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We develop off-shell formulations for N ¼ 1 and N ¼ 2 anti-de Sitter supergravity theories in three
spacetime dimensions that contain gauge two-forms in the auxiliary field sector. These formulations are
shown to allow consistent couplings of supergravity to the Green-Schwarz superstring with N ¼ 1 or
N ¼ 2 spacetime supersymmetry. In addition to being κ-symmetric, the Green-Schwarz superstring
actions constructed are also invariant under super-Weyl transformations of the target space. We also present
a detailed study of models for spontaneously broken local supersymmetry in three dimensions obtained by
coupling the known off-shell N ¼ 1 and N ¼ 2 supergravity theories to nilpotent Goldstino superfields.
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I. INTRODUCTION

The Green-Schwarz superstring action with N ¼ 1 or
N ¼ 2 supersymmetry [1] exists for spacetime dimensions
D ¼ 3, 4, 6 and 10. However, its light-cone quantization
breaks Lorentz invariance unless either D ¼ 10 (see, e.g.,
[2]), which corresponds to critical superstring theory, or
D ¼ 3 [3,4]. Due to the exceptional status of the D ¼ 3
case, it is of interest to study in more detail three-
dimensional (3D) superstring actions in supergravity back-
grounds. In order for such a coupling to supergravity to be
consistent, the superstring action must possess a local
fermionic invariance (known as the κ-symmetry) which
was first discovered in the cases of massive [5,6] and
massless [7] superparticles.1 The κ-symmetry, in its turn,
requires the superstring action to include a Wess-Zumino
term associated with a closed super three-form in curved
superspace such that (i) it is the field strength of a gauge
super two-form, and (ii) it reduces to a nonvanishing
invariant super three-form in the flat superspace limit.
The latter requirement means that only certain supergravity
formulations are suitable to describe string propagation in
curved superspace. The constraints on the geometry of
curved D ¼ 3, 4, 6, 10 superspace, which are required
for the coupling of supergravity to the Green-Schwarz
superstring, were studied about 30 years ago [10–13].
Nevertheless, there still remain some open questions and
unexplored cases, as can be seen from the recent work by
Tseytlin and Wulff [14] that determined the precise con-
straints imposed on the 10D target superspace geometry

by the requirement of classical κ-symmetry of the Green-
Schwarz superstring. In regard to the 3D case, it should be
kept in mind that at the time when Refs. [12,13] were
written, those off-shell formulations forN ¼ 1 andN ¼ 2
supergravity theories, which are suitable to describe con-
sistent superstring propagation, had not been described in
the literature. One such theory, the so-called N ¼ 2
two-form supergravity, was formulated six years ago
[15]. A new N ¼ 2 supergravity theory will be given in
the present paper.
The present work aims at developing (i) N ¼ 1 and

N ¼ 2 anti-de Sitter (AdS) supergravity theories that
contain gauge two-forms in the auxiliary field sector;
(ii) consistent couplings of these supergravity theories to
the Green-Schwarz superstring with N ¼ 1 or N ¼ 2
supersymmetry; and (iii) models for spontaneously broken
3D supergravity obtained by coupling the off-shell N ¼ 1

or N ¼ 2 supergravity theories to Goldstino superfields.
The first two goals are related to the above discussion. As to
point (iii), it requires additional comments.
In the last 3 years, there has been considerable interest in

models for spontaneously broken N ¼ 1 local supersym-
metry in four dimensions [16–27], including the models for
off-shell supergravity coupled to nilpotent Goldstino super-
fields. One of the reasons for this interest is that a positive
contribution to the cosmological constant is generated once
the local supersymmetry becomes spontaneously broken.
For instance, if the supergravity multiplet is coupled to an
irreducible Goldstino superfield [20,25,28–30] (with the
Volkov-Akulov Goldstino [31,32] being the only indepen-
dent component field of the superfield), a universal positive
contribution to the cosmological constant is generated,2
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2The gravitino becomes massive in accordance with the super-
Higgs effect [33–35].
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which is proportional to f2, with the parameter f setting the
scale of supersymmetry breaking. The same positive
contribution is generated by the reducible Goldstino super-
fields used in the models studied in [18,19,26].3 There is
one special reducible Goldstino superfield, the nilpotent
three-form multiplet introduced in [24,27], which yields
a dynamical positive contribution to the cosmological
constant.
Since our Universe is characterized by a positive

cosmological constant, and a theoretical explanation for
this positivity is required, 4D supergravity theories with
nilpotent Goldstino superfields deserve further studies.
In this respect, it is also of some interest to construct
models for spontaneously broken local 3D N ¼ 1 and
N ¼ 2 supersymmetry that are obtained by coupling off-
shell 3D supergravity to nilpotent superfields. This is one of
the objectives of the present work.
This paper is organized as follows. Sections II and III

provide thorough discussions of theN ¼ 1 andN ¼ 2 off-
shell supergravity theories, respectively. Section IV
describes consistent couplings of the two-form supergrav-
ity theories to the Green-Schwarz superstring with N ¼ 1

or N ¼ 2 spacetime supersymmetry. The nilpotent
Goldstino superfields and their couplings to various off-
shell supergravity theories are presented in Sec. V. Here we
introduce only those reducible Goldstino superfields that
are defined in the presence of conformal supergravity
without making use of any conformal compensator.
Section VI contains concluding comments and a brief
discussion of the results obtained. The main body of the
paper is accompanied by three technical appendices which
are devoted to the analysis of the component structure of
several Goldstino superfield models in the flat superspace
limit.

II. TWO-FORM MULTIPLET IN N = 1
SUPERGRAVITY

In this section we describe two off-shell formulations for
N ¼ 1 AdS supergravity, with 4þ 4 off-shell degrees of
freedom, which differ from each other by their auxiliary
fields. One of them is known since the late 1970s (see [36]
for a review), and its auxiliary field is a scalar. The other
formulation is obtained by replacing the auxiliary scalar
field with the field strength of a gauge two-form, which
requires the use of a different compensating supermultiplet.
As was pointed out in [12,13], the latter formulation is
required for consistent coupling to the Green-Schwarz
superstring. However, the technical details of this formu-
lation have not been described in the literature, to the best
of our knowledge.

We follow the notation and make use of the results of
[37]. Every supergravity theory will be realized as a super-
Weyl invariant coupling of conformal supergravity to a
compensating supermultiplet.

A. Conformal supergravity

Consider a curved N ¼ 1 superspace, M3j2, parame-
trized by local real coordinates zM ¼ ðxm; θμÞ, with m ¼ 0,
1, 2 and μ ¼ 1, 2, of which xm are bosonic and θμ

fermionic. We introduce a preferred basis of one-forms
EA ¼ ðEa; EαÞ and its dual basis EA ¼ ðEa; EαÞ,

EA ¼ dzMEM
A; EA ¼ EA

M∂M; ð2:1Þ

which will be referred to as the supervielbein and its
inverse, respectively.
The superspace structure group is SLð2;RÞ, the double

cover of the connected Lorentz group SO0ð2; 1Þ. The
covariant derivatives have the form

DA ¼ ðDa;DαÞ ¼ EA þΩA; ð2:2Þ

where

ΩA ¼ 1

2
ΩA

bcMbc ¼ −ΩA
bMb ¼

1

2
ΩA

βγMβγ ð2:3Þ

is the Lorentz connection. The Lorentz generators with two
vector indices (Mab ¼ −Mba), one vector index (Ma), and
two spinor indices (Mαβ ¼ Mβα) are related to each other
by the rules Ma ¼ 1

2
εabcMbc and Mαβ ¼ ðγaÞαβMa. These

generators act on a vector Vc and a spinor Ψγ as follows:

MabVc ¼ 2ηc½aVb�; MαβΨγ ¼ εγðαΨβÞ: ð2:4Þ

The covariant derivatives are characterized by graded
commutation relations

½DA;DBg ¼ TAB
CDC þ 1

2
RAB

cdMcd; ð2:5Þ

where TAB
C and RAB

cd are the torsion and curvature
tensors, respectively. To describe supergravity, the covar-
iant derivatives have to obey certain torsion constraints [36]
such that the algebra (2.5) takes the form

fDα;Dβg ¼ 2iDαβ − 4iSMαβ; ð2:6aÞ

½Da;Dβ� ¼ ðγaÞβγ½SDγ − CγδρMδρ�

−
2

3
½DβSδca − 2εab

cðγbÞβγDγS�Mc; ð2:6bÞ3The notion of irreducible and reducible Goldstino superfields
was introduced in [25].
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½Da;Db� ¼ εabc

�
i

�
1

2
ðγcÞαβCαβγ −

2

3
ðγcÞβγDβS

�
Dγ

þ
�
i
2
ðγcÞαβðγdÞγδDðαCβγδÞ

þ
�
2i
3
D2S þ 4S2

�
ηcd

�
Md

�
: ð2:6cÞ

Here the scalar S is real, while the symmetric spinorCαβγ ¼
CðαβγÞ is imaginary. The dimension-2 Bianchi identities
imply that

DαCβγδ ¼ DðαCβγδÞ − iεαðβDγδÞS ⇒ DγCαβγ ¼ −
4i
3
DαβS:

ð2:7Þ
Throughout this section we make use of the definition
D2 ≔ DαDα.
The definition of the torsion and curvature tensors,

Eq. (2.5), can be recast in the language of superforms,
which will be used in Sec. IV. Starting from the Lorentz
connection ΩA given by (2.3), we introduce the connection
one-form

Ω ¼ ECΩC; ΩVA ¼ ΩA
BVB ¼ ECΩCA

BVB;

VA ¼ ðVa;ΨαÞ: ð2:8Þ
Then the torsion and curvature two-forms are

TC ≔
1

2
EB ∧ EATAB

C ¼ −dEC þ EB ∧ ΩB
C; ð2:9aÞ

RC
D ≔

1

2
EB ∧ EARABC

D ¼ dΩC
D −ΩC

E ∧ΩE
D: ð2:9bÞ

The gauge group of conformal supergravity includes
local transformations of the form

δKDA ¼ ½K;DA�; K ¼ ξCEC þ 1

2
KcdMcd; ð2:10Þ

with the gauge parameters ξCðzÞ and KbcðzÞ obeying
natural reality conditions but otherwise arbitrary. Here
the supervector field ξ ¼ ξCEC describes a general coor-
dinate transformation, and Kcd a local Lorentz transforma-
tion. The transformation (2.10) acts on a tensor superfield T
as follows:

δKT ¼ KT: ð2:11Þ
The algebra of covariant derivatives is invariant under

super-Weyl transformations

δσDα ¼
1

2
σDα þDβσMαβ; ð2:12aÞ

δσDa ¼ σDa þ
i
2
ðγaÞγδDγσDδ þ εabcDbσMc; ð2:12bÞ

with the parameter σ being a real unconstrained superfield,
provided the torsion superfields transform as

δσS ¼ σS −
i
4
D2σ; δσCαβγ ¼

3

2
σCαβγ −

1

2
DðαβDγÞσ:

ð2:13Þ

The super-Weyl transformation of the vielbein is

δσEa ¼ −σEa; ð2:14aÞ

δσEα ¼ −
1

2
σEα −

i
2
EbðγbÞαβDβσ: ð2:14bÞ

The gauge group of conformal supergravity is generated
by the local transformations (2.10) and (2.12). Due to the
super-Weyl invariance, the above geometry describes the
Weyl multiplet of N ¼ 1 conformal supergravity [38],
which consists of the vielbein emaðxÞ and the gravitino
ψm

αðxÞ (no auxiliary fields).4

A tensor superfield T is said to be (super-Weyl) primary
of weight w if its super-Weyl transformation law is

δσT ¼ wσT: ð2:15Þ

Such superfields will be of primary importance in what
follows.
The action for conformal supergravity was constructed

for the first time by van Nieuwenhuizen [38] using the
N ¼ 1 superconformal tensor calculus. More recently, it
was reformulated in superspace [39], as well as within the
superform approach [39,40]. The interested reader is
referred to these publications for the technical details.

B. Supersymmetric action

To construct a locally supersymmetric and super-Weyl
invariant action [37], one needs a real scalar Lagrangian L
that is super-Weyl primary of weight þ2,

δσL ¼ 2σL: ð2:16Þ

The action is

S ¼ i
Z

d3xd2θEL; E ¼ BerðEM
AÞ: ð2:17Þ

The action is super-Weyl invariant, since the super-Weyl
transformation of E proves to be δσE ¼ −2σE.
Instead of defining the action using the superspace

integration, an alternative approach is to construct a

4The super-Weyl transformation of S implies that its lowest
component Sjθ¼0 is a pure gauge.
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dimensionless super three-form Ξ3½L� which is given
in terms of L and possesses the following properties:
(i) Ξ3½L� is closed, dΞ3½L� ¼ 0; and (ii) Ξ3½L� is super-
Weyl invariant, δσΞ3½L� ¼ 0.5 Modulo an overall numerical
factor, these conditions prove to completely determine
Ξ3½L� to be

Ξ3½L� ¼
i
2
Eγ ∧ Eβ ∧ EaðγaÞβγL

þ 1

4
Eγ ∧ Eb ∧ EaεabcðγcÞγδDδL

−
1

24
Ec ∧ Eb ∧ EaεabcðiD2 þ 8SÞL: ð2:18Þ

This super three-form was originally constructed in
[43,45]; however its super-Weyl invariance was first
described in [39]. The action (2.17) is recast via Ξ3½L�
as follows:

S ¼
Z
M3

Ξ3½L�; ð2:19Þ

where the integration is carried out over a spacetime M3

being homotopic to the bosonic body of the curved
superspace M3j2 obtained by switching off the Grassmann
variables.

C. AdS supergravity

Both AdS and Poincaré supergravity theories can be
realized as super-Weyl invariant systems describing the
coupling of conformal supergravity to a compensating
multiplet. The standard choice for compensator is a
nowhere vanishing scalar superfield φ, such that φ−1 exists,
with the super-Weyl transformation

δσφ ¼ 1

2
σφ: ð2:20Þ

The action for N ¼ 1 AdS supergravity is given by

SSG ¼ −
4

κ
i
Z

d3xd2θEfiDαφDαφ − 2Sφ2 þ λφ4g;

ð2:21Þ
where κ is the gravitational coupling constant, and the
parameter λ determines the cosmological constant. Setting
λ ¼ 0 in (2.21) gives the action for N ¼ 1 Poincaré
supergravity.
The equation of motion for the compensator is

S ¼ λ; S ≔ φ−3
�
i
2
D2 þ S

�
φ: ð2:22aÞ

For completeness we also give the equation of motion for
the gravitational superfield (which is the N ¼ 1 super-
symmetric analog of the gravitational field)

Cαβγ ¼ 0; Cαβγ ≔ −
1

2
φ−1ðDðαβDγÞ − 2CαβγÞφ−2:

ð2:22bÞ

See [46] for the technical details. The specific feature of
S andCαβγ is that they are super-Weyl invariant. Note that it
is possible to choose a super-Weyl gauge in which φ ¼ 1
and, therefore, S and Cαβγ coincide with S and Cαβγ ,
respectively. In this gauge, Eqs. (2.22) describe, locally, the
N ¼ 1 AdS superspace [47].
The action (2.21) can readily be reduced to components.

In the super-Weyl gauge φ ¼ 1 we obtain

SSG ¼ 1

κ

Z
d3xe

�
1

2
R − 4S2 þ 8Sλ

�
þ fermions;

e ¼ detðemaÞ; ð2:23Þ

where emaðxÞ ≔ Em
ajθ¼0 and SðxÞ ≔ Sjθ¼0. Integrating

out the auxiliary field S turns the action into

SSG ¼ 1

κ

Z
d3xe

�
1

2
R − ΛAdS

�
þ fermions;

ΛAdS ¼ −4λ2: ð2:24Þ

D. Two-form supergravity

In this section we introduce a variant formulation for
N ¼ 1 AdS supergravity which is obtained by replacing
the conformal compensator φ4 with a two-form multiplet.6

Let us first consider a massless two-form multiplet
coupled to conformal supergravity. It is described by a
real scalar superfield defined by

L ¼ DαΛα; ð2:25Þ

where the prepotentialΛα is a primary real spinor superfield
of dimension 3=2,

δσΛα ¼
3

2
σΛα: ð2:26Þ

This super-Weyl transformation implies that L is primary of
dimension 2,

δσL ¼ 2σL: ð2:27Þ
5See [41–44] for the construction of locally supersymmetric

invariants in D spacetime dimensions by using closed super
D-forms.

6In the case of Minkowski superspace, the two-form multiplet
was described in [36].
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The superfield L defined by (2.25) is a gauge-invariant field
strength with respect to gauge transformations of the form

δζΛα ¼
i
2
DβDαζβ þ 2Sζα; DαδζΛα ¼ 0; ð2:28Þ

where the gauge parameter ζα is an arbitrary real spinor
superfield. The gauge invariance of L follows from the
identity

DβDαDβ ¼ 4iSDα −
8i
3
ðDβSÞMαβ − 2iCαβγMβγ: ð2:29Þ

The gauge parameter in (2.28) is defined modulo
arbitrary shifts of the form

ζα → ζ0α ¼ ζα þ iDαξ; ξ̄ ¼ ξ; ð2:30Þ

in the sense that δζ0Λα ¼ δζΛα. This property means that
the two-form multiplet is a gauge theory with linearly
dependent generators, in accordance with the terminology
of the Batalin-Vilkovisky quantization [48].
We now assume L to be nowhere vanishing, such that

L−1 exists. Then L can be used as a conformal compensator
corresponding to a variant formulation of AdS supergravity.
Upon replacement φ → L1=4, the supergravity action (2.21)
turns into

SSG ¼ −
4

κ
i
Z

d3xd2θE
ffiffiffiffi
L

p �
i
16

Dα lnLDα lnL − 2S
�
:

ð2:31Þ

The supersymmetric cosmological term in (2.21) does not
contribute, since φ4 turns into L ¼ DαΛα, which is a total
derivative. Hence, the N ¼ 1 two-form supergravity does
not allow for a supersymmetric cosmological term. This is
analogous to the new minimal formulation for N ¼ 1
supergravity in four dimensions [49–51]. However, the
difference from the new minimal supergravity is that a
cosmological term is now generated dynamically.
For the theory with action (2.31), the equation of motion

for the compensator is

DαS ¼ 0; S ≔ L−3
4

�
i
2
D2 þ S

�
L

1
4; ð2:32Þ

and therefore

S ¼ λ ¼ const: ð2:33Þ

If a solution with λ ≠ 0 is chosen, it describes an AdS
background. Unlike the supergravity formulation (2.21),
the action (2.31) does not contain a free parameter.
The negative cosmological constant is generated dynami-
cally. It should be pointed out that the equation of motion

for the gravitational superfield, which corresponds to
(2.31), is obtained from (2.22b) by replacing φ → L

1
4.

E. Superform formulation for the two-form
multiplet

In this subsection we present a superform formulation for
the three-form multiplet coupled to conformal supergravity,
as an extension of the flat-superspace construction given in
[36]. Let us consider a gauge super two-form

B2 ¼
1

2
dzN ∧ dzMBMN ¼ 1

2
EB ∧ EABAB; ð2:34Þ

which is defined modulo gauge transformations of the form

B2 → B2 þ dA1; A1 ¼ dzNAN ¼ EBAB; ð2:35Þ

where the gauge parameter A1 is an arbitrary super one-
form. Associated with the potential B2 is the gauge-
invariant field strength

H3 ≔ dB2 ¼
1

2
dzP ∧ dzN ∧ dzM∂MBNP

¼ 1

2
EC ∧ EB ∧ EAfDABBC − TAB

DBDCg: ð2:36Þ

By construction,H3 is an exact super three-form, and hence
it is closed, dH3 ¼ 0.
We are interested in a closed super three-form H3 such

that (i) its components are descendants of a scalar primary
superfield L, and (ii) its lowest nonzero component is
constrained to be Haβγ ¼ iðγaÞβγL. It turns out that the
closure condition, dH3 ¼ 0, completely determine the
entire super three-form to be

H3½L� ¼
i
2
Eγ ∧ Eβ ∧ EaðγaÞβγL

þ 1

4
Eγ ∧ Eb ∧ EaεabcðγcÞγδDδL

−
1

24
Ec ∧ Eb ∧ EaεabcðiD2 þ 8SÞL; ð2:37Þ

which is obtained from (2.18) by replacing L → L.
In general, if L is an arbitrary scalar superfield, the
superform H3 given by (2.37) is closed but not exact.
However, if we choose L ≔ DαΛα in (2.37) then H3 turns
out to be exact. In fact, the following super two-form

B2½Λα� ¼ −iEβ ∧ EaðγaÞβγΛγ −
1

4
Eb ∧ EaεabcðγcÞρτDρΛτ;

ð2:38Þ

is such that
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dB2½Λα� ¼ H3½DαΛα�: ð2:39Þ

This proves that, if we consider the two- and three-forms

Bab ¼ −
1

2
εabcðγcÞρτDρΛτ; ð2:40aÞ

Habc ¼ −
1

4
εabcðiD2 þ 8SÞDδΛδ; ð2:40bÞ

the latter is the field strength of the former,

Habc ¼ 3D½aBbc� þ 2εabcðDαSÞΛα: ð2:41Þ

Using the super-Weyl transformation laws (2.14) and
(2.26), one can show that the superform (2.38) is super-
Weyl invariant,

δσB2½Λα� ¼ 0 ⇒ δσH3½DαΛα� ¼ 0: ð2:42Þ

This result will be important for our analysis in Sec. IVA.
Choosing B2 in the form (2.38) corresponds to a partial

fixing of the gauge freedom (2.35). The residual gauge
freedom is given by

δζB2½Λα� ¼ B2½δζΛα� ⇒ dδζB2½Λα� ¼ 0; ð2:43Þ

where δζΛα is defined by (2.28).

III. TWO-FORM MULTIPLETS IN N = 2
SUPERGRAVITY

It is well known that the 3D AdS group is reducible,

SOð2; 2Þ ≅ ðSLð2;RÞ × SLð2;RÞÞ=Z2;

and so are its supersymmetric extensions, OSpðpj2;RÞ×
OSpðqj2;RÞ. This implies that N -extended AdS super-
gravity exists in several versions [52]. These are known as
the ðp; qÞ AdS supergravity theories where the non-
negative integers p ≥ q are such that N ¼ pþ q.7 In this
section we choose N ¼ 2 and describe four off-shell
formulations for (1,1) AdS supergravity and one for
(2,0) AdS supergravity. Only one of these five off-shell
supergravity theories is new, the so-called complex two-
form supergravity; the others were presented in [15].

A. Conformal supergravity

We consider a curved N ¼ 2 superspace, M3j4, para-
metrized by local bosonic (xm) and fermionic (θμ, θ̄μ)
coordinates zM ¼ ðxm; θμ; θ̄μÞ, where m ¼ 0, 1, 2 and
μ ¼ 1, 2. The Grassmann variables θμ and θ̄μ are related
to each other by complex conjugation: θμ ¼ θ̄μ. The
supervielbein EA ¼ ðEa; Eα; ĒαÞ and its inverse EA ¼
ðEa; Eα; ĒαÞ are defined similarly to (2.1).
Within the superspace formulation forN ¼ 2 conformal

supergravity proposed in [53] and fully developed in [37],
the structure group is SLð2;RÞ × Uð1Þ. The covariant
derivatives have the form

DA ¼ ðDa;Dα; D̄αÞ ¼ EA þΩA; ΩA ≔ ΩA þ iΦAJ :

ð3:1Þ

We recall that the Lorentz connection ΩA can be written in
several equivalent forms (2.3). The U(1) generator acts on
the covariant derivatives as follows:

½J ;Dα� ¼ Dα; ½J ; D̄α� ¼ −D̄α: ð3:2Þ

In general, the covariant derivatives have graded com-
mutation relations of the form

½DA;DBg ¼ TAB
CDC þ RAB;

RAB ≔
1

2
RAB

cdMcd þ iRABJ : ð3:3Þ

In order to describe the multiplet of conformal supergravity,
certain constraints should be imposed on the torsion tensor
[53]. Solving these constraints leads to the following
algebra of covariant derivatives:

fDα;Dβg ¼ −4R̄Mαβ; ð3:4aÞ

fDα; D̄βg ¼ −2iðγcÞαβDc − 2CαβJ − 4iεαβSJ

þ 4iSMαβ − 2εαβCγδMγδ; ð3:4bÞ

½Da;Dβ� ¼ iεabcðγbÞβγCcDγ þ ðγaÞβγSDγ − iðγaÞβγR̄D̄γ − ðγaÞβγCγδρMδρ

−
1

3
ð2DβS þ iD̄βR̄ÞMa −

2

3
εabcðγbÞβαð2DαS þ iD̄αR̄ÞMc

−
1

2

�
ðγaÞαγCαβγ þ

1

3
ðγaÞβγð8DγS þ iD̄γR̄Þ

�
J ; ð3:4cÞ

7For any values of p and q allowed, the pure ðp; qÞ AdS supergravity was constructed in [52] as a Chern-Simons theory with the
gauge group OSpðpj2;RÞ × OSpðqj2;RÞ.
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½Da;Db� ¼
1

2
εabcðγcÞαβεγδ

�
−iC̄αβδ þ

4i
3
εδðαD̄βÞS þ 2

3
εδðαDβÞR

�
Dγ

þ 1

2
εabcðγcÞαβεγδ

�
−iCαβδ þ

4i
3
εδðαDβÞS −

2

3
εδðαD̄βÞR̄

�
D̄γ

− εabc

�
1

4
ðγcÞαβðγdÞτδðiDðτC̄δαβÞ þ iD̄ðτCδαβÞÞ þ

1

6
δcdðD2Rþ D̄2R̄Þ

þ 2

3
iδcdD

αD̄αS − 4CcCd − 4δcdðR̄Rþ S2Þ
�
Md

þ iεabc

�
1

2
ðγcÞαβ½Dα; D̄β�S − εcefDeCf − 4SCc

�
J : ð3:4dÞ

The algebra involves four dimension-one torsion super-
fields: a real scalar S, a complex scalar R, and its conjugate
R̄, and a real vector Ca. The U(1) charge of R is −2. These
torsion superfields obey differential constraints implied by
the Bianchi identities, which are

D̄αR ¼ 0; ð3:5aÞ

ðD̄2 − 4RÞS ¼ 0; ð3:5bÞ

DαCβγ ¼ iCαβγ −
1

3
εαðβðD̄γÞR̄þ 4iDγÞSÞ: ð3:5cÞ

In this paper we make use of the definitions

D2 ≔ DαDα; D̄2 ≔ D̄αD̄α: ð3:6Þ

As follows from (3.5c), the complex dimension-3=2 sym-
metric spinor Cαβγ, which appears in (3.4), is a descendant
of the torsion three-vector Ca, Cαβγ ¼ −iDðαCβγÞ.
The definition of the torsion and curvature tensors,

Eq. (3.3), can be recast in the superform notation, which
will be used in Sec. IV. Associated with the connectionΩA,
Eq. (3.1), is the connection one-formΩ ¼ ECΩC. Its action
on a real super-vector

VA ¼ ðVa;Ψα; Ψ̄αÞ; JΨα ¼ Ψα ð3:7Þ

is given by

ΩVA ¼ ΩA
BVB ¼ ΩA

BVB þ iΦA
BVB; ð3:8Þ

withΩA
B andΦA

B being the Lorentz and U(1) connections,
respectively. Using the definitions given, the torsion and
curvature two-forms are

TC ≔
1

2
EB ∧ EATAB

C ¼ −dEC þ EB ∧ ΩB
C; ð3:9aÞ

RC
D ≔

1

2
EB ∧ EARABC

D ¼ dΩC
D −ΩC

E ∧ ΩE
D: ð3:9bÞ

The important property of the algebra (3.4) is that its
form is preserved under super-Weyl transformations of the
covariant derivatives [15,37]

δσDα ¼
1

2
σDα þDγσMγα −DασJ ; ð3:10aÞ

δσD̄α ¼
1

2
σD̄α þ D̄γσMγα þ D̄ασJ ; ð3:10bÞ

δσDa ¼ σDa −
i
2
ðγaÞγδDðγσD̄δÞ −

i
2
ðγaÞγδD̄ðγσDδÞ

þ εabcDbσMc −
i
8
ðγaÞγδ½Dγ; D̄δ�σJ ð3:10cÞ

and the torsion tensors

δσS ¼ σS þ i
4
DαD̄ασ; ð3:10dÞ

δσCa ¼ σCa þ
1

8
ðγaÞγδ½Dγ; D̄δ�σ; ð3:10eÞ

δσR ¼ σRþ 1

4
D̄2σ: ð3:10fÞ

Here the super-Weyl parameter σ is an unconstrained real
scalar superfield. It follows from (3.10) that the super-Weyl
transformation law of the supervielbein is

δσEa ¼ −σEa; ð3:11aÞ

δσEα ¼ −
1

2
σEα þ i

2
EbðγbÞαγD̄γσ;

δσĒα ¼ −
1

2
σĒα þ

i
2
EbðγbÞαγDγσ: ð3:11bÞ

The group of super-Weyl transformations must be a
subgroup of the supergravity gauge group in order for
the superspace geometry under consideration to describe
the multiplet of N ¼ 2 conformal supergravity.
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A tensor superfield T of a U(1) charge q, J T ¼ qT, is
said to be super-Weyl primary if its super-Weyl trans-
formation law is

δσT ¼ wσT; ð3:12Þ

for some constant parameter w which will be referred to as
the super-Weyl weight of T.
The action for N ¼ 2 conformal supergravity was

constructed for the first time by Roček and van
Nieuwenhuizen [54] using the N ¼ 2 superconformal
tensor calculus. More recently, it was reformulated within
the superform approach [40]. The interested reader is
referred to these publications for the technical details.

B. Supersymmetric actions

As in the 4D N ¼ 1 case, there are two (closely related)
locally supersymmetric and super-Weyl invariant actions in
3D N ¼ 2 supergravity [37].
Given a real scalar Lagrangian L ¼ L̄ with the super-

Weyl transformation law

δσL ¼ σL; ð3:13Þ

the action

S ¼
Z

d3xd2θd2θ̄EL; E ¼ BerðEM
AÞ ð3:14Þ

is invariant under the supergravity gauge group. It is also
super-Weyl invariant due to the transformation law

δσE ¼ −σE: ð3:15Þ

Given a covariantly chiral scalar Lagrangian Lc of super-
Weyl weight two,

D̄αLc ¼ 0; JLc ¼ −2Lc; δσLc ¼ 2σLc;

ð3:16Þ

the following chiral action

Sc ¼
Z

d3xd2θELc ð3:17Þ

is locally supersymmetric and super-Weyl invariant. Action
(3.17) involves integration over the chiral subspace of the
full superspace, with E the chiral density possessing the
properties

JE ¼ 2E; δσE ¼ −2σE: ð3:18Þ

The explicit expression for E in terms of the supergravity
prepotentials is given in [55]. Alternatively, the chiral density

can be read off using the general formalism of integrating out
fermionic dimensions, which was developed in [56].
The two actions, (3.14) and (3.17), are related to each

other as follows:

Z
d3xd2θd2θ̄EL ¼

Z
d3xd2θELc;

Lc ≔ −
1

4
ðD̄2 − 4RÞL: ð3:19Þ

This relation shows that the chiral action, or its conjugate
antichiral action, is more fundamental than (3.14).
The chiral projection operator in (3.19) defined by

Δ̄ ≔ −
1

4
ðD̄2 − 4RÞ ð3:20Þ

plays a fundamental role inN ¼ 2 supergravity. Among its
most important properties is the following: given a primary
complex scalar ψ satisfying

J ψ ¼ ð2 − wÞψ ; δσψ ¼ ðw − 1Þσψ ; ð3:21Þ

for some constant super-Weyl weight w, its descendant

ϕ ¼ Δ̄ψ ð3:22Þ

is a primary chiral superfield of super-Weyl weight w,

D̄αϕ ¼ 0; Jϕ ¼ −wϕ; δσϕ ¼ wσϕ: ð3:23Þ

For every primary chiral scalar superfield, its super-Weyl
weight w and U(1) charge q are related to each other as
wþ q ¼ 0, in accordance with [37]. Any superfield ϕ with
the properties (3.23) will be referred to as a weight-w chiral
scalar.
The chiral action, Eq. (3.17), can be represented as an

integral over the full superspace,

Sc ¼
Z

d3xd2θd2θ̄ECLc; ð3:24Þ

if we make use of an improved complex linear superfield C
defined by the two properties:

(i) C obeys the constraint

Δ̄C ¼ 1; ð3:25aÞ

(ii) the transformation properties of C are

δσC ¼ −σC; JC ¼ 2C: ð3:25bÞ

A possible choice for C is

C ¼ η̄

Δ̄ η̄
; D̄αη ¼ 0; δση ¼

1

2
ση; ð3:26Þ
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for some covariantly chiral superfield η such that Δη is
nowhere vanishing. In case C is not required to be super-
Weyl primary, it can be identified with R−1,

Sc ¼
Z

d3xd2θd2θ̄E
Lc

R
; ð3:27Þ

provided R is nowhere vanishing. This representation is
analogous to that discovered by Siegel [57] and Zumino
[58] in 4D N ¼ 1 supergravity.
The chiral action can also be described using the super

three-form constructed in [59]

Ξ3½Lc� ¼ −2Ēγ ∧ Ēβ ∧ EaðγaÞβγLc

−
i
2
Ēγ ∧ Eb ∧ EaεabdðγdÞγδDδLc

þ 1

24
Ec ∧ Eb ∧ EaεabcðD2 − 16R̄ÞLc: ð3:28Þ

This superform is closed and super-Weyl invariant,

dΞ3½Lc� ¼ 0; δσΞ3½Lc� ¼ 0: ð3:29Þ

The chiral action is equivalently represented as

Sc ¼
Z
M3

Ξ3½Lc�; ð3:30Þ

where the integration is carried out over a spacetime M3

being homotopic to the bosonic body of the curved
superspace M3j4 obtained by switching off the Grassmann
variables.

C. AdS supergravity

There are two off-shell formulations for (1,1) AdS
supergravity developed in [15], minimal and nonminimal
ones, which do not have gauge two-forms in the sector of
auxiliary fields.

1. (1,1) AdS supergravity

In the minimal case, the conformal compensators are a
weight-1=2 chiral scalar Φ, D̄αΦ ¼ 0, and its conjugate Φ̄.
Of course, Φ has to be nowhere vanishing, such that Φ−1

exists, in order to serve as a conformal compensator.
The supergravity action is

Sminimal
ð1;1ÞSG ¼ −

4

κ

Z
d3xd2θd2θ̄EΦ̄Φ

þ
�
μ

κ

Z
d3xd2θEΦ4 þ c:c:

�
; ð3:31Þ

where μ is a complex parameter. The second terms in the
action is the supersymmetric cosmological term. Using the

component results of [59], for the cosmological constant
one obtains

ΛAdS ¼ −4jμj2: ð3:32Þ

The above minimal formulation for (1,1) AdS super-
gravity (which was called type I minimal supergravity in
[15]) is the 3D analog of the old minimal formulation for
4D N ¼ 1 supergravity [60–62].
For the supergravity theory with action (3.31), the

equation of motion for the chiral compensator is

R ¼ μ; R ≔ Φ−3Δ̄ Φ̄ : ð3:33aÞ

We also reproduce the equation of motion for the N ¼ 2
gravitational superfield8

Cαβ ¼ 0; Cαβ ≔ −
1

4
ð½Dðα; D̄βÞ� − 4CαβÞðΦΦ̄Þ−1;

ð3:33bÞ

see [46] for the technical details. The specific feature of R
and Cαβ is that they are super-Weyl invariant. The super-
Weyl and local U(1) transformations can be used to choose
the gauge Φ ¼ 1, which implies that S ¼ 0 and R and Cαβ

coincide with the torsion superfields R and Cαβ, respec-
tively. In this gauge, every solution to the equations (3.33)
is locally diffeomorphic to the (1,1) AdS superspace [47].
Within the nonminimal formulation for (1,1) AdS super-

gravity [15], the conformal compensators are an improved
complex linear scalar Γ and its conjugate Γ̄. The former has
the transformation properties

δσΓ ¼ −σΓ; J Γ ¼ 2Γ ð3:34aÞ

and obeys the improved linear constraint

Δ̄Γ ¼ μ ¼ const; ð3:34bÞ

compare with (3.25). The supergravity action is

Snonminimal
ð1;1ÞSG ¼ −

2

κ

Z
d3xd2θd2θ̄EðΓ̄ΓÞ−1=2: ð3:35Þ

As demonstrated in [15], this theory is dual to the minimal
AdS supergravity, Eq. (3.31). The theory under consid-
eration is the 3D analog of the nonminimal N ¼ 1 AdS
supergravity in four dimensions [64]. Both formulations
lead to the (1,1) AdS superspace [15,47] as the maximally
supersymmetric solution.

8TheN ¼ 2 gravitational superfield was introduced in [55,63].
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2. (2,0) AdS supergravity

The conformal compensator for (2,0) AdS supergravity
is a linear multiplet [15,37,53] describing the field strength
of an Abelian vector multiplet. It is realized in terms of a
real scalar superfield L ¼ L̄ subject to the constraint

Δ̄L ¼ 0 ⇔ ΔL ¼ 0; ð3:36Þ

which is consistent with the super-Weyl transformation
law

δσL ¼ σL: ð3:37Þ

The constraint (3.36) is solved in terms of a real uncon-
strained prepotential V,

L ¼ iDαD̄αV; V̄ ¼ V; ð3:38Þ

which is defined modulo gauge transformations of the
form

δλV ¼ λþ λ̄; D̄αλ ¼ 0: ð3:39Þ

To reproduce the super-Weyl transformation (3.37), it
suffices to choose

δσV ¼ 0: ð3:40Þ

In order to be used as a conformal compensator, L has to
be nowhere vanishing, such that L−1 exists. The action for
(2,0) AdS supergravity was constructed in [15]. It is

Sð2;0ÞSG ¼ 4

κ

Z
d3xd2θd2θ̄EfL lnL − 4VS þ 4ξVLg;

ð3:41Þ

where the parameter ξ determines the cosmological con-
stant. The equations of motion for this theory can be written
in the form [46]

S ¼ ξ; S ≔ −
i
4
L−1ðDγD̄γ lnLþ 4iSÞ; ð3:42aÞ

Cαβ ¼ 0; Cαβ ≔ −
1

4
ð½Dðα; D̄βÞ� − 4CαβÞL−1; ð3:42bÞ

with S and Cαβ being super-Weyl invariant.9 The super-
Weyl gauge freedom can be used to set L ¼ 1, which
implies R ¼ 0, and then S and Cαβ turn into the torsion
superfields S and Cαβ, respectively. Under the gauge
condition chosen, every solution to the equations (3.42)

is locally diffeomorphic to the (2,0) AdS super-
space [15,47].
The above supergravity theory (called type II minimal

supergravity in [15]) is the 3D analog of the new minimal
for N ¼ 1 supergravity in four dimensions [49–51]. The
latter theory is known to allow no supersymmetric cos-
mological term. Such a supersymmetric cosmological term
does exist in the 3D case, and it is given by the Chern-
Simons ξ-term in (3.41). For ξ ≠ 0 the theory possesses a
maximally supersymmetric solution, which is the (2,0) AdS
superspace [15,47] corresponding to the (2,0) AdS super-
symmetry [52].

D. Two-form supergravity

There is one more variant off-shell formulation for (1,1)
AdS supergravity proposed in [15]. Its conformal compen-
sator is the so-called two-form multiplet, which is the 3D
cousin of the well-known three-form multiplet in 4D
N ¼ 1 supersymmetry, which was proposed by Gates
[65] and reviewed in [36,66].
In curved superspace, the two-form multiplet is

described by a real unconstrained scalar prepotential
P ¼ P̄ which enters any action functional, S ¼ S½Π; Π̄�,
only via the covariantly chiral descendant

Π ¼ Δ̄P ð3:43Þ

and its conjugate Π̄. In order for Π to be a primary
superfield, the prepotential P should possess the super-
Weyl transformation law

δσP ¼ σP; ð3:44Þ

which implies

δσΠ ¼ 2σΠ; JΠ ¼ −2Π: ð3:45Þ

The chiral scalar (3.43) is a gauge-invariant field strength
for gauge transformations of the form

δLP ¼ L; Δ̄L ¼ 0; L̄ ¼ L: ð3:46Þ

Here the linear gauge parameter can be expressed via an
unconstrained superfield V as in (3.38). Since V is defined
modulo gauge transformations (3.39), we conclude that
any system with action S ¼ S½Π; Π̄�, which describes the
dynamics of the two-form multiplet, is a gauge theory with
linearly dependent generators.
Lagrangian quantization of the two-form multiplet can

be carried out similarly to that of the 4DN ¼ 1 three-form
multiplet coupled to supergravity [67] (see [68] for a
review).
Upon replacement Φ4 → Π in (3.31) the supergravity

action turns into
9The vector superfield Cαβ should not be confused with

(3.33b).
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Stwo−formð1;1ÞSG ¼ −
4

κ

Z
d3xd2θd2θ̄E

�
ðΠ̄ΠÞ14 − 1

2
mP

�

¼ −
4

κ

Z
d3xd2θd2θ̄EðΠ̄ΠÞ14

þ
�
m
κ

Z
d3xd2θEΠþ c:c:

�
; ð3:47Þ

where m is a real parameter. In the second form, the action
is manifestly invariant under gauge transformations (3.46).
The equation of motion for the compensator is

Rþ R̄ ¼ 2m; R ≔ Π−3=4Δ̄Π̄1=4; ð3:48Þ

and therefore

R ¼ μ ¼ const: ð3:49Þ

The action for type I minimal supergravity (3.31)
involves two real parameters, Reμ and Imμ, which appear
in the supersymmetric cosmological term. The action for
two-form supergravity (3.47) contains only one real
parameter, m, which determines the corresponding super-
symmetric cosmological term. As is seen from (3.49), the
second parameter Imμ is generated dynamically. At the
component level, the cosmological constant in the theory
(3.49) is given by (3.32).
The two-form supergravity theory described above is the

3D analog of the variant formulation for 4D N ¼ 1
supergravity known as three-form supergravity. The latter
was proposed for the first time by Gates and Siegel [66]
and fully developed at the component level in [69,70]. The
super-Weyl invariant formulation for the three-form super-
gravity was given in [71]. Our formulation of the 3D two-
form supergravity is similar to [71].

E. Superform formulation for the two-form
multiplet

We now present a geometric formulation for the two-
form multiplet used in the previous section. Let us
introduce a super two-form B2 defined by

B2½P� ¼ −Ēα ∧ EαPþ i
2
Eβ ∧ EaðγaÞβγDγP

þ i
2
Ēβ ∧ EaðγaÞβγD̄γP

−
1

16
εabcEb ∧ EaððγcÞρτ½Dρ; D̄τ�− 8CcÞP ð3:50Þ

and consider its exterior derivative H3 ≔ dB2. It is not
difficult to check that H3 is given by the following
expression:

H3½Π� ¼−iĒγ ∧ Ēβ ∧EaðγaÞβγΠ− iEγ ∧Eβ ∧EaðγaÞβγΠ̄

þ1

4
Ēγ ∧Eb ∧EaεabdðγdÞγδDδΠ

−
1

4
Eγ ∧Eb ∧EaεabdðγdÞγδD̄δΠ̄

þ i
48

Ec ∧Eb ∧Eaεabc

× ððD2−16R̄ÞΠ− ðD̄2−16RÞΠ̄Þ; ð3:51Þ

and, hence, it is constructed solely in terms of the
compensator Π and its conjugate Π̄, with Π being related
to P as in (3.43).
The relation H3½Π� ¼ dB2½P� implies that the top com-

ponents of B2½P� and H3½Π�,

Bab ¼ −
1

8
εabcððγcÞρτ½Dρ; D̄τ� − 8CcÞP; ð3:52aÞ

Habc ¼ −
i
8
εabcððD̄2 − 16RÞΠ − ðD2 − 16R̄ÞΠ̄Þ; ð3:52bÞ

are connected to each other as

Habc ¼ 3D½aBbc� þ εabcðiDαR − 2D̄αSÞDαP

þ εabcðiD̄αR̄þ 2DαSÞD̄αP: ð3:53Þ

Equations (3.52) and (3.53) tell us that the imaginary part
of the top component field of the chiral superfield Π,
defined by F ¼ − 1

4
D2Πj, is the field strength of a gauge

two-form.
The gauge transformation (3.46) of the prepotential P is

equivalent to the following transformation of the super
two-form (3.50):

δLB2½P� ¼ B2½L� ⇒ δLH3½Π� ¼ 0: ð3:54Þ

This allows us to interpret B2½P� as a gauge two-form
and H3½Π� as its gauge-invariant field strength. The closed
super two-form B2½L� in (3.54) is actually exact,
B2½L� ¼ dA1, where A1 is the gauge potential of a vector
multiplet.
Using the super-Weyl transformation laws (3.11) and

(3.44), one can check that the superform (3.50) is invariant
under arbitrary super-Weyl transformations,

δσB2½P� ¼ 0 ⇒ δσH3½Π� ¼ 0: ð3:55Þ

This property will be important for our analysis in
Sec. IV B.
Let us recall the closed super three-form Ξ3½Lc�, defined

by Eq. (3.28), which generates the supersymmetric invari-
ant (3.30). If we choose Lc ¼ Π, with Π given by (3.43),
then the exact super three-form H3½Π� proves to be the
imaginary part of Ξ3½Π�,
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H3½Π� ¼
i
2
Ξ3½Π� −

i
2
Ξ̄3½Π̄�: ð3:56Þ

The real part of Ξ3½Π�, on the other hand, is not exact and
generates a nontrivial supersymmetric invariant, which may
be realized as the full superspace integral (3.14), with P
playing the role of the Lagrangian L.
The local U(1) and super-Weyl transformations may be

used to choose the gauge Π ¼ 1. This condition implies
that S ¼ 0 and the algebra of covariant derivatives reduces
to that of type I minimal supergravity [15,37] with one extra
constraint: the imaginary part of R is now the divergence
of a vector (related, by Poincaré duality, to a two-form
potential). To see this it suffices to write the super three-
form H3½Π� in the gauge Π ¼ 1

H3 ¼ −iEγ ∧ Eβ ∧ EaðγaÞβγ − iĒγ ∧ Ēβ ∧ EaðγaÞβγ

þ 1

3
Ec ∧ Eb ∧ EaεabciðR − R̄Þ; ð3:57Þ

keeping in mind that H3 ¼ dB2½P�. Note that a similar
constraint appears in the case of the 4D N ¼ 1 three-form
supergravity where iðR − R̄Þ is also the divergence of a
vector [69,70,72].

F. Complex two-form supergravity

In the framework of 4DN ¼ 1 Poincaré supersymmetry,
the complex three-form multiplet was introduced by Gates
and Siegel [66] as a conformal compensator for the Stelle-
West formulation for 4D N ¼ 1 supergravity [61], in
which the complex auxiliary field F was realized as the
field strength of a complex gauge three-form. The name
“complex three-form multiplet” was coined in [36]. This
multiplet was recently used in [73] (under the name of
“double three-form multiplet”) to construct a super-Weyl
invariant formulation for the complex three-form super-
gravity of [61], in the spirit of the super-Weyl invariant
formulation [71] for three-form supergravity [66,70]. Here
we propose a 3D N ¼ 2 cousin of the complex three-form
multiplet.
A complex two-form multiplet coupled to conformal

supergravity is described in terms of a covariantly chiral
scalar Υ and its conjugate Ῡ, with Υ being defined by

Υ ¼ Δ̄ Σ̄; ð3:58Þ

where Σ is a complex linear superfield constrained by

Δ̄Σ ¼ 0: ð3:59Þ

In general, if Σ is chosen to transform homogeneously
under the super-Weyl transformations, its U(1) charge is
determined by the super-Weyl weight [37]

δσΣ ¼ wΣσΣ ⇒ JΣ ¼ ð1 − wΣÞΣ: ð3:60Þ

We wish the chiral scalar Υ to be super-Weyl primary,
which means

δσΥ ¼ wΥσΥ; JΥ ¼ −wΥΥ; ð3:61Þ

in accordance with (3.23). The transformation properties
(3.60) and (3.61) are consistent with (3.58) only if wΣ ¼ 1,
and therefore

δσΥ ¼ 2σΥ; JΥ ¼ −2Υ: ð3:62Þ

The chiral scalar Υ defined by (3.58) is a gauge-invariant
field strength under gauge transformations of the form

δLΣ̄ ¼ L1 þ iL2; Δ̄Li ¼ 0; L̄i ¼ Li ð3:63Þ

For many purposes such as Lagrangian quantisation, it is
advantageous to work with unconstrained superfields. The
antilinear superfield Σ̄ can always be represented as

Σ̄ ¼ DαΨα; ð3:64Þ

for some unconstrained complex spinor prepotential Ψα.
The chiral scalar Υ defined by (3.58) is a gauge-invariant
field strength under gauge transformations of the form

δΨα ¼ D̄αZ þDβΛαβ; Λαβ ¼ Λβα; ð3:65Þ

with unconstrained complex gauge parameters Z and ΛðαβÞ.
Here the gauge transformation generated by Λαβ leaves the
superfield (3.64) invariant. The gauge transformation gen-
erated by Z is equivalent to (3.63) when acting on Σ̄. Any
dynamical system with action S½Υ; Ῡ�, which is realized in
terms of the unconstrained prepotentials Ψα and Ψ̄α, is a
gauge theory with linearly dependent generators of an
infinite stage of reducibility, following the terminology of
the Batalin-Vilkovisky quantization [48].
Upon replacement Φ4 → Υ in (3.31) the supergravity

action turns into

Scomplex two-form
ð1;1ÞSG ¼ −

4

κ

Z
d3xd2θd2θ̄EðῩΥÞ14: ð3:66Þ

This complex two-form supergravity allows no supersym-
metric cosmological term, and the action involves no free
parameter, unlike the actions for type I supergravity (3.31)
and two-form supergravity (3.47). However, the equation
of motion for Ψα is

DαR ¼ 0; R ≔ Υ−3=4Δ̄Ῡ1=4; ð3:67Þ

and it implies that R ¼ μ ¼ const. Thus the complex
cosmological parameter μ is generated dynamically.
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G. Superform formulation for the complex
two-form multiplet

Similarly to the real two-form multiplet, the complex
two-form multiplet has a geometric superform origin. Let
us consider the following complex super two-form:

C2½Σ̄� ¼ 2iĒα ∧ EαΣ̄þEβ ∧ EaðγaÞβγDγΣ̄

þ Ēβ ∧ EaðγaÞβγD̄γΣ̄

þ i
8
εabcEb ∧ EaððγcÞρτ½Dρ; D̄τ�− 8CcÞΣ̄: ð3:68Þ

All coefficientsCAB ofC2½Σ̄� ¼ 1
2
EB ∧ EACAB are descend-

ants of Σ̄. For the exterior derivative of C2½Σ̄� we get

dC2½Σ̄� ¼ −2Ēγ ∧ Ēβ ∧ EaðγaÞβγΥ

−
i
2
Ēγ ∧ Eb ∧ EaεabdðγdÞγδDδΥ

þ 1

24
Ec ∧ Eb ∧ EaεabcðD2 − 16R̄ÞΥ≡ Ξ3½Υ�:

ð3:69Þ

Thus, all coefficients of dC2½Σ̄� are descendants of Υ.
The expression for Ξ3½Υ� is obtained from (3.28) by

replacementLc → Υ. Since bothLc andΥ are chiral primary
superfields of the same weight, we conclude that Ξ3½Υ� is
super-Weyl invariant, δσΞ3½Υ� ¼ 0. A stronger result is that
the superform (3.68) is also super-Weyl invariant

δσC2½Σ̄� ¼ 0: ð3:70Þ

Our result Ξ3½Υ� ¼ dC2½Σ̄� implies that the top compo-
nents of the superforms C2½Σ̄� and Ξ3½Υ�,

Cab ¼
i
4
εabcððγcÞρτ½Dρ; D̄τ� − 8CcÞΣ̄; ð3:71aÞ

Ξabc ¼
1

4
εabcðD2 − 16R̄ÞΥ; ð3:71bÞ

are related to each other as

Ξabc ¼ 3D½aCbc� þ 2εabcðDαRþ 2iD̄αSÞDαΣ

þ 2εabcðD̄αR̄ − 2iDαSÞD̄αΣ: ð3:72Þ

This confirms that the F component of Υ is the field
strength of a complex two-form.
The gauge transformation of Σ̄, Eq. (3.63), can be viewed

as the following superform transformation:

δLC2½Σ̄� ¼ C2½L1 þ iL2� ⇒ δLΞ3½Υ� ¼ 0: ð3:73Þ
This allows us to interpret C2½Σ̄� as a gauge complex two-
form and Ξ3½Υ� as the corresponding gauge-invariant field
strength.

The local U(1) and super-Weyl transformations may be
used to choose the gauge Υ ¼ 1. In this gauge, S ¼ 0 and
the algebra of covariant derivatives reduces to that of type I
minimal supergravity [15,37] with one extra constraint: the
torsion R is the divergence of a vector (related, by Poincaré
duality, to a complex two-form potential). This follows
from the fact that Ξ3½Υ� in the gauge Υ ¼ 1 is given by

Ξ3 ¼ dC2 ¼ −2Ēγ ∧ Ēβ ∧ EaðγaÞβγ

−
2

3
Ec ∧ Eb ∧ EaεabcR̄: ð3:74Þ

IV. GREEN-SCHWARZ SUPERSTRINGS
COUPLED TO TWO-FORM

SUPERGRAVITY

In this section we will show that the N ¼ 1 and N ¼ 2
two-form supergravity theories provide consistent back-
grounds for the Green-Schwarz superstring.

A. 3D N = 1 Green-Schwarz superstring in
curved superspace

In the case of 3DN ¼ 1 Green-Schwarz superstring, we
draw on the results obtained by Bergshoeff et al. [13].
To describe the dynamics of a superstring propagating in a
two-form supergravity background, we propose the follow-
ing action:

S ¼ T2

Z
d2ξ

�
1

2

ffiffiffiffiffiffi
−γ

p
γijLEi

aEj
bηab − ϵijEi

BEj
ABAB

�
:

ð4:1Þ

Here ξi ¼ ðτ; σÞ are the world-sheet coordinates, γij is the
world-sheet metric, γ ¼ det γij ¼ 1

2
ϵijϵklγikγjl with ϵ12 ¼

ϵ21 ¼ 1. Both the kinetic and Wess-Zumino terms in (4.1)
involve certain target space fields associated with two-form
supergravity, which are the supervielbein EM

A entering the
action via the pull-back supervielbein

Ei
A ¼ ∂izMEM

A; ð4:2Þ

the super two-form BAB and the compensator L ¼ DαLα

(the dilaton superfield).
The classical consistency of the Green-Schwarz super-

string action requires that it be invariant under gauge
fermionic transformations (κ-symmetry) of the form

δEa ¼ 0; δEα ¼ 2ðγaÞαβL1
4Ea

i κ
i
β; ð4:3Þ

where we have defined δEA ≔ δzMEM
A. The gauge param-

eter κiα is a real 3D spinor and also a 2D vector satisfying
the self-duality condition ðγij − ð−γÞ−1

2ϵijÞκαj ¼ 0.
It can be shown that the action (4.1) is invariant under the

gauge transformation (4.3) provided the super three-form
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H3 ¼ dB2 is given by Eq. (2.37) and the world-sheet metric
transforms as

δð ffiffiffiffiffiffi
−γ

p
γijÞ ¼ −2

ffiffiffiffiffiffi
−γ

p
L

1
4ð4iEk

α − L−1ðγcÞαβEk
cDβLÞ

× ð2γkðiγjÞl − γijγklÞκlα: ð4:4Þ
Let us point out that one can absorb the factor ofL1=4 into κiα.
After this redefinition, the action (4.1) and the κ trans-
formations (4.3) and (4.4) become similar to those in [13].
The action (4.1) is invariant under arbitrary super-Weyl

transformations of the target space, as a consequence of the
relations (2.14a), (2.26) and (2.42). The super-Weyl gauge
freedom may be fixed by setting L ¼ 1.

B. 3D N = 2 Green-Schwarz superstring
in curved superspace

Now we turn to constructing the covariant action for the
3D N ¼ 2 superstring in a two-form supergravity back-
ground, and make use of the results by Grisaru et al. [12]
concerning the 10D N ¼ 2 superstring. We propose the
following superstring action

S ¼ T2

Z
d2ξ

�
1

2

ffiffiffiffiffiffi
−γ

p
γijðΦΦ̄Þ2Ei

aEj
bηab

−
1

2
ϵijEi

BEj
ABAB

�
; ð4:5Þ

where the pull-back supervielbein Ei
A is defined similarly

to (4.2). The dilaton ðΦΦ̄Þ2 is constructed in terms of the
conformal compensator described by a weight-1=2 chiral
scalar superfield Φ and its conjugate Φ̄. The concrete
structure of Φ depends on the supergravity formulation
chosen. In the case of three-form supergravity, the con-
formal compensator is the three-from multiplet, and then
Φ4 ¼ Π ¼ Δ̄P. On the other hand, the choice Φ4 ¼ Υ ¼
Δ̄Σ̄ corresponds to complex three-form supergravity.
Both the real and complex two-form supergravities

possess a real super two-form B2 which can be used as
the Kalb-Ramond field BAB in the action (4.5). For two-
form supergravity, the choice of B2 is unique, modulo an
overall numerical factor, and is given by B2½P�, Eq. (3.50).
In the case of complex two-form supergravity, there is a
whole family of possible super two-forms that can be put in
a one-to-one correspondence with a circle U(1). However,
all these choices are equivalent. For concreteness, we
choose B2 to be the real or imaginary part of the super
two-form C2½Σ̄� given by Eq. (3.68).
Let us show that the action (4.5) is κ symmetric once

we consider a background of real or complex two-form
supergravity. We postulate the following κ-symmetry
transformation

δEa ¼ 0; δEα ¼ Φ3
2Φ̄−1

2Ea
i ðγaÞαβðγijκjβ − ð−γÞ−1

2ϵijκ̄jβÞ;
ð4:6Þ

where δEA ≔ δzMEM
A, δĒα is given by the complex

conjugate of δEα and καi ≡ κ̄αi . We point out the relation

δEi
A ¼ ∂iδEA − 2δECEi

BΩ½BCÞA þ δECEi
BTBC

A; ð4:7Þ
where we have used the definitions (3.8) and (3.9a). Then it
is not difficult to show that the variation of the action is
given by the following expression (compare with [12])

δS ¼ T2

Z
d2ξ

�
1

2
δð ffiffiffiffiffiffi

−γ
p

γijÞðΦΦ̄Þ2Ei
aEj

bηab

−
ffiffiffiffiffiffi
−γ

p
γijðΦΦ̄Þ2Ei

BδEATAB
cEj

dηcd

þ ffiffiffiffiffiffi
−γ

p
γijEi

aEj
bηabðΦΦ̄2δEαDαΦþΦ2Φ̄δĒαD̄αΦ̄Þ

þ ϵijEi
CEj

BδEAHABC

�
; ð4:8Þ

where H3 ≔ 1
6
EC ∧ EB ∧ EAHABC ¼ dB2.

Let us first consider the case of two-form supergravity,
with Φ4 ¼ Π. To show that the variation (4.8) vanishes, we
have to make use of the geometrical data specific for the
two-form supergravity. The only nonvanishing torsion
appearing in the variation (4.8) is the dimension-zero
torsion which is

Tα
βc ¼ −2iðγcÞαβ: ð4:9Þ

The nontrivial components of the super three-form H3

given by Eq. (3.51), which enter the variation (4.8), are

Hαβc ¼ −2iðγcÞαβΦ̄4; Habγ ¼ −
1

2
εabdðγdÞγδD̄δΦ̄4

ð4:10Þ

together with their complex conjugates. Substituting the
expressions (4.9) and (4.10) into the variation (4.8) and
using the identities

ðγaÞαγðγbÞγβ ¼ ηabδ
β
α þ εabcðγcÞαβ; γi½jγk�l ¼ 1

2
ϵjkϵilγ−1;

ð4:11Þ
one can show that the Green-Schwarz action is indeed
invariant provided the κ-transformation law of the world-
sheet metric is postulated to be

δð ffiffiffiffiffiffi
−γ

p
γijÞ ¼ 2

ffiffiffiffiffiffi
−γ

p ð2γkðiγjÞl − γijγklÞΦ3
2Φ̄−1

2

× ð2iĒkα þΦ−1ðγcÞαβEk
cDβΦÞκαl

− 2ðϵkðiγjÞl þ ϵlðiγjÞkÞΦ−1
2Φ̄3

2

× ð2iEk
α þ Φ̄−1ðγcÞαβEk

cD̄βΦ̄Þκlα þ c:c:

ð4:12Þ
The superstring action constructed is invariant under

arbitrary super-Weyl transformations of the background
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fields, as follows from the transformation laws (3.11),
(3.45) and (3.55).
It is clear that the analysis in the case of the complex two-

form supergravity is identical to the one presented above
with the only difference that Φ4 is replaced with Υ instead
of Π. In fact, in proving the κ-invariance of the action only
the real closed super three-formH3 enters the computations
rather than its potential B2. Therefore we have proven that
both the real and complex two-form supergravities are
consistent backgrounds for the 3D N ¼ 2 Green-Schwarz
superstring.

V. GOLDSTINO SUPERFIELDS COUPLED
TO SUPERGRAVITY

In this section we present various models for sponta-
neously broken local N ¼ 1 and N ¼ 2 supersymmetry
that are obtained by coupling the off-shell supergravity
theories, which have been described in the previous
sections, to nilpotent Goldstino superfields. It should be
pointed out that the first model for spontaneously broken
local N ¼ 1 supersymmetry was constructed in 1977 [74]
by coupling on-shell N ¼ 1 supergravity to the Volkov-
Akulov action.
We often make use of the notion of reducible and

irreducible Goldstino superfields introduced in [25].
By definition, an irreducible Goldstino superfield contains
Goldstone spin-1

2
fermion(s) as the only independent

component field(s). Every reducible Goldstino superfield
also contains some auxiliary field(s) along with the
Goldstone spin-1

2
fermion(s).

A. N = 1 Goldstino superfields

A reducible Goldstino multiplet is described by a real
scalar superfield X subject to the nilpotency constraint

X2 ¼ 0: ð5:1Þ

We also require D2X to be nowhere vanishing so that
ðD2XÞ−1 is well defined, and therefore (5.1) implies

X ¼ −
DαXDαX
D2X

: ð5:2Þ

As a result, X has two independent component fields, a
spinor ψαðxÞ and a real auxiliary scalar FðxÞ, that may be
defined as iψα ¼ DαXj and iF ¼ − 1

4
D2Xj, where F−1 is

well defined. The lowest component of the Goldstino
superfield, Xj, is a composite field as a consequence
of (5.2).
We postulate X to be super-Weyl primary of weight 1=2,

which means the super-Weyl transformation law of X is

δσX ¼ 1

2
σX: ð5:3Þ

The Goldstino superfield action is

SX ¼ i
Z

d3xd2θE

�
i
2
DαXDαX þ 2f0φ3X

�
; ð5:4Þ

for some nonzero parameter f0 which characterizes the
scale of supersymmetry breaking. The second term in
the action involves the compensator, φ, of N ¼ 1 AdS
supergravity; see Sec. II C. The action is super-Weyl
invariant.
The nilpotency constraint (5.1) is invariant under local

arbitrary rescalings of X,

X → ~X ¼ eρX; ð5:5Þ

for any real scalar ρ. Such a rescaling (5.5) acts on the
component fields of X as

ψα → ~ψα ¼ eρj
�
ψα þ

ψ2

4F
ðDαρÞj

�
; ð5:6aÞ

F → ~F ¼ eρj
�
F −

1

2
ψαðDαρÞj −

ψ2

16F
ðD2ρÞj

�
: ð5:6bÞ

Each of these transformations is a local rescaling accom-
panied by a nilpotent shift of the field under consideration,
and therefore ~F−1 is well defined. Requiring the action
(5.4) to be stationary under (5.5) (following the 4D works
[26,27]) gives the constraint

f0φ3X ¼ i
2
XD2X ¼ XΔX; Δ ≔

i
2
D2 þ S: ð5:7Þ

Here XΔX is manifestly a super-Weyl primary. As follows
from (5.6a) and (5.6b), the F component of the nonlinear
constraint (5.7) is equivalent to a sum of the equation of
motion for F and a linear combination of the equations of
motion for ψα.
Consider an irreducible Goldstino superfield X con-

strained by

X 2 ¼ 0; f0φ3X ¼ XΔX ; ð5:8Þ

with ΔX being nowhere vanishing. This superfield is
irreducible because the Goldstino ψα ¼ −iDαXj is the only
independent component field of X . Indeed, the second
constraint in (5.8) proves to express the auxiliary field F in
terms of the Goldstino; see Appendix A. The dynamics of
X is described by the action

SX ¼ if0
Z

d3xd2θEφ3X ; ð5:9Þ

which is obtained from (5.4) by making use of the non-
linear constraint obeyed by X. The Goldstino theories (5.4)
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and (5.9) prove to be equivalent, which may be shown
by extending the 4D analyses given in [75–77].10 This
issue is discussed in more detail in Appendix A. The
flat-superspace limit of our Goldstino theory defined by
Eqs. (5.8) and (5.9) is analogous to the 2D N ¼ 1
Goldstino model pioneered by Roček [79].
It is not difficult to check that the constraints (5.8) are

satisfied if

X ¼ f0φ3
X
ΔX

; ð5:10Þ

where X is only subject to the nilpotency constraint (5.1).
The important property of X defined by (5.10) is that it is
invariant under arbitrary local rescalings (5.5),

δρX ¼ ρX ⇒ δρX ¼ 0; ð5:11Þ

for arbitrary real superfield ρ, compare with the 4D analysis
in [27]. This remarkable property actually can be explained
by recalling at the component transformation law (5.6b)
implied by (5.5). The point is the superfield transformation
(5.5) implies an arbitrary local rescaling of the auxiliary
field of X, F → eρjF. Since X does not contain an
independent auxiliary field, it should remain invariant
under (5.5).
Let us consider the model for spontaneously broken local

supersymmetry which is obtained by coupling the super-
gravity theory (2.21) to the Goldstino superfield X. The
dynamics of this system is described by the action

S ¼ SSG þ SX: ð5:12Þ

The component structure of this theory will be discussed
elsewhere. Here we only present the corresponding cos-
mological constant. It is obtained upon eliminating all the
auxiliary fields, and is given by

Λ ¼ 1

2
f02κ þ ΛAdS ¼

1

2
f02κ − 4λ2: ð5:13Þ

The supergravity-matter system (5.12) may be reformu-
lated as a model for nilpotent supergravity. Varying (5.12)
with respect to the compensator φ gives the equation

S − λ ¼ −
3

8
f0κ

X
φ
; ð5:14Þ

where S is defined by (2.22a). Since X is nilpotent, the
equation of motion implies

ðS − λÞ2 ¼ 0: ð5:15Þ

Making use of (5.14) in order to express X in terms of the
supergravity fields, the action (5.12) can be recast as a
higher-derivative supergravity theory

S ¼ 8i
3κ

Z
d3xd2θEφ4

�
Sþ λ

2

�

−
32

ð3f0κÞ2
Z

d3xd2θEφ2DαSDαS: ð5:16Þ

In four dimensions, various approaches to nilpotentN ¼ 1
supergravity were developed, e.g., in [16,17,20,23,26,
80,81]. Our presentation here is similar to [20].
To conclude this subsection, we note that the nilpotent

Goldstino superfield X can also be coupled to the two-form
supergravity constructed in Sec. II D. For this we should
simply replace the action (5.4) with

~SX ¼ i
Z

d3xd2θE

�
i
2
DαXDαX þ 2f0L3=4X

�
: ð5:17Þ

Then, the equation of motion (5.14) turns into

Dα

�
Sþ 3

8
f0κ

X

L1=4

�
¼ 0; ð5:18Þ

where S is now defined as in (2.32).

B. Reducible N = 2 Goldstino superfields

The family of nilpotentN ¼ 2Goldstino superfields, both
reducible and irreducible, is more populous than in the
N ¼ 1 case.11 However practically all 3DN ¼ 2Goldstino
superfields can be obtained from the known 4D N ¼ 1
Goldstino supermultiplets by dimensional reduction, at least
in the flat superspace case. This is why our discussion of
nilpotent N ¼ 2 Goldstino superfields will be reasonably
concise. We will try to emphasize only conceptual con-
structions and those results that are truly new or have not
received much discussion in the 4D case.

1. Nilpotent chiral scalar superfield

To begin with, we consider a 3D N ¼ 2 locally super-
symmetric counterpart of the reducible Goldstino superfield
introduced by Casalbuoni et al. [84] and independently by
Komargodski and Seiberg [75]. We choose it to be a
covariantly chiral scalar X of super-Weyl weight þ1=2,

D̄αX ¼ 0; δσX ¼ 1

2
σX ⇒ JX ¼ −

1

2
X; ð5:19Þ

which is subject to the nilpotency constraint

10Reference [76] is a considerably generalized and extended
version of [78].

11One can also introduce spinor Goldstino superfields, by
analogy with the 4D N ¼ 1 constructions given in [29,82,83].
However such superfields are not particularly useful in the
supergravity framework.

EVGENY I. BUCHBINDER et al. PHYSICAL REVIEW D 96, 126015 (2017)

126015-16



X2 ¼ 0; ð5:20Þ

in conjunction with the requirement that the descendant
D2X is nowhere vanishing. The nilpotency condition implies
that X has two independent component fields, a complex
Goldstino ψαðxÞ and a complex auxiliary field FðxÞ, which
we define as ψα ¼ 1ffiffi

2
p DαXj and F ¼ − 1

4
D2Xj, respectively.

The constraints on X do not make use of any super-
gravity compensator, which means that X is defined in any
conformal supergravity background. However, a compen-
sator is required in order to define an action functional
for the Goldstino superfield. Here we choose the chiral
compensator Φ corresponding to the minimal (1,1) AdS
supergravity described in Sec. III C 1. The dynamics of this
supermultiplet is described by the action

SX ¼
Z

d3xd2θd2θ̄EX̄X −
�
f
Z

d3xd2θEΦ3X þ c:c:

�
;

ð5:21Þ

in which the supersymmetry breaking parameter, f, may be
chosen to be real.
We now consider a model for spontaneously broken

N ¼ 2 local supersymmetry which is obtained by coupling
the Goldstino superfield X to the minimal (1,1) AdS
supergravity reviewed in Sec. III C 1. The complete action is

S ¼ Sminimal
ð1;1ÞSG þ SX; ð5:22Þ

where the supergravity action Sminimal
ð1;1ÞSG is given by Eq. (3.31).

This theory proves to generate the following cosmological
constant

Λ ¼ f2κ þ ΛAdS ¼ f2κ − 4jμj2: ð5:23Þ

Varying the action (5.22) with respect to the chiral com-
pensator gives the equation of motion

R − μ ¼ −
3

4
fκ

X
Φ
; ð5:24Þ

where the super-Weyl neutral chiral scalar R is defined by
(3.33a). Since X is nilpotent, the above equation implies

ðR − μÞ2 ¼ 0; ð5:25Þ

and thus the torsion superfield ðR − μÞ becomes nilpotent.
Equation (5.24) can be used to eliminate X and X̄ from the
action (5.22), resulting with the following geometric higher-
derivative supergravity action:

S ¼ −
4

3κ

Z
d3xd2θd2θ̄EΦ̄Φ −

�
μ

3κ

Z
d3xd2θEΦ4 þ c:c:

�

þ
�

4

3fκ

�
2
Z

d3xd2θd2θ̄EΦ̄ΦjR − μj2: ð5:26Þ

Here the expression in the first line differs from the super-
gravity action (3.31) only by new values for the parameters
involved, κ → 3κ and μ → −μ. The functional form of the
action (5.26) differs from its 4D N ¼ 1 counterpart derived
in [20] (see also [26]) in the sense that the supersymmetric
Einstein-Hilbert term completely canceled out in the latter
case.
The nilpotency condition (5.20) is preserved if X is

locally rescaled,

X → eτX; D̄ατ ¼ 0; ð5:27Þ
where the parameter τ is neutral under U(1). Requiring the
action (5.21) to be stationary under such rescalings of X
(compare with [26]) gives the nonlinear equation

XΔ̄X̄ ¼ fΦ3X: ð5:28Þ

This nonlinear constraint proves to express the auxiliary
field F in terms of the Goldstini ψα and ψ̄α and their
derivatives, see Appendix B.
The constraints (5.19), (5.20) and (5.28) define an

irreducible Goldstino superfield X ,

D̄αX ¼ 0; δσX ¼ 1

2
σX ; X2 ¼ 0;

XΔ̄X̄ ¼ fΦ3X : ð5:29Þ

It is the 3D N ¼ 2 analog of the 4D N ¼ 1 Goldstino
superfield used by Lindström and Roček [28] in their off-
shell model for spontaneously broken N ¼ 1 local super-
symmetry.12 The corresponding action can be given in two
different but equivalent forms:

SX ¼ −
Z

d3xd2θd2θ̄EX̄X ¼ −f
Z

d3xd2θEΦ3X :

ð5:30Þ

So far we have considered the coupling of the nilpotent
Goldstino superfield X to the minimal (1,1) AdS

12Reference [28] is the first work on off-shell de Sitter super-
gravity in four dimensions. Terminology “de Sitter supergravity”
was introduced by Bergshoeff et al. [18]. The only difference
between the supergravity models put forward in [18,28] is that
they made use of different Goldstino superfields—the 4D N ¼ 1
analogs of X and X , respectively. The two supergravity models
are equivalent on shell [25]. However, the power of the approach
advocated in [18] is that the nilpotency condition X2 ¼ 0 is model
independent, which implies that the Goldstino superfield can be
readily coupled to matter multiplets.
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supergravity. Its coupling to the two-form (or complex two-
form) supergravity is obtained simply by replacing the
chiral compensator Φ in (5.21) with Π1=4 (Υ1=4 in the case
of complex three-form supergravity). However, there is a
different universal approach to couple a nilpotent chiral
supermultiplet to any off-shell supergravity. It consists in
replacing X, defined by (5.19) and (5.20), with a super-
Weyl primary scalar X with the properties

D̄αX ¼ 0; δσX ¼ 2σX; X2 ¼ 0: ð5:31Þ

The action (5.21) has to be replaced with

SX ¼
Z

d3xd2θd2θ̄E
X̄X
W

−
�
f
Z

d3xd2θEXþ c:c:

�
;

ð5:32Þ

where W is a real scalar primary superfield of weight þ3
such that (i) it is nowhere vanishing, and (ii) it is a
composite of the supergravity compensators. In particular,
W ¼ ðΦ̄ΦÞ3 in the case of minimal (1,1) AdS supergravity,
W ¼ L3 for (2,0) AdS supergravity, W ¼ ðΠ̄ΠÞ3=4 for the
two-form supergravity, and so on.

2. Nilpotent real scalar superfield

We now introduce a 3D N ¼ 2 analog of the reducible
Goldstino superfield proposed in [26]. It is a real scalar
superfield subject to the nilpotency conditions:

V2 ¼ 0; ð5:33aÞ

VDADBV ¼ 0; ð5:33bÞ

VDADBDCV ¼ 0: ð5:33cÞ

The super-Weyl transformation of V is postulated to be

δσV ¼ σV: ð5:34Þ

We also require that the descendant 1
2
fΔ; Δ̄gV is nowhere

vanishing. The nilpotency conditions (5.33) imply that V
has three independent component fields (see Appendix B
for more details) that may be chosen as follows: the
complex Goldstino χαðxÞ ¼ 1ffiffi

2
p DαΔ̄Vj, its conjugate χ̄αðxÞ

and a real auxiliary field DðxÞ ¼ 1
2
fΔ; Δ̄gVj, with D−1

being well defined.
The constraints (5.33) imposed on V do not make use of

any supergravity compensator,whichmeans thatV is defined
in any conformal supergravity background. However, a
compensator is required in order to formulate an action
functional for the Goldstino superfield. As in the previous
section, here we again choose the chiral compensator Φ
corresponding to the minimal (1,1) AdS supergravity
(minimal type I supergravity) described in Sec. III C 1.

The dynamics of the nilpotent superfield V is described
by the action

SV ¼
Z

d3xd2θd2θ̄E

� jΔVj2
ðΦ̄ΦÞ3 − 2fV

�
; ð5:35Þ

with f the supersymmetry breaking parameter.13

The constraints (5.33) are preserved if V is locally
rescaled,

V → eρV; ð5:36Þ
for any real scalar ρ. Requiring the action (5.35) to be
stationary under such rescalings of V gives the nonlinear
equation

1

2
VfΦ−3Δ̄; Φ̄−3ΔgV ¼ fV: ð5:37aÞ

Due to the constraints (5.33), this may equivalently be
rewritten as

VΦ−3Δ̄ðΦ̄−3ΔVÞ ¼ VΦ̄−3ΔðΦ−3Δ̄VÞ ¼ fV: ð5:37bÞ
This nonlinear constraint proves to express the auxiliary
field D in terms of the Goldstini.
The constraints (5.33) and (5.37) define an irreducible

Goldstino superfield V. It is a 3DN ¼ 2 counterpart of the
Goldstino superfield introduced in [25]. The corresponding
action can be written in two equivalent forms

SV ¼ −
Z

d3xd2θd2θ̄E
jΔVj2
ðΦ̄ΦÞ3 ¼ −f

Z
d3xd2θd2θ̄EV:

ð5:38Þ
The Goldstino models (5.35) and (5.38) are equivalent on
the mass shell.
The irreducible Goldstino superfields X and V are

related to each other as follows

fV ¼ X̄X ; ð5:39aÞ

X ¼ Φ−3Δ̄V: ð5:39bÞ

These relations are analogous to those given in [28] in the
4D case.

3. Relating X and V

Starting from the nilpotent chiral superfield X described
in Sec. V B 1, we define

fV ≔ X̄X; ð5:40Þ

13Had we chosen V to be an unconstrained real scalar
superfield, the action (5.35) would have described the dynamics
of a two-form multiplet (with a linear superpotential) coupled to
the minimal type I supergravity.
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as a generalization of (5.39). The superfield V introduced
satisfies all the requirements imposed on the nilpotent
Goldstino superfield V in Sec. V B 2. One of the two
auxiliary fields of X does not contribute to the right-hand
side of (5.40).
Implementing the field redefinition (5.40) in the

Goldstino superfield action (5.35) leads to the following
higher-derivative action:

SHD½X; X̄� ¼
Z

d3xd2θd2θ̄E

�
1

f2
jXΔXj2
ðΦ̄ΦÞ3 − 2X̄X

�
:

ð5:41Þ

Its important property is

SHD½X ; X̄ � ¼ SX ; ð5:42Þ

with SX given by (5.30). Unlike the Goldstino action
(5.21), (5.41) is invariant under the discrete transformation
X → −X. The model (5.41) will be studied in more detail in
Appendix C.

4. Nilpotent two-form Goldstino superfield

As a generalization of the 4DN ¼ 1models proposed in
[24,27], we introduce a nilpotent two-form Goldstino
multiplet. It is described by a chiral scalar superfield

Y ¼ −
1

4
ðD̄2 − 4RÞU; Ū ¼ U; ð5:43aÞ

which is constrained to be nilpotent,

Y2 ¼ 0: ð5:43bÞ

The prepotential U in (5.43) is defined modulo gauge
transformations of the form

δLU ¼ L; Δ̄L ¼ 0; L̄ ¼ L; ð5:44Þ

and Y and Ȳ are gauge-invariant field strengths.
The super-Weyl transformation of the prepotential U is

δσU ¼ σU; ð5:45Þ

which implies

δσY ¼ 2σY: ð5:46Þ

To describe dynamics of the nilpotent two-form multiplet,
we propose the action

SY ¼
Z

d3xd2θd2θ̄E
ȲY

ðΦ̄ΦÞ3 −
�
f
Z

d3xd2θEY þ c:c:

�
:

ð5:47Þ

The component structure of this model will be discussed in
Appendix B.4. Here we would like just to point out that
the Goldstino superfield Y contains two independent
auxiliary fields, F ¼ H þ iG, of which H is a scalar and
G is the divergence of a vector. In supergravity, both H and
G produce positive contributions to the cosmological
constant. While the contribution from H is universal and
uniquely determined by the parameter of the supersym-
metry breaking f in (5.47), the contribution from G is
dynamical. We believe that the latter may be used to
neutralize the negative contribution from the supersym-
metric cosmological term.

C. Irreducible N = 2 Goldstino superfields

Using the nilpotent chiral superfield X described in
Sec. V B 1, we introduce a composite superfield

Σ ¼ f
X̄
Δ̄X̄

: ð5:48Þ

It has the following transformation properties:

δσΣ ¼ −σΣ; JΣ ¼ 2Σ; ð5:49Þ
as well as it identically satisfies the improved linear
constraint

Δ̄Σ ¼ f; ð5:50aÞ
compare with (3.25). By construction, it is nilpotent,

Σ2 ¼ 0: ð5:50bÞ
It also obeys the nonlinear constraint

fDαΣ ¼ −
1

4
ΣðD̄2 − 4RÞDαΣ; ð5:50cÞ

which is equivalent to

fDαΣ ¼ −iΣDαβD̄βΣ: ð5:51Þ
Thus Σ is a 3D N ¼ 2 counterpart of the irreducible
Goldstino superfield introduced in [30]. Unlike other
irreducible Goldstino superfields, such as X and V, the
constraints obeyed by Σ, Eq. (5.50), do not make use of any
supergravity compensator. In other words, Σ couples to
conformal supergravity.
The remarkable feature of Σ and its conjugate is that

these superfields are invariant under local rescalings of X
and its conjugate, Eq. (5.27),

δτX ¼ τX ⇒ δτΣ ¼ 0; D̄ατ ¼ 0; ð5:52Þ
compare with [27]. In complete analogy with the 4D
N ¼ 1 case [30], every irreducible Goldstino superfield
is a descendant of Σ and Σ̄, for instance
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fV ¼ ðΦ̄ΦÞ3Σ̄Σ: ð5:53Þ

Therefore we conclude that all irreducible Goldstino super-
fields are invariant under local rescalings (5.27).
As pointed out above, the Goldstino superfields Σ and Σ̄

couple to conformal supergravity. Relation (5.53) clearly
shows that the conformal compensators have to be used in
order to define V as a composite superfield constructed
from Σ and Σ̄.14

VI. CONCLUDING COMMENTS

The results obtained in this work may lead to several
interesting developments including the following:

(i) The work by Ovrut and Waldram [70] provided
membrane solutions in the 4D N ¼ 1 three-form
supergravity. In a similar way, the two-form super-
gravity theories described in the present paper
should possess string solutions. It is of interest to
derive such solutions explicitly.

(ii) In three dimensions, consistent models for massive
supergravity can be constructed by adding certain
higher-derivative terms to the standard supergravity
action. These include N ¼ 1 and N ¼ 2 topologi-
callymassive [59,85,86] and newmassive [46,87–89]
supergravity theories. Coupling these theories to the
Goldstino superfields described in Sec. V should give
consistent models for spontaneously broken massive
supergravity.

(iii) It is of interest to construct N ¼ 3 and N ¼ 4
Goldstino superfields, as an extension of the 4D
results given in [26,90]. The N ¼ 3 case is espe-
cially interesting since it has no 4D analog.

(iv) Since we formulated the 3D Green-Schwarz super-
string action, with N ¼ 1 and N ¼ 2 spacetime
supersymmetry, in off-shell supergravity back-
grounds, the quantum superstring analysis given
in [3,4] may be extended from the Minkowski
superspace to other maximally supersymmetric
backgrounds including the AdS one.
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APPENDIX A: COMPONENT STRUCTURE
OF N = 1 GOLDSTINO MODELS

In this appendix we will discuss the component actions
for theN ¼ 1Goldstino models introduced in Sec. VA. For
simplicity we will perform our analysis in flat superspace.
Here we specialize the superspace M3j2 of Sec. II A to

be the standard N ¼ 1 Minkowski superspace M3j2 para-
metrized by Cartesian real coordinates zA ¼ ðxa; θαÞ. The
covariant derivatives DA ¼ ðDa;DαÞ on M3j2, defined by
Eq. (2.2), become the flat-superspace ones

DA ¼ ð∂a;DαÞ; Dα ¼ ∂α þ iðγaÞαβθβ∂a ¼ ∂α þ iθβ∂αβ:

ðA1Þ

Making use of the anticommutation relation

fDα; Dβg ¼ 2i∂αβ ðA2Þ

allows us to obtain a number of useful properties including
the following:

DαDβ ¼ i∂αβ þ
1

2
εαβD2; DαDβDα ¼ 0;

D2D2 ¼ −4□: ðA3Þ

We recall that D2 ¼ DαDα. Given a supersymmetric action

S ¼ i
Z

d3xd2θL; L̄ ¼ L; ðA4Þ

with some superfield Lagrangian L, the component action
is computed by the rule

S ¼ −
i
4

Z
d3xD2Lj: ðA5Þ

As usual, the bar projection is defined by Uj ≔ Ujθ¼0, for
any superfield Uðx; θÞ.
Let us now consider a real scalar superfield X. We define

its real component fields ϕðxÞ, ψαðxÞ and FðxÞ as

ϕ ¼ Xj; iψα ¼ DαXj; iF ¼ −
1

4
D2Xj: ðA6Þ

Introducing a free supersymmetric model with action

SX ¼ i
Z

d3xd2θ

�
i
2
DαXDαX þ 2f0X

�
; ðA7Þ

at the component level we obtain

14However, if V is replaced with V ≔ VðΦ̄ΦÞ−3, then the
constraints obeyed by V are independent of any compensator,
and therefore V couples to conformal supergravity.
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SX ¼ −
Z

d3x

�
1

2
∂aϕ∂aϕþ i

2
ψα∂αβψ

β − 2F2 þ 2f0F
�
:

ðA8Þ

Let us turn to the component analysis of the N ¼ 1
Goldstino model (5.4) in flat superspace. To describe
a reducible Goldstino multiplet, we subject X to the
nilpotency condition

X2 ¼ 0 ðA9Þ

and assume that F−1 is well defined. The nilpotency
constraint allows us to solve for ϕ in terms of the
Goldstino ψ and the auxiliary field F:

ϕ ¼ iψ2

4F
: ðA10Þ

With the constraint (A9) imposed, the supersymmetric action
(A7) defines a nonlinear interacting theory. Making use of
(A8) and (A10) leads to the following action:

SX ¼ −
Z

d3x

�
i
2
ψα∂αβψ

β þ 1

32

ψ2

F
□
ψ2

F
− 2F2 þ 2f0F

�
:

ðA11Þ

The equation of motion for F is

δSX
δF

¼ 4F þ 1

16

ψ2

F2
□
ψ2

F
− 2f0 ¼ 0: ðA12Þ

This equation can be solved by repeated substitution which
gives

F ¼ f0

2
−

1

8f03
ψ2

□ψ2: ðA13Þ

Substituting it back into (A11) gives the following action for
the Goldstino:

~SX ¼ −
Z

d3x

�
f02

2
þ i
2
ψα∂αβψ

β þ 1

8f02
ψ2

□ψ2

�
: ðA14Þ

Since the auxiliary field possesses a nonvanishing expect-
ation value, hFi ¼ 1

2
f0, the supersymmetry is spontaneously

broken. The constant term in the integrand (A14) generates a
positive contribution to the cosmological constant in
supergravity.
Our next goal is to study the component structure of the

irreducible Goldstino model SX , Eq. (5.9), in Minkowski
superspace. We recall that it is obtained from the reducible
Goldstino theory defined by Eqs. (A7) and (A9) by
requiring the action (A7) to be stationary under local
rescalings X → eρX. This gives the constraint

i
2
XD2X ¼ f0X; ðA15Þ

which allows one to solve for the auxiliary field F in terms
of ψ . Evaluating the top component of (A15) gives

F −
f0

2
−

i
4F

ψα∂αβψ
β −

1

64

ψ2

F2
□
ψ2

F
¼ 0: ðA16Þ

This equation can be solved by repeated substitution to
result with

F ¼ f0

2
þ i
2f0

ψα∂αβψ
β −

1

4f03
ψ2∂αβψ

β∂αγψγ

þ 1

8f03
ψ2

□ψ2: ðA17Þ

Plugging this into (A11) leads to the component action

SX ¼ −
Z

d3x

�
f02

2
þ i
2
ψα∂αβψ

β −
1

4f02
ψ2∂αβψ

β∂αγψγ

þ 1

8f02
ψ2

□ψ2

�
: ðA18Þ

Comparing the two expressions for F, which are given
by Eqs. (A13) and (A17) and which correspond to the
models SX and SX , respectively, we see that they are
different. The final Goldstino actions (A14) and (A18) also
have different quartic terms. Nevertheless, the two models
are equivalent. Indeed, it was pointed out in Sec. VA that
the top component of (A15) is equivalent to a sum of the
equation of motion for F and a linear combination of the
equations of motion for ψα, both equations of motion
corresponding to the action (A11). One can readily check
that the left-hand side of (A16) can be represented as

F −
f0

2
−

i
4F

ψα∂αβψ
β −

1

64

ψ2

F2
□
ψ2

F
¼ 1

4

�
δSX
δF

þ ψα

F
δSX
δψα

�
;

ðA19Þ

and therefore the two expressions for F coincide on the
mass shell. Moreover, it may be shown that every solution
to the equation of motion for the Goldstino action (A14) is a
solution to the equation of motion for (A18) and vice versa.
This follows from the identity

SX ¼ ~SX þ 1

4f02

Z
d3xψ2εαβ

δ ~SX
δψα

δ ~SX
δψβ : ðA20Þ

APPENDIX B: COMPONENT STRUCTURE
OF N = 2 GOLDSTINO MODELS

In this appendixwewill discuss the component actions for
N ¼ 2 Goldstino models in flat superspace. We specialize
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the superspaceM3j4 of Sec. III A to be the standardN ¼ 2

Minkowski superspace M3j4 parametrized by Cartesian
coordinates zA ¼ ðxa; θα; θ̄αÞ, with θ̄α being the complex
conjugate of θα. The covariant derivatives DA ¼
ðDa;Dα; D̄αÞ on M3j4, defined by Eq. (3.1), become the
flat-superspace ones DA ¼ ð∂a; Dα; D̄αÞ. Here the spinor
covariant derivatives have the form

Dα ¼ ∂α þ iθ̄βðγaÞαβ∂a ¼ ∂α þ iθ̄β∂αβ;

D̄α ¼ −∂̄α − iθβ∂αβ ðB1Þ

and obey the anticommutation relations

fDα; Dβg ¼ 0; fD̄α; D̄βg ¼ 0;

fDα; D̄βg ¼ −2i∂αβ: ðB2Þ

Given a supersymmetric action

S ¼
Z

d3xd2θd2θ̄Lþ
�Z

d3xd2θLc þ c:c:

�
;

L̄ ¼ L; D̄αLc ¼ 0; ðB3Þ

with some real L and chiral Lc superfield Lagrangians, the
component action is computed using the formula

S ¼ 1

16

Z
d3xD2D̄2Lj −

�
1

4

Z
d3xD2Lcj þ c:c:

�
: ðB4Þ

The contractions D2 and D̄2 are defined as in (3.6).

1. The N = 2 chiral scalar Goldstino superfield

Let us consider a model of a chiral scalar superfield X
satisfying

D̄αX ¼ 0; X2 ¼ 0: ðB5Þ

This model defines a reducible Goldstino superfield model
analogous to the 4DN ¼ 1 chiral model studied in [75,84].
Hence, our analysis will be similar to those in [75–77].
A general chiral superfield can be written as

X ¼ ϕþ
ffiffiffi
2

p
θαψα þ θ2F; ðB6Þ

so that the components can be defined as

ϕ ¼ Xj; ψα ¼
1ffiffiffi
2

p DαXj; F ¼ −
1

4
D2Xj: ðB7Þ

The nilpotency condition X2 ¼ 0 gives

ϕ ¼ ψ2

2F
; ϕ̄ ¼ ψ̄2

2F̄
: ðB8Þ

The action for X follows from (5.21)

SX ¼
Z

d3xd2θd2θ̄ X̄ X −
�
f
Z

d3xd2θX þ c:c:

�
: ðB9Þ

The integral over θ and θ̄ can be performed using (B7), (B8)
to give the following component action

S¼
Z

d3x

�
−
1

2
ðhui þ hūiÞ þ ψ̄2

2F̄
□

ψ2

2F
þFF̄− fðFþ F̄Þ

�
;

ðB10Þ

where we have defined

hui ¼ iψα∂αβψ̄
β; hūi ¼ −i∂αβψ

βψ̄α: ðB11Þ

The superfield X defined by (B5) describes a reducible
multiplet containing the Goldstino ψα and an auxiliary
field F.
As was explained in the previous appendix there are

two approaches to define an irreducible Goldstino multiplet.
We can eliminate F and F̄ from the action (B10) using the
equations of motion

F ¼ f þ ψ̄2

2F̄2
□

ψ2

2F
; F̄ ¼ f þ ψ2

2F2
□

ψ̄2

2F̄
: ðB12Þ

Solving equations (B12) by repeated substitution yields

F ¼ f þ 1

4
f−3ψ̄2

□ψ2 −
3

16
f−7ψ2ψ̄2ð□ψ2Þð□ψ̄2Þ:

ðB13Þ

Then the Goldstino action becomes

S ¼ −
Z

d3x

�
f2 þ 1

2
ðhui þ hūiÞ þ 1

4f2
ð∂aψ̄2Þð∂aψ

2Þ

þ 1

16f6
ψ2ψ̄2ð□ψ2Þð□ψ̄2Þ

�
: ðB14Þ

Alternatively, we can require that the action be stationary
under rescalings X → eτX, D̄ατ ¼ 0 which gives the
constraint

−
1

4
XD̄2X̄ ¼ fX: ðB15Þ

Equations (B5), (B15) define a Goldstino model (5.28) as
was discussed in Sec. V. From (B15) we find the following
equation for the auxiliary field:

F ¼ f þ iF̄−1ψ̄α∂αβψ
β −

1

4
F̄−2ψ̄2

□ðF−1ψ2Þ: ðB16Þ

Solving it by repeated substitution we obtain
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F ¼ f þ f−1hūi − f−3
�
huihūi þ 1

4
ψ̄2

□ψ2

�

þ f−5ðhui2hūi þ hūi2huiÞ

þ 1

4
f−5ðhūiψ2

□ψ̄2 þ 2huiψ̄2
□ψ2 þ ψ̄2

□ðψ2hūiÞÞ

− 3f−7
�
hui2hūi2 þ 1

4
ψ2ψ̄2

□ðhui2 − huihūi þ hūi2Þ

þ 1

16
ψ2ψ̄2

□ψ2
□ψ̄2

�
; ðB17Þ

where hui is given in Eq. (B11). Comparing Eqs. (B13) and
(B17) we see that the solution for F is different in our two
approaches but the difference is related to the equation of
motion for the Goldstino as was explained at the end of the
previous appendix.

2. The N = 2 real scalar Goldstino superfield

The real scalar Goldstino superfield is defined to obey
the constraints

V2 ¼ 0; VDADBV ¼ 0; VDADBDCV ¼ 0:

ðB18Þ

We will start with a general N ¼ 2 real scalar superfield

V ¼ vþ
ffiffiffi
2

p
θαλα þ

ffiffiffi
2

p
θ̄αλ̄

α þ θ2F þ θ̄2F̄ þ θαθ̄βAαβ

þ
ffiffiffi
2

p
θ̄2θαϱα þ

ffiffiffi
2

p
θ2θ̄αϱ̄

α þ θ2θ̄2D: ðB19Þ

Here Aαβ describes both a vector ~Aa and a scalar φ:

Aαβ ¼ ðγaÞαβ ~Aa þ iϵαβφ: ðB20Þ

Imposing conditions (B18) we find that v; λα; λ̄α; Aαβ; F; F̄
can be solved in terms of ϱα, ϱ̄α;D as follows:

v ¼ ϱ2ϱ̄2

4D3
; λα ¼

ϱαϱ̄
2

2D2
; λ̄α ¼

ϱ̄αϱ
2

2D2
;

F ¼ ϱ̄2

2D
; F̄ ¼ ϱ2

2D
; Aαβ ¼

2ϱαϱ̄β
D

: ðB21Þ

Hence, we have explicitly shown that the model (B18)
describes a reducible Goldstino multiplet ðϱα;DÞ consisting
of the Goldstino ϱα and an auxiliary field D.
Alternatively, we can define the Goldstino as follows.

Let

Wα ¼ −
1

4
D̄2DαV: ðB22Þ

Let us define

ψα ¼
1ffiffiffi
2

p Wαj; D ¼ −
1

4
DαWαj: ðB23Þ

Since Wα satisfies

DαWα ¼ D̄αW̄α ðB24Þ

we see thatD is real. Using Eqs. (B19), (B21), (B22), (B23)
we obtain

ψα ¼ ϱα −
i
2
∂αβλ̄

β ¼ ϱα −
i
4
∂αβ

�
ϱ̄βϱ2

D2

�
;

D ¼ D −
1

4
□v ¼ D −

1

16
□

�
ϱ2ϱ̄2

D3

�
: ðB25Þ

From here we can derive the following useful relations

ϱ2ϱ̄α ¼ ψ2ψ̄α; ϱ̄2ϱα ¼ ψ̄2ψα; ϱ2ϱ̄2 ¼ ψ2ψ̄2;

ðB26Þ

which, in turn, allow us to invert (B25) to get

ϱα ¼ ψα þ
i
4
∂αβ

�
ψ̄βψ2

D2

�
; D ¼ Dþ 1

16
□

�
ψ2ψ̄2

D3

�
:

ðB27Þ

Substituting (B27) into (B21) we obtain the components of
V in terms of ðψα; DÞ

v ¼ ψ2ψ̄2

4D3
; λα ¼

ψαψ̄
2

2D2
; λ̄α ¼

ψ̄αψ
2

2D2
;

F ¼ ψ̄2

2D
þ ψ̄2

4D3
hui; F̄ ¼ ψ2

2D
þ ψ2

4D3
hūi;

Aαβ ¼
2ψαψ̄β

D
−

i
2D3

ψ2ψ̄ γð∂αγψ̄βÞ þ
i

2D3
ψ̄2ð∂βγψαÞψγ

−
1

8D5
ψ2ψ̄2∂αγ∂βδðψδψ̄γÞ − 1

4D5
ψ2ψ̄2∂aψα∂aψ̄β:

ðB28Þ

Either ðϱα;DÞ or ðψα; DÞ can be used to describe a
reducible Goldstino multiplet in this model. Relations
(B25) and (B27) allow one to quickly transform from
one description to another. Since the components of V are
simpler when written in terms of ðϱα;DÞ below we will
use this pair of fields.
The action for the Goldstino superfield can be taken as

the flat superspace limit of (5.35)

S ¼ 1

16

Z
d3xd2θd2θ̄D2VD̄2V − 2f

Z
d3xd2θd2θ̄V:

ðB29Þ
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Using the nilpotency conditions (B18) the first term of the
action (B29) can also be written as

−
1

4

Z
d3xd2θd2θ̄VDαWα ¼

1

4

Z
d3xd2θWαWα: ðB30Þ

However, we find that Eq. (B29) is more convenient to use.
In terms of ðϱα;DÞ the action (B29) reads

S ¼
Z

d3x

�
D2 − 2fD −

i
2
ϱαð∂αβϱ̄

βÞ

þ i
2
ð∂αβϱ

βÞϱ̄α − ϱαϱ̄β

4D
∂αβ∂γδ

�
ϱγϱ̄δ

D

�

þ 1

8
ð□DÞ ϱ

2ϱ̄2

D3
−
1

4
ϱα□

�
ϱαϱ̄

2

D2

�
−
1

4
ϱ̄α□

�
ϱ̄αϱ2

D2

�

þ 1

4D
ϱ2□

�
ϱ̄2

D

�
þ i
16

∂αβ

�
ϱ̄βϱ2

D2

�
□

�
ϱαϱ̄2

D2

�

þ 1

256D6
ϱ2ϱ̄2□2ðϱ2ϱ̄2Þ

�
: ðB31Þ

Again, there are two approaches to define an irreducible
Goldstino multiplet. We can eliminate D using its equation
of motion:

D ¼ f −
1

4

ϱαϱ̄β

D2
∂αβ∂γδ

�
ϱγϱ̄δ

D

�
−

1

16
□

�
ϱ2ϱ̄2

D3

�

þ 3

16
ð□DÞ ϱ

2ϱ̄2

D4
−
1

4

ϱαϱ̄2

D3
ð□ϱαÞ −

1

4

ϱ̄αϱ
2

D3
ð□ϱ̄αÞ

þ 1

8D2
ϱ2□

�
ϱ̄2

D

�
þ 1

8D2
ϱ̄2□

�
ϱ2

D

�

−
i
16

ϱαϱ̄2

D3
∂αβ□

�
ϱ̄βϱ2

D2

�
−

i
16

ϱ̄αϱ2

D3
∂αβ□

�
ϱβϱ̄2

D2

�

þ 3

256D7
ϱ2ϱ̄2□2ðϱ2ϱ̄2Þ; ðB32Þ

which can be solved by repeated substitutions. The second
approach is to require that the action (B29) be stationary
under local rescalings V → eρV which yields the constraint

1

32
VfD2; D̄2gV ¼ fV; ðB33Þ

as was discussed in Sec. V. Here for simplicity we will
follow the first approach and eliminateD using the equation
of motion (B32). From Eq. (B32) we see that, the solution
for D has to be of the following form:

D ¼ f þ ϱαϱ̄βAαβ þ ϱ2B þ ϱ̄2B̄ þ ϱ̄2ϱαCα

þ ϱ2ϱ̄αC̄α þ ϱ2ϱ̄2F ; ðB34Þ

where A, B, C, F depend on ϱ only through derivatives.
Note that in Eq. (B34) there are no terms linear in

Goldstino. Examining Eqs. (B31), (B34) one can show
that the last three terms in (B34) do not contribute to the
action and, hence, can be ignored. Keeping this in mind, we
obtain

D ¼ f −
1

4f3
ϱαϱ̄β∂αβ∂γδðϱγϱ̄δÞ −

1

16f3
□ðϱ2ϱ̄2Þ

þ 1

8f3
ϱ2□ðϱ̄2Þ þ 1

8f3
ϱ̄2□ðϱ2Þ þ � � � ; ðB35Þ

where the ellipsis stands for the terms which do not
contribute to the action. Substituting Eq. (B35) into
(B31) we find the following action for the Goldstino:

S ¼ −
Z

d3x

�
f2 þ 1

2
ðhwi þ hw̄iÞ þ 1

4f2
ϱα□ðϱαϱ̄2Þ

þ 1

4f2
ϱ̄α□ðϱ̄αϱ2Þ − 1

4f2
ϱ2□ðϱ̄2Þ

þ 1

4f2
ðhwi − hw̄iÞ2 þ i

16f4
ϱαϱ̄2∂αβ□ðϱ̄βϱ2Þ

þ 1

64f6
ϱ2ϱ̄2□ðhwi − hw̄iÞ2

þ 1

32f6
ϱαϱ̄β∂αβ∂γδðϱγϱ̄δÞ□ðϱ2ϱ̄2Þ

�
; ðB36Þ

where hwi ¼ iϱα∂αβϱ̄
β.

3. From V to equivalent two-form multiplet

There is another possibility to study the model from the
previous subsection. For this we will introduce

Ψ ¼ −
1

4
D̄2V; Ψ̄ ¼ −

1

4
D2V: ðB37Þ

The action in Eq. (B29) can be equivalently written as

S ¼
Z

d3xd2θd2θ̄ Ψ̄ Ψ − f
Z

d3xd2θΨ − f
Z

d3xd2θ̄ Ψ̄ :

ðB38Þ

Since Ψ is chiral we can define its components as

ϕ ¼ Ψj; χα ¼
1ffiffiffi
2

p DαΨj; F1 þ iF2 ¼ −
1

4
D2Ψj:

ðB39Þ

From Eq. (B18) it follows that Ψ2 ¼ 0, hence,

ϕ ¼ χ2

2ðF1 þ iF2Þ
: ðB40Þ
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Note that in addition to the Goldstino χα, Ψ contains two
auxiliary fields F1 and F2. However, as we will see below
F2 is a function of the Goldstino and F1. Therefore, it is the
pair ðχα; F1Þ which describes a reducible Goldstino multi-
plet which, of course, is equivalent to the ones studied in
the previous subsection up to a nonlinear transformation
which we will derive below. To express F2 in terms of χα
and F1 we note that

D2Ψ − D̄2Ψ̄ ¼ i∂αβ½Dα; D̄β�V: ðB41Þ

Using the fact that

Aαβ ¼
1

2
½Dα; D̄β�Vj ðB42Þ

which follows from (B19) we find that

F2 ¼ −
1

4
∂αβAαβ ¼ −

1

2
∂αβ

�
ϱαϱ̄β
D

�
: ðB43Þ

Hence, we see that F2 is expressed in terms of the
Goldstino and the remaining auxiliary field. The relation
between ðϱα;DÞ and ðχα; F1Þ can be obtained using the
defining equation (B37) as well as the definition of the
component (B19), (B39). We get

χα ¼ ϱα þ
i
4
∂αβ

�
ϱ̄βϱ2

D2

�
; F1 ¼ Dþ 1

16
□

�
ϱ2ϱ̄2

D3

�
:

ðB44Þ

Using the identities

ϱ2ϱ̄α ¼ χ2χ̄α; ϱ̄2ϱα ¼ χ̄2χα; ϱ2ϱ̄2 ¼ χ2χ̄2; ðB45Þ

we can invert (B44):

ϱα ¼ χα −
i
4
∂αβ

�
χ̄βχ2

F2
1

�
; D ¼ F1 −

1

16
□

�
χ2χ̄2

F3
1

�
:

ðB46Þ

Using the relations (B43) and (B46), we can express F2 in
terms of the fields χα and F1. The result is

F2¼−
1

8
∂αβ

�
1

F1

�
4χαχ̄βþ iχα∂βγ

�
χγχ̄2

F2
1

�
þ iχ̄α∂βγ

�
χ̄γχ2

F2
1

��

þ 1

F5
1

χ2χ̄2
�
∂αγ∂βδðχ̄γχδÞ−

1

2
∂aχα∂aχ̄β

��
: ðB47Þ

Since the action (B38) is the same as the action for a
chiral superfield X in (B9) it has the identical component
structure:

S ¼
Z

d3x

�
−
1

2
ðhvi þ hv̄iÞ þ χ̄2

2ðF1 − iF2Þ
□

χ2

2ðF1 þ iF2Þ

þ F2
1 þ F2

2 − 2fF1

�
; ðB48Þ

where hvi ¼ iχα∂αβχ̄
β and F2 is given by (B47). We will

not present the final action in terms of χα since it is
substantially more complicated than the one in Eq. (B36).
Out of the three possible Goldstino fields ϱ, ψ and χ it is

ϱ which has the simplest action.

4. Nilpotent two-form Goldstino superfield

Here we will discuss the component structure of the
model introduced in Sec. V B 4. As before, we will take
the flat space limit. The two-form Goldstino multiplet is
described by a chiral scalar superfield Y satisfying the
following conditions:

Y ¼ −
1

4
D̄2U; Y2 ¼ 0; ðB49Þ

where U is an unconstrained real superfield. Since Y is
chiral we can define its components in the usual way

ϕ ¼ Yj; ξα ¼
1ffiffiffi
2

p DαYj; F ¼ −
1

4
D2Yj: ðB50Þ

From (B49) it follows that

D2Y − D̄2Ȳ ¼ i∂αβ½Dα; D̄β�U: ðB51Þ

This means that the imaginary part of the auxiliary field F
is the divergence of a vector. Let us denote F ¼ H þ iG.
Then we have G ¼ ∂aCa, where Ca is an auxiliary vector
field. The action for the superfield Y is given by the flat
space limit of Eq. (5.47):

SY ¼
Z

d3xd2θd2θ̄ Ȳ Y −
�
f
Z

d3xd2θY þ c:c:

�
: ðB52Þ

Just like in the theory of three-form multiplet in four
dimensions this action has to be supplemented with the
boundary term [91–93]

BY ¼ 1

4

Z
d3xd2θd2θ̄DαðYDαU −UDαYÞ þ c:c

¼ −2
Z

d3x∂aðCaGÞ þ � � � ; ðB53Þ

where the ellipsis stands for the boundary terms which do
not play a role and can be set to zero.
Since the action (B52) is the same as the action for a

chiral superfield it is given by
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SY ¼
Z

d3x

�
ξ2

2F
□

ξ̄2

2F̄
þ i
2
ð∂αβξ

αÞξ̄β − i
2
ξαð∂αβξ̄

βÞ

þH2 þG2 − 2fH

�
; ðB54Þ

where we have used the fact that Y2 ¼ 0 and, hence,
ϕ ¼ ξ2=ð2FÞ. Now we will eliminate the auxiliary fields
using their equations of motion. Varying the action (B54)
with respect to H and Ca gives the following equations:

H − f −
ξ̄2

4F̄2
□

ξ2

2F
−

ξ2

4F2
□

ξ̄2

2F̄
¼ 0;

∂a

�
Gþ i

ξ̄2

4F̄2
□

ξ2

2F
− i

ξ2

4F2
□

ξ̄2

2F̄

�
¼ 0: ðB55Þ

The second equation implies that

Gþ i

�
ξ̄2

4F̄2
□

ξ2

2F
−

ξ2

4F2
□

ξ̄2

2F̄

�
¼ g; ðB56Þ

where g is an arbitrary constant. Hence, we find that

F ¼ hþ ξ̄2

2F̄2
□

ξ2

2F
; h ¼ f þ ig: ðB57Þ

Solving this equation by repeated substitution yields

F ¼ h

�
1þ 1

4
jhj−4ξ̄2□ξ2 −

3

16
jhj−8ξ2ξ̄2□ξ2□ξ̄2

�
;

jhj2 ¼ f2 þ g2: ðB58Þ

The boundary term on the solution G ¼ gþ � � � gives
−2

R
d3xðg2 þ total derivativeÞ. Substituting Eq. (B58)

into the bulk action (B54) and combining the result with

the contribution from the boundary term yields the follow-
ing Goldstino action:

SY þ BY ¼ −
Z

d3x

�
jhj2 − i

2
ð∂αβξ

αÞξ̄β þ i
2
ξαð∂αβξ̄

βÞ

þ 1

4

f2 þ 3g2

jhj4 ∂aξ2∂aξ̄
2

þ 1

16

f2 þ 7g2

jhj8 ξ2ξ̄2□ξ2□ξ̄2
�
: ðB59Þ

APPENDIX C: GOLDSTINO MULTIPLET FROM
A HIGHER-DERIVATIVE THEORY

In this appendix we will analyze the higher-derivative
model (5.41) in Minkowski superspace. We first consider
the case when the dynamical variable X is an unconstrained
chiral superfield, D̄αX ¼ 0, which obeys no nilpotency
condition. Then the model with action

S ¼
Z

d3xd2θd2θ̄

�
1

16f2
XD2XX̄D̄2X̄ − 2X̄X

�
ðC1Þ

has two phases, one with unbroken supersymmetry, and the
other with spontaneously broken one. In the unbroken
phase, the equations of motion have free massless solutions

D2X ¼ 0: ðC2Þ

However, the kinetic term in (C1) has a wrong sign and thus
the theory is ill defined at the quantum level. We therefore
turn to the phase with spontaneously broken supersymmetry
in which F develops a nonzero expectation value, hFi ¼ f.
Defining the components of X as in Eq. (B7) we obtain

the component action:

S ¼ 2

Z
d3x½∂aϕ∂aϕ̄þ iψα∂αβψ̄

β − FF̄�

þ 1

f2

Z
d3x

�
FF̄ðϕ̄□ϕþ ϕ□ϕ̄Þ þ ϕϕ̄ð□ϕÞð□ϕ̄Þ þ ðFF̄Þ2 − ∂aðϕF̄Þ∂aðϕ̄FÞ

−
3i
2
FF̄ψα∂αβψ̄

β −
3i
2
FF̄ψ̄α∂αβψ

β −
i
2
F̄∂αβFψαψ̄β þ i

2
F∂αβF̄ψαψ̄β

− ϕFψ̄α□ψ̄α − ϕ̄ F̄ ψα□ψα þ F∂αγϕψ̄γ∂αβψ̄
β − F̄∂αγϕ̄ψγ∂αβψ

β

þ i
2
ðϕ̄∂αγϕ − ϕ∂αγϕ̄Þ∂αβψ̄

β∂γδψ
δ þ i

2
ϕϕ̄ð∂αβψ̄

β
□ψα þ ∂αβψ

β
□ψ̄αÞ

− iðϕ□ϕ̄Þψ̄α∂αβψ
β − iðϕ̄□ϕÞψα∂αβψ̄

β − ðψα∂αβψ̄
βÞðψ̄ γ∂γδψ

δÞ
�
: ðC3Þ

The equation of motion for F̄ is

− 2Ff2 þ 2F2F̄ þ Fϕ̄□ϕþ Fϕ□ϕ̄ − 2iFψα∂αβψ̄
β − iFψ̄α∂αβψ

β þ ϕ□ðϕ̄FÞ − i∂αβFψαψ̄β − ϕ̄ψα
□ψα

− ∂αγϕ̄ψγ∂αβψ
β ¼ 0: ðC4Þ
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It shows that F and F̄ are no longer auxiliary fields since
they cannot be expressed in terms of the off-shell physical
fields ϕ and ψα and their conjugates. One could try to look
for F as a series in powers of the fields ϕ, ψα and their
derivatives,

F ¼ f þ a1ϕ□ϕ̄þ a2ϕ̄□ϕþ a3ψα∂αβψ̄
β þ a4ψ̄α∂αβψ

β

þ � � � ; ðC5Þ

where a1; a2;… are some constants which have to be found
by substituting (C5) into (C4) and working order by order
in perturbation theory. Such a solution would correspond
to a supersymmetry breaking phase (note that F ¼ f for
ϕ ¼ 0;ψα ¼ 0). However, it is not difficult to show that no
solution for F exists: substitution of (C5) into (C4) yields
inconsistent equations

2a2 þ 2ā1 þ f−1 ¼ 0; 2a1 þ 2ā2 þ 2f−1 ¼ 0; ðC6Þ

and similarly for a3, a4. This means that it is impossible to
solve the equation of motion for the field F and substitute
the solution into Eq. (C3) to find the action for the off-shell
physical fields. The procedure of eliminating the auxiliary
field F can be fulfilled only when the physical fields are
also on shell. In other words, the equation (C4) and its
conjugate have to be solved in conjunction with the
equations of motion for the physical fields, and then the

above inconsistencies do not occur. In doing so, we will
obtain correctly normalized kinetic terms for the physical
fields. Indeed, since in the supersymmetry breaking phase
F ¼ f þ � � �, for the relevant terms in (C3) we get

2

Z
d3x½∂aϕ∂aϕ̄þ iψα∂αβψ̄

β�

þ 1

f2

Z
d3x

�
FF̄

�
ϕ̄□ϕþ ϕ□ϕ̄

−
3i
2
ðψα∂αβψ̄

β þ ψ̄α∂αβψ
βÞ
�
þ ϕF̄□ðϕ̄FÞ

�

¼ −
Z

d3x½∂aϕ∂aϕ̄þ iψα∂αβψ̄
β� þ � � � ðC7Þ

where the ellipsis stands for cubic and higher order terms in
the fields ϕ, ψα and their conjugates.
We now restrict our study to the case of model (C1) with

X chosen to be nilpotent,

X2 ¼ 0: ðC8Þ

Then ϕ can be expressed as in (B8) and we have a reducible
Goldstino model. The component action of this model is
given by (C3) with ϕ replaced according to Eq. (B8).
The equation for the auxiliary field now reads

− 2f2F þ f2

2

ψ̄2

F̄2
□
ψ2

F
þ 1

4
ψ2

□
ψ̄2

F̄
−
1

4

ψ̄2

F̄2
□ðF̄ψ2Þ

−
1

8

ψ2ψ̄2

F2F̄3
□ψ2

□ψ̄2 þ 2F2F̄ þ 1

4

ψ2

F
□
Fψ̄2

F̄
−
1

4

Fψ̄2

F̄2
□
F̄ψ2

F

−
3i
2
Fψα∂αβψ̄

β −
3i
2
Fψ̄α∂αβψ

β −
i
2
ψαψ̄βð∂αβFÞ −

i
2
∂αβðFψαψ̄βÞ

−
1

2
∂αγ

�
ψ̄2

F̄

�
ψγ∂αβψ

β −
1

2

ψ̄2

F̄2
∂αγðF̄ψγ∂αβψ

βÞ − i
8

ψ̄2

F̄2
∂αγ

�
ψ2

F

�
∂αβψ̄

β∂γδψ
δ

−
i
8

ψ̄2

F̄2
∂αγ

�
ψ2

F
∂αβψ̄

β∂γδψ
δ

�
−

i
8FF̄2

ψ2ψ̄2½∂αβψ̄
β
□ψα þ ∂αβψ

β
□ψ̄α�

þ i
4
ψ̄2F̄−2

□

�
ψ2

F
ψ̄α∂αβψ

β

�
þ i
4
ψ̄2F̄−2ψα∂αβψ̄

β
□
ψ2

F
¼ 0: ðC9Þ

One can show that just like in the case of Eq. (C4) it is not
possible to solve this equation for F in terms of the physical
fields ψ and ψ̄ . The procedure of eliminating the field F can
be performed only if the Goldstino is on shell. Therefore,
we will follow the other approach: instead of considering
the equations of motion for F, we will require that the
action (C1) be stationary under rescaling X → eτX, which
yields

D̄2ðXX̄D2XD̄2X̄ − 16f2XX̄Þ ¼ 0: ðC10Þ

Since D̄2X̄ is nowhere vanishing, this condition is equiv-
alent to

XD̄2ðX̄D2XÞ ¼ 16f2X: ðC11Þ
The problem of solving Eqs. (C10), (C11) can be reformu-
lated as follows. Let us define the superfield Y by the rule

−
1

4
XD̄2X̄ ¼ fY: ðC12Þ
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It then follows from Eq. (C10) that Y has the properties

D̄αY ¼ 0;

Y2 ¼ 0;

−
1

4
YD̄2Ȳ ¼ fY: ðC13Þ

That is Y defines an irreducible Goldstino multiplet whose
auxiliary field is uniquely solved in terms of the Goldstini
with the solution given in Eq. (B17). Therefore, the
problem can be stated as to find X using Eq. (C12) given
Y. Comparing Eqs. (C12) and (C13) we see that there is an
obvious solution X ¼ Y.15 However, this solution is not
unique. To show it we will examine Eq. (C11) in compo-
nents. Let us consider the equation for F followed from
(C11). We obtain

− 2f2F þ 2F2F̄ − 2iFψα∂αβψ̄
β − 2iFψ̄α∂αβψ

β

− 2ið∂αβFÞψαψ̄β þ 1

2

Fψ̄2

F̄
□
ψ2

F
þ 1

2

ψ2

F
□
Fψ̄2

F̄

þ ψα∂αβ

�
ψ̄2

F̄
∂βγψγ

�
¼ 0: ðC14Þ

Note that we cannot solve this equation by repeated
substitution. However, we can solve it by expanding F
in powers in the Goldstino and its derivatives

F ¼ f þ a1ðiψα∂αβψ̄
βÞ þ a2ðiψ̄α∂αβψ

βÞ þ � � � : ðC15Þ

Since ψ is nilpotent this expansion is finite. Substituting it
into (C14) we can fix the coefficients. From the analysis
presented above we know that there is a solution for F
given by (B17). Therefore, we will look for a solution in
the form of (B17):

F ¼ f þ a1hui þ a2hūi þ a3huihūi þ a4ψ2
□ψ̄2

þ a5ψ̄2
□ψ2 þ a6ðhui2hūi þ hūi2huiÞ þ a7hūiψ2

□ψ̄2

þ a8huiψ̄2
□ψ2 þ a9ψ̄2

□ðψ2hūiÞ þ a10hui2hūi2
þ a11ψ2ψ̄2

□ðhui2 − huihūi þ hūi2Þ
þ a12ψ2ψ̄2

□ψ2
□ψ̄2: ðC16Þ

Substituting this ansatz into (C14) we find that the
coefficients a1, a2, a3, a6, a8, a9, a10, a11 are fixed as
in (B17), whereas the remaining coefficients satisfy

a4 ¼ −
1

4
f−3 − a5;

a7 ¼ −
1

4
f−5 − 2f−2a5;

a12 ¼
1

2
f−4a5 − a25 ðC17Þ

and cannot be fixed uniquely. The solution (B17) corre-
sponds to a4 ¼ 0, a5 ¼ − 1

4
f−3, a7 ¼ 1

4
f−5, a12 ¼ − 3

16
f−7.

The ambiguity that we can have more than one solution to
(C14) is expected to be related to the fact that we can add to
F and to the action terms proportional to the equations of
motion as in (A19) and (A20), but we will not discuss this
issue in detail in this paper.
Let us now clarify why Eq. (C11), or equivalently

Eq. (C14), has a solution for F despite the fact that
Eq. (C9) does not. For this we will consider the equation
of motion for the superfield X. Since X is nilpotent to find it
we have to add the termZ

d3xd2θλX2 þ c:c: ðC18Þ

to the action (C1), where λ is a Lagrange multiplier. Thus,
we obtain the following equation of motion for X:

D̄2½X̄D2XD̄2X̄� þ D̄2D2½X̄XD̄2X̄� − 32f2D̄2X̄

− 128f2λX ¼ 0: ðC19Þ
Multiplying it by X we get the constraint (C10). However,
the equation of motion for X contains not just the equation
of motion for F (C9) but also the equation for the
Goldstino. Hence, in obtaining Eq. (C14) equations of
motion for both F and ψ are taken into account and that is
why it has a solution.
With the nilpotency condition (C8) imposed, the action

(C1) can be rewritten as

S ¼
Z

d3xd2θd2θ̄

�
1

16f2
DαXDαXD̄βX̄D̄βX̄ − 2X̄X

�
:

ðC20Þ
Similar supersymmetric higher derivative models have been
considered in the literature in the case when X is an
unconstrained chiral superfield. In particular, an action of
the type (C20) was studied in [94]. In their case they could
solve for the auxiliary field in terms of the off-shell physical
scalar field provided the fermions were ignored. However, if
we take into account the fermions as well we can show that it
is also impossible to solve for the auxiliary field unless the
fermions are on-shell. Unlike in our case, Eq. (C7), in the
model studied in [94] the kinetic term for scalars completely
canceled in the supersymmetry breaking phase. Ref. [95]
studied a model with canonically normalized kinetic term.
It is obtained from (C20) by replacement −2X̄X → X̄X.
It was shown in [95] that the resulting model cannot break
supersymmetry.

15Note that if X is a solution to (C12) then so is −X. Hence, we
have two supersymmetry breaking phases. For concreteness we
select the phase in which hFi ¼ f.
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