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We claim that the paper by Zhong-Ying Fan and XiaobaoWang on nonlinear electrodynamics coupled to
general relativity [Phys. Rev. D 94,124027 (2016)], although correct in general, in some respects repeats
previously obtained results without giving proper references. There is also an important point missing in
this paper, which is necessary for understanding the physics of the system: in solutions with an electric
charge, a regular center requires a non-Maxwell behavior of Lagrangian function LðfÞ, ðf ¼ FμνFμνÞ at
small f. Therefore, in all electric regular black hole solutions with a Reissner-Nordström asymptotic, the
Lagrangian LðfÞ is different in different parts of space, and the electromagnetic field behaves in a singular
way at surfaces where LðfÞ suffers branching.
DOI: 10.1103/PhysRevD.96.128501

Nonlinear electrodynamics (NED) as a possible material
source in general relativity (GR) and its extensions attracts
much attention since, among other reasons, it leads to many
space-time geometries of interest, in particular, regular black
holes (BHs) and starlike, or solitonlike, configurations.
The paper by Fan andWang [1] belongs to this trend but in

some important points repeats already known results, and
many relevant papers are absent in the list of references.
There are also some well-known important physical proper-
ties of solutions with an electric charge, which are not
mentioned but deserve mentioning as necessary information
for readers (e.g., students) who are not experts in the field.
To begin with, the key inferences are based on the

general static, spherically symmetric solution of GR
coupled to NED in the case of an electric field obtained
in 1969 by Pellicer and Torrence [2], not cited in the paper.
This consideration was extended in [3] to systems con-
taining both electric and magnetic charges. For a further
discussion, let us briefly reproduce it here.
In GR coupled to NED one considers the action

S ¼ 1

2

Z ffiffiffiffiffiffi
−g

p
d4x½R − LðfÞ�; f ¼ FμνFμν ð1Þ

(Fμν is the Maxwell tensor, and units with c ¼ 8πG ¼ 1 are
used) with an arbitrary function LðfÞ. Then, assuming
static spherical symmetry, the stress-energy tensor (SET)
satisfies the condition Tt

t ¼ Tr
r; hence, due to the Einstein

equations, the metric can be written as

ds2 ¼ AðrÞdt2 − dr2=AðrÞ − r2ðdθ2 þ sin2 θdϕ2Þ: ð2Þ
The only nonzero components of Fμν are Ftr ¼ −Frt

(a radial electric field) and Fθϕ ¼ −Fϕθ (a radial magnetic

field). The Maxwell-like equations ∇μðLfFμνÞ ¼ 0 and the
Bianchi identities ∇μ

�Fμν ¼ 0 give

r2LfFtr ¼ qe; Fθϕ ¼ qm sin θ; ð3Þ

where qe and qm are the electric and magnetic charges,
respectively, and Lf ≡ dL=df. Accordingly, the nonzero
SET components are

Tt
t ¼ Tr

r ¼
1

2
Lþ feLf; Tθ

θ ¼ Tϕ
ϕ ¼ 1

2
L − fmLf; ð4Þ

fe ¼ 2FtrFrt ¼ 2q2e
L2
fr

4
; fm ¼ 2FθϕFθϕ ¼ 2q2m

r4
; ð5Þ

so that the invariant f is f ¼ fm − fe. The metric function
AðrÞ is found from the Einstein equations as

AðrÞ ¼ 1 −
2MðrÞ

r
; MðrÞ ¼ 1

2

Z
Tt
tðrÞr2dr; ð6Þ

where Tt
t is the energy density. It is a relation including both

electric and magnetic fields, written in a general form [3].
Fan and Wang claim that they have presented a general

procedure for constructing exact regular BH solutions with
electric or magnetic charges in GR coupled to NED.
However, this procedure was in fact already described in
[3]. Indeed, for a magnetic solution (qe ¼ 0), given any
AðrÞ, using Eq. (6), one easily calculates Tt

t ¼ L=2 as a
function of r, and f ¼ fmðrÞ is known from (5); thus LðfÞ
is also determined. On the contrary, starting from LðfÞ and
using (5), we obtain MðrÞ and AðrÞ from (6). Moreover, a
necessary condition for obtaining a regular center is that
LðfÞ should tend to a finite limit as f → ∞ [3] (an
observation absent in the paper). On the other hand, the*kb20@yandex.ru
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description in the paper contains some additional relations,
details, and explanations.
Electric solutions are obtained in a similar way using the

“Hamiltonian” formulation of NED (see, e.g., [4]), pro-
duced from the original one by a Legendre transformation:
one introduces the tensor Pμν ¼ LfFμν with its invariant
p ¼ −PμνPμν and considers the Hamiltonian-like quantity
H ¼ 2fLf − L ¼ 2Tt

t as a function of p; then HðpÞ can be
used to specify the whole theory. One has then

L ¼ 2pHp −H; LfHp ¼ 1; f ¼ pH2
p; ð7Þ

with Hp ≡ dH=dp. Then for electric solutions
(q ¼ qe ≠ 0, qm ¼ 0), specifying HðpÞ, we directly find
MðrÞ and AðrÞ using (6) since we have simply p ¼ 2q2=r4.
If we specify AðrÞ, from (6) we easily find HðpÞ. All this
was described in [3]; see there Eqs. (12) for magnetic
solutions and (19) for electric ones.
In both cases, selection of special families of such

solutions governed by a few parameters (as is done in
[1]) is quite an easy task since the function AðrÞ, specifying
the solutions, is arbitrary; hence the number of free
parameters can also be arbitrary. One should only take
care of the boundary condition AðrÞ ¼ 1þOðr2Þ as r → 0
if a regular center is required, and provide AðrÞ ≈ 1–2M=r
as r → ∞ (M ¼ const) to have a Schwarzschild asymp-
totic. If this AðrÞ has zeros, corresponding to horizons, it is
a BH solution, while if everywhere A > 0, it is a particle-
like or soliton solution (the latter opportunity is not
mentioned in the paper).
An important point concerning electric solutions is the

existence of a no-go theorem [5] (which was probably
unknown to the authors of the paper), saying that there is no
such Lagrangian function LðfÞ having a Maxwell weak-
field limit (L ∼ f as f → 0) that the electric solution (2),
(3), and (6) has a regular center. The reason is that at such a
center the electric field should be zero but the field
equations then imply fL2

f → ∞; hence Lf → ∞ as
r → 0. It was further shown in [3] that a regular center
is also impossible in dyonic configurations, with both
qe ≠ 0 and qm ≠ 0, if LðfÞ has a Maxwell weak-field limit.
An alternative (but equivalent) formulation of this no-go

theorem is that if a static, spherically symmetric solution to
the theory (1) with qe ≠ 0 contains a regular center, then
LðfÞ is non-Maxwell at small f.
A natural question is the following: how does this no-go

theorem combine with the existing examples of regular
electric solutions, e.g., the one given in [4] and others,
mentioned or cited in [1]? An answer was given in [6]: in all
such cases, in a regular solution there are different
Lagrangian functions LðfÞ at large and small r. At large
r, where f → 0, we have L ∼ f whereas at small r the
theory is strongly non-Maxwell (f → 0 but Lf → ∞), in
agreement with the no-go theorem. An inspection showed
that it is indeed the case in all examples.

According to [3,6], in the Hamiltonian framework, at a
regular center we have p → ∞ but a finite limit of H, and
the integral in (6) gives the mass function and AðrÞ.
However, in all regular solutions where f ¼ 0 at both r ¼ 0
and r ¼ ∞, the function f inevitably has at least one
maximum at some p ¼ p�, violating the monotonicity of
fðpÞ, which is necessary for equivalence of the f and p
frameworks. It has been shown [3] that at an extremum of
fðpÞ the Lagrangian function LðfÞ suffers branching, its
plot forming a cusp, and different functions LðfÞ corre-
spond to p < p� and p > p�. Another kind of branching
occurs at extrema of HðpÞ, if any, and the number of
Lagrangians LðfÞ on the way from infinity to the center
equals the number of monotonicity ranges of fðpÞ.
It was mentioned in [1] that “the original LðfÞ formalism

may not be appropriate any longer in this case because one
will end with a multivalued LðfÞ, which has different
branches for a well-defined single one HðpÞ.” It should be
stressed, however, that this branching is an inevitable
property of all regular electric solutions with a Reissner-
Nordström asymptotic behavior.
It might seem that the Hamiltonian framework is not

worse than the Lagrangian one, even though the latter is
directly related to the least action principle. However, as
shown in [3], at p ¼ p� the electromagnetic field exhibits a
singular behavior, well revealed using the effective metric
[7,8] in which NED photons move along null geodesics.
This metric is singular at extrema of fðpÞ, and the effective
potential for geodesics exhibits infinitely deep wells where
NED photons are infinitely blueshifted [3,8] and can after
all create a curvature singularity due to backreaction on the
metric. Thus any such solution not only fails to correspond
to a fixed Lagrangian LðfÞ but has other important
undesired features. In my opinion, it is a necessary addition
to the description of electric solutions in the paper.
Is it possible to circumvent the above no-go theorem for

electric solutions? The answer is yes [9]: one can consider a
kind of phase transition on a certain sphere, outside of
which there is a purely electric field Fμν but inside of which
the field is purely magnetic. An external observer then sees
an electrically charged BH or soliton.
Fan andWang also describe a straightforward extension of

static, spherically symmetric NED solutions to GR with a
nonzero negative cosmological constant Λ, leading to their
anti–de Sitter asymptotic behavior; however, this extension
(with both positive and negative Λ) has been already
considered, e.g., in [10–12]. Actually, if we add −2Λ to R
in the action (1), the only change in the expression (6) for the
metric is that the term −Λr2=3 is added to AðrÞ. With or
withoutΛ, if AðrÞ is known (or chosen by hand), the form of
the theory is easily restored from (6): dMðrÞ=dr directly
gives HðpÞ for electric configurations or LðfÞ for magnetic
ones since pðrÞ or fðrÞ, respectively, are known in these
cases. On the contrary, knowing LðfÞ or HðpÞ, it is easy to
findAðrÞ inmagnetic or electric configurations, respectively.
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To summarize, there is a substantial gap in [1],
connected with the fact that the “regular black hole
construction procedure” was already described earlier.
An important point missing in the paper is the inevitable
undesired property of regular electric solutions if one
requires a Maxwell weak-field limit of NED at large radii
[multivaluedness of the Lagrangian function LðfÞ and
troubles with the electromagnetic field at its branching
points]. Somewhat less important is a missing mention of
possible solitonic and asymptotically de Sitter solutions.
An evident shortcoming is the absence of necessary
references, directly related to the subject, such as
[2,3,9–12], and maybe some others.
Does all that mean that there are no new results of

interest in [1]? Certainly not. New examples of regular BH
solutions both with and without a cosmological constant
are obtained and discussed, some useful general relations

have been obtained for the GR-NED set of equations, and
the whole Sect. V entitled “The first law of thermodynam-
ics” is quite interesting and is not restricted to the first law
only: there are a generalization of Smarr’s formula and new
expressions for the entropy products. So, despite the above
criticism, this paper seems to be quite a useful contribution
to the studies of regular black holes.
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