ ¼ 1.18.

The pion form factor reads

FπðqÞ ¼
1

1 − q2=ð0.47 GeV2Þ : ðB9Þ

APPENDIX C: Δð1232Þ RESONANCE WIDTHS

In the HNV model, the Δð1232Þ resonance width reads

ΓHNV
Δ ðsÞ ¼ 1

6π

�
f�

mπ

�
2 Mffiffiffi

s
p

×

�
λðs;M2; m2

πÞ
2

ffiffiffi
s

p
�
3

θð ffiffiffi
s

p
−M −mπÞ; ðC1Þ

where

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz: ðC2Þ

In the FN model, the width takes a similar form:

ΓFN
Δ ðsÞ ¼ 1

6π

�
f�

mπ

�
2 1

ð2 ffiffiffi
s

p Þ5 ½ð
ffiffiffi
s

p þMÞ2 −m2
π�

× ½λðs;M2; m2
πÞ�3θð

ffiffiffi
s

p
−M −mπÞ: ðC3Þ
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