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We develop off-shell formulations for N'= 1 and A/ = 2 anti-de Sitter supergravity theories in three
spacetime dimensions that contain gauge two-forms in the auxiliary field sector. These formulations are
shown to allow consistent couplings of supergravity to the Green-Schwarz superstring with N' =1 or
N =2 spacetime supersymmetry. In addition to being x-symmetric, the Green-Schwarz superstring
actions constructed are also invariant under super-Weyl transformations of the target space. We also present
a detailed study of models for spontaneously broken local supersymmetry in three dimensions obtained by
coupling the known off-shell A/ = 1 and N/ = 2 supergravity theories to nilpotent Goldstino superfields.
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I. INTRODUCTION

The Green-Schwarz superstring action with N =1 or
N = 2 supersymmetry [1] exists for spacetime dimensions
D =3, 4, 6 and 10. However, its light-cone quantization
breaks Lorentz invariance unless either D = 10 (see, e.g.,
[2]), which corresponds to critical superstring theory, or
D =3 [3,4]. Due to the exceptional status of the D = 3
case, it is of interest to study in more detail three-
dimensional (3D) superstring actions in supergravity back-
grounds. In order for such a coupling to supergravity to be
consistent, the superstring action must possess a local
fermionic invariance (known as the x-symmetry) which
was first discovered in the cases of massive [5,6] and
massless [7] superpalrticles.1 The k-symmetry, in its turn,
requires the superstring action to include a Wess-Zumino
term associated with a closed super three-form in curved
superspace such that (i) it is the field strength of a gauge
super two-form, and (ii) it reduces to a nonvanishing
invariant super three-form in the flat superspace limit.
The latter requirement means that only certain supergravity
formulations are suitable to describe string propagation in
curved superspace. The constraints on the geometry of
curved D =3, 4, 6, 10 superspace, which are required
for the coupling of supergravity to the Green-Schwarz
superstring, were studied about 30 years ago [10-13].
Nevertheless, there still remain some open questions and
unexplored cases, as can be seen from the recent work by
Tseytlin and Wulff [14] that determined the precise con-
straints imposed on the 10D target superspace geometry
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by the requirement of classical xk-symmetry of the Green-
Schwarz superstring. In regard to the 3D case, it should be
kept in mind that at the time when Refs. [12,13] were
written, those off-shell formulations for NV = 1 and N = 2
supergravity theories, which are suitable to describe con-
sistent superstring propagation, had not been described in
the literature. One such theory, the so-called N =2
two-form supergravity, was formulated six years ago
[15]. A new N = 2 supergravity theory will be given in
the present paper.

The present work aims at developing (i) N =1 and
N =2 anti-de Sitter (AdS) supergravity theories that
contain gauge two-forms in the auxiliary field sector;
(ii) consistent couplings of these supergravity theories to
the Green-Schwarz superstring with A/ =1 or A/ =2
supersymmetry; and (iii) models for spontaneously broken
3D supergravity obtained by coupling the off-shell V' = 1
or N = 2 supergravity theories to Goldstino superfields.
The first two goals are related to the above discussion. As to
point (iii), it requires additional comments.

In the last 3 years, there has been considerable interest in
models for spontaneously broken N = 1 local supersym-
metry in four dimensions [16-27], including the models for
off-shell supergravity coupled to nilpotent Goldstino super-
fields. One of the reasons for this interest is that a positive
contribution to the cosmological constant is generated once
the local supersymmetry becomes spontaneously broken.
For instance, if the supergravity multiplet is coupled to an
irreducible Goldstino superfield [20,25,28-30] (with the
Volkov-Akulov Goldstino [31,32] being the only indepen-
dent component field of the superfield), a universal positive
contribution to the cosmological constant is generated,2

*The gravitino becomes massive in accordance with the super-
Higgs effect [33-35].
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which is proportional to f2, with the parameter f setting the
scale of supersymmetry breaking. The same positive
contribution is generated by the reducible Goldstino super-
fields used in the models studied in [18,19,26].3 There is
one special reducible Goldstino superfield, the nilpotent
three-form multiplet introduced in [24,27], which yields
a dynamical positive contribution to the cosmological
constant.

Since our Universe is characterized by a positive
cosmological constant, and a theoretical explanation for
this positivity is required, 4D supergravity theories with
nilpotent Goldstino superfields deserve further studies.
In this respect, it is also of some interest to construct
models for spontaneously broken local 3D N =1 and
N =2 supersymmetry that are obtained by coupling off-
shell 3D supergravity to nilpotent superfields. This is one of
the objectives of the present work.

This paper is organized as follows. Sections II and III
provide thorough discussions of the N' = 1 and N = 2 off-
shell supergravity theories, respectively. Section IV
describes consistent couplings of the two-form supergrav-
ity theories to the Green-Schwarz superstring with ' = 1
or N =2 spacetime supersymmetry. The nilpotent
Goldstino superfields and their couplings to various off-
shell supergravity theories are presented in Sec. V. Here we
introduce only those reducible Goldstino superfields that
are defined in the presence of conformal supergravity
without making use of any conformal compensator.
Section VI contains concluding comments and a brief
discussion of the results obtained. The main body of the
paper is accompanied by three technical appendices which
are devoted to the analysis of the component structure of
several Goldstino superfield models in the flat superspace
limit.

II. TWO-FORM MULTIPLET IN A =1
SUPERGRAVITY

In this section we describe two off-shell formulations for
N =1 AdS supergravity, with 4 + 4 off-shell degrees of
freedom, which differ from each other by their auxiliary
fields. One of them is known since the late 1970s (see [36]
for a review), and its auxiliary field is a scalar. The other
formulation is obtained by replacing the auxiliary scalar
field with the field strength of a gauge two-form, which
requires the use of a different compensating supermultiplet.
As was pointed out in [12,13], the latter formulation is
required for consistent coupling to the Green-Schwarz
superstring. However, the technical details of this formu-
lation have not been described in the literature, to the best
of our knowledge.

*The notion of irreducible and reducible Goldstino superfields
was introduced in [25].
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We follow the notation and make use of the results of
[37]. Every supergravity theory will be realized as a super-
Weyl invariant coupling of conformal supergravity to a
compensating supermultiplet.

A. Conformal supergravity

Consider a curved N = 1 superspace, M?>2, parame-
trized by local real coordinates z¥ = (x™, 0*), with m = 0,
I, 2 and u =1, 2, of which x™ are bosonic and "
fermionic. We introduce a preferred basis of one-forms
EA = (E“,E%) and its dual basis E4 = (E,, E,),

E* = dZMEyA, E, = E M0y, (2.1)
which will be referred to as the supervielbein and its
inverse, respectively.

The superspace structure group is SL(2, R), the double
cover of the connected Lorentz group SOgy(2,1). The
covariant derivatives have the form

DA = (Da’ Da) = EA + QA9 (22)

where

1 1
Q= EQAbCMbc =-Q"M, = EQAﬂyMﬂy

(2.3)
is the Lorentz connection. The Lorentz generators with two
vector indices (M, = —M,,), one vector index (M), and
two spinor indices (M3 = My,) are related to each other
by the rules M, = 3 &,,:M" and M5 = (y*),sM,,. These
generators act on a vector V. and a spinor ¥, as follows:
M,V = 277c[avh]7 Ma/)’qjy = 8}/((1\11/})' (24)
The covariant derivatives are characterized by graded
commutation relations

1
[Da, Dy} = TapDe + ERABCndd’ (2.5)

where T,5¢ and R,z°? are the torsion and curvature
tensors, respectively. To describe supergravity, the covar-
iant derivatives have to obey certain torsion constraints [36]
such that the algebra (2.5) takes the form

{Da, Dﬂ} = 21’Da/}v - 4iSMa/}v, (263)
[Dav D/}] = (ya)ﬂy[SDy - CyﬁpM(sp]
2 X .
~ 5 [DpS8; = 260 (), D'SIML, (2.6)

126015-2
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1 2
[Dm Db] = Eabc {1 |:§ (yc)aﬂcaﬁ}/ - g (yc)ﬂyDﬁS] D}’

i, .
+ {5 () (r)°D(aCpys)
2i 2 2 cd
Here the scalar S is real, while the symmetric spinor C,5, =

C(apy) 1s imaginary. The dimension-2 Bianchi identities
imply that

(2.6¢)

4i

Dacﬁyé = D(acﬂyé) — iea(ﬁDﬂ;)S = D}'Ca/;}, = —;DaﬂS.

(2.7)

Throughout this section we make use of the definition
D? := D*D,.

The definition of the torsion and curvature tensors,
Eq. (2.5), can be recast in the language of superforms,
which will be used in Sec. IV. Starting from the Lorentz
connection €, given by (2.3), we introduce the connection
one-form

Q= E°Q, QV, = Q8Vy = ECQ,BVy,
Vi= (Vi Vo). (2.8)
Then the torsion and curvature two-forms are
1
TC = EEB AN EATABC - _dEC + EB A\ QBC, (298.)
1
RCD = EEB A EARABCD = dQCD - QCE A QED. (29b)

The gauge group of conformal supergravity includes
local transformations of the form
1
5KDA — [IC,DA], ]C — chC +§KL.ndd, (210)
with the gauge parameters £°(z) and K”¢(z) obeying
natural reality conditions but otherwise arbitrary. Here
the supervector field & = £CE describes a general coor-
dinate transformation, and K a local Lorentz transforma-
tion. The transformation (2.10) acts on a tensor superfield T
as follows:
6T =KT. (2.11)

The algebra of covariant derivatives is invariant under
super-Weyl transformations

1
8,y = 50Dy + D'oM . (2.12a)

5,D, = oD, + % (7)D,0D;s + £4pe D'oM®,  (2.12b)
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with the parameter ¢ being a real unconstrained superfield,
provided the torsion superfields transform as

i 3 1
50.8 - US - ZDZG, 50Caﬂy - Eacaﬂy - §D<aﬁDy>O'.
(2.13)
The super-Weyl transformation of the vielbein is
O0.E* = —cE“, (2.14a)
1 1
50_E(l = —EO'E(I - EEb(}’b)aﬁD/;U. (214b)

The gauge group of conformal supergravity is generated
by the local transformations (2.10) and (2.12). Due to the
super-Weyl invariance, the above geometry describes the
Weyl multiplet of A" =1 conformal supergravity [38],
which consists of the vielbein e,,“(x) and the gravitino
Wu®(x) (no auxiliary fields).*

A tensor superfield 7 is said to be (super-Weyl) primary
of weight w if its super-Weyl transformation law is

5,7 = woT. (2.15)
Such superfields will be of primary importance in what
follows.

The action for conformal supergravity was constructed
for the first time by van Nieuwenhuizen [38] using the
N =1 superconformal tensor calculus. More recently, it
was reformulated in superspace [39], as well as within the
superform approach [39,40]. The interested reader is
referred to these publications for the technical details.

B. Supersymmetric action
To construct a locally supersymmetric and super-Weyl
invariant action [37], one needs a real scalar Lagrangian £
that is super-Weyl primary of weight +2,

8,L =20L. (2.16)

The action is

S—i / $x0EL,  E—Ber(Ey).  (2.17)

The action is super-Weyl invariant, since the super-Weyl
transformation of E proves to be §,E = —20E.

Instead of defining the action using the superspace
integration, an alternative approach is to construct a

“The super-Weyl transformation of S implies that its lowest
component S|,_, is a pure gauge.
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dimensionless super three-form =;[£] which is given
in terms of £ and possesses the following properties:
(i) B3[L] is closed, dZ3[L] = 0; and (ii) E3[L] is super-
Weyl invariant, 5,25[£] = 0. Modulo an overall numerical
factor, these conditions prove to completely determine
E3[L] to be

- i “
B[L) = SEA EP N Ey,)4,L
1
+ ZEY N EP A E%,p0(r°),°DsL

1
——E° A EP A E%,, (iD* + 8S)L.

2 (2.18)

This super three-form was originally constructed in
[43,45]; however its super-Weyl invariance was first
described in [39]. The action (2.17) is recast via Z;[L]
as follows:

s:/ 5,10, (2.19)
M3

where the integration is carried out over a spacetime M3
being homotopic to the bosonic body of the curved

superspace M3 obtained by switching off the Grassmann
variables.

C. AdS supergravity

Both AdS and Poincaré supergravity theories can be
realized as super-Weyl invariant systems describing the
coupling of conformal supergravity to a compensating
multiplet. The standard choice for compensator is a
nowhere vanishing scalar superfield ¢, such that ¢! exists,
with the super-Weyl transformation

1
S, = = oQ. (2.20)

2
The action for A/ = 1 AdS supergravity is given by

4
Sgg = ——1i / d3xd?0E{iD%@D,p — 28¢* + 1p*},
K
(2.21)

where k is the gravitational coupling constant, and the
parameter A determines the cosmological constant. Setting
A=0 in (2.21) gives the action for A/ =1 Poincaré
supergravity.

The equation of motion for the compensator is

S =2, S:=¢3 G D> + S) p. (2.22a)

>See [41-44] for the construction of locally supersymmetric
invariants in D spacetime dimensions by using closed super
D-forms.
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For completeness we also give the equation of motion for
the gravitational superfield (which is the A/ =1 super-
symmetric analog of the gravitational field)

1
C = O’ Caﬂy = —5('0_1 (D(aﬂDy) - 2Caﬁ},)g0_2.

(2.22b)

apy

See [46] for the technical details. The specific feature of
S and C,, is that they are super-Weyl invariant. Note that it
is possible to choose a super-Weyl gauge in which ¢ = 1
and, therefore, S and Caﬁy coincide with & and Ca/,y,
respectively. In this gauge, Eqs. (2.22) describe, locally, the
N =1 AdS superspace [47].

The action (2.21) can readily be reduced to components.
In the super-Weyl gauge ¢ = 1 we obtain

1 1
Ssg = —/d%e{ER —48% + 85/1} + fermions,
K

e = det(e,,*), (2.23)
where e,,%(x) = E, %y, and S(x):=S|y_,. Integrating
out the auxiliary field S turns the action into

1 1
Ssg = —/d3xe{§73 - AAdS} -+ fermions,
K

AAdS - —4/12 (224)

D. Two-form supergravity

In this section we introduce a variant formulation for
N =1 AdS supergravity which is obtained by replacing
the conformal compensator ¢* with a two-form multiplet.6

Let us first consider a massless two-form multiplet
coupled to conformal supergravity. It is described by a
real scalar superfield defined by

L =DA,, (2.25)

where the prepotential A, is a primary real spinor superfield
of dimension 3/2,

3

3sha = 50N (2.26)

This super-Weyl transformation implies that L is primary of
dimension 2,

5,L = 20L. (2.27)

®In the case of Minkowski superspace, the two-form multiplet
was described in [36].
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The superfield L defined by (2.25) is a gauge-invariant field
strength with respect to gauge transformations of the form

SNy = %Dﬁpagﬂ 4280, DA, =0. (2.28)
where the gauge parameter {, is an arbitrary real spinor
superfield. The gauge invariance of L follows from the

identity
.
DID, Dy = 4iSD, = 5 (D'S)Myy = 2Cp MY, (2:29)

The gauge parameter in (2.28) is defined modulo

arbitrary shifts of the form

L= Co=Coat D, E=&  (2.30)
in the sense that 62A, = 6;A,. This property means that
the two-form multiplet is a gauge theory with linearly
dependent generators, in accordance with the terminology
of the Batalin-Vilkovisky quantization [48].

We now assume L to be nowhere vanishing, such that
L~ exists. Then L can be used as a conformal compensator
corresponding to a variant formulation of AdS supergravity.
Upon replacement ¢ — L'/#, the supergravity action (2.21)
turns into

4 .
Ssg = ——i/d3xd29E\/Z{%D“ InLD,InL — 28}.
K
(2.31)

The supersymmetric cosmological term in (2.21) does not
contribute, since ¢* turns into L = D*A,,, which is a total
derivative. Hence, the N' = 1 two-form supergravity does
not allow for a supersymmetric cosmological term. This is
analogous to the new minimal formulation for A = 1
supergravity in four dimensions [49-51]. However, the
difference from the new minimal supergravity is that a
cosmological term is now generated dynamically.

For the theory with action (2.31), the equation of motion
for the compensator is

D,S=0,  S:=L7 (% D2 + 5) Li, (2.32)

and therefore

S = 1 = const. (2.33)
If a solution with A # 0 is chosen, it describes an AdS
background. Unlike the supergravity formulation (2.21),
the action (2.31) does not contain a free parameter.
The negative cosmological constant is generated dynami-
cally. It should be pointed out that the equation of motion
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for the gravitational superfield, which corresponds to
(2.31), is obtained from (2.22b) by replacing ¢ — L.

E. Superform formulation for the two-form
multiplet

In this subsection we present a superform formulation for
the three-form multiplet coupled to conformal supergravity,
as an extension of the flat-superspace construction given in
[36]. Let us consider a gauge super two-form

1

1
Bz = EdZN A dZMBMN = EEB AN EABAB, (234)

which is defined modulo gauge transformations of the form

B2 e d B2 —|— dAl, A] = dZNAN = EBAB, (235)
where the gauge parameter A, is an arbitrary super one-
form. Associated with the potential B, is the gauge-

invariant field strength

1
H3 = dB2 = EdZP A dZN A dZMaMBNp

1
- EEC VAN EB AN EA{DABBC - TABDBDC}' (236)

By construction, H5 is an exact super three-form, and hence
it is closed, dH; = 0.

We are interested in a closed super three-form H; such
that (i) its components are descendants of a scalar primary
superfield L, and (ii) its lowest nonzero component is
constrained to be H,s, =i(y,)s L. It turns out that the
closure condition, dH; =0, completely determine the
entire super three-form to be

i
H;[L) = EEV ANEP N EYy,)L
1
+7E A EP A E%40(r9),"DsL

1
— —E¢ N E" A E%,, (iD*> +8S)L,

5 (2.37)

which is obtained from (2.18) by replacing £ — L.
In general, if L is an arbitrary scalar superfield, the
superform H; given by (2.37) is closed but not exact.
However, if we choose L := D*A, in (2.37) then H; turns
out to be exact. In fact, the following super two-form

1
B, [Aa} = —iE/ A E° (7a)ﬁ7A}/ - ZEb A Ea‘?abc(yc)pTDpArv

(2.38)

is such that
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dB,[A,] = Hy[DA). (2.39)

This proves that, if we consider the two- and three-forms

1
Bab = _Egabc(J/C)pT,DpAr? (2403)
1
Habc = _Zgabc(ipz + SS)D(SA&, (240]3)
the latter is the field strength of the former,
Habc = 3D[aBbC] + ZEabC(DaS)Aa. (241)

Using the super-Weyl transformation laws (2.14) and
(2.26), one can show that the superform (2.38) is super-
Weyl invariant,

5:B>2[A,] = 0 = 6,H3[D*A,] = 0. (2.42)
This result will be important for our analysis in Sec. IV A.

Choosing B, in the form (2.38) corresponds to a partial
fixing of the gauge freedom (2.35). The residual gauge
freedom is given by

6(;82{/\(1} — B2[5CA(1] = d5§B2[Aa] — 0, (243)

where 5,/ is defined by (2.28).

III. TWO-FORM MULTIPLETS IN N =2
SUPERGRAVITY

It is well known that the 3D AdS group is reducible,
SO(2,2) = (SL(2,R) x SL(2,R))/Z,,

and so are its supersymmetric extensions, OSp(p|2; R) x
OSp(¢|2; R). This implies that N -extended AdS super-
gravity exists in several versions [52]. These are known as
the (p,q) AdS supergravity theories where the non-
negative integers p > ¢ are such that A" = p + ¢.” In this
section we choose N =2 and describe four off-shell
formulations for (1,1) AdS supergravity and one for
(2,0) AdS supergravity. Only one of these five off-shell
supergravity theories is new, the so-called complex two-
form supergravity; the others were presented in [15].

|
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A. Conformal supergravity

We consider a curved N’ = 2 superspace, M3, para-
metrized by local bosonic (x™) and fermionic (6%, 9,,)
coordinates 7Y = (xm,eﬂ,é,,), where m =0, 1, 2 and
u =1, 2. The Grassmann variables 6* and 9,4 are related
to each other by complex conjugation: 6% = @*. The
supervielbein E4 = (E“ E* E,) and its inverse E, =
(E,, E,, E*) are defined similarly to (2.1).

Within the superspace formulation for A = 2 conformal
supergravity proposed in [53] and fully developed in [37],
the structure group is SL(2,R) x U(1). The covariant
derivatives have the form

DA = (Da,Da,,Da) :EA+QA7 QA = QA+1¢AJ

(3.1)

We recall that the Lorentz connection 4 can be written in
several equivalent forms (2.3). The U(1) generator acts on
the covariant derivatives as follows:

[T, Do) =Dy, [T, D] =-D". (3.2)

In general, the covariant derivatives have graded com-
mutation relations of the form

[Da. Dy} = TapDc + Ryp.

1 .
Ryp = ERABCndd +iRspJ . (3.3)

In order to describe the multiplet of conformal supergravity,
certain constraints should be imposed on the torsion tensor
[53]. Solving these constraints leads to the following
algebra of covariant derivatives:

[Daa Dﬂ] = ieabc<yb>ﬁyccp}/ + (ya)ﬂySDY - i<ya)p’yRDy - (ya)ﬂyCyEpMép

1

1 1 o
=5 (()7Cun + 501 6D, +1D,R) )7

- 2 -
3 <2Dﬂ8 + IDﬁR)Ma - ggabc(yb)/;’a(zpas + iDaR)MC

{Da’ D[)’} = _4RM(1/}’ (343)
{Dm TD[)’} = _21(7/6)(1/)’7)0 - zcaﬂj - 4i8aﬁ8\7

+ 418Maﬂ - 28aﬁc}/6M},5, (34b)

(3.4¢c)

"For any values of p and g allowed, the pure (p, g) AdS supergravity was constructed in [52] as a Chern-Simons theory with the

gauge group OSp(p[2;R) x OSp(q[2;R).
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i

D, D, =
[a’b] 3

1 ) .=
2 Eabe (yc )aﬂey{? <_1C(1/)’5 +

1 (c
+—¢
B abe\V

<1
— Eabe

4

)aﬁgyé <—iCaﬁ5 +

Es

4

3

PHYSICAL REVIEW D 96, 126015 (2017)
2
@PpS +3€PpR | Dy

2 N
£5aDpS =3 fﬁ(aDmR) Dy

. N 7 = 1 _
(yc )aﬂ(yd)ns(lp(fcﬁaﬁ) + ID(TC(‘)'(I[)’)) + 8 52 (DzR + DzR)

2 . _
+ gié;DaDO,S —4C°C, — 485(RR + 82)> M

1 _ ,
+ ey, <2 (1) [Dy, DyIS — e/ D,Cs — 4scc> J.

The algebra involves four dimension-one torsion super-
fields: a real scalar S, a complex scalar R, and its conjugate
R, and a real vector C,. The U(1) charge of R is —2. These
torsion superfields obey differential constraints implied by
the Bianchi identities, which are

DyR =0, (3.52)
(D* —4R)S =0, (3.5b)
D,Cy, = iCup, — > €ap(D)R +4iD,S).  (3.5¢)

In this paper we make use of the definitions
D?=D"D, ~ D?=D,D" (3.6)

As follows from (3.5c¢), the complex dimension-3/2 sym-
metric spinor Cyg,, which appears in (3.4), is a descendant
of the torsion three-vector C,, Cyp, = =D ((Cpy).

The definition of the torsion and curvature tensors,
Eq. (3.3), can be recast in the superform notation, which
will be used in Sec. IV. Associated with the connection Q,,
Eq. (3.1), is the connection one-form @ = E€Q_.. Its action
on a real super-vector

VA = (Vuv le lim)’ jlpa = lpa (37)
is given by
QVA — QABVB — QABVB + iq)ABVB, (38)

with Q48 and ® 45 being the Lorentz and U(1) connections,
respectively. Using the definitions given, the torsion and
curvature two-forms are

1
TC = EEB A EATABC = —dEC + EB AN QBC, (393)
1
RCD = *EB AN EARABCD == dQCD - QCE A\ QED. (39b)

2

(3.4d)

The important property of the algebra (3.4) is that its
form is preserved under super-Weyl transformations of the
covariant derivatives [15,37]

1
6{7D(l = EO-D(I + DyUMya - DHUJ, (3103)
_ 1 - _ _
64D, = EGDO, +D'oM,, + Do T, (3.10b)
i - i _
6,D, = oD, - E (ya)yﬁp(yapﬁ) - 5 (}’a)ﬂsp(yo-pé)
+ eathbUMc - % (ya)}/é[py, bg]ﬁj (3 IOC)
and the torsion tensors
5,8 = 68 + %D"’@aa, (3.10d)
1 5 _
50'Ca = Gca + g (7a>y {Dy, D(g]d, (3106)
1=,
osR :aR+ZD . (3.10f)

Here the super-Weyl parameter ¢ is an unconstrained real
scalar superfield. It follows from (3.10) that the super-Weyl
transformation law of the supervielbein is

6,E* = —oE", (3.11a)
1 P
6% =~ 0B + L E(5,)7 D0,
27T
- 1 = 1
6,E = =50E0 +3 B (7)) D70, (3.11b)

The group of super-Weyl transformations must be a
subgroup of the supergravity gauge group in order for
the superspace geometry under consideration to describe
the multiplet of A/ = 2 conformal supergravity.
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A tensor superfield 7 of a U(1) charge ¢, JT = qT, is
said to be super-Weyl primary if its super-Weyl trans-
formation law is

0T = woT, (3.12)
for some constant parameter w which will be referred to as
the super-Weyl weight of T.

The action for N =2 conformal supergravity was
constructed for the first time by Rocek and van
Nieuwenhuizen [54] using the N =2 superconformal
tensor calculus. More recently, it was reformulated within
the superform approach [40]. The interested reader is
referred to these publications for the technical details.

B. Supersymmetric actions
As in the 4D N = 1 case, there are two (closely related)
locally supersymmetric and super-Weyl invariant actions in
3D N = 2 supergravity [37].
Given a real scalar Lagrangian £ = £ with the super-
Weyl transformation law

85,L = oL, (3.13)

the action

S = / d3xd*0d*0EL, E =Ber(Ey”)  (3.14)

is invariant under the supergravity gauge group. It is also
super-Weyl invariant due to the transformation law
0,E = —cE. (3.15)

Given a covariantly chiral scalar Lagrangian L of super-
Weyl weight two,

D,L.=0, JL. = -2L., 5,L. =20L.,
(3.16)
the following chiral action
S. = /d3xd29€£c (3.17)

is locally supersymmetric and super-Weyl invariant. Action
(3.17) involves integration over the chiral subspace of the
full superspace, with £ the chiral density possessing the
properties

JE =12E, 0, = —20€E. (3.18)
The explicit expression for £ in terms of the supergravity
prepotentials is given in [55]. Alternatively, the chiral density
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can be read off using the general formalism of integrating out
fermionic dimensions, which was developed in [56].

The two actions, (3.14) and (3.17), are related to each
other as follows:

/ d3xd20d?0EL = / d*xd20EL.,

L= —1(1_72 —4R)L.

i (3.19)

This relation shows that the chiral action, or its conjugate
antichiral action, is more fundamental than (3.14).
The chiral projection operator in (3.19) defined by

A= —‘—1‘(7_)2—4R)

(3.20)

plays a fundamental role in N = 2 supergravity. Among its

most important properties is the following: given a primary

complex scalar y satisfying
Ty =2 -wy,

S, = (w—1)oy, (3.21)

for some constant super-Weyl weight w, its descendant

¢ = Ay (3.22)

is a primary chiral superfield of super-Weyl weight w,

D,p =0, T = —we, S, = wop.  (3.23)
For every primary chiral scalar superfield, its super-Weyl
weight w and U(1) charge ¢ are related to each other as
w + g = 0, in accordance with [37]. Any superfield ¢ with
the properties (3.23) will be referred to as a weight-w chiral
scalar.

The chiral action, Eq. (3.17), can be represented as an

integral over the full superspace,

S, = / d3xd’0d*0EG L., (3.24)

if we make use of an improved complex linear superfield €
defined by the two properties:
(i) € obeys the constraint

AG =1, (3.25a)
(ii) the transformation properties of € are
0,C = —0C, JE =26. (3.25b)
A possible choice for € is
C= _’_7_, D =0, S,n = lm»,, (3.26)
A7 2
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for some covariantly chiral superfield # such that Az is
nowhere vanishing. In case € is not required to be super-
Weyl primary, it can be identified with R,

L
S, = / Erd00E (3.27)

provided R is nowhere vanishing. This representation is
analogous to that discovered by Siegel [57] and Zumino
[58] in 4D N = 1 supergravity.

The chiral action can also be described using the super
three-form constructed in [59]

E‘3 [ﬁc] = _2Ey A E/i A Ea(}'a)/}yﬁc
i-
- EE}, VAN Eb N\ Eaeabd(},d)75D5£c

1 _
+—E° A E" A E%,, (D* — 16R)L...

5 (3.28)

This superform is closed and super-Weyl invariant,

dEs[L.] =0, 6,831L:] = 0. (3.29)
The chiral action is equivalently represented as
so= [ =sled. (330
M3

where the integration is carried out over a spacetime M?
being homotopic to the bosonic body of the curved
superspace M3* obtained by switching off the Grassmann
variables.

C. AdS supergravity

There are two off-shell formulations for (1,1) AdS
supergravity developed in [15], minimal and nonminimal
ones, which do not have gauge two-forms in the sector of
auxiliary fields.

1. (1,1) AdS supergravity
In the minimal case, the conformal compensators are a
weight-1/2 chiral scalar ®, D,® = 0, and its conjugate ®.
Of course, ® has to be nowhere vanishing, such that ®~!
exists, in order to serve as a conformal compensator.
The supergravity action is

. 4 AT
S?ilr;l)nSlaGI — _/d3xd29d29Eq)(D
: K

+ {” / Bxd20ED* +c.c.},
K

where p is a complex parameter. The second terms in the
action is the supersymmetric cosmological term. Using the

(3.31)
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component results of [59], for the cosmological constant
one obtains
Apas = —4{ul*. (3.32)
The above minimal formulation for (1,1) AdS super-
gravity (which was called type I minimal supergravity in
[15]) is the 3D analog of the old minimal formulation for
4D N =1 supergravity [60-62].
For the supergravity theory with action (3.31), the
equation of motion for the chiral compensator is
R =pu, R:=0®3Ad. (3.33a)

We also reproduce the equation of motion for the N = 2
gravitational superﬁeld8

1 _ _
Caﬂ == ([D(w ,Dﬁ)} - 4Caﬂ)(q)q))_l’

Caﬂ - 0, 4

(3.33b)

see [46] for the technical details. The specific feature of R
and C,; is that they are super-Weyl invariant. The super-
Weyl and local U(1) transformations can be used to choose
the gauge ® = 1, which implies that S = 0 and R and C,4
coincide with the torsion superfields R and C,s, respec-
tively. In this gauge, every solution to the equations (3.33)
is locally diffeomorphic to the (1,1) AdS superspace [47].

Within the nonminimal formulation for (1,1) AdS super-
gravity [15], the conformal compensators are an improved
complex linear scalar I and its conjugate I'. The former has
the transformation properties

0,1 = —ol’, JI'=2I" (3.34a)
and obeys the improved linear constraint
AT = p = const, (3.34Db)
compare with (3.25). The supergravity action is
Steama! = —% / dxd?0d?0E(TT)~/2. (3.35)

As demonstrated in [15], this theory is dual to the minimal
AdS supergravity, Eq. (3.31). The theory under consid-
eration is the 3D analog of the nonminimal N' =1 AdS
supergravity in four dimensions [64]. Both formulations
lead to the (1,1) AdS superspace [15,47] as the maximally
supersymmetric solution.

The NV = 2 gravitational superfield was introduced in [55,63].

126015-9



EVGENY 1. BUCHBINDER et al.
2. (2,0) AdS supergravity
The conformal compensator for (2,0) AdS supergravity
is a linear multiplet [15,37,53] describing the field strength
of an Abelian vector multiplet. It is realized in terms of a
real scalar superfield L = L subject to the constraint
AL=0& AL =0, (3.36)
which is consistent with the super-Weyl transformation
law
O0,L = oL. (3.37)
The constraint (3.36) is solved in terms of a real uncon-
strained prepotential V,

L =iD*D,V, V=y, (3.38)
which is defined modulo gauge transformations of the
form

5V =21+1, Dy =0. (3.39)
To reproduce the super-Weyl transformation (3.37), it
suffices to choose

o,V =0. (3.40)
In order to be used as a conformal compensator, L has to

be nowhere vanishing, such that L~! exists. The action for
(2,0) AdS supergravity was constructed in [15]. It is

4 -
Sposc = —/ d3xd?0d’0E{LInL —4VS + 4£VL},
K
(3.41)

where the parameter ¢ determines the cosmological con-
stant. The equations of motion for this theory can be written
in the form [46]

S=¢  S= —%L‘I(DVY_DJ, InL + 4iS). (3.42a)

Ca/,' =0, Ca/} = —% ([D(a, 'D/,v)] - 4Ca/3)L_1, (3.42b)
with S and C,; being super-Weyl invariant.” The super-
Weyl gauge freedom can be used to set L = 1, which
implies R = 0, and then S and C,; turn into the torsion
superfields S and C,4, respectively. Under the gauge
condition chosen, every solution to the equations (3.42)

The vector superfield C,; should not be confused with
(3.33b).
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is locally diffeomorphic to the (2,0) AdS
space [15,47].

The above supergravity theory (called type II minimal
supergravity in [15]) is the 3D analog of the new minimal
for AV = 1 supergravity in four dimensions [49-51]. The
latter theory is known to allow no supersymmetric cos-
mological term. Such a supersymmetric cosmological term
does exist in the 3D case, and it is given by the Chern-
Simons &-term in (3.41). For £ # O the theory possesses a
maximally supersymmetric solution, which is the (2,0) AdS
superspace [15,47] corresponding to the (2,0) AdS super-
symmetry [52].

super-

D. Two-form supergravity

There is one more variant off-shell formulation for (1,1)
AdS supergravity proposed in [15]. Its conformal compen-
sator is the so-called two-form multiplet, which is the 3D
cousin of the well-known three-form multiplet in 4D
N =1 supersymmetry, which was proposed by Gates
[65] and reviewed in [36,66].

In curved superspace, the two-form multiplet is
described by a real unconstrained scalar prepotential
P = P which enters any action functional, S = S[IT,I1],
only via the covariantly chiral descendant

I1=AP (3.43)
and its conjugate Il. In order for II to be a primary
superfield, the prepotential P should possess the super-
Weyl transformation law

5,P = oP, (3.44)

which implies

0,11 = 2011, JI = =211 (3.45)
The chiral scalar (3.43) is a gauge-invariant field strength
for gauge transformations of the form

6,P=1L, AL =0, L=L. (3.46)
Here the linear gauge parameter can be expressed via an
unconstrained superfield V as in (3.38). Since V is defined
modulo gauge transformations (3.39), we conclude that
any system with action S = S[I1,T1], which describes the
dynamics of the two-form multiplet, is a gauge theory with
linearly dependent generators.

Lagrangian quantization of the two-form multiplet can
be carried out similarly to that of the 4D N/ = 1 three-form
multiplet coupled to supergravity [67] (see [68] for a
review).

Upon replacement ®* — IT in (3.31) the supergravity
action turns into
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two—form
S( 1,1)SG

4 ~ _ 1
=—- / d3xd29d2¢9E{ (TTIT)7 — EmP}
K

4 o
=—— / d3xd?0d>0E(T111)
K

+ {ﬂ / Bxd20€T + C.c.},
K

where m is a real parameter. In the second form, the action
is manifestly invariant under gauge transformations (3.46).
The equation of motion for the compensator is

(3.47)

R+ R =2m, R:=TI"3/4ATTV4,  (3.48)

and therefore

R = u = const. (3.49)

The action for type I minimal supergravity (3.31)
involves two real parameters, Rey and Imy, which appear
in the supersymmetric cosmological term. The action for
two-form supergravity (3.47) contains only one real
parameter, m, which determines the corresponding super-
symmetric cosmological term. As is seen from (3.49), the
second parameter Imy is generated dynamically. At the
component level, the cosmological constant in the theory
(3.49) is given by (3.32).

The two-form supergravity theory described above is the
3D analog of the variant formulation for 4D A =1
supergravity known as three-form supergravity. The latter
was proposed for the first time by Gates and Siegel [66]
and fully developed at the component level in [69,70]. The
super-Weyl invariant formulation for the three-form super-
gravity was given in [71]. Our formulation of the 3D two-
form supergravity is similar to [71].

E. Superform formulation for the two-form
multiplet

We now present a geometric formulation for the two-
form multiplet used in the previous section. Let us
introduce a super two-form B, defined by

By[P] = —E, A E°P + %Eﬂ A E(y,);, D'P
i- _
+§Eﬂ A\ Ea(}/a)/ijyP

1 _
- 1_6€abch AN Ea((}’c)pT[Dp, DT] - 8CC)P (350)

and consider its exterior derivative Hj :=dB,. It is not
difficult to check that H; is given by the following
expression:

PHYSICAL REVIEW D 96, 126015 (2017)
H;3[1) =—E, AEg AE*(y,)'TI—iE" AEP AE(y,) 4,11

1-
+ZE], A Eb A Eagabd(yd)y5D5H

1 _
—ZE}, N Eb A Eaguhd(yd)yﬁp(sn

+4igEC AEP A E%,,

x ((D*=16R)[1— (D* - 16R)IT), (3.51)
and, hence, it is constructed solely in terms of the
compensator IT and its conjugate I1, with IT being related
to P as in (3.43).

The relation H;[I1] = dB,[P] implies that the top com-
ponents of B,[P] and H;[I],

1 _
B, = __gabc((yc)m[pwpr] - SCC)P’

3 (3.52a)

Hop = —%eabc((fﬂ — 16R)I1 — (D* — 16R)TT), (3.52b)

are connected to each other as

Hgpe = 3D[aBbc] + Eabe (iDaR - Z@QS)IDaP

+ €4pe (iD*R + 2D*S) D, P. (3.53)
Equations (3.52) and (3.53) tell us that the imaginary part
of the top component field of the chiral superfield II,
defined by F = — 1D, is the field strength of a gauge
two-form.

The gauge transformation (3.46) of the prepotential P is
equivalent to the following transformation of the super
two-form (3.50):

This allows us to interpret B,[P] as a gauge two-form
and H;[IT] as its gauge-invariant field strength. The closed
super two-form B,[L] in (3.54) is actually exact,
B,[L] = dA,, where A, is the gauge potential of a vector
multiplet.

Using the super-Weyl transformation laws (3.11) and
(3.44), one can check that the superform (3.50) is invariant
under arbitrary super-Weyl transformations,

6,B,[P] =0 = §,H;[I1] = 0. (3.55)
This property will be important for our analysis in
Sec. IV B.

Let us recall the closed super three-form Z3[L.], defined
by Eq. (3.28), which generates the supersymmetric invari-
ant (3.30). If we choose L. = I, with II given by (3.43),
then the exact super three-form H;[II] proves to be the
imaginary part of Z;[I1],
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B4 I — (3.56)
The real part of Z5[I1], on the other hand, is not exact and
generates a nontrivial supersymmetric invariant, which may
be realized as the full superspace integral (3.14), with P
playing the role of the Lagrangian L.

The local U(1) and super-Weyl transformations may be
used to choose the gauge Il = 1. This condition implies
that S = 0 and the algebra of covariant derivatives reduces
to that of type I minimal supergravity [15,37] with one extra
constraint: the imaginary part of R is now the divergence
of a vector (related, by Poincaré duality, to a two-form
potential). To see this it suffices to write the super three-
form H;[I1] in the gauge I1 =1

Hy = —iE" A EP A E(va)g, —iE, A Eg A E*(r,)"

1
+ §EC A EP N E%,d(R—-R), (3.57)
keeping in mind that H; = dB,[P]. Note that a similar
constraint appears in the case of the 4D N = 1 three-form

supergravity where i(R — R) is also the divergence of a
vector [69,70,72].

F. Complex two-form supergravity

In the framework of 4D A/ = 1 Poincaré supersymmetry,
the complex three-form multiplet was introduced by Gates
and Siegel [66] as a conformal compensator for the Stelle-
West formulation for 4D N =1 supergravity [61], in
which the complex auxiliary field F* was realized as the
field strength of a complex gauge three-form. The name
“complex three-form multiplet” was coined in [36]. This
multiplet was recently used in [73] (under the name of
“double three-form multiplet”) to construct a super-Weyl
invariant formulation for the complex three-form super-
gravity of [61], in the spirit of the super-Weyl invariant
formulation [71] for three-form supergravity [66,70]. Here
we propose a 3D A = 2 cousin of the complex three-form
multiplet.

A complex two-form multiplet coupled to conformal
supergravity is described in terms of a covariantly chiral
scalar Y and its conjugate Y, with Y being defined by

Y =4S, (3.58)

where X is a complex linear superfield constrained by

A =0. (3.59)
In general, if X is chosen to transform homogeneously
under the super-Weyl transformations, its U(1) charge is
determined by the super-Weyl weight [37]

5, =wgoX = JE=(1-ws)E.  (3.60)
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We wish the chiral scalar Y to be super-Weyl primary,
which means
0, Y =wyoY, JY = —wyY, (3.61)
in accordance with (3.23). The transformation properties
(3.60) and (3.61) are consistent with (3.58) only if wy =1,
and therefore
0, Y =20, JY = -2Y. (3.62)
The chiral scalar Y defined by (3.58) is a gauge-invariant
field strength under gauge transformations of the form

6Li - Ll + iLz, ALl - 0, I:i - Li (363)
For many purposes such as Lagrangian quantisation, it is
advantageous to work with unconstrained superfields. The
antilinear superfield £ can always be represented as
=DV, (3.64)
for some unconstrained complex spinor prepotential ¥,,.
The chiral scalar Y defined by (3.58) is a gauge-invariant
field strength under gauge transformations of the form
8, =D, Z + DA, Agp = Ngq,  (3.65)
with unconstrained complex gauge parameters Z and A ).
Here the gauge transformation generated by A, leaves the
superfield (3.64) invariant. The gauge transformation gen-
erated by Z is equivalent to (3.63) when acting on X. Any
dynamical system with action S[Y, Y], which is realized in
terms of the unconstrained prepotentials ¥, and ¥, is a
gauge theory with linearly dependent generators of an
infinite stage of reducibility, following the terminology of
the Batalin-Vilkovisky quantization [48].
Upon replacement ®* — Y in (3.31) the supergravity
action turns into

4 I
geomplex two-form __ 7 / dPxd20d20E(YY)i.  (3.66)

(1.1)SG P

This complex two-form supergravity allows no supersym-
metric cosmological term, and the action involves no free
parameter, unlike the actions for type I supergravity (3.31)
and two-form supergravity (3.47). However, the equation
of motion for ¥, is
D,R =0, R := Y-3/4AY!/4, (3.67)
and it implies that R = u = const. Thus the complex
cosmological parameter y is generated dynamically.
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G. Superform formulation for the complex
two-form multiplet

Similarly to the real two-form multiplet, the complex
two-form multiplet has a geometric superform origin. Let
us consider the following complex super two-form:

C,[E] = 21E, A ES+ EP AE(y,),, D'
+Ey AE(y,)PD,E

+ e EY A ES((y)7[D, D] - 8C)E.  (3.68)

8
All coefficients Cyp of C,[E] = 1 E® A EACp are descend-
ants of . For the exterior derivative of C,[Z] we get

dCz[i] = —2Ey VAN Eﬂ A\ Ea(}/a)ﬂyY
- %EY AN Eb AN Ea€abd(yd)75D§Y

1 _
4 ﬁE" A EY A E%,,.(D? — 16R)Y = E5[Y].

Thus, all coefficients of dC,[X] are descendants of Y.

The expression for Z;[Y] is obtained from (3.28) by
replacement £, — Y. Sinceboth £ and Y are chiral primary
superfields of the same weight, we conclude that Z;[Y] is
super-Weyl invariant, 5,2;[Y] = 0. A stronger result is that
the superform (3.68) is also super-Weyl invariant

5,C,[E] = 0. (3.70)

Our result Z5[Y] = dC,[¥] implies that the top compo-

nents of the superforms C,[X] and Z;[Y],

i

Cap = Zgabc((yc)pf[pp? Z_)T] - Scc)i’ (3713)
R U
Eabe — Zgabc(D - 16R)Y, (371b)
are related to each other as
Eupe = 3D[aCbC] + 2e,.(D*R + 2i1_7“S)Da2
+ 2€4pc (Z_)“R - ZiD“S)Z_)aZ. (3.72)

This confirms that the F component of Y is the field
strength of a complex two-form.

The gauge transformation of Z, Eq. (3.63), can be viewed
as the following superform transformation:
This allows us to interpret C,[Z] as a gauge complex two-
form and Z3[Y] as the corresponding gauge-invariant field
strength.
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The local U(1) and super-Weyl transformations may be
used to choose the gauge Y = 1. In this gauge, S = 0 and
the algebra of covariant derivatives reduces to that of type I
minimal supergravity [15,37] with one extra constraint: the
torsion R is the divergence of a vector (related, by Poincaré
duality, to a complex two-form potential). This follows
from the fact that Z;[Y] in the gauge Y = 1 is given by

[x]

3 = dC2 = _2EJ/ VAN Eﬁ VAN Ell(ya)ﬂ]/

2 _
- gEc AE’ N E%,.R. (3.74)

IV. GREEN-SCHWARZ SUPERSTRINGS
COUPLED TO TWO-FORM
SUPERGRAVITY

In this section we will show that the A" =1 and N = 2
two-form supergravity theories provide consistent back-
grounds for the Green-Schwarz superstring.

A. 3D N =1 Green-Schwarz superstring in
curved superspace

In the case of 3D N = 1 Green-Schwarz superstring, we
draw on the results obtained by Bergshoeff er al [13].
To describe the dynamics of a superstring propagating in a
two-form supergravity background, we propose the follow-
ing action:

1 g .
§S=T, / dzf{i % —}’YULEi“Ejb’?ab - €”EiBEjABAB}-
(4.1)

Here &' = (7,0) are the world-sheet coordinates, 7,; is the
world-sheet metric, y = dety;; = ety y; with €'? =
€;; = 1. Both the kinetic and Wess-Zumino terms in (4.1)
involve certain target space fields associated with two-form
supergravity, which are the supervielbein E,,* entering the
action via the pull-back supervielbein

EA = 0.ZME\A, (4.2)
the super two-form B,p and the compensator L = DL,
(the dilaton superfield).

The classical consistency of the Green-Schwarz super-
string action requires that it be invariant under gauge
fermionic transformations (x-symmetry) of the form

SE =0,  OE*=2(y,)PLiE{x),. (4.3)
where we have defined SE* := 6z E)". The gauge param-
eter !, is a real 3D spinor and also a 2D vector satisfying
the self-duality condition (y¥ — (—y) 2¢¥ )k, ;i =0.

It can be shown that the action (4.1) is invariant under the
gauge transformation (4.3) provided the super three-form
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H; = dB, is given by Eq. (2.37) and the world-sheet metric
transforms as

S(/=7y1) = =2 /=y Li(#iE,* — L™\ (y,)*E

x (2pKiyl — iy,

Let us point out that one can absorb the factor of L'/# into «/,.
After this redefinition, the action (4.1) and the x trans-
formations (4.3) and (4.4) become similar to those in [13].

The action (4.1) is invariant under arbitrary super-Weyl
transformations of the target space, as a consequence of the
relations (2.14a), (2.26) and (2.42). The super-Weyl gauge
freedom may be fixed by setting L = 1.

x“DpL)
(4.4)

B. 3D N =2 Green-Schwarz superstring
in curved superspace

Now we turn to constructing the covariant action for the
3D N =2 superstring in a two-form supergravity back-
ground, and make use of the results by Grisaru et al. [12]
concerning the 10D N = 2 superstring. We propose the
following superstring action

1 N
§= Tz/dzf{i V=Y (D) EE 1,

—%eijEiBEjABAB}, (4.5)
where the pull-back supervielbein E;# is defined similarly
to (4.2). The dilaton (®®)? is constructed in terms of the
conformal compensator described by a weight-1/2 chiral
scalar superfield @ and its conjugate ®. The concrete
structure of @ depends on the supergravity formulation
chosen. In the case of three-form supergravity, the con-
formal compensator is the three-from multiplet, and then
®* =TI = AP. On the other hand, the choice ®* =Y =
AZ corresponds to complex three-form supergravity.

Both the real and complex two-form supergravities
possess a real super two-form B, which can be used as
the Kalb-Ramond field B,y in the action (4.5). For two-
form supergravity, the choice of B, is unique, modulo an
overall numerical factor, and is given by B,[P], Eq. (3.50).
In the case of complex two-form supergravity, there is a
whole family of possible super two-forms that can be put in
a one-to-one correspondence with a circle U(1). However,
all these choices are equivalent. For concreteness, we
choose B, to be the real or imaginary part of the super
two-form C,[Z] given by Eq. (3.68).

Let us show that the action (4.5) is k symmetric once
we consider a background of real or complex two-form
supergravity. We postulate the following x-symmetry
transformation
SE“ =0, SE* = dd ZE“(}/ ) (y kg — (—y)_%eijl?jﬂ),

(4.6)
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where SE4 := 6z E,A, SE, is given by the complex
conjugate of SE“ and k¢ = k¢. We point out the relation

SE = 0,6E* — 26ECEPQpc)* + SECE Tpct,  (4.7)
where we have used the definitions (3.8) and (3.9a). Then it
is not difficult to show that the variation of the action is

given by the following expression (compare with [12])

1 o
ss—1, [ dzf:{i 8(v/=7r") (OB E E "
V- }’ij(q)(i))zE‘B5EATABCEjd’7cd
+ /=77 E“E "1, (@D*SED, @ + O*DSE, D D)
+ eijEicEjB5EAHABc}, (4.8)
where Hj := ; EC A E® A E*H jpc = dB,.

Let us first consider the case of two-form supergravity,
with ®* = I1. To show that the variation (4.8) vanishes, we
have to make use of the geometrical data specific for the
two-form supergravity. The only nonvanishing torsion

appearing in the variation (4.8) is the dimension-zero
torsion which is

T(lﬂc = _2i(ye){1ﬂ (49)

The nontrivial components of the super three-form H;
given by Eq. (3.51), which enter the variation (4.8), are

1 _ -
- Efabd(yd)y(spéq)4

(4.10)

Haﬁc = _2i(yc)aﬂ(i)4’ Haby =

together with their complex conjugates. Substituting the
expressions (4.9) and (4.10) into the variation (4.8) and
using the identities

(Ya)ay(yb)yﬂ = nabég + gabc(yc)aﬂ’ lbyk]l -

2€/k lly
(4.11)

one can show that the Green-Schwarz action is indeed
invariant provided the k-transformation law of the world-
sheet metric is postulated to be

8(v=rr'") = 2y/=7 (2 iy = yiyH) D2
X (2Ey, + @7 (7o) yp Ex DP®)xf
— 2(ek(i7,j)l + €l(iyj)k)q)_%cb%
X (UES + 7' ()P Ey Dy®)ksq + c.c.
(4.12)

The superstring action constructed is invariant under
arbitrary super-Weyl transformations of the background
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fields, as follows from the transformation laws (3.11),
(3.45) and (3.55).

It is clear that the analysis in the case of the complex two-
form supergravity is identical to the one presented above
with the only difference that ®* is replaced with Y instead
of I1. In fact, in proving the x-invariance of the action only
the real closed super three-form H; enters the computations
rather than its potential B,. Therefore we have proven that
both the real and complex two-form supergravities are
consistent backgrounds for the 3D N = 2 Green-Schwarz
superstring.

V. GOLDSTINO SUPERFIELDS COUPLED
TO SUPERGRAVITY

In this section we present various models for sponta-
neously broken local N =1 and N = 2 supersymmetry
that are obtained by coupling the off-shell supergravity
theories, which have been described in the previous
sections, to nilpotent Goldstino superfields. It should be
pointed out that the first model for spontaneously broken
local NV = 1 supersymmetry was constructed in 1977 [74]
by coupling on-shell N' = 1 supergravity to the Volkov-
Akulov action.

We often make use of the notion of reducible and
irreducible Goldstino superfields introduced in [25].
By definition, an irreducible Goldstino superfield contains
Goldstone spin-% fermion(s) as the only independent
component field(s). Every reducible Goldstino superfield
also contains some auxiliary field(s) along with the

Goldstone spin-} fermion(s).

A. N =1 Goldstino superfields
A reducible Goldstino multiplet is described by a real
scalar superfield X subject to the nilpotency constraint
X2 =0. (5.1)

We also require D?X to be nowhere vanishing so that
(D>X)~! is well defined, and therefore (5.1) implies

DUXD, X

X =
DX

(5.2)
As a result, X has two independent component fields, a
spinor y,(x) and a real auxiliary scalar F(x), that may be
defined as iy, = D,X| and iF = —{D?X|, where F~! is
well defined. The lowest component of the Goldstino
superfield, X|, is a composite field as a consequence
of (5.2).

We postulate X to be super-Weyl primary of weight 1/2,
which means the super-Weyl transformation law of X is

1
0,X = - o0X.

: (5.3)
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The Goldstino superfield action is
Sy = i/d%d@E{%D"XDaX + 2f’(p3X}, (5.4)

for some nonzero parameter f’ which characterizes the
scale of supersymmetry breaking. The second term in
the action involves the compensator, ¢, of A’ =1 AdS
supergravity; see Sec. IIC. The action is super-Weyl
invariant.

The nilpotency constraint (5.1) is invariant under local
arbitrary rescalings of X,

X - X=¢eX, (5.5)

for any real scalar p. Such a rescaling (5.5) acts on the
component fields of X as

2

7 — erl v D
l/j(l - l//(l e <l//(l + 4F( (lp)|> ’ (5'6a)

~ 1 w2
s> F=¢l|F—-y"~ - (D?
F—->F=e (F 4 (D.p) ¢F (D p)|> (5.6b)

Each of these transformations is a local rescaling accom-
panied by a nilpotent shift of the field under consideration,

and therefore F~' is well defined. Requiring the action
(5.4) to be stationary under (5.5) (following the 4D works
[26,27]) gives the constraint

Fo’X = %X’DZX — XAX, A= %D2 +S. (5.7)
Here XAX is manifestly a super-Weyl primary. As follows
from (5.6a) and (5.6b), the F' component of the nonlinear
constraint (5.7) is equivalent to a sum of the equation of
motion for F and a linear combination of the equations of
motion for y,,.

Consider an irreducible Goldstino superfield X con-
strained by

X2 =0, floPX = XAX, (5.8)

with AX being nowhere vanishing. This superfield is
irreducible because the Goldstino y, = —iD,X]| is the only
independent component field of X. Indeed, the second
constraint in (5.8) proves to express the auxiliary field F in
terms of the Goldstino; see Appendix A. The dynamics of
X is described by the action

Sy =if' / Bxd20Ep3 X, (5.9)

which is obtained from (5.4) by making use of the non-
linear constraint obeyed by X The Goldstino theories (5.4)
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and (5.9) prove to be equivalent, which may be shown
by extending the 4D analyses given in [75-771."° This
issue is discussed in more detail in Appendix A. The
flat-superspace limit of our Goldstino theory defined by
Egs. (5.8) and (5.9) is analogous to the 2D A =1
Goldstino model pioneered by Rocek [79].

It is not difficult to check that the constraints (5.8) are
satisfied if

X

_ 413
X=f IN e (5.10)
where X is only subject to the nilpotency constraint (5.1).
The important property of X defined by (5.10) is that it is
invariant under arbitrary local rescalings (5.5),

6,X =pX =6,X =0, (5.11)
for arbitrary real superfield p, compare with the 4D analysis
in [27]. This remarkable property actually can be explained
by recalling at the component transformation law (5.6b)
implied by (5.5). The point is the superfield transformation
(5.5) implies an arbitrary local rescaling of the auxiliary
field of X, F — ¢’IF. Since X does not contain an
independent auxiliary field, it should remain invariant
under (5.5).

Let us consider the model for spontaneously broken local
supersymmetry which is obtained by coupling the super-
gravity theory (2.21) to the Goldstino superfield X. The
dynamics of this system is described by the action

S = Ssg + Sx- (5.12)
The component structure of this theory will be discussed
elsewhere. Here we only present the corresponding cos-
mological constant. It is obtained upon eliminating all the
auxiliary fields, and is given by

1 1
Azif,2K+AAdS :Ef,ZK_4/12. (513)
The supergravity-matter system (5.12) may be reformu-
lated as a model for nilpotent supergravity. Varying (5.12)
with respect to the compensator ¢ gives the equation

30X
S—A=-2fk=, 5.14
/%, (5.14)

where S is defined by (2.22a). Since X is nilpotent, the

equation of motion implies

(S—1)?=0. (5.15)

""Reference [76] is a considerably generalized and extended
version of [78].
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Making use of (5.14) in order to express X in terms of the
supergravity fields, the action (5.12) can be recast as a
higher-derivative supergravity theory

8

A
S=21 [ @xd0Ep* S +2
W) O (”{+2}

32

—W/d3xd29E(02Da§Da§. (516)

In four dimensions, various approaches to nilpotent AV = 1
supergravity were developed, e.g., in [16,17,20,23,26,
80,81]. Our presentation here is similar to [20].

To conclude this subsection, we note that the nilpotent
Goldstino superfield X can also be coupled to the two-form
supergravity constructed in Sec. II D. For this we should
simply replace the action (5.4) with

Sy =i / d3xd20E{%D“XDaX n 2f’L3/4X}. (5.17)
Then, the equation of motion (5.14) turns into

3 X
Da<§+§f/l('m) :0, (518)

where S is now defined as in (2.32).

B. Reducible A/ =2 Goldstino superfields

The family of nilpotent N = 2 Goldstino superfields, both
reducible and irreducible, is more populous than in the
N = 1case."" However practically all 3D N = 2 Goldstino
superfields can be obtained from the known 4D N =1
Goldstino supermultiplets by dimensional reduction, at least
in the flat superspace case. This is why our discussion of
nilpotent A/ = 2 Goldstino superfields will be reasonably
concise. We will try to emphasize only conceptual con-
structions and those results that are truly new or have not
received much discussion in the 4D case.

1. Nilpotent chiral scalar superfield

To begin with, we consider a 3D N = 2 locally super-
symmetric counterpart of the reducible Goldstino superfield
introduced by Casalbuoni et al. [84] and independently by
Komargodski and Seiberg [75]. We choose it to be a
covariantly chiral scalar X of super-Weyl weight +1/2,

1 1
DX=0. §X=y0X=JX=~:X

5 (5.19)

which is subject to the nilpotency constraint

"One can also introduce spinor Goldstino superfields, by
analogy with the 4D N = 1 constructions given in [29,82,83].
However such superfields are not particularly useful in the
supergravity framework.
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X2 =0, (5.20)

in conjunction with the requirement that the descendant
DX is nowhere vanishing. The nilpotency condition implies
that X has two independent component fields, a complex
Goldstino y,(x) and a complex auxiliary field F(x), which
we define as y, = \/LEDO,X |and F = — iDZX |, respectively.

The constraints on X do not make use of any super-
gravity compensator, which means that X is defined in any
conformal supergravity background. However, a compen-
sator is required in order to define an action functional
for the Goldstino superfield. Here we choose the chiral
compensator @ corresponding to the minimal (1,1) AdS
supergravity described in Sec. III C 1. The dynamics of this
supermultiplet is described by the action

Sy = / d*xd?0d*0EXX — { f / A xd?0ED3X + c.c.},

(5.21)

in which the supersymmetry breaking parameter, f, may be
chosen to be real.

We now consider a model for spontaneously broken
N = 2 local supersymmetry which is obtained by coupling
the Goldstino superfield X to the minimal (1,1) AdS
supergravity reviewed in Sec. III C 1. The complete action is

S = Sminimal + SX7

vl (5.22)

where the supergravity action S‘(‘}“‘ll)“;"é is given by Eq. (3.31).
This theory proves to generate the following cosmological

constant

A = 2K+ Npas = 2k — 4{ul*. (5.23)

Varying the action (5.22) with respect to the chiral com-
pensator gives the equation of motion

3

X
R—py=—-—=fk—, 5.24
H 4f’<q) (5.24)

where the super-Weyl neutral chiral scalar R is defined by
(3.33a). Since X is nilpotent, the above equation implies

(R—u)? =0, (5.25)
and thus the torsion superfield (R — x) becomes nilpotent.
Equation (5.24) can be used to eliminate X and X from the

action (5.22), resulting with the following geometric higher-
derivative supergravity action:
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4 -

S = ——/d3xd29d2t9ECDCD - ﬁ/d3xd295<l>4 + c.c.
3k 3k

4\2 .
+< ) / P xd20PIEDD|R — . (5.26)

3fx

Here the expression in the first line differs from the super-
gravity action (3.31) only by new values for the parameters
involved, k — 3k and ¢ — —u. The functional form of the
action (5.26) differs from its 4D A/ = 1 counterpart derived
in [20] (see also [26]) in the sense that the supersymmetric
Einstein-Hilbert term completely canceled out in the latter
case.

The nilpotency condition (5.20) is preserved if X is
locally rescaled,

X - X, D,r =0, (5.27)
where the parameter 7 is neutral under U(1). Requiring the
action (5.21) to be stationary under such rescalings of X
(compare with [26]) gives the nonlinear equation
XAX = f®3X. (5.28)
This nonlinear constraint proves to express the auxiliary
field F in terms of the Goldstini y, and y, and their
derivatives, see Appendix B.
The constraints (5.19), (5.20) and (5.28) define an
irreducible Goldstino superfield X,

_ 1
DX =0. §X=g0X.  X=0,

XAX = fD3X. (5.29)
It is the 3D A = 2 analog of the 4D N = 1 Goldstino
superfield used by Lindstrom and Rocek [28] in their off-
shell model for spontaneously broken N = 1 local super-
symmetry.12 The corresponding action can be given in two
different but equivalent forms:

Sy = —/d3xd29d29E5€X = —f/d3xd295(1>32\,’.
(5.30)

So far we have considered the coupling of the nilpotent
Goldstino superfield X to the minimal (1,1) AdS

Reference [28] is the first work on off-shell de Sitter super-
gravity in four dimensions. Terminology “de Sitter supergravity”
was introduced by Bergshoeff er al. [18]. The only difference
between the supergravity models put forward in [18,28] is that
they made use of different Goldstino superfields—the 4D N = 1
analogs of X and X, respectively. The two supergravity models
are equivalent on shell [25]. However, the power of the approach
advocated in [18] is that the nilpotency condition X?> = 0 is model
independent, which implies that the Goldstino superfield can be
readily coupled to matter multiplets.
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supergravity. Its coupling to the two-form (or complex two-
form) supergravity is obtained simply by replacing the
chiral compensator @ in (5.21) with IT'/* (Y'/* in the case
of complex three-form supergravity). However, there is a
different universal approach to couple a nilpotent chiral
supermultiplet to any off-shell supergravity. It consists in
replacing X, defined by (5.19) and (5.20), with a super-
Weyl primary scalar X with the properties

DX =0, X2 =0.

5,% = 20%, (5.31)

The action (5.21) has to be replaced with

Sy = /d3xd29d29Ex—; - {f/d3xd2«95% + C.C.},
(5.32)

where W is a real scalar primary superfield of weight +3
such that (i) it is nowhere vanishing, and (ii) it is a
composite of the supergravity compensators. In particular,
W = (®®)? in the case of minimal (1,1) AdS supergravity,
W = L3 for (2,0) AdS supergravity, W = (ITIT)*/* for the
two-form supergravity, and so on.

2. Nilpotent real scalar superfield

We now introduce a 3D N = 2 analog of the reducible
Goldstino superfield proposed in [26]. It is a real scalar
superfield subject to the nilpotency conditions:

V2 =0, (5.33a)
VDDV =0, (5.33b)
VD, DDV = 0. (5.33¢)

The super-Weyl transformation of V is postulated to be

o6,V =0V. (5.34)
We also require that the descendant %{A, A}V is nowhere
vanishing. The nilpotency conditions (5.33) imply that V
has three independent component fields (see Appendix B
for more details) that may be chosen as follows: the
complex Goldstino y,(x) = %D(AVL its conjugate j,(x)
and a real auxiliary field D(x) =1{A,A}V|, with D™
being well defined.

The constraints (5.33) imposed on V do not make use of
any supergravity compensator, which means that V' is defined
in any conformal supergravity background. However, a
compensator is required in order to formulate an action
functional for the Goldstino superfield. As in the previous
section, here we again choose the chiral compensator ®
corresponding to the minimal (1,1) AdS supergravity
(minimal type I supergravity) described in Sec. IIIC 1.
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The dynamics of the nilpotent superfield V is described
by the action

|2

_ [ |AV
Sy = / d3xd29d29E{| (5.35)

(@)
with f the supersymmetry breaking parameter.13

The constraints (5.33) are preserved if V is locally
rescaled,

—ZfV},

V= et (5.36)

for any real scalar p. Requiring the action (5.35) to be
stationary under such rescalings of V gives the nonlinear
equation
1 o
5V{®‘3A,<I>‘3A}V = fV. (5.37a)
Due to the constraints (5.33), this may equivalently be
rewritten as
VO3A(DP3AV) = VO3A(DP3AV) = fV.  (5.37b)
This nonlinear constraint proves to express the auxiliary
field D in terms of the Goldstini.
The constraints (5.33) and (5.37) define an irreducible
Goldstino superfield V. It is a 3D N = 2 counterpart of the

Goldstino superfield introduced in [25]. The corresponding
action can be written in two equivalent forms

AVE
(®0)*

Sy =— / d3xd*0d>0E f / d3xd’0d’0EV .

(5.38)

The Goldstino models (5.35) and (5.38) are equivalent on
the mass shell.

The irreducible Goldstino superfields X and V are
related to each other as follows

fVv=Xxx, (5.39a)

X = 03AV. (5.39b)
These relations are analogous to those given in [28] in the
4D case.

3. Relating X and V

Starting from the nilpotent chiral superfield X described
in Sec. VB 1, we define

£V = XX, (5.40)

“Had we chosen V to be an unconstrained real scalar
superfield, the action (5.35) would have described the dynamics
of a two-form multiplet (with a linear superpotential) coupled to
the minimal type I supergravity.
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as a generalization of (5.39). The superfield V introduced
satisfies all the requirements imposed on the nilpotent
Goldstino superfield V in Sec. VB2. One of the two
auxiliary fields of X does not contribute to the right-hand
side of (5.40).

Implementing the field redefinition (5.40) in the
Goldstino superfield action (5.35) leads to the following
higher-derivative action:

_ . 1 |XAX|? -
Sup[X, X] = [ &xd*0d?0Eq ————— —2XX .
i1 [ onsosne{ L o)
(5.41)
Its important property is
Sup[X. X] = Sy, (5.42)

with Sy given by (5.30). Unlike the Goldstino action
(5.21), (5.41) is invariant under the discrete transformation
X — —X. The model (5.41) will be studied in more detail in
Appendix C.

4. Nilpotent two-form Goldstino superfield

As a generalization of the 4D N = 1 models proposed in
[24,27], we introduce a nilpotent two-form Goldstino
multiplet. It is described by a chiral scalar superfield

1

Y=-2 (D*> —4R)U, U=U, (543a)
which is constrained to be nilpotent,
Y2 =0. (5.43b)

The prepotential U in (5.43) is defined modulo gauge
transformations of the form

6,U =1L, AL =0, L=L, (544)

and Y and Y are gauge-invariant field strengths.
The super-Weyl transformation of the prepotential U is

o,U =0aU, (5.45)
which implies
0,Y = 20Y. (5.46)

To describe dynamics of the nilpotent two-form multiplet,

we propose the action
- {f/d3xd2¢95Y + C.C.}.

(5.47)

Sy = d3xd?0d20FE —
v / ! (BD)’
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The component structure of this model will be discussed in
Appendix B.4. Here we would like just to point out that
the Goldstino superfield Y contains two independent
auxiliary fields, F = H + iG, of which H is a scalar and
G is the divergence of a vector. In supergravity, both H and
G produce positive contributions to the cosmological
constant. While the contribution from H is universal and
uniquely determined by the parameter of the supersym-
metry breaking f in (5.47), the contribution from G is
dynamical. We believe that the latter may be used to
neutralize the negative contribution from the supersym-
metric cosmological term.

C. Irreducible A =2 Goldstino superfields

Using the nilpotent chiral superfield X described in
Sec. VB 1, we introduce a composite superfield

= fe. (5.48)

It has the following transformation properties:

5,5 =—-0%, JL=23, (5.49)

as well as it identically satisfies the improved linear
constraint
AT = f, (5.50a)

compare with (3.25). By construction, it is nilpotent,

2 =0. (5.50Db)
It also obeys the nonlinear constraint
1 —
DX =— ZZ(DZ —4R)D,2, (5.50¢)
which is equivalent to
D% = —iED,;DPY. (5.51)

Thus X is a 3D N =2 counterpart of the irreducible
Goldstino superfield introduced in [30]. Unlike other
irreducible Goldstino superfields, such as X and V, the
constraints obeyed by Z, Eq. (5.50), do not make use of any
supergravity compensator. In other words, X couples to
conformal supergravity.

The remarkable feature of X and its conjugate is that
these superfields are invariant under local rescalings of X
and its conjugate, Eq. (5.27),

0. X=1X=062=0, D,c=0; (5.52)
compare with [27]. In complete analogy with the 4D
N =1 case [30], every irreducible Goldstino superfield

is a descendant of ¥ and ¥, for instance
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fV = (®dD)3Ex. (5.53)
Therefore we conclude that all irreducible Goldstino super-
fields are invariant under local rescalings (5.27).

As pointed out above, the Goldstino superfields X and s
couple to conformal supergravity. Relation (5.53) clearly
shows that the conformal compensators have to be used in
order to define V as a composite superfield constructed
from ¥ and £."*

VI. CONCLUDING COMMENTS

The results obtained in this work may lead to several

interesting developments including the following:

(i) The work by Ovrut and Waldram [70] provided
membrane solutions in the 4D A =1 three-form
supergravity. In a similar way, the two-form super-
gravity theories described in the present paper
should possess string solutions. It is of interest to
derive such solutions explicitly.

(i1) In three dimensions, consistent models for massive
supergravity can be constructed by adding certain
higher-derivative terms to the standard supergravity
action. These include N/ =1 and N = 2 topologi-
cally massive [59,85,86] and new massive [46,87-89]
supergravity theories. Coupling these theories to the
Goldstino superfields described in Sec. V should give
consistent models for spontaneously broken massive
supergravity.

(iii) It is of interest to construct NV =3 and N =4
Goldstino superfields, as an extension of the 4D
results given in [26,90]. The NV =3 case is espe-
cially interesting since it has no 4D analog.

(iv) Since we formulated the 3D Green-Schwarz super-
string action, with A’ =1 and N = 2 spacetime
supersymmetry, in off-shell supergravity back-
grounds, the quantum superstring analysis given
in [3,4] may be extended from the Minkowski
superspace to other maximally supersymmetric
backgrounds including the AdS one.
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APPENDIX A: COMPONENT STRUCTURE
OF N =1 GOLDSTINO MODELS

In this appendix we will discuss the component actions
for the ' = 1 Goldstino models introduced in Sec. V A. For
simplicity we will perform our analysis in flat superspace.

Here we specialize the superspace M32 of Sec. I A to
be the standard A/ = 1 Minkowski superspace M>/? para-
metrized by Cartesian real coordinates z* = (x¢, 6%). The
covariant derivatives D, = (D,, D,) on M3, defined by
Eq. (2.2), become the flat-superspace ones

DA - (8517 Da)’ Da = 8(1 + i(}/a)a}gﬂaa = aa + ieﬂaaﬂ-
(A1)

Making use of the anticommutation relation
[Dy. Dy} = 21,y (A2)

allows us to obtain a number of useful properties including
the following:

1
DaDﬂ = iaaﬂ + E&‘aﬂDz, DaD/}Da = 0,

D*D? = —40. (A3)

We recall that D> = D*D,,. Given a supersymmetric action

S=i / &$xd’0L,  L=L, (A4)

with some superfield Lagrangian £, the component action
is computed by the rule

S = —i/d3xD2£|. (A5)

As usual, the bar projection is defined by U| := Ul|,_,, for
any superfield U(x, 0).

Let us now consider a real scalar superfield X. We define
its real component fields ¢(x), y,(x) and F(x) as

1

d=X . iF=—DX|.

, iy, = D,X

(A6)
Introducing a free supersymmetric model with action
Sy =i / d3xd29{%D”XD(,X + 2f’X}, (A7)

at the component level we obtain
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Sy = — / d%{%@“q’)@agl) + %waaﬁw/f —2F% + 2f/F}.
(A8)

Let us turn to the component analysis of the N =1
Goldstino model (5.4) in flat superspace. To describe
a reducible Goldstino multiplet, we subject X to the
nilpotency condition

X2=0 (A9)
and assume that F~' is well defined. The nilpotency

constraint allows us to solve for ¢ in terms of the
Goldstino y and the auxiliary field F:

_iy?

¢ = a7 (A10)

With the constraint (A9) imposed, the supersymmetric action
(A7) defines a nonlinear interacting theory. Making use of
(A8) and (A10) leads to the following action:

. 1 2 2
Sy = - / d3x{%waaﬁwﬂ + 55 0 2P + 2f/F}-

32 F
(A11)
The equation of motion for F' is
5Sx Ly? _y?
—— =4F +——=0-—=-2f"=0. Al2
oF * 16F>  F f ( )

This equation can be solved by repeated substitution which
gives

[
) —WWZDWZ-

(A13)

Substituting it back into (A11) gives the following action for
the Goldstino:

B 12 4
Sy =— / d3x{%+%w"8aﬁw”+ WZDWZ}- (A14)

1
8 f/2
Since the auxiliary field possesses a nonvanishing expect-
ation value, (F) =1 f’, the supersymmetry is spontaneously
broken. The constant term in the integrand (A14) generates a
positive contribution to the cosmological constant in
supergravity.

Our next goal is to study the component structure of the
irreducible Goldstino model Sy, Eq. (5.9), in Minkowski
superspace. We recall that it is obtained from the reducible
Goldstino theory defined by Egs. (A7) and (A9) by
requiring the action (A7) to be stationary under local
rescalings X — e”X. This gives the constraint
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%Xsz = f'X, (A15)
which allows one to solve for the auxiliary field F in terms
of y. Evaluating the top component of (A15) gives

f/ 1 a
F— 27 E‘// aa/}l//ﬂ

1 1l/2 l//2
———=—==0. Al6

64F> F (A16)
This equation can be solved by repeated substitution to

result with

S

1
a 2 .
F= E + 2f,l// 8aﬂl//ﬂ - 4f/3 "4 8aﬂwﬂ8 yl//y

1
+8f—,31,1/2Dy/2. (A17)

Plugging this into (A11) leads to the component action

f/2 i " 1
Sy =-— / d3x{7 + EW aaﬁl//ﬁ - 417 Wzaaﬂl//ﬂaay‘/’y
1
+ 877 wzmqﬂ}. (A18)

Comparing the two expressions for F, which are given
by Egs. (A13) and (A17) and which correspond to the
models Sy and Sy, respectively, we see that they are
different. The final Goldstino actions (A14) and (A18) also
have different quartic terms. Nevertheless, the two models
are equivalent. Indeed, it was pointed out in Sec. VA that
the top component of (A15) is equivalent to a sum of the
equation of motion for F and a linear combination of the
equations of motion for y,, both equations of motion
corresponding to the action (A11). One can readily check
that the left-hand side of (A16) can be represented as

i Ly? y® 1/8S¢ y*6Sy
F-L - Lyeg p - 0¥ — " (22x [V 9x)
2 4V 9 TG F T4\ GF T F sy°
(A19)

and therefore the two expressions for F' coincide on the
mass shell. Moreover, it may be shown that every solution
to the equation of motion for the Goldstino action (A14)is a
solution to the equation of motion for (A18) and vice versa.
This follows from the identity

1 Sy &S
d3 2 ap TPX OPOX .
4 f/2 / xy-e éwa 5Il/ﬁ

Sy =Sy + (A20)

APPENDIX B: COMPONENT STRUCTURE
OF N =2 GOLDSTINO MODELS

In this appendix we will discuss the component actions for
N =2 Goldstino models in flat superspace. We specialize
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the superspace M3* of Sec. III A to be the standard A/ = 2
Minkowski superspace M?3* parametrized by Cartesian
coordinates z4 = (x“,0%,0,), with 6% being the complex
conjugate of 6. The covariant derivatives D, =
(D,.D,. D% on M3*, defined by Eq. (3.1), become the
flat-superspace ones D, = (9,, D,, D*). Here the spinor
covariant derivatives have the form

Dy = 0y + 0P (1) 400 = D + 10°0,p,

D, =-0,—i600, (B1)

and obey the anticommutation relations

{DmD/J'} =0, {Davbﬂ} =0,
{Da,Dﬂ} - —21(9a/3

Given a supersymmetric action

S = /d3xd29d29£ + {/ d*xd’0L, + c.c.},

L=0CL, D,L.=0, (B3)
with some real £ and chiral £, superfield Lagrangians, the

component action is computed using the formula

1 1
§=1¢ | PxD?DL| - {Z / BxD2L| —I—C.c.}. (B4)

The contractions D? and D? are defined as in (3.6).

1. The N =2 chiral scalar Goldstino superfield

Let us consider a model of a chiral scalar superfield X
satisfying
X2 =0. (B3)
This model defines a reducible Goldstino superfield model
analogous to the 4D N = 1 chiral model studied in [75,84].

Hence, our analysis will be similar to those in [75-77].
A general chiral superfield can be written as

X = ¢+ V20%, + 0°F, (B6)
so that the components can be defined as
¢ = X|, y/a:iDaX, F:—1D2X|. (B7)
V2 4
The nilpotency condition X? = 0 gives
2 )
b=1s =1z (B8)
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The action for X follows from (5.21)

Sy = / d3xd*0d*0X X — { f / d*xd’0x + c.c.}. (B9)

The integral over @ and 6 can be performed using (B7), (B8)
to give the following component action

S:/d%{—%((u) + <a>)+2FD;'F+FF—f(F+F)},

(B10)
where we have defined

<u> - il//aaaﬁl/_/ﬁ7 <’Z> = _iaaﬁwﬁy_/a' (Bll)
The superfield X defined by (B5) describes a reducible
multiplet containing the Goldstino y, and an auxiliary
field F.

As was explained in the previous appendix there are
two approaches to define an irreducible Goldstino multiplet.
We can eliminate F and F from the action (B10) using the

equations of motion

!//Dw

F =
f+2F2 2F’

- 78
F= O—. (BI2
f+2F2 2F (B12)

Solving equations (B12) by repeated substitution yields

F=f 4 300 = Ty Oy (O),

(B13)

Then the Goldstino action becomes

s—- [ de[ 242 () + (1) + 5 (9 0r?)

— Bl4
+16f6ww (B14)

232(C?) O0)|

Alternatively, we can require that the action be stationary
under rescalings X — ¢’X, D,r =0 which gives the
constraint

1o
~ XDX = fX. (B15)

Equations (BS), (B15) define a Goldstino model (5.28) as
was discussed in Sec. V. From (B15) we find the following
equation for the auxiliary field:

. 1.
F=f+iF 50, - ZF-ZszD(F-‘l,/Z). (B16)

Solving it by repeated substitution we obtain
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P=f 5w - 12 (W@ + ;w0n?)
) + (3200)

Y0 + 2050y + P00 @)

- 377 (W4 + PO = (@) + @)

(B17)

1
+ 1—6!//21/7254/251/72) ,

where (u) is given in Eq. (B11). Comparing Eqgs. (B13) and
(B17) we see that the solution for F is different in our two
approaches but the difference is related to the equation of
motion for the Goldstino as was explained at the end of the
previous appendix.

2. The N =2 real scalar Goldstino superfield

The real scalar Goldstino superfield is defined to obey
the constraints

V2 =0, VDDV =0, VD DzD:V = 0.

(B18)
We will start with a general N = 2 real scalar superfield

V =0+ V20" + V20,0% + 0°F + 0°F + 0°0P A,
+26%0%0, + V/26%0,5" + 6*6°D. (B19)

Here A,; describes both a vector A“ and a scalar @:

Aaﬂ = (yu)aﬁAa + ieu/)’(p' (BZO)

Imposing conditions (B18) we find that v, 4, Za,Aaﬂ, F,F
can be solved in terms of ¢,, 0,, D as follows:

, =T el 00’
4D3° « T p?’ « op2°
_2 2 2 —_
0 =@ 0a0p
F==, F=2_ Ayu=—2F B21
2D 2D ) (B21)

Hence, we have explicitly shown that the model (B18)
describes a reducible Goldstino multiplet (¢, D) consisting
of the Goldstino ¢, and an auxiliary field D.

Alternatively, we can define the Goldstino as follows.
Let

1

W, = —ZD2D(,V. (B22)

Let us define
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1 1
«=—=W,l, D =—-D"W,|. B23
Ve =Wl POl (B23)
Since W, satisfies
D*W, = D,W* (B24)

we see that D is real. Using Eqgs. (B19), (B21), (B22), (B23)
we obtain

i, - i e
— 0y =20 = 0, — 28, L),
Ya Qa 2 ap Qa 4 ap < Dz )
1 1 Q2@2
D=D--UOv=D-—0|-—=—). B25
4" 16 <|D3 (B25)

From here we can derive the following useful relations

which, in turn, allow us to invert (B25) to get
. —f 2 1 272
1 vy vy
= 05 —— ), D=D+-—01 .
Qu Ya + 4 a[)’( D2 ) + 16 ( D3 )
(B27)

Substituting (B27) into (B21) we obtain the components of
V in terms of (y,, D)

& LYl 5 _a
4p3’ ¢ 2D*’ “  2D*’
R 2 2
vy oyt oy

= — —_— S F = S
b Taps b T aps
2y i _ _ I

Ay = g LA WV/QV/y(aapr) + WWQ(aﬁyWa)Wy

1. i 1. i
~ 305 W2 0y Ops(WO9") = 5w D a0,
(B28)

Either (¢,,D) or (w,, D) can be used to describe a
reducible Goldstino multiplet in this model. Relations
(B25) and (B27) allow one to quickly transform from
one description to another. Since the components of V are
simpler when written in terms of (¢,, D) below we will
use this pair of fields.

The action for the Goldstino superfield can be taken as
the flat superspace limit of (5.35)

1 _ _ —
s=L / Exd2020D> VDY - 2f / xd26d20Y .

(B29)

126015-23



EVGENY 1. BUCHBINDER et al.

Using the nilpotency conditions (B18) the first term of the
action (B29) can also be written as

1 _ 1
- / Exd 0LV D W, = / Bxd2OWeW,.  (B30)

However, we find that Eq. (B29) is more convenient to use.
In terms of (¢,, D) the action (B29) reads

S = / d*x [DZ -2fD - iQa(aaﬁ@/’)

_ J/ 5

5( aﬁQﬁ>Q - aﬂayé( >

1 ’o* 1 0.0°\ 1. _ (0%
TP gy @0 pr ) ~3%0 e

2 =32 an

L. i e\ (e

tin? <ID>+ aﬂ(uzﬂ) D2
1
e T ) (B31)

Again, there are two approaches to define an irreducible
Goldstino multiplet. We can eliminate D using its equation

of motion:
1079 e’ 1 (0’2 Q
b=f- 4 D> “”ayé(ﬁ 16D
3 0’0" 10°¢° _1oa0’
~ (0D O (o”
1 @2 1 Q2
— o’ — %0 =
T3¢ ( )Jrsu:o2 (ID
i 0°9* %0\ i 0% e’
16 DY a“”D< |D2> 16 p* JH <ID2
+ e 0’0’ *(0%0%). (B32)

which can be solved by repeated substitutions. The second
approach is to require that the action (B29) be stationary
under local rescalings V — ¢”V which yields the constraint

1 _

3—2V{D2, D>}V = fV, (B33)
as was discussed in Sec. V. Here for simplicity we will
follow the first approach and eliminate D using the equation
of motion (B32). From Eq. (B32) we see that, the solution
for D has to be of the following form:

D = f 4 00" Aus + 0* B+ 0°B + %0°C,

+ 0%0,C* + ¢*0° F, (B34)

where A, B, C, F depend on ¢ only through derivatives.
Note that in Eq. (B34) there are no terms linear in
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Goldstino. Examining Egs. (B31), (B34) one can show
that the last three terms in (B34) do not contribute to the
action and, hence, can be ignored. Keeping this in mind, we
obtain

=f- m@ “0P0,50,5(070°) —

1 2
+ O(e?) +
873¢ (@)

16f3‘3(9@)

L,
—0*0(e?*) + -+, B35
g @)+ (B35)
where the ellipsis stands for the terms which do not
contribute to the action. Substituting Eq. (B35) into

(B31) we find the following action for the Goldstino:

S:—/d%{ 2+%((w>+<v‘v>)+#@“5(0a@2)

+ %ﬁ@aﬂ(é“&) - 7@ *0@)
+4LfQ<<w> = (0 + 50 @0 0@e)

+ SR e0() - (7))

1
32f60 Q aaﬂayﬁ(gy )D(92@2> s (B36)

where (w) = 100,40
3. From V to equivalent two-form multiplet

There is another possibility to study the model from the
previous subsection. For this we will introduce

1~ 1

¥ = __D2V, ¥ = —_DV. B37

The action in Eq. (B29) can be equivalently written as

S = / dxd*0d*0P ¥ — f / d3xd’0%¥ — f / d3xd’0¥.
(B38)

Since W is chiral we can define its components as

1

¢:lP|’ )(a:ﬁ

1
Dalp|, F1+1F2:—ZD2‘P|

(B39)

From Eq. (B18) it follows that ¥? = 0, hence,

2

PR

2F, +iFy) (B40)
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Note that in addition to the Goldstino y,, ¥ contains two
auxiliary fields F; and F,. However, as we will see below
F, is a function of the Goldstino and F';. Therefore, it is the
pair (y,, F;) which describes a reducible Goldstino multi-
plet which, of course, is equivalent to the ones studied in
the previous subsection up to a nonlinear transformation
which we will derive below. To express F, in terms of y,
and F; we note that

D>Y — D*¥ =i0%(D,, Dy|V. (B41)

Using the fact that

1 _
Arz/} =3 [Dm D/}}V|

5 (B42)

which follows from (B19) we find that
Fy—— Yo, — _Low (%) (g
47 T D

Hence, we see that F, is expressed in terms of the
Goldstino and the remaining auxiliary field. The relation
between (g,, D) and (y,, F;) can be obtained using the
defining equation (B37) as well as the definition of the
component (B19), (B39). We get

70 B 1 0%%

i
Xa :Qa+18aﬂ<

D2
(B44)
Using the identities
=0 =0t e =x7. (B45)

we can invert (B44):

. B2 1 22
1 xXx XX
=ya—-04(%2%), D=F -—0 .

(B46)

Using the relations (B43) and (B46), we can express F, in
terms of the fields y, and F;. The result is

1401 . 10N oo (T
Fzz—ga B |:F—1{4){a)(ﬂ+1)(aaﬂy (F—%) +1)(a8ﬂy (F

1
1 1
+ﬁ)(2)_(2 <8ay8ﬂ5()_(y)(§) —58“ aaaﬂ?ﬂ)] . (B47)
1

Since the action (B38) is the same as the action for a
chiral superfield X in (B9) it has the identical component
structure:
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3 ! v )_(2 )(2
S = /d x[—5<<v> )+ 57 i) Do, 1 imy)

+F?+F%—2fF1], (B48)

where (v) = iy“d,57” and F, is given by (B47). We will
not present the final action in terms of y, since it is
substantially more complicated than the one in Eq. (B306).

Out of the three possible Goldstino fields ¢, y and y it is
¢ which has the simplest action.

4. Nilpotent two-form Goldstino superfield

Here we will discuss the component structure of the
model introduced in Sec. V B 4. As before, we will take
the flat space limit. The two-form Goldstino multiplet is
described by a chiral scalar superfield Y satisfying the
following conditions:

1._
Y = —-D?U,

Y2 =0,
4

(B49)

where U is an unconstrained real superfield. Since Y is
chiral we can define its components in the usual way

1

1
=Y, «=—=D,Y|, F = —--D?%|. B50
7 b= DY (BSO)
From (B49) it follows that
D?*Y — D*Y =i0%|D,, D,;]U. (B51)

This means that the imaginary part of the auxiliary field F
is the divergence of a vector. Let us denote F = H +iG.
Then we have G = 0,C¢, where C“ is an auxiliary vector
field. The action for the superfield Y is given by the flat
space limit of Eq. (5.47):

Sy = / Bxd20d207 Y - { f / Bxd20Y + c.c.}. (B52)

Just like in the theory of three-form multiplet in four
dimensions this action has to be supplemented with the
boundary term [91-93]

1 _
By=, / Bxd20d20D* (YD, U — UD,Y) + c.c

_ / Bx0,(C°G) + -, (BS3)

where the ellipsis stands for the boundary terms which do
not play a role and can be set to zero.

Since the action (B52) is the same as the action for a
chiral superfield it is given by
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5= [ S0 S oueE - a0,
Y 2F 2F2“ﬂ 25 \Vap

+H?*+G? - 2fH} , (B54)

where we have used the fact that Y?> =0 and, hence,
¢ = E/(2F). Now we will eliminate the auxiliary fields
using their equations of motion. Varying the action (B54)
with respect to H and C, gives the following equations:

£2 2 2 22
g Log_ 8k

H - - =5 P —= = 0
F =i e P E =Y
g &g & 52
GHi—U—=-i——5 D =0. B55
& [ i 4P 2F T 4R (B53)
The second equation implies that
N S &
—O0=-==0=| = B56
Gt {41?2 2k aptap| T9 (BY)

where ¢ is an arbitrary constant. Hence, we find that

2 2
F=htg0s

h=f+ig.  (B57)

Solving this equation by repeated substitution yields

F:h<1

|h? =12+ ¢~

+ 3 HEOE - LI EPOROE ).

(B58)
The boundary term on the solution G = g+ --- gives
-2 [ d3x(g* + total derivative). Substituting Eq. (B58)

into the bulk action (B54) and combining the result with
|

S = 2/d3x[8a¢aa$ + il//aaa/ﬂ/_/ﬁ - FF]

+ fiz / dSX{F F(¢Op + ¢0p) + pp(Dg)(Tg) + (FF)?
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the contribution from the boundary term yields the follow-
ing Goldstino action:

Sy 4By == [ @x|IHP =5 e + 50u)

12434
4 [nf
1 f2+74

6 nF

+ 9E20,8

fzszézﬂéz] (B59)

APPENDIX C: GOLDSTINO MULTIPLET FROM
A HIGHER-DERIVATIVE THEORY

In this appendix we will analyze the higher-derivative
model (5.41) in Minkowski superspace. We first consider
the case when the dynamical variable X is an unconstrained
chiral superfield, D,X = 0, which obeys no nilpotency
condition. Then the model with action

S = / d? d29d29{ 61f XD*XXD?*X — 2xx} (Cl1)

has two phases, one with unbroken supersymmetry, and the
other with spontaneously broken one. In the unbroken
phase, the equations of motion have free massless solutions
D>X = 0. (C2)
However, the kinetic term in (C1) has a wrong sign and thus
the theory is ill defined at the quantum level. We therefore
turn to the phase with spontaneously broken supersymmetry
in which F develops a nonzero expectation value, (F) = f.
Defining the components of X as in Eq. (B7) we obtain
the component action:

= 0,(¢F)0"(PF)

3 _ 3 1- _ i I
-3 FFy®0,up" — 5 FFyp“0,5y" — 3 FOFy iy’ + 2 FO s Fy iy’
- ¢Flpa|:|l/_/a - &5 FWGDWa + Faay¢l/_/yaaﬁl/_/ﬂ - Faay(z"l/yaaﬂwﬂ

1 - - i -
+ 3 (PO p — pO™ )8 i’ O, 5° + E¢¢(8aﬂl/_/ﬁ|:h//a + Oy’ Op)

— (0P 0w’ — (L) (laa/)’l/_/ﬂ_(l//aaaﬁl/_//})(l/_/yayﬁwﬁ)}'

The equation of motion for F is

—2Ff? + 2F?F + F¢Olp + FPUp — 2iFy 050" — iFp*0 59" + $LI(PF)

- aay&)l//}/aaﬁwﬁ =0.

— 10y Fy iy — by Oy,
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It shows that F and F are no longer auxiliary fields since
they cannot be expressed in terms of the off-shell physical
fields ¢ and y, and their conjugates. One could try to look
for F as a series in powers of the fields ¢, w, and their
derivatives,

F = f+ ai¢0p + ap0¢ + a3y Qo + asip®0opp”
R (CS)

where a1, a,, ... are some constants which have to be found
by substituting (C5) into (C4) and working order by order
in perturbation theory. Such a solution would correspond
to a supersymmetry breaking phase (note that F = f for
¢ = 0,y, = 0). However, it is not difficult to show that no
solution for F exists: substitution of (C5) into (C4) yields
inconsistent equations
2a, +2a, + f' =0, 2a, +2a, +2f' =0, (C6)
and similarly for as, a4. This means that it is impossible to
solve the equation of motion for the field F' and substitute
the solution into Eq. (C3) to find the action for the off-shell
physical fields. The procedure of eliminating the auxiliary
field F can be fulfilled only when the physical fields are
also on shell. In other words, the equation (C4) and its
conjugate have to be solved in conjunction with the
equations of motion for the physical fields, and then the
|

PHYSICAL REVIEW D 96, 126015 (2017)

above inconsistencies do not occur. In doing so, we will
obtain correctly normalized kinetic terms for the physical
fields. Indeed, since in the supersymmetry breaking phase
F = f+ .-, for the relevant terms in (C3) we get

2 / Bx[0°¢0, ¢ + iy?0, 50"
n % / d3x{FF (&smcﬁ +¢0¢
3i PO
_ 31 (WD + l,waaﬁy/ﬁ)> + ¢FO(PF )}

- [ @xlov0,d -+ o) + ()

where the ellipsis stands for cubic and higher order terms in
the fields ¢, y, and their conjugates.

We now restrict our study to the case of model (C1) with
X chosen to be nilpotent,

X?=0. (C8)
Then ¢ can be expressed as in (B8) and we have a reducible
Goldstino model. The component action of this model is
given by (C3) with ¢ replaced according to Eq. (BS).
The equation for the auxiliary field now reads

Pt oy’ W
—2f2F + O 4 2O DF
fF +2F2 F 4 F 4F2 (Fy?)
1 y2p? _ - 1y? Fl// 1 Fy? _ Fy?
- Oy?0p? 4+ 2F*F + -0
gp2ps VT +4F T4 FF

3 3 . o
=5 FwOupp” == FipOapy” —51// Wﬁ(aaﬁF) __aaﬁ(Fl// )

2 2
=507 (Vw0 - 07 B o) - o7 () 00,0

Yy

4

One can show that just like in the case of Eq. (C4) it is not
possible to solve this equation for F in terms of the physical
fields y and . The procedure of eliminating the field F can
be performed only if the Goldstino is on shell. Therefore,
we will follow the other approach: instead of considering
the equations of motion for F, we will require that the
action (C1) be stationary under rescaling X — e*X, which
yields

D*(XXD2XD2X — 16f2XX) = 0. (C10)

L P |V v Lo s an g y’
+-yF DFwaaﬁw +ZWF W0 upr DFZO

2 .
1 l// o _ 1 — — a -
9 7< F Dopp” 3y5‘//5) - WWZWZ [0’ Oy + Dppr’ Tl

(€9)

Since D*X is nowhere vanishing, this condition is equiv-
alent to
XD2(XD2X) = 16/°X. (C11)

The problem of solving Egs. (C10), (C11) can be reformu-
lated as follows. Let us define the superfield Y by the rule

|
—ZXDzX = fY. (C12)
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It then follows from Eq. (C10) that Y has the properties

DY =0,
Y2 =0,
1.
——YD%Y = fV. (C13)

4

That is Y defines an irreducible Goldstino multiplet whose
auxiliary field is uniquely solved in terms of the Goldstini
with the solution given in Eq. (B17). Therefore, the
problem can be stated as to find X using Eq. (C12) given
Y. Comparing Egs. (C12) and (C13) we see that there is an
obvious solution X = Y."> However, this solution is not
unique. To show it we will examine Eq. (C11) in compo-
nents. Let us consider the equation for F followed from
(C11). We obtain

= 2f*F 4+ 2F?F = 2iFy® 05" — 2iF 0 5y

. _ 1 Fp? _y? 11// Fiy?
— 2i(0 4 F )y ——D — 00—
1( aff )l//l// +2 Ia ZF 2

-2
YD, ("'7 aﬂyy/y) —0. (C14)

Note that we cannot solve this equation by repeated
substitution. However, we can solve it by expanding F
in powers in the Goldstino and its derivatives

F = f 4 a,(iy*Oapp”) + ay (i 0opyp”) + (C15)

Since y is nilpotent this expansion is finite. Substituting it
into (C14) we can fix the coefficients. From the analysis
presented above we know that there is a solution for F
given by (B17). Therefore, we will look for a solution in
the form of (B17):

F=f+a(u) + ay(@t) + a3 (u) (@) + azy’ O

+ asp?Oy? + ag((u)* (@) + (@)*(u)) + a7 (@)y* O
+ ag (W Oy? + a0y (i) + ayo(u)*(ir)?

+ any?0((u)? — (u) (@) + (@)?)

+ apy Oy O, (C16)

Substituting this ansatz into (Cl14) we find that the
coefficients a;, a,, as, ag, ag, aq, ajy, a;; are fixed as
in (B17), whereas the remaining coefficients satisfy

Note that if X is a solution to (C12) then so is —X. Hence, we
have two supersymmetry breaking phases. For concreteness we
select the phase in which (F) = f.

PHYSICAL REVIEW D 96, 126015 (2017)
ag = _Zf_3 — das,

1
a; = —Zf_s - 2f2as,

1
app = Ef_4615 - a% (C17)

and cannot be fixed uniquely. The solution (B17) corre-
spondstoay =0, as = —ﬁf‘3, a7 = %f‘s, ap = —l%f_7-
The ambiguity that we can have more than one solution to
(C14) is expected to be related to the fact that we can add to
F and to the action terms proportional to the equations of
motion as in (A19) and (A20), but we will not discuss this
issue in detail in this paper.

Let us now clarify why Eq. (Cl1), or equivalently
Eq. (Cl14), has a solution for F despite the fact that
Eq. (C9) does not. For this we will consider the equation
of motion for the superfield X. Since X is nilpotent to find it
we have to add the term

/d3xd20}uX2 +c.c. (C18)
to the action (C1), where A is a Lagrange multiplier. Thus,
we obtain the following equation of motion for X:

D*[XD*XD*X] + D*D*[XXDX]
— 12821X = 0.

_32/2D%%
(C19)

Multiplying it by X we get the constraint (C10). However,
the equation of motion for X contains not just the equation
of motion for F (C9) but also the equation for the
Goldstino. Hence, in obtaining Eq. (C14) equations of
motion for both F and y are taken into account and that is
why it has a solution.

With the nilpotency condition (C8) imposed, the action
(C1) can be rewritten as

_ 1 e _
S = [ &xd’0d’03 —— D*XD, XDzXDPX —2XX ;.
16f2 /

(C20)

Similar supersymmetric higher derivative models have been
considered in the literature in the case when X is an
unconstrained chiral superfield. In particular, an action of
the type (C20) was studied in [94]. In their case they could
solve for the auxiliary field in terms of the off-shell physical
scalar field provided the fermions were ignored. However, if
we take into account the fermions as well we can show that it
is also impossible to solve for the auxiliary field unless the
fermions are on-shell. Unlike in our case, Eq. (C7), in the
model studied in [94] the kinetic term for scalars completely
canceled in the supersymmetry breaking phase. Ref. [95]
studied a model with canonically normalized kinetic term.
It is obtained from (C20) by replacement —2XX — XX.
It was shown in [95] that the resulting model cannot break
supersymmetry.
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