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We use the recently developed generalized double-copy procedure to construct an integrand for the five-
loop four-point amplitude of N ¼ 8 supergravity. This construction starts from a naive double copy of the
previously computed corresponding amplitude of N ¼ 4 super-Yang-Mills theory. This is then system-
atically modified by adding contact terms generated in the context of the method of maximal unitarity cuts.
For the simpler generalized cuts, whose corresponding contact terms tend to be the most complicated, we
derive a set of formulas relating the contact contributions to the violations of the dual Jacobi identities in the
relevant gauge-theory amplitudes. For more complex generalized unitarity cuts, which tend to have simpler
contact terms associated with them, we use the method of maximal cuts more directly. The five-loop four-
point integrand is a crucial ingredient towards future studies of ultraviolet properties ofN ¼ 8 supergravity
at five loops and beyond. We also present a nontrivial check of the consistency of the integrand, based on
modern approaches for integrating over the loop momenta in the ultraviolet region.
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I. INTRODUCTION

In recent years there has been enormous progress in our
ability to construct supergravity scattering amplitudes at
high loop orders. This progress flows primarily from three
classes of conceptual and technical advances. The first is
the development of the unitarity method [1,2], which offers
a straightforward algorithmic approach to constructing and
verifying multiloop integrands using only on-shell tree
amplitudes. The second is the discovery of the Bern-
Carrasco-Johansson (BCJ) color-kinematics duality and
associated double-copy procedure [3,4]. The third is the
progress in loop integration methods, specifically integra-
tion-by-parts (IBP) reduction [5–9], which has been critical
to extracting ultraviolet information, as in Refs. [10–15].
In this paper we will describe in more detail the

generalized double-copy procedure recently introduced
in Ref. [16], which combines elements of generalized
unitarity and color-kinematics duality to convert generic
gauge-theory loop integrands into gravity ones. We use the
method to construct the five-loop four-point integrand of
N ¼ 8 supergravity [17], which is an important stepping
stone towards unraveling the ultraviolet properties of this
theory. The organization of the resulting amplitude is
provided by the method of maximal cuts [2]. A number
of other related on-shell methods have also been developed
for constructing multiloop integrands, especially for

supersymmetric theories in four dimensions [18]. There
are also promising methods for directly constructing
integrated expressions for amplitudes, especially for
N ¼ 4 super-Yang-Mills theory in four dimensions (e.g.
see Ref. [19]).
The duality between color and kinematics plays a central

role in our construction. Whenever representations of
gauge-theory integrands are constructed which manifest
the duality between color and kinematics, corresponding
gravity integrands follow directly via the double-copy
procedure [4], which replaces color factors with kinematic
factors. The duality applies to wide classes of gauge and
gravity theories [3,4,20–23], where, in many cases, the
duality has been proven at tree level [24–30]. At loop level
the duality has conjectural status, supported by case-by-
case explicit calculations. The duality has been crucial in
the construction of numerous gravity multiloop amplitudes
[4,11,31,32], where it has been used to identify new
nontrivial ultraviolet cancellations in N ¼ 4 and N ¼ 5

supergravity [13,15], known as “enhanced cancellations.”
Apart from offering a simple means for obtaining loop-
level scattering amplitudes in a multitude of (super)gravity
theories, the duality also addresses the construction of
black-hole and other classical solutions [33] including
those potentially relevant to gravitational-wave observa-
tions [34], corrections to gravitational potentials [35], the
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relation between supergravity symmetries and gauge-
theory ones [20,22,36], and the construction of multiloop
form factors [37]. The duality has also been identified in a
wider class of quantum field and string theories [30,38–41].
For recent reviews, see Ref. [42].
However, experience shows that it can sometimes be

difficult to find multiloop integrands where the duality is
manifest [43]. The best known example is the five-loop four-
point integrand of N ¼ 4 super-Yang-Mills theory [44],
which has so far resisted all attempts to construct a BCJ
representation where the duality between color and kin-
ematics manifestly holds. This amplitude is crucial for
unraveling ultraviolet cancellations that are known to exist
in supergravity theories but for which no symmetry explan-
ation has been given [15]. Because of the complexity of
gravity amplitudes at high loop orders, alternative methods
have offered no path forward; the only currently known
practicalmeans for constructing the five-loop amplitude is to
use a double-copy procedure that recycles the corresponding
gauge-theory amplitude [44].More generally, wewould like
to have a technique that converts any form of a gauge-theory
integrand into the corresponding gravity ones.
A solution to this technical obstruction has been recently

proposed in Ref. [16], which introduced a generalized
double-copy procedure which makes use of general rep-
resentations of the gauge-theory integrand. This new
approach builds on the central premise of double-copy
construction, but relies only on the proven existence of BCJ
duality at tree level. Generic representations of gauge-
theory integrands that use fabc color factors are double
copied, giving a “naive double copy.” If algebraic relations
obeyed by the color factors are not mirrored by the
kinematic factors, however, this alone does not result in
a correct gravity integrand. Violations of the kinematic
algebra (dual to the color Lie algebra) must be compen-
sated. These violations, or “BCJ discrepancy functions,”
are the building blocks for new formulas that give correc-
tions to the naive double copy. The correction formulas
merge seamlessly with the method of maximal cuts to
constructively build gravity predictions from generic
gauge-theory integrands. These correction formulas also
have a double-copy structure, being bilinear in the dis-
crepancy functions of each gauge theory.
The starting point of our construction of the five-loop

four-point amplitude of N ¼ 8 supergravity is the repre-
sentation of the N ¼ 4 super-Yang-Mills amplitude given
in Ref. [44], with a slight rearrangement of a few terms. The
supergravity amplitude is constructed via the generalized
double-copy procedure. In principle, there could have been
up to 70 690 diagrammatic contributions with up to
millions of terms each. Fortunately the vast majority of
these diagrams either vanish or are much simpler than naive
power counting suggests. Still the expressions are lengthy,
and the final result is collected in a Mathematica-readable
attachment [45].

To confirm our integrand, we carried out a number of
nontrivial checks. Besides the generalized cuts used in the
construction, we also check consistency of large numbers
of additional generalized unitary cuts. We numerically
confirmed in all cases where the new formulas are used
that a less efficient evaluation of the gravity unitarity cuts,
based on Kawai-Lewellen-Tye tree-level relations, gives
identical results. We also present nontrivial checks based
on integrating the expressions in spacetime dimension
D ¼ 22=5, where we expect it to be finite, yet individual
terms in our expression diverge. To carry out these checks
we develop techniques based on modern developments in
integration [7,9,46,47]. We carry out the check using both
unitarity-compatible IBP methods as well as a new method
of direct integration described in Appendix B.
We leave for the future the much more interesting—and

much more difficult—case of integrating in dimension
D ¼ 24=5, where symmetry arguments suggest that a
divergence could be present [48,49]. The discovery of
enhanced ultraviolet cancellations in closely related super-
gravity theories [13,15] suggests, however, that the five-
loop amplitude might nonetheless be finite inD ¼ 24=5. A
direct integration of our integrand would settle the issue.
This paper is organized as follows. First, in Sec. [42], we

present a brief review of the method of maximal cuts and
the double-copy construction. Then, in Sec. III, we give an
overview of the derivation of the new formulas for
obtaining correction to the naive double copy in terms
of BCJ discrepancy functions. In Sec. IV, we derive the
explicit formulas giving the contact term corrections,
involving two four-point contact interactions or one five-
point interaction. This is generalized to infinite classes of
contact interactions in Sec. V. The results for the five-loop
four-point integrand of N ¼ 8 supergravity are described
in Sec. VI. In Sec. VII, we series expand the integrand in
large loop momenta and perform nontrivial integration
checks demonstrating its consistency. Our conclusions
and outlook are given in Sec. VIII. Two appendices are
included; the first gives correction formulas useful for
contact diagrams with four canceled propagators and the
second describes a unitarity-compatible direct integration
of vacuum diagrams generated by series expanding the
integrand.

II. REVIEW

In the mid 1980s string-theory investigations by Kawai,
Lewellen, and Tye (KLT) [50] exposed remarkable rela-
tions between closed- and open-string tree-level scattering
amplitudes. Since string-theory tree-level amplitudes have
smooth low-energy limits to gauge and gravity field theory
amplitudes, this had a number of implications for field-
theory predictions [51,52]. With the advent of unitarity
methods [1], these tree-level insights have direct impact on
our ability to calculate at loops as well as on our basic
understanding of the structure of gravity loop amplitudes
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[52,53]. With the understanding of the duality between
color and kinematics, much simpler and powerful means
for generating gravity loop amplitudes from gauge theory
became available [3,4]. We begin with a lightning review of
double-copy structure of gravity amplitudes, before dis-
cussing application of the method of maximal cuts relevant
for our construction [16].

A. Tree-level gravity amplitudes from gauge theory

1. BCJ duality and double-copy amplitudes

All tree-level amplitudes in any D-dimensional gauge
theory coupled to fields in the adjoint representation, may
be written as

Atree
m ¼ gm−2

X
j∈Γ3;m

cjnj
Dj

; ð2:1Þ

where sum is over the set of ð2m − 5Þ!! distinct, m-point
graphs with only cubic (trivalent) vertices, which we denote
by Γ3;m. These graphs are sufficient because the contribu-
tion of any diagram with quartic or higher vertices can be
assigned to a graph with only cubic vertices by multiplying
and dividing by appropriate propagators. The nontrivial
kinematic information is contained in the numerators nj
and generically depends on momenta, polarizations, and
spinors. The color factor cj is obtained by dressing every
vertex in graph j with the relevant gauge-group structure
constant, ~fabc ¼ i

ffiffiffi
2

p
fabc ¼ Trð½Ta; Tb�TcÞ, where the

Hermitian generators of the gauge group are normalized
via TrðTaTbÞ ¼ δab. The denominator 1=Dj contains the
Feynman propagators of the graph j

1

Dj
≡ 1Q

ijdij
; ð2:2Þ

where ij runs over the propagators for diagram j, each of
which we denote by 1=dij. The gauge-theory coupling
constant is g. If an on-shell superspace is used the
numerators will also depend on anticommuting parameters.
In a BCJ representation, kinematic numerators obey the

same generic algebraic relations as the color factors
[3,4,11,42]. For theories with only fields in the adjoint
representation there are two properties. The first property is
antisymmetry under graph vertex flips:

cī ¼ −ci ⇒ nī ¼ −ni; ð2:3Þ

where the graph ī has same graph connectivity as graph i,
except an odd number of vertices have been cyclically
reversed. The second property is the requirement that all
Jacobi identities are satisfied,

ci þ cj þ ck ¼ 0 ⇒ nBCJi þ nBCJj þ nBCJk ¼ 0; ð2:4Þ

where i, j, and k refer to three graphs which are identical
except for one internal edge. For example at four points the
color factors of the three diagrams listed in Fig. 1 obey the
Jacobi identity.
Once corresponding gauge-theory loop integrands have

been arranged into a form where the duality is manifest
[3,4], it is then easy to obtain gravity loop integrands:
one simply replaces the color factors of a gauge-theory
integrand with the kinematic numerators of another gauge-
theory integrand,

ci → ~ni: ð2:5Þ

This immediately gives the double-copy form of a gravity
tree amplitude,

Mtree
m ¼ i

�
κ

2

�
m−2 X

j∈Γ3;m

~njnj
Dj

; ð2:6Þ

where κ is the gravitational coupling and ~nj and nj are the
kinematic numerator factors of the two gauge theories.
Only one of the two sets of numerators needs to manifestly
satisfy the duality (2.4) [4,24] in order for the double-copy
form (2.6) to be valid.

2. Ordered partial amplitudes

The color factors, ci in Eq. (2.1), can be expressed in a
color-trace basis. Collecting associated kinematic factors
yields,

Atree
m ¼ gm−2

X
ρ∈Sm−1

TrðTρ1Tρ2…TρmÞAtree
m ðρ1; ρ2;…; ρmÞ;

ð2:7Þ

where the sum runs over the set Sm−1 of noncyclic
permutations. The Atree

m ðρÞ are called color-ordered partial
amplitudes. The terminology ordered refers to the fact that
all graphs contributing to any given Atree

m ðρÞ have the same
ordering or external legs as the cyclic ordering of the color
trace TrðρÞ. We can write the color-ordered amplitudes in
terms of graphs via

Atree
m ð1; ρ2;…; ρmÞ ¼

X
i∈Γρ

ni
Di

; ð2:8Þ

FIG. 1. The three diagrams with only cubic vertices contrib-
uting to a four-point tree amplitude.
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where Γρ refers to the graphs with cubic vertices where the
legs are ordered following the color ordering.
The partial-ordered amplitudes in Eq. (2.7) are not

independent and can be reduced to a sum over ðm − 2Þ!
partial amplitudes using color-Jacobi identities [54]

Atree
m ¼ gm−2

X
ρ∈Sm−2

cð1jρ2;…; ρm−1jmÞ

× Atree
m ð1; ρ2;…; ρm−1; mÞ; ð2:9Þ

where cð1jρ2;…; ρm−1jmÞ is the color factor of the half-
ladder diagram in Fig. 2. Replacing cð1jρjmÞ by a color-
dual kinematic numerator of the same half-ladder graph
nBCJð1jρjmÞ, and taking into account the appropriate ratio
of coupling constants indeed yields another representation
of gravity tree amplitudes [24]:

Mtree
m ¼ i

�
κ

2

�
m−2 X

ρ∈Sm−2

~nBCJð1jρ2;…; ρm−1jmÞ

× Atree
m ð1; ρ2;…; ρm−1; mÞ: ð2:10Þ

3. KLT relations

The KLT relations [50] give direct relations between
gravity and gauge-theory tree amplitude. The KLT for-
mulas can be obtained from BCJ duality, by using Jacobi
identities to express all kinematic numerators in Eq. (2.8) in
terms of a basis of ðm − 2Þ! numerators, called master
numerators. One can then (pseudo)invert the relationship
between a minimal basis of ðm − 3Þ! independent ordered
amplitudes to solve for the master numerators in terms of
partial amplitudes. Indeed, the availability of a color-dual
form for kinematic numerators is responsible for the
reduction to a basis of ðm − 3Þ! [3]. As the propagator
matrix is singular, such pseudoinversions are not unique, so
there are many possibilities.
The first such formula valid for an arbitrary number of

legs was given in Appendix A of Ref. [52]. It remains as a
particularly sparse and efficient form, so we use it for
directly constructing gravity unitarity cuts. The tree-level
relation is

Mtree
m ð1; 2;…; mÞ ¼ ið−1Þmþ1

�
κ

2

�
m−2

�
Atree
m ð1; 2;…; mÞ

X
perms

fði1;…; ijÞf̄ðl1;…; lj0 Þ

× ~Atree
m ði1;…; ij; 1; m − 1; l1;…; lj0 ; mÞ

�
þ Permð2;…; m − 2Þ; ð2:11Þ

where Am and ~Am are twom-point gauge-theory amplitudes
from each of the two copies. The sum is over all
permutations fi1;…; ijg ∈ Permf2;…; ⌊m=2⌋g and
fl1;…; lj0g ∈ Permf⌊m=2⌋þ 1;…; m − 2g with j ¼
⌊m=2⌋ − 1 and j0 ¼ ⌊m=2⌋ − 2, which gives a total of
ð⌊m=2⌋ − 1Þ! × ð⌊m=2⌋ − 2Þ! terms inside the square
brackets. The notation “þPermð2;…; m − 2Þ” signifies a
sum over the expression for all permutations of legs
2;…; m − 2. The functions f and f̄ are given by

fði1;…; ijÞ ¼ s1;ij
Yj−1
m¼1

�
s1;im þ

Xj

k¼mþ1

gðim; ikÞ
�
;

f̄ðl1;…; lj0 Þ ¼ sl1;m−1

Yj0
m¼2

�
slm;m−1 þ

Xm−1

k¼1

gðlk; lmÞ
�
;

ð2:12Þ

and

gði; jÞ ¼
�
si;j if i > j;

0 otherwise:
ð2:13Þ

By applying BCJ amplitude relations [3], many different
versions of KLT relations can be constructed [26], includ-
ing a tidy recursive definition [40]. The general form of the
KLT relations in terms of a basis of gauge-theory ampli-
tudes may be written as

Mtree
m ¼ i

�
κ

2

�
m−2

×
X

τ;ρ∈Sm−3

KðτjρÞ ~Atree
m ð1; ρ2;…; ρm−2; m; ðm − 1ÞÞ

× Atree
m ð1; τ2;…; τm−2; ðm − 1Þ; mÞ; ð2:14Þ

where the sum runs over ðm − 3Þ! permutations of external
legs. The KLT matrix KðτjρÞ, indexed by the elements of
the two permutation orderings of the relevant partial

FIG. 2. A half-ladder tree graph, used to define the color factor
in Eq. (2.9).
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amplitudes, also called a momentum kernel, depends only
on momentum invariants arising from inverse propagators.
Not only do the various versions of KLT kernels follow

from color-kinematics duality, but a comparison of

Eqs. (2.10) and (2.14) gives a useful nonlocal representa-
tion of color-dual BCJ numerators from color-ordered
partial amplitude [25,26]. This gives a set of explicit
nonlocal BCJ numerators,

nBCJð1jτ2;…; τm−2; τm−1jmÞ ¼
8<
:

P
ρ∈Sm−3

KðτjρÞAtree
m ð1; ρ2;…ρm−2; m; ðm − 1ÞÞ; if τm−1 ¼ m − 1;

0; if τm−1 ≠ m − 1:
ð2:15Þ

In this formula the permutations of (m − 2) legs of the half
ladder is effectively reduced to a permutation sum over
(m − 3) legs, because some of the numerators vanish.
Numerators of diagrams which are not of the half-ladder
form in Fig. 2 follow from the dual Jacobi relations (2.4).
Equation (2.15) is useful below to derive KLT forms of
unitarity cuts from BCJ forms.

B. Method of maximal cuts

We now review the method of maximal cuts [2] applied
to building a double-copy gravity integrand. The method of
maximal cuts is a refinement of the generalized unitarity
method [1]. We organize the maximal cut method in a
constructive way, assigning new contributions to new
contact diagrams as one proceeds (for recent examples,
see Refs. [16,55]). In subsequent sections we will describe
how to make this procedure efficient for gravity theories at
high loop orders, by recycling gauge-theory results.
The method of maximal cuts [2] constructs multiloop

integrands from generalized unitarity cuts. These cuts
cluster in levels according to the number of internal
propagators k allowed to remain off shell,

CN
kMC ¼

X
states

Atree
mð1Þ � � �Atree

mðpÞ;

k≡Xp
i¼1

mðiÞ − 3p; ð2:16Þ

where the Atree
mðiÞ are tree-level mðiÞ-multiplicity amplitudes

corresponding to the blobs, illustrated in Figs. 3 and 4. This
is valid for either gauge or gravity amplitudes. In the

gauge-theory case, the state sum also includes sums over
internal color. As illustrated in the first diagram in Fig. 3, at
the maximal cut (MC) level the maximum number of
propagators are replaced by on shell conditions and all tree
amplitudes appearing in Eq. (2.16) are three-point ampli-
tudes. At the next-to-maximal-cut (NMC) level a single
propagator is placed off shell and so forth. We will
categorize different cuts at level k by the contained tree
amplitudes with four or more legs: an m1 ×m2 × � � � ×mq

cut contains one tree amplitude with m1 legs, one with m2

legs and so forth.
In the method of maximal cuts, the integrands for L-loop

amplitudes are obtained by first establishing an integrand
whose maximal cuts are correct, then adding to it terms so
that NMCs are all correct and systematically proceeding
through the nextk maximal cuts (NkMCs), until no further
contributions can be found. Where this happens is dictated
by the power counting of the theory and by choices made at
each level. For example, if a minimal power counting is
assigned to each contribution, forN ¼ 4 super-Yang-Mills
four-point amplitudes, cuts through NMCs, N2MCs, and
N3MCs are sufficient at three [4], four [11], and five loops
[44], respectively.
Most previous calculations (see e.g., Refs. [10–15,

37,43]) found it convenient to organize the results in terms
of purely cubic diagrams, assigning all higher-order miss-
ing NkMC data to the parent graphs with only cubic
vertices, such as the five-loop ones illustrated in Fig. 5.
Representations with only cubic diagrams have useful
advantages: they are useful for establishing minimal power
counting in each diagram, and the number of graphs used
to describe the result proliferate minimally with loop

FIG. 3. Sample maximal and next-to-maximal cuts that are determined by the naive double copy. The exposed lines connecting the
blobs are on shell. The labels refer to those used in the Mathematica attachment [45].
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order and multiplicity.1 A disadvantage is that Ansätze are
required to impose the higher-order data on each graph
while respecting power counting, symmetry, and the
multiple unitarity cuts to which a given diagram contrib-
utes. As the loop order increases, it becomes cumbersome
to solve the requisite system of equations that imposes
these constraints.

C. Naive double copy and contact diagram corrections

For our purposes of constructing the five-loop four-point
integrand, it is better to directly assign new cut data to
contact graphs in one-to-one correspondence to the NkMC,
as in the original method of maximal cuts construction [2],

avoiding Ansätze for the amplitudes. We now describe this
organizational principle in the context of obtaining high-
loop-order gravity integrands.
The starting point in our gravity construction is a gauge-

theory integrand, whose terms are assigned to only graphs
with cubic vertices. The actual gauge-theory amplitude
would be given:

AL-loop
m ¼ iLg2Lþm−2

X
Sm

X
i∈Γ3;m;L

Z YL
j

dDlj
ð2πÞD

1

Si

cini
Di

;

ð2:17Þ
where the first sum runs over the set Sm of external leg
permutations. The second sum runs over the set of diagrams
Γ3;m;L with only three vertices, m external points and L

FIG. 4. Sample NkMCs for a five-loop four-point amplitude. The exposed lines connecting the blobs are on shell. The labels refer to
those used in the Mathematica attachment [45].

1Though still factorially.
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loops. The symmetry factors Si for each diagram i remove
overcounts, including those arising from internal auto-
morphism symmetries with external legs fixed. As in
Sec. II A, the color factors ci of all graphs are obtained
by dressing every three-vertex in the graph with a factor of
~fabc ¼ Trð½Ta; Tb�TcÞ, where the gauge group generators
Ta are normalized via TrðTaTbÞ ¼ δab. As before, the
gauge coupling is g. The kinematic numerators, ni, are
functions of momenta, spinors, and polarization vectors. As
usual, the 1=Di signify the product of Feynman propagators
of diagram i.
Our construction starts with a naive double copy, which

we call the “level 0” or “top-level” contribution,

ML-loop
m ¼ iLþ1

�
κ

2

�
2Lþm−2X

Sm

X
i∈Γ3;m;L

Z YL
j

dDlj
ð2πÞD

1

Sð0Þi

Nð0Þ
i

Di
;

ð2:18Þ

where the level 0 numerators are just double copies of
gauge-theory numerators,

Nð0Þ
i ¼ ni ~ni: ð2:19Þ

If the gauge-theory ni satisfy the BCJ relations (2.4), then
we have the complete gravity integrand and we would be
done [4]. However, when the gauge-theory integrand (2.17)

does not manifest BCJ duality, our naive double copy
requires corrections to become a gravity integrand,
as we can systematically determine by evaluating gener-
alized cuts.
First we should note that all maximal cuts (MCs) and all

next to maximal cuts (NMCs) will be automatically
satisfied by our naive double copy. The reason is that
on-shell (D-dimensional) supergravity three-point ampli-
tude is just the square of theN ¼ 4 super-Yang-Mills ones,

MN¼8 tree
3 ð1; 2; 3Þ ¼ i

κ

2
½AN¼4 tree

3 ð1; 2; 3Þ�2; ð2:20Þ

for all states of the theory. All NMCs are also automatically
satisfied because color-kinematics duality automatically
holds for the four-point tree amplitudes [3]. Examples of
MCs and NMCs are given in Fig. 3.
Starting with the N2MCs, the cuts of the naive-double

copy no longer generically match the actual cuts of the
double-copy gravity theory. Because the naive double copy
automatically gives the correct MCs and NMCs, the
correction terms are necessarily contact terms involving
two or more collapsed propagators. The cut conditions are
then solved starting from the N2MCs and proceeding
towards the higher k NkMCs. At each new cut level the
only new information is captured by contact terms as
illustrated in Fig. 6. Figure 7 displays the contact diagrams

FIG. 5. Examples of parent diagrams used in the naive double copy. These are diagrams with only cubic vertices and 16 propagators
carrying loop momentum. In our construction of the five-loop four-point amplitude of N ¼ 8 supergravity there are a total of 410 such
nonvanishing diagrams. The labeling ð0∶jÞ indicates that it is a level 0 diagram with no collapsed propagators and j is the diagram
number, following the labels in the Mathematica attachment.
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representing the new information contained in the gener-
alized cuts of Fig. 4.
The contact terms are defined as differences between a

cut of the complete gravity amplitude and the cut of our
partially-constructed gravity amplitude. The gravity gen-
eralized cuts can in principle all be obtained by plugging
gravity tree amplitudes obtained from the KLT tree rela-
tions into Eq. (2.11) into the generalize cut (2.16), although
this is rather inefficient. We also define an incomplete
integrand Ik given by starting from the naive double copy
and including all contact terms through level (k − 1). At
any level k we define the incomplete integrand to be the
sum over all diagrams from level zero to level (k − 1),

I ðkÞ ¼
Xk−1
l¼0

X
Sm

X
il

1

SðlÞil

NðlÞ
il

DðlÞ
il

; ð2:21Þ

where the sum over l is over the contact term levels up to
level k − 1 and the sum over il is over diagrams at level l.

The NðlÞ
i , SðlÞi and DðlÞ

i are respectively the numerators,
symmetry factors and kinematic denominators for diagram
i at level k. As usual the sum over Sm represents the sum
over the m! permutations of external legs. The kinematic
denominators are composed of products of Feynman
propagators for each diagram.
Starting from the gravity cut, CN

kMC, and subtracting
from it the cut of the incomplete integrand (2.21), gives us
the missing piece in the cut,

KNkMC ¼ CN
kMC − IkjNkMC; ð2:22Þ

where a NkMC is taken. This difference can be assigned to
a contact diagram because all the nonlocal contributions are
accounted for at earlier levels. In this way for each cut for
k ≥ 2 there is a contact term diagram, as illustrated in
Fig. 6. See also Fig. 7 for examples of contact diagrams that
are in one-to-one correspondence to the generalized uni-
tarity cuts in Fig. 4.
We promote these contact terms to off-shell expressions

simply by removing all on-shell constraints,

KNkMC → KNkMCjoff-shell: ð2:23Þ

This then defines a level-k contact term assigned to a given
graph, as illustrated in Fig. 6. We take the final contact
diagram to be one where no cut conditions are imposed.
Each nonvanishing contact graph generated this way is then
incorporated into the partially constructed integrand. The
generated contact diagram is not unique because one can
add or subtract terms that vanish prior to releasing the cut
conditions. An important constraint is that the constructed
contact terms should always respect diagram symmetry,
even after on-shell constraints are removed. A simple way
to impose the symmetry on an arbitrary off-shell continu-
ation is to explicitly average over all diagram symmetries.
Different choices of off-shell continuations can alter
higher-level contact terms. An important feature of this
construction is that each contact term depends only on
choices made at previous lower-k levels.
The construction proceeds level by level in the cuts until

no further contact terms are found. Where this happens is
dictated by the power counting of the gravity theory.2

In general, Eq. (2.22) can be quite complicated to
simplify, especially when the gravity cut is obtained
from the KLT version of generalized cuts. It however is
an efficient means to generate expressions for numerical
evaluation. Far more efficient ways to analytically
generate these contributions will be described in
Secs. III–V.
The final amplitude is obtained at the end of this process,

when we reach a level kmax in the incomplete integrand
(2.21) beyond which there are no further nonvanishing
contributions. After assembling the naive double copy and
contact diagrams the resulting gravity amplitude is obtained
by summing over all nonvanishing levels and integrating,

ML-loop
m ¼ iLþ1

�
κ

2

�
2Lþm−2

×
Xkmax

l

X
Sm

X
i

Z YL
j

dDlj
ð2πÞD

1

SðlÞi

NðlÞ
i

DðlÞ
i

; ð2:24Þ

where kmax is the highest level containing nonvanishing
diagrams.

D. Double copy and gravity unitarity cuts

In order to use Eq. (2.22) to obtain the missing contact
diagram, we need efficient means to obtain the gravity cuts.
In this subsection we explain how gauge-theory generalized
cuts can be converted directly to gravity cuts, without
having to go back to gravity tree amplitudes via the KLT
relations (2.11). Once these steps have been carried out in
the corresponding gauge-theory amplitudes we simply
recycle them into gravity. This bypasses the nontrivial

FIG. 6. After subtracting contributions from lower cut levels, as
in Eq. (2.22), only a local contact term remains.

2For the five-loop four-point amplitude ofN ¼ 8 supergravity
no new contact terms are found beyond level k ¼ 6.
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steps of having to perform state sums [56] ensuring that
results are valid in D-dimensions [57].
Consider a generalized unitarity cut in Eq. (2.16) and

Fig. 4 for gauge theory. We can express each tree amplitude
in terms of diagrams with only cubic vertices as in
Eq. (2.1),

CYM ≡ X
states

Yp
j¼1

Atree
mðjÞ ¼

X
states

Yp
j¼1

X
gðjÞ∈Γ3;mðjÞ

cgðjÞngðjÞ
DgðjÞ

;

ð2:25Þ
where j specifies the tree amplitude, gðjÞ represents a graph
of the jth tree amplitude from the set of graphs Γ3;mðjÞ,
including the trivial three-vertex for the three-point ampli-
tude. For simplicity we have suppressed the coupling

constants here and in all subsequent formulas for gener-
alized cuts. The denominators 1=DgðjÞ are composed of the
Feynman propagators of the graph gðjÞ.
By applying the color decomposition in Eq. (2.9) to each

tree amplitude we obtain a color-decomposed form of the
unitarity cut,

CYM ¼
X
states

Yp
j¼1

X
ρðjÞ∈SmðjÞ−2

cðρðjÞÞAtree
mðjÞðρðjÞÞ; ð2:26Þ

where ρðjÞ refers to the arguments in Eq. (2.9), but for
the jth tree. The permutation SmðjÞ−2 act on ðmðjÞ − 2Þ
of the legs of the jth tree amplitude. For three-point trees
the permutation sum is trivial. As before, the internal color
indices are included in the state sum.

FIG. 7. Contact diagrams corresponding to each Nk-maximal cut in Fig. 4 cuts for k ¼ 2;…; 6. The exposed lines are off shell in
this figure.
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Now consider generalized gravity cuts. A crucial prop-
erty is that the states of double-copy theories factorize into
the outer product of states of their constituent single-copy
theories. In particular, for N ¼ 8 supergravity in four
dimensions, every gravity state is indexed by “left” and
“right” N ¼ 4 super-Yang–Mills states:

ðN ¼ 8 SG stateÞ ¼ ðN ¼ 4 sYM stateÞL
⊗ ðN ¼ 4 sYM stateÞR: ð2:27Þ

In fact, the state sum over the entire supergravity multiplet
is a double-sum over the entire super-Yang-Mills multiplet,

X
N¼8 SG
states

¼
X

N¼4 sYM
L-states

×
X

N¼4 sYM
R-states

: ð2:28Þ

This holds in D ≤ 10 dimensions where N ¼ 4 super-
Yang-Mills theory is defined as a dimensional reduction of
the D ¼ 10, N ¼ 1 theory.
Each gravity tree amplitude in the cut, such as those in

Fig. 4, can be arranged into a BCJ double-copy form

CGR ≡ X
states

Yp
j¼1

Mtree
mðjÞ ¼ ip

X
statesL

X
statesR

Yp
j¼1

X
gðjÞ∈Γ3;mðjÞ

nBCJgðjÞ ~n
BCJ
gðjÞ

DgðjÞ
;

ð2:29Þ

where we have suppressed the gravitational coupling and
nBCJ and ~nBCJ are kinematic numerators of the left and right
gauge theories. For each tree amplitude one can always find
BCJ forms for the numerators. For example, the explicit
BCJ numerators in Eq. (2.15) for each tree amplitude
immediately give the gravity amplitude starting from a
gauge-theory amplitude.
We can then rearrange the cut into a KLT form, using the

tree-level results from the previous subsection. Given that
BCJ form of the numerators have exactly the same
algebraic properties as color factors, we write the cut in
precisely the same form as the color decomposed gauge-
theory cut (2.15)

CGR ¼ ip
X
states

Yp
j¼1

X
ρðjÞ∈SmðjÞ−2

~nBCJðρðjÞÞAtree
mðjÞðρðjÞÞ; ð2:30Þ

where the numerator is that of the half-ladder diagram
specified in Fig. 2. In this formula the numerators
nBCJðρðjÞÞ correspond to the half-ladder diagrams with
an ordering of legs specified by the permutation ρðjÞ.
Here the tree subscripts mðjÞ encode the multiplicity of
the jth tree, and m and L are the overall multiplicity and
loop order of the amplitude. Plugging in the specific BCJ
numerators in Eq. (2.15) reduces each permutation sum

from acting on ðmðjÞ − 2Þ legs to ðmðjÞ − 3Þ legs, given
the numerator vanishings in Eq. (2.15).
Substituting in the explicit expression for BCJ numer-

ators in Eq. (2.15) immediately gives the KLT form of the
gravity generalized cut,

CGR¼ ip
X
states

Yp
j¼1

X
ρðjÞ;τðjÞ∈SmðjÞ−3

KðρðjÞjτðjÞÞAtree
mðjÞðρðjÞÞ ~Atree

mðjÞðτðjÞÞ

¼ ip
X
ρ⃗;τ⃗

Kðρ⃗jτ⃗Þ
�X

statesL

Atree
mð1Þðρð1ÞÞ���Atree

mðpÞðρðpÞÞ
�

×

�X
statesR

~Atree
mð1Þðτð1ÞÞ��� ~Atree

mðpÞðτðpÞÞ
�
; ð2:31Þ

where we have suppressed overall factors of the ðκ=2Þ
gravitational coupling and

Kðρ⃗jτ⃗Þ≡ Kðρð1Þjτð1ÞÞ � � �KðρðpÞjτðpÞÞ; ð2:32Þ

and we used the factorization of the state sums as in
Eq. (2.27). For each gauge-theory tree amplitude, the
permutation sum follows that in Eq. ([50]). For the three-
and four-point cases the permutation sum is a single term.
Equation (2.31) allows us construct gravity generalized

unitarity cuts from corresponding gauge-theory tree ampli-
tudes. However, it is much more efficient to apply
Eq. (2.31) directly to cuts of previously constructed
gauge-theory loop amplitudes, rather than using tree
amplitudes. That is, we take Eq. (2.31) as a recipe for
assembling color-ordered gauge-theory cuts into gravity
cuts. In this way the states sums, and other simplifications,
are automatically inherited from the gauge-theory loop
integrands. Another enormous technical advantage is that
we need the cuts and the constructed loop integrand to be
valid in D dimensions, not just in four dimensions. In
particular, explicit checks confirm the validity of the five-
loop four-point amplitude ofN ¼ 4 super-Yang-Mills [44]
forD ≤ 6 [57]. This is then automatically imported into the
corresponding N ¼ 8 supergravity amplitude. It is of
course crucial to guarantee the validity of the expressions
outside of D ¼ 4 dimensions, given we are interested
primarily in its ultraviolet behavior in higher dimensions.
Unfortunately, even after applying Eq. (2.31) to convert

cuts of gauge-theory loop amplitudes, the analytic expres-
sions inherited from the KLT construction are rather
complicated. This makes it difficult to simplify analytically
the contact terms in Eq. (2.22) at high loop orders.
However, it does provide a rather efficient means for
numerically evaluating any cut, by first numerically evalu-
ating the gauge-theory unitarity cuts and then carrying out
the matrix multiplication in Eq. (2.31) numerically. This
will prove very useful in Sec. VI, where the five-loop four-
point amplitude on N ¼ 8 supergravity is constructed.
While the numerical analysis is quite helpful, especially for
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confirming the correctness of expressions, the required
Ansätse are impractical. Much more efficient means for
analytically constructing gravity contact terms are given in
the next sections.

III. CONTACT TERMS FROM BCJ DUALITY

In the previous section we reviewed a constructive
method for building up a supergravity amplitude starting
from a naive double copy of a corresponding gauge-theory
amplitude. However, it is still nontrivial to extract the
contact terms at high loop orders, given the analytic
complexity of generalized cuts obtained as obtained from
Eq. (2.31). To deal with this, Ref. [16] outlined a method
for obtaining correction terms to the naive double copy
directly from corresponding gauge-theory expressions,
without having to construct gravity unitarity cuts. This
enormously simplifies the task. Here we elaborate on the
details of this method.

A. Overview of gravity cuts from BCJ
discrepancy functions

As noted in the previous section, at high loop orders it
can be difficult to find representations of the amplitudes
that manifest BCJ duality. Instead, we start from the “naive
double copy” in Eq. (2.18), obtained by replacing the color
factors with numerators that do not satisfy the duality, and
correct it until it reproduces all the generalized cuts of the
gravity amplitude. The properties of three- and four-point
gauge-theory amplitudes guarantee that the naive double
copy has the correct maximal and next-to-maximal cuts.
The method of maximal cuts provides a means to system-
atically construct the contact terms corresponding to the
NkMC with k ≥ 2.
The building blocks for the corrections terms are BCJ

discrepancy functions, which are defined in terms of the
violation of BCJ duality by a given representation of the
gauge-theory amplitude,

J ¼ ni þ nj þ nk; ð3:1Þ

where graphs i, j, and k are a Jacobi triplet of graphs, as in
Eq. (2.4). As already noted in Ref. [16], we find that the
corrections are quadratic in the discrepancy functions

EGR ∼
X
a;b

gabJaJ̃b; ð3:2Þ

where Ja and J̃a are discrepancy functions from the two
gauge-theory copies and gab are appropriate rational
functions of kinematic invariants.
The bilinear structure of the correction terms in Eq. (3.2)

is suggested by the fact that the corrections should all
vanish if BCJ duality were manifest in either the first or
second copy. A further heuristic argument for the

bilinearity of EGR in discrepancy functions relies on an
understanding of the structure of the terms that need to be
added to the naive double copy in order to restore linearized
diffeomorphism invariance. Since diffeomorphism invari-
ance of the double-copy theory is related to the gauge
invariance of the two single copies [3,21,24,58,59], we first
explore the latter. At loop level gauge invariance may
require nontrivial changes of variables; we avoid this
difficulty by restricting the integrand to its generalized
cuts, which are given in terms of tree-level amplitudes. To
mimic the properties of the naive double copy we suspend
enforcing the color-Jacobi identities. Then, under a gauge
transformation of the first gluon,

εμ1 ↦ εμ1 þ kμ1; ð3:3Þ
the color-dressed cut of a gauge-theory amplitude shifts by

δAjcut ¼
X
fi;j;kg

gijkðε̂1; ε2;…; p1;…Þðci þ cj þ ckÞjcut;

ð3:4Þ
where jcut denotes that cut conditions are imposed and the
hat means that ε1 is absent [having been replaced by p1, per
Eq. (3.3)]. The sum runs over the triplets of graphs i, j, k
such that, under Jacobi relations,

ci þ cj þ ck ¼ 0: ð3:5Þ
The gijk are rational functions of all momenta and polari-
zation vectors except that of the first gluon.
In gravity the scattering amplitudes also enjoy an on-

shell gauge invariance. They must be invariant under

εμν1 ↦ εμν1 þ kμ1ε
ν
1; where ε1 · k1 ¼ 0; ð3:6Þ

and

εμν1 ↦ εμν1 þ kν1 ~ε
μ
1; where ~ε1 · k1 ¼ 0; ð3:7Þ

which capture both linearized diffeomorphism and the
gauge symmetry of the antisymmetric tensor field. If we
start from the BCJ double-copy construction, and as for the
gauge-theory case suspend enforcing the Jacobi relations,
the variation of the double-copy cut under the gauge
transformation is then

δMnaivejcut ¼
X
fi;j;kg

gijkðε̂1;ε2;…;p1;…Þð ~niþ ~njþ ~nkÞjcut

þ
X
fi;j;kg

~gijkð ~̂ε1; ~ε2;…;p1;…ÞðniþnjþnkÞjcut;

ð3:8Þ

where cut conditions are imposed as in the gauge-theory
case. Thus, to restore the linearized diffeomorphism invari-
ance we must add terms whose gauge transformation
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cancels δMnaivejcut to the naive double copy. The variation
of a contribution quadratic in the discrepancies J, as in
Eq. (3.2), would be of the right form to cancel the unwanted
contributions (3.8).

B. Defining BCJ discrepancy functions

Following Ref. [16], we introduce some notation for
tracking different contributions and for tracking kinematic
Jacobi relations. Consider a cut (2.25) of a gauge-theory
amplitude. We can expand each tree amplitude that com-
poses the cut in terms of diagrams with only cubic vertices
and then use the labels of each tree diagram to label our
numerators,

CYM ¼
X

i1;…;iq

ci1;i2;…;iqni1;i2;…;iq

Di1…Diq

; ð3:9Þ

where as usual we drop factors of the coupling and where
the ci1;i2;…iq and ni1;i2;…iq and are the color factors and
kinematic numerators associated with each cut diagram.
Each index corresponds to a diagram of a tree amplitude
contained in the cut with four or more legs. Labels for the
three-point tree amplitude are not included since there is
only a single fixed vertex for each in a given cut. (The
three-point amplitudes in the cut also do not play a direct
role in the describing BCJ discrepancy functions.) The
indices follow an ordering, 1;…; q, of these amplitude
factors, and an ordering of the graphs contributing to each
such factor. For an m1 ×m2 � � � ×mq cut, the index iv runs
over the ð2mv − 5Þ!! diagrams in the vth tree amplitude.
That is, for four-point tree amplitudes the index im runs
from 1 to 3, for five-point tree amplitudes from 1 to 15, for
six-point tree amplitudes from 1 to 105 and so forth. The
1=Div are products of Feynman propagators for graph iv of
the vth tree amplitude in the cut.
Generic representations of cut amplitudes do not satisfy

the Jacobi relations. To track the violations of a kinematic
Jacobi relation on the λAth propagator of graph A of vth
amplitude factor, we employ a notation similar to that in
Eq. (3.9):

Ji1;…;iv−1;fA;λAg;ivþ1;…;iq ¼ sAni1;…;iv−1;A;ivþ1;…;iq

þ sBni1;…;iv−1;B;ivþ1;…;iq

þ sCni1;…;iv−1;C;ivþ1;…;iq ; ð3:10Þ

where graphsB andC are connected to graph A by the color
Jacobi relation on the λAth propagator of graph A. The
relative signs sA, sB and sC between terms are taken to be
those of the corresponding color-Jacobi relation. As for the
numerators, the indices refer to the diagram number in each
amplitude contributing to the cut.
To simplify the notation whenever the vth amplitude

factor is a four-point tree amplitude, so that graph A has

only a single propagator, we simplify the notation by
suppressing the index completely, because for a four-point
tree amplitude each graph has a single propagator, we can
always choose the signs to be all positive, and the Jacobi
identity is the same one independent of whether we choose
diagram A, B, or C:

Ji1;…;iv−1;•;ivþ1;…;iq

≡ Ji1;…;iv−1;fA;λAg;ivþ1;…;iq ; tree v is four point: ð3:11Þ

To make the notation systematic, including also relative
signs in the Jacobi relations, we define functions that
organize the graphs in Jacobi triplets A, B, C, connected by
Jacobi transformations around propagator λA of diagram A:

tðA; λAÞ ¼ fA;B;Cg
and sðA; λAÞ ¼ fsA; sB; sCg; ð3:12Þ

such that

sAcA þ sBcB þ sCcC ¼ 0; ð3:13Þ
where cA, cB, and cC are the color factors of diagrams A, B
and C. The triple fsA; sB; sCg simply gives the signs in the
Jacobi relation. Of course, the overall sign of the function s
is arbitrary, and we will always choose sA ¼ 1.
The BCJ discrepancy functions associated to a (con-

nected) tree-level graph or to a connected component of a
cut are then defined as

JfA;λAg ¼ sðA; λAÞ1nA þ sðA; λAÞ2nB
þ sðA; λAÞ3nC; ð3:14Þ

where the sðA; λAÞ1, sðA; λAÞ2 and sðA; λAÞ3 are the three
components of the triplet of signs in the Jacobi relation
(3.12). As usual, the momenta in the numerators are
expressed in terms of the momenta common to the three
graphs. More formally, the discrepancy functions are
defined as

J⃗ ¼ σ · n⃗; ð3:15Þ
where n⃗ is the vector of kinematic numerators and the
matrix σ is defined as

σfj;λjg
i

¼
�
si if i¼ tðj;λjÞ1 or i¼ tðj;λjÞ2 or i¼ tðj;λjÞ3;
0 otherwise:

ð3:16Þ

This matrix has ðmp − 3Þð2mp − 5Þ!! rows since everymp-
point tree amplitude has ð2mp − 5Þ!! diagrams with only
cubic vertices and each diagram has ðmi − 3Þ propagators.
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The number of columns in the matrix is just the number of
diagrams in the cut.
For a cut composed of several tree amplitudes, the

analogous matrix is defined as

σ
j1;…;jp−1;jp;jpþ1;…;jq
i1;…;ip−1;fip;lipg;ipþ1;…;iq

¼ δj1i1…δ
jp−1
ip−1

σfip;lipg
jpδ

jpþ1

ipþ1
δ
jq
iq
;

ð3:17Þ
where the index p runs from 1 to q, i.e. over all tree
amplitudes in the cut.

C. Contact terms and properties of generalized
gauge transformations

For any field theory, like the maximally supersymmetric
gauge theory, for which BCJ representations are known to
exist for all tree amplitudes, any generalized cut that
decomposes a loop integrand into a sum of products of
tree amplitudes can be written as

CGR ¼
X

i1;…;iq

nBCJi1;i2;…iq
~nBCJi1;i2;…iq

Di1…Diq

; ð3:18Þ

where the nBCJ and ~nBCJ are the BCJ numerators associated
with each of the two copies. The notation for the indices is
the same as in Eq. (3.9). These numerators are related to
those of an arbitrary representation, such as that in
Eq. (3.9), by a generalized gauge transformation,

ni1;i2;…iq ¼ nBCJi1;i2;…iq
þ Δi1;i2;…iq : ð3:19Þ

The only constraint on the shiftsΔ is that the corresponding
cut of the gauge-theory amplitude is unchanged, that is

X
i1;…;iq

Δi1;i2;…iqci1;i2;…iq

Di1…Diq

¼ 0: ð3:20Þ

Using this constraint and the properties of the BCJ
numerators, it is not difficult to see that the cut CGR of
the gravity amplitude can be written as

CGR ¼
X

i1;…;iq

ni1;i2;…iq ~ni1;i2;…iq

Di1…Diq

þ EGR: ð3:21Þ

Indeed, the first term is, clearly, the corresponding cut of
the naive double copy while the extra contribution EGR is

EGR ¼ −
X

i1;…;iq

Δi1;i2;…iq
~Δi1;i2;…iq

Di1…Diq

; ð3:22Þ

where the Δ and ~Δ are the shifts associated with each of the
two copies. The cross terms ðnBCJ ~ΔÞ and ð ~nBCJΔÞ which
appear when plugging Eq. (3.19) in Eq. (3.18) cancel
because nBCJ and ~nBCJ have the same algebraic properties
as the corresponding color factors.

While Eq. (3.22) gives the extra contribution which
transforms the cut of the naive double copy into the cut of a
gravity amplitude, it is not in a particularly practical form
because of the nontriviality of determining the generalized-
gauge-transformation parameters. The essential step for
efficiently determining these missing pieces is expressing
Eq. (3.22) in terms of the BCJ discrepancy functions J and
J̃, as suggested in Eq. (3.2).
The relation between J⃗ and Δ⃗ follows by multiplying

Eq. (3.19) by the matrix σ defined in Eq. (3.16),

J⃗ ¼ σ · Δ⃗; ð3:23Þ

where Δ⃗ is the vector of shifts (analogous to the vector of
kinematic numerators). We also use the defining property
of BCJ numerators, σ · n⃗BCJ ¼ 0. What makes inverting this
equation difficult is that both the Δs and Js satisfy non-
trivial constraints. While the solution to the constraint
equation for Δs, Eq. (3.20), is generally unenlightening, we
can derive relatively simple formulas for the extra pieces in
terms of an over-complete set of Js [16]. When expressed
in terms of the independent discrepancy functions EGR can
appear without a clear pattern simply because, by applying
the constraint equations, we can easily take an expression
with a simple structure and complicate it. In this and the
next subsections we describe the general structure; in the
next section we give specific case by case solutions that
reveal simple patterns. Since the constraints on the J’s
follow, in part, from the constraints on generalized-gauge-
transformation parameters, we begin by discussing the
latter and postpone the former for the next subsection.
For a cut with a single tree-level amplitude with four or

more external legs (i.e. for q ¼ 1) a solution to Eq. (3.20) is
that

ΔA ¼
X

λA∈DðAÞ
dðλAÞA αfA;λAg; ð3:24Þ

where λA is an element in the set of labels DðAÞ for the

propagators of diagram A. The factor dðλAÞA is the inverse
propagator corresponding to this label. The parameters
αfA;λAg satisfy further constraints,

sðA; λAÞ1αfA;λAg ¼ sðA; λAÞ2αfB;λBg ¼ sðA; λAÞ3αfC;λCg;
ð3:25Þ

where graphs fA; B;Cg and graph propagators fλA; λB; λCg
form the Jacobi triplet. While other solutions may exist, the
one described above has the advantage of being natural for
maintaining the locality of kinematic numerator factors and
making easier to solve Eq. (3.20).3 Equations (3.24) and

3It is worth mentioning that the developments described here
and elaborated on in later sections do not rely on manifest locality
of numerator factors.
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(3.25) ensure that, when Δ is plugged into Eq. (3.20) for
q ¼ 1, its vanishing is an immediate consequence of the
color-Jacobi relations (3.13).4

The solution to Eq. (3.20) for the case of multiple tree
amplitudes each with four or more legs (q > 1) is similar:
one simply repeats the construction above for each of the
tree-level amplitude factors,

Δi1;i2;…iq ¼
Xq
v¼1

X
λv∈DðivÞ

dðiv;λvÞv αi1;…;iv−1;fiv;λvg;ivþ1;…iq ;

ð3:26Þ

where dðiv;λvÞv is the λvth inverse propagator of the ivth
diagram of the vth amplitude. The remaining generalized
gauge invariance constraints relate, as before, the param-
eters corresponding to triplets of graphs connected by
Jacobi relations. If graphs A, B, C belong to the vth blob
then

sðA; λAÞ1αi1;…;iv−1;fA;λag;ivþ1;…ik

¼ sðA; λAÞ2αi1;…;iv−1;fB;λBg;ivþ1;…ik

¼ sðA; λAÞ3αi1;…;iv−1;fC;λCg;ivþ1;…ik : ð3:27Þ

For later convenience it is useful to rewrite Eq. (3.26)
evaluated on the solution to Eq. (3.27) in matrix form,

Δ⃗ ¼ ζ · α⃗independent; ð3:28Þ

where α⃗independent is the vector of independent functions
parametrizing the solution to Eq. (3.27) and ζ is a
(rectangular) matrix whose nonzero entries are (sums of)
inverse propagators.

D. Constraints and properties of BCJ
discrepancy functions

As already mentioned in the previous subsection, the
BCJ discrepancy functions possess certain properties stem-
ming from their presentation in terms of kinematic numer-
ators as well as from their relation to the parameters of the
generalized gauge transformations relating the initial
(generic) numerators to the BCJ numerators. We describe
them here in some detail and outline the steps for inverting
Eq. (3.23) and constructing the extra contributions EGR in
Eq. (3.21) in terms of BCJ discrepancy functions.
Relations between the discrepancy functions arise from

the following sources:
The first source is just a simple overcount arising from

our way of defining the discrepancy functions. For

convenience and symmetry, we define one discrepancy
function for each propagator of each graph. Since Jacobi
relations group graphs in triplets, the BCJ discrepancy
functions are equal (up to overall irrelevant signs) in sets of
three—corresponding to circular permutations of each such
triplet as in Eq. (3.12).
A second source of relations between the J functions is

that they are expressed in terms of kinematic numerators.
To see this, let us consider a cut involving a single m-point
amplitude (and all others being three-point amplitudes).
There are ð2m − 5Þ!! kinematic numerators that are used to
construct ðm − 3Þð2m − 5Þ!!=3 BCJ discrepancy func-
tions.5 For m > 6 the latter is larger than the former and
thus, in this case there must exist relations between Js
coming from them being linear combinations of kinematic
numerators. These are analogous in spirit to the Kleiss-
Kuijf relations for tree-level amplitudes [60]; in that case
the ðn − 1Þ!=2 color-ordered partial amplitudes are
expressed in terms of the kinematic dependence of the
ð2n − 5Þ!! color-dressed graph. The generalization to cuts
with two or more amplitude factors is straightforward.
These relations can be formalized in terms of the matrix

σ introduced above. As stated in Eq. (3.15), the vector of
BCJ discrepancy functions are given by

J⃗ ¼ σ · n⃗: ð3:29Þ

The matrix σ, necessarily has left zero-eigenvectors,

vðkÞ0 · σ ¼ 0; ð3:30Þ

where the vðkÞ0 have numerical entries. All linear relations
with constant coefficients between discrepancy functions
are therefore given by these eigenvectors,

v0 · J⃗ ¼ 0: ð3:31Þ

Among them are, of course, those corresponding to the
triple overcount described above. They correspond to
particularly simple zero eigenvectors, with only two non-
vanishing entries.
A third source of relations between BCJ discrepancy

functions is their expression in terms of the independent
parameters of the generalized gauge transformation con-
necting the generic and color-kinematics-satisfying numer-
ators. The relations JðαÞ are obtained by acting on
Eq. (3.19) with the matrix σ; since σ · n⃗BCJ ¼ 0⃗ and further
using Eq. (3.28) we are left with

J⃗ ¼ σ · ζ · α⃗independent; ð3:32Þ
4We note that for a four-point amplitude the index on α on the

right-hand side is superfluous; in this case all signs can be chosen
to be positive and Eq. (3.25) implies that the three functions are
all equal.

5That is, for each graph and each propagator we construct a J
and we remove the overcount by a factor of 3 described in the
previous paragraph.
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where as before α⃗independent is the vector of independent
functions specifying the generalized gauge parameters.
This is closely related to the discussion in Ref. [61] for
the case of tree amplitudes.
Apart from the left zero-eigenvectors of the matrix σ, the

fact that there are fewer α⃗independent than kinematic numer-
ators implies that the matrix ζ has further left zero-
eigenvectors; for an n-point amplitude factor, the entries
of the relevant vectors involve (n − 1) propagators. In later
sections we shall see examples of such relations.
To summarize, the strategy to solve Eq. (3.23) and to

construct EGR is as follows: we first express the generalized
gauge parameters Δ in terms of the independent ones by
solving (3.19); this leads us to Eq. (3.32). We then choose
as many independent equations from Eq. (3.32) as the
number of components of α⃗independent, solve them, and apply
the solutions to the remaining equations. If the chosen
equations are independent, the remaining equations are the
constraints obeyed by the BCJ discrepancy functions.
Finally, plugging gauge parameters in Eq. (3.22) casts
the extra terms in the form (3.2) with gab being rational
functions of momentum invariants. We may further use the
constraint equations (or their solution) to reorganize the
entries of gab so that kinematic denominators are in one-to-
one correspondence to the graphs with only cubic vertices
that appear in the cut.

IV. FORMULAS FOR LEVEL 2 CONTACT TERMS

In this section we derive formulas for the corrections to
the naive double copy on a case-by-case basis, putting the
results into symmetric forms. We organize the cuts not only
by the level but also by number of legs in each tree
amplitude with more than three legs in the cut. As discussed
already in the previous section, a cut which is composed of
m1; m2;…mq-point tree amplitudes with mj ≥ 4 will be
referred to as an m1 ×m2 × � � � ×mq cut.
As discussed in the previous section, the naive double

copy reproduces the maximal and next-to-maximal cuts of
the corresponding gravity amplitude. Thus, the first cor-
rection term EGR (3.22) is at the N2MC level. Moreover,
since all double (maximal) and single (next-to-maximal)
propagator contributions to such cuts are already accounted
for by the naive double copy, EGR for all N2MCs are local
and gives directly a contact term, without further
subtractions.
We now discuss separately the two classes of N2MCs—

those containing two four-point tree amplitudes and those
containing a single five-point tree amplitude.

A. Two four-point tree amplitudes in cut

Consider a 4 × 4 cut, for which an example is illustrated
in the first cut on the first line of Fig. 4. Each four-point tree
amplitude can be expanded in terms of three four-point
diagrams with only cubic vertices, as illustrated in Fig. 1.

Expanding both tree amplitudes into such diagrams gives a
total of nine diagrams, as illustrated in Fig. 9 (some of
whose numerators may vanish). We label the contributing
graphs—and hence their color and kinematic numerator
factors—by the label of the off-shell propagators they
contain, ci1;i2 and ni1;i2 . The first index refers to the diagram
in the (arbitrarily-chosen) first tree amplitude and the
second index refers to the (remaining) second tree
amplitude. Thus, this cut of the gauge-theory amplitude
is written as

C4×4YM ¼
X3
i1;i2

ni1;i2ci1;i2
dð1Þi1

dð2Þi2

; ð4:1Þ

where 1=dð1Þi1
is the propagator of diagram i1 of the first

four-point tree amplitude factor and 1=dð2Þi2
is the propa-

gator of diagram i2 of the second four-point tree amplitude
factor.
As discussed in the previous section, the construction of

the correction EGR to the naive double copy relies on using
the generalized gauge transformation—i.e. shifts of numer-
ator factors which preserve tree amplitudes and generalized
cuts. For the cut (4.1), the solution (3.26) and (3.27) to the
constraints on these shifts is

Δi1;i2 ¼ ni1;i2 − nBCJi1;i2
¼ dð1Þi1

αð1Þi2
þ dð2Þi2

αð2Þi1
: ð4:2Þ

The form of the generalized gauge transformation in
Eq. (4.2) is chosen so as to maintain locality of the two
numerators ni1i2 and nBCJi1;i2

. With this, the color-Jacobi
identities

X3
i1¼1

ci1i2 ¼ 0;
X3
i2¼1

ci1i2 ¼ 0; ð4:3Þ

ensure that the cut (4.1) is invariant:

X3
i1;i2¼1

Δi1;i2ci1;i2
dð1Þi1

dð2Þi2

¼
X3
i2¼1

αð1Þi2

dð2Þi2

X3
i1¼1

ci1;i2

þ
X3
i1¼1

αð2Þi1

dð1Þi1

X3
i2¼1

ci1;i2 ¼ 0: ð4:4Þ

Thus, the term (3.22) that corrects the N2MC cut of the
naive double copy (3.21) to a gravity cut is

E4×4
GR ¼ −

X3
i1;i2¼1

Δi1;i2
~Δi1;i2

dð1Þi1
dð2Þi2

¼ −
X3
i1;i2¼1

dð1Þi1
dð2Þi2

ðαð1Þi2
~αð2Þi1

þ αð2Þi1
~αð1Þi2

Þ
dð1Þi1

dð2Þi2

; ð4:5Þ
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where we also used that the sum of the inverse propagators
in each four-point amplitude vanishes. The propagators
cancel leaving

E4×4
GR ¼ −

X3
i2¼1

αð1Þi2

X3
i1¼1

~αð2Þi1
−
X3
i1¼1

αð2Þi1

X3
i2¼1

~αð1Þi2
: ð4:6Þ

To rewrite E4×4
GR in terms of BCJ discrepancy functions we

must solve the Eq. (3.23) for this cut. They read

J•;i2 ≡
X3
i1¼1

ni1i2 ¼ dð2Þi2

X
i1

αð2Þi1
;

Ji1;• ≡
X3
i2¼1

ni1i2 ¼ dð1Þi1

X
i2

αð1Þi2
: ð4:7Þ

Similar formulas hold for the J̃. We notice here a mani-
festation of the constraints described in the previous
section: on the one hand the right-hand side depends on
only particular combinations of gauge parameters and on
the other hand existence of solutions to these equations
requires that the BCJ discrepancy functions be related to
each other,

X3
i1¼1

αð2Þi1
¼ J•;1

dð2Þ1

¼ J•;2

dð2Þ2

¼ J•;3

dð2Þ3

;

X3
i2¼1

αð1Þi2
¼ J1;•

dð1Þ1

¼ J2;•

dð1Þ2

¼ J3;•

dð1Þ3

: ð4:8Þ

We therefore find a simple expression of the extra con-
tribution in terms of discrepancy functions,

E4×4
GR ¼ −

1

dð1Þ1 dð2Þ1

ðJ•;1J̃1;• þ J1;•J̃•;1Þ: ð4:9Þ

The relations (4.8) between the discrepancy functions allow
us to write a more symmetric version of the extra
contribution by averaging over all three choices for each
of the two sums of gauge parameters:

E4×4
GR ¼ −

1

9

X3
i1;i2¼1

1

dð1Þi1
dð2Þi2

ðJ•;i2 J̃i1;• þ Ji1;•J̃•;i2Þ: ð4:10Þ

These expressions for the extra contributions are actually
local because J and J̃ are proportional to inverse propa-
gators, as indicated in Eq. (4.7), canceling the propagators.

B. One five-point tree amplitude in cut

The second class of N2MCs contains one five-point tree
amplitude

C5YM ¼
X15
i¼1

nici

dð1Þi dð2Þi

: ð4:11Þ

The sum runs over the 15 five-point tree-level graphs with
only cubic vertices, illustrated in Fig. 8, that build the five-

point tree-level amplitude. Here dðjÞi signifies the jth
inverse propagator of the ith graph. (More generally we
will include an extra upper index on the inverse propagators
to specify which tree amplitude it belongs to, but here we
suppress it because there is only a one five-point tree
amplitude in the cut.) Unlike the case of the two four-point
tree insertions, the two propagators are now correlated. We
use the labeling of diagrams in Fig. 8, corresponding to the
pairs of inverse propagators,

fs34; s15g; fs34; s25g; fs12; s35g; fs12; s45g;
fs34; s12g; fs24; s15g; fs13; s25g; fs24; s35g;
fs13; s45g; fs24; s13g; fs23; s15g; fs14; s25g;
fs14; s35g; fs23; s45g; fs23; s14g; ð4:12Þ

FIG. 8. The 15 diagrams with cubic vertices for the five-point tree amplitude.
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where sij ≡ ðki þ kjÞ2. In each pair, we refer to the first
entry as the “first propagator” and the second entry as the

“second propagator”; that is, dð1Þi is the first entry of the ith

pair and dð2Þi is the second entry of the ith pair.
The gauge transformation (3.24) connecting the

color-kinematics-satisfying numerators to some arbitrary
ones is

Δi ¼ ni − nBCJi ¼ dð1Þi αð1Þi þ dð2Þi αð2Þi : ð4:13Þ

As in the general case discussed in the previous section,
the inverse propagators allow the gauge-theory ampli-
tude to be invariant under generalized gauge trans-
formations through the appearance of the color-Jacobi
relations while also maintaining the locality of numer-

ator factors. The functions αð1Þi and αð2Þi are not inde-
pendent; rather, they are linearly related to each other by
Eq. (3.25) so that the amplitude is invariant under the
generalized gauge transformations once the color-Jacobi
relations are solved.
Each graph has two associated Jacobi relations, cor-

responding to its two propagators. Table I gives these
pairs and the triplet of signs with which the color
or numerator factor enters the Jacobi relation. For
example, for the graph 15, defined by the pair of
propagators fs23; s14g [cf. Eq. (4.12)], the two color-
Jacobi relations are

c15 − c12 − c13 ¼ 0; c15 þ c14 þ c11 ¼ 0: ð4:14Þ

Of the 30 functions αð1Þi and αð2Þi , 6 are determined by the
requirement (3.20) that the gauge-theory amplitude is
invariant; thus, there are superficially 24 remaining
generalized gauge functions.

FIG. 9. Expanding each of the two four-point blob gives a total of nine diagrams. The labels refer to the level and diagram numbers,
and the ni;j correspond to the cut labels. The shaded thick (blue and red) lines are the propagators around which BCJ discrepancy
functions are defined.

TABLE I. Five-point diagrams and associated Jacobi triplets.
For each of the two propagators in each diagram, the triplet of
diagrams participating in the Jacobi identity is specified by the
first triplet of numbers in each entry. The second triplet gives the
relative signs in the Jacobi relations.

Diagram
1st propagator
Jacobi triplet

2nd propagator
Jacobi triplet

1 f1; 6; 11g, f1; 1; 1g f1; 5; 2g, f1; 1; 1g
2 f2; 7; 12g, f1; 1; 1g f2; 1; 5g, f1; 1; 1g
3 f3; 8; 13g, f1; 1; 1g f3; 5; 4g, f1;−1; 1g
4 f4; 9; 14g, f1; 1; 1g f4; 3; 5g, f1; 1;−1g
5 f5; 3; 4g, f1;−1;−1g f5; 2; 1g, f1; 1; 1g
6 f6; 11; 1g, f1; 1; 1g f6; 10; 8g, f1; 1; 1g
7 f7; 12; 2g, f1; 1; 1g f7; 9; 10g, f1; 1;−1g
8 f8; 13; 3g, f1; 1; 1g f8; 6; 10g, f1; 1; 1g
9 f9; 14; 4g, f1; 1; 1g f9; 10; 7g, f1;−1; 1g
10 f10; 9; 7g, f1;−1;−1g f10; 8; 6g, f1; 1; 1g
11 f11; 1; 6g, f1; 1; 1g f11; 15; 14g, f1; 1; 1g
12 f12; 2; 7g, f1; 1; 1g f12; 15; 13g, f1;−1; 1g
13 f13; 3; 8g, f1; 1; 1g f13; 12; 15g, f1; 1;−1g
14 f14; 4; 9g, f1; 1; 1g f14; 11; 15g, f1; 1; 1g
15 f15; 12; 13g, f1;−1;−1g f15; 14; 11g, f1; 1; 1g
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The extra terms (3.22) completing the cut of the naive
double copy to the gravity cut (3.21) are given by

E5
GR ¼ −

X
i

ðdð1Þi αð1Þi þ dð2Þi αð2Þi Þðdð1Þi ~αð1Þi þ dð2Þi ~αð2Þi Þ
dð1Þi dð2Þi

:

ð4:15Þ

As for the previous case, the task is to convert Eq. (4.15)
so that instead of being given in terms of gauge parameters
it is expressed in terms of the simpler discrepancy func-
tions. The same triplets of graphs and signs above define
the violations of the kinematic Jacobi relations. For
example,

Jfi;1g ¼ sði; 1Þ1ntði;1Þ1 þ sði; 1Þ2ntði;1Þ2 þ sði; 1Þ3ntði;1Þ3 ;
ð4:16Þ

Jfi;2g ¼ sði; 2Þ1ntði;2Þ1 þ sði; 2Þ2ntði;2Þ2 þ sði; 2Þ3ntði;2Þ3
ð4:17Þ

are the discrepancy functions corresponding to propaga-
tors 1 and 2 of the ith graph. The three terms correspond
to the three numerators participating in the Jacobi

relation. More explicitly, from Table I for the first three
diagrams we have

Jf1;1g ¼ n1 þ n6 þ n11; Jf1;2g ¼ n1 þ n5 þ n2;

Jf2;1g ¼ n2 þ n7 þ n12; Jf2;2g ¼ n2 þ n1 þ n5;

Jf3;1g ¼ n3 þ n8 þ n13; Jf3;2g ¼ n3 − n5 þ n4:

ð4:18Þ

The remaining 24 discrepancy functions, including the
associated signs, can be read off from Table I.
As described in detail in the previous section and

illustrated in the case of the 4 × 4 cut, the discrepancy
functions are not independent. First there are simple
relations coming from a simple overcount such as

Jf1;1g ¼ Jf6;1g; Jf2;1g ¼ Jf12;1g;

Jf1;2g ¼ Jf2;2g; Jf10;1g ¼ −Jf9;2g: ð4:19Þ

The remaining such relations are easily read off from
Table I. All told there are 20 such relations. In addition to
these, there are five momentum-dependent nontrivial
constraints, corresponding to zero eigenvectors of the ζ
matrix defined in Eq. (3.28). A simple and symmetric
choice is

0 ¼ Jf1;2g
dð1Þ1

þ Jf3;1g
dð2Þ3

−
Jf6;2g
dð1Þ6

−
Jf2;1g
dð2Þ2

¼ Jf1;2g
s34

þ Jf3;1g
s35

−
Jf6;2g
s24

−
Jf2;1g
s25

;

0 ¼ Jf2;1g
dð2Þ2

þ Jf3;2g
dð1Þ3

−
Jf7;2g
dð1Þ7

−
Jf3;1g
dð2Þ3

¼ Jf2;1g
s25

þ Jf3;2g
s12

−
Jf7;2g
s13

−
Jf3;1g
s35

;

0 ¼ Jf1;1g
dð2Þ1

þ Jf3;2g
dð1Þ3

−
Jf11;2g
dð1Þ11

−
Jf3;1g
dð2Þ3

¼ Jf1;1g
s15

þ Jf3;2g
s12

−
Jf11;2g
s23

−
Jf3;1g
s35

;

0 ¼ Jf1;2g
dð1Þ1

þ Jf3;1g
d23

−
Jf12;2g
dð1Þ12

−
Jf1;1g
dð2Þ1

¼ Jf1;2g
s34

þ Jf3;1g
s35

−
Jf12;2g
s14

−
Jf1;1g
s15

;

0 ¼ Jf1;1g
dð2Þ1

−
Jf6;2g
dð1Þ6

þ Jf3;2g
dð3Þ1

−
Jf4;1g
dð2Þ4

¼ Jf1;1g
s15

−
Jf6;2g
s24

þ Jf3;2g
s12

−
Jf4;1g
s45

: ð4:20Þ

Each denominator corresponds to the other propagator in
the diagram around which the BCJ identity is being
performed. Similar equations for the five-point tree ampli-
tude were constructed in Refs. [61,62] from the require-
ment that BCJ amplitude relations hold.
After imposing all the constraints on the discrepancy

functions only 5 of the initial 30 are independent and thus 5
combinations of the generalized gauge-transformation

parameters αð1Þi and αð2Þi are determined. The rest simply

drop out of E5
GR. This pattern is similar to the one of solving

for kinematic numerators in terms of amplitudes [3]:
some numerators are determined in terms of amplitudes
while others drop out of any expression for other
amplitudes.
Plugging the solution for the gauge parameters into the

expression (4.15) for the extra term correcting the naive

double copy we find that E5
GR is given by
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E5
GR ¼

�
Jf3;2g
dð1Þ3

þ Jf3;1g
dð2Þ3

��
J̃f1;2g
dð1Þ1

−
J̃f1;1g
dð2Þ1

−
J̃f2;1g
dð2Þ2

þ J̃f3;1g
dð2Þ3

−
J̃f3;2g
dð1Þ3

�

þ Jf1;1g
dð2Þ1

�
J̃f1;1g
dð2Þ1

−
J̃f3;1g
dð2Þ3

þ J̃f3;2g
dð1Þ3

�
þ Jf2;1g

dð2Þ2

�
J̃f2;1g
dð2Þ2

−
J̃f3;1g
dð2Þ3

þ J̃f3;2g
dð1Þ3

�

þ Jf1;2g
dð1Þ1

�
J̃f3;1g
dð2Þ3

−
J̃f3;2g
dð1Þ3

�
þ Jf3;1gJ̃f3;1g

ðdð2Þ3 Þ2
: ð4:21Þ

Because of the relations that the Js satisfy there are many
equivalent forms of E5

GR. The most symmetric one gives the
full gravity cut as

C5GR ¼
X15
i¼1

ni ~ni

dð1Þi dð2Þi

þ E5
GR with

E5
GR ¼ −

1

6

X15
i¼1

Jfi;1gJ̃fi;2g þ Jfi;2gJ̃fi;1g
dð1Þi dð2Þi

: ð4:22Þ

This symmetric solution is found by using an ansatz with
the desired symmetry and matching it to the solution (4.21)
for E5

GR in a basis of Js. This symmetric form has the added
advantage that the organization of the terms follows
individual diagrams. While it is desirable to have sym-
metric formulas such as Eq. (4.22), this is not essential for it
to be useful for constructing cuts of high-loop order gravity
amplitudes. Equation (4.21) is perfectly usable in the
construction of the five-loop four-point N ¼ 8 supergrav-
ity amplitude.
Although Eqs. (4.21) and (4.22) have explicit propa-

gators, these expressions are actually local and correspond
directly to the desired contact term corrections. In fact, in
this relatively simple case, each term is individually local
because each diagram has only two propagators. Indeed,
the violation of manifest BCJ duality must be proportional
to the off-shell invariant of the propagator which does not
participate in the Jacobi relation, i.e.,

Jfi;1g ∝ dð2Þi ; Jfi;2g ∝ dð1Þi : ð4:23Þ

Thus, in both Eqs. (4.21) and (4.22), the propagators cancel
term by term against the numerators.

V. FORMULAS FOR NkMCS WITH k ≥ 3

In this section we discuss certain classes of NkMC cuts
with k ≥ 3. These have a much more intricate structure than
the N2MC cuts analyzed in the previous section. They also
have the important feature that, unlike N2MC cuts, EGR is
no longer local so the extraction of the contact term is
somewhat more intricate.

A. Three four-point tree amplitudes

Consider an 4 × 4 × 4 N3MC. Following the labeling
discussed in previous sections, in terms of the 27 parent
diagrams, this cut is

C4×4×4YM ¼
X3

i1;i2;i3¼1

ni1;i2;i3ci1;i2;i3
dð1Þi1

dð2Þi2
dð3Þi3

; ð5:1Þ

where each index in the sum takes three values correspond-
ing to the three diagrams of each four-point tree amplitude

in the cut. The upper index in the propagator 1=dðjÞi refers to
the jth tree amplitude. The gauge transformation (3.26)
connecting the color-kinematics-satisfying numerators to
some arbitrary ones is

Δi1;i2;i3 ¼ ni1;i2;i3 − nBCJi1;i2;i3

¼ dð1Þi1
αð1Þi2;i3

þ dð2Þi2
αð2Þi1;i3

þ dð3Þi3
αð3Þi1;i2

; ð5:2Þ

where αðxÞiy;iz
obey the 4 × 4 × 4 version of the relations

(3.27). Their solution together with the color-Jacobi
relations

X3
i1¼1

ci1;i2;i3 ¼
X3
i2¼1

ci1;i2;i3 ¼
X3
i3¼1

ci1;i2;i3 ¼ 0; ð5:3Þ

and momentum conservation,

X3
ix¼1

dðxÞix
¼ 0; ð5:4Þ

guarantee that the gauge-theory 4 × 4 × 4 cut is invariant
under Eq. (3.19) with parameters (5.2). From Eq. (3.22) we
then have the extra contribution that corrects the naive
double copy,

E4×4×4
GR ¼ −

X3
i1;i2;i3¼1

1

dð1Þi1
dð2Þi2

dð3Þi3

× ðdð1Þi1
αð1Þi2;i3

þ dð2Þi2
αð2Þi1;i3

þ dð3Þi3
αð3Þi1;i2

Þ
× ðdð1Þi1

~αð1Þi2;i3
þ dð2Þi2

~αð2Þi1;i3
þ dð3Þi3

~αð3Þi1;i2
Þ: ð5:5Þ

Numerator terms proportional to ðdðxÞix
Þ2 cancel out because

of the momentum conservation identity (5.4).
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For the 4 × 4 × 4 cut, the equations (3.23) relating the
discrepancy functions and the gauge parameters, we have

J•;i2;i3 ≡
X3
i1¼1

ni1;i2;i3 ¼ dð2Þi2

X3
i1¼1

αð2Þi1;i3
þ dð3Þi3

X3
i1¼1

αð3Þi1;i2
;

Ji1;•;i3 ≡
X3
i2¼1

ni1;i2;i3 ¼ dð1Þi1

X3
i2¼1

αð1Þi2;i3
þ dð3Þi3

X3
i2¼1

αð3Þi1;i2
;

Ji1;i2;• ≡
X
i3¼1

ni1;i2;i3 ¼ dð1Þi1

X
i2

α ð1Þ
i2;i3

þ dð3Þi2

X
i3

αð3Þi1;i3
: ð5:6Þ

As in the simpler case of the 4 × 4 cut, these relations
capture the fact that the discrepancy functions are not
independent but rather obey certain relations with momen-
tum-dependent coefficients. They also capture the fact that
only certain linear combinations of gauge parameters can
be determined in terms of J. More precisely, there are 27α-
functions and 27 Js, but only 15 different combinations of
αs appear on the right-hand side of Eq. (5.6). Moreover,
only 12 combinations of αs are determined in terms of
12 Js and remaining 15 Js are also determined in terms of
these 12. The undetermined α functions drop out of E4×4

GR .
Here and for subsequent cases it is useful to also define

“double discrepancy functions”:

J•;•;i3 ≡
X3
i2¼1

J•;i2;i3 ¼
X3
i1¼1

Ji1;•;i3 ¼ dð3Þi3

X3
i1;i2¼1

αð3Þi1;i2
;

J•;i2;• ≡
X3
i3¼1

J•;i2;i3 ¼
X3
i1¼1

Ji1;i2;• ¼ dð2Þi2

X3
i1;i3¼1

αð2Þi1;i3
;

Ji1;•;• ≡
X3
i2¼1

Ji1;i2;• ¼
X3
i3¼1

Ji1;•;i3 ¼ dð1Þi1

X3
i2;i3¼1

αð1Þi2;i3
; ð5:7Þ

they are particular linear combinations of discrepancy
functions. In this case, their main property is that they
are proportional to a specific inverse propagator. They are
also the common value of different combinations of Js
corresponding to different zero eigenvectors in Eq. (3.30)
of the matrix σ defined in Eq. (3.16). By inspecting these
equations it is straightforward to see that

X3
i2;i3¼1

αð3Þi2;i3
¼ J1;•;•

dð1Þ1

¼ J2;•;•

dð1Þ2

¼ J3;•;•

dð1Þ3

;

X3
i1;i3¼1

αð2Þi1;i3
¼ J•;1;•

dð2Þ1

¼ J•;2;•

dð2Þ2

¼ J•;3;•

dð2Þ3

;

X3
i1;i2¼1

αð1Þi1;i2
¼ J•;•;1

dð3Þ1

¼ J•;•;2

dð3Þ2

¼ J•;•;3

dð3Þ3

: ð5:8Þ

Towrite the extra contributions E4×4×4
GR to the naive double

copy in terms of the discrepancy functions we first solve
Eqs. (5.6) and (5.7) for the 12 independent gauge parameters
which thus become functions of Js and substitute the result

in Eq. (5.5). Upon usingmomentum conservation identities,
the undetermined gauge parameters drop out and the terms
correcting the naive double copy become

E4×4×4
GR ¼ T1 þ T2; ð5:9Þ

where

T1 ¼ −
X3
i3¼1

J•;1;i3 J̃1;•;i3
dð1Þ1 dð2Þ1 dð3Þi3

−
X3
i2¼1

J•;i2;1J̃1;i2;•

dð1Þ1 dð2Þi2
dð3Þ1

−
X3
i1¼1

Ji1;•;1J̃i1;1;•

dð1Þi1
dð2Þ1 dð3Þ1

þ fJ ↔ J̃g;

T2 ¼
J•;1;1J̃1;•;•

dð1Þ1 dð2Þ1 dð3Þ1

þ J1;•;1J̃•;1;•

dð1Þ1 dð2Þ1 dð3Þ1

þ J1;1;•J̃•;•;1

dð1Þ1 dð2Þ1 dð3Þ1

þ fJ ↔ J̃g;

ð5:10Þ
and we used Eq. (5.8) to simplify T2.
Unlike the extra terms for the 4 × 4 and 5 N2MC cuts,

this expression is no longer local so to extract the
corresponding 4 × 4 × 4 contact term we need to subtract
the contribution of the N2MC contact terms to this cut.
Subtraction terms are easily constructed from nonlocal
terms corresponding to 4 × 4 contact terms. This needs to
be done consistently across all higher-level cuts where a
given 4 × 4 cut enters when putting on-shell propagators of
the 4 × 4 × 4 cut. The issue is that the 4 × 4 contact terms
are not unique, but depend on the off-shell continuation
(2.23). With this understanding, we can formally write the
subtraction terms as

E4×4×4
GR jsubtraction¼

X3
i1¼1

1

dð1Þi1

ðEði1Þ4×4
GR Þ2;3þ

X3
i2¼1

1

dð2Þi2

ðEði2Þ4×4
GR Þ1;3

þ
X3
i3¼1

1

dð3Þi3

ðEði3Þ4×4
GR Þ1;2; ð5:11Þ

where ðEðiaÞ4×4
GR Þj;k is the extra contact contributions derived

from the 4 × 4 cut built from two tree amplitudes j and k in
the 4 × 4 × 4 cut. The superscript ðiaÞ takes into account the
differing residues on each pole. By construction, this sub-
tracts the nonlocality in the extra terms. We stress that
ðC4×4GR Þi;j is best obtained by relabeling already chosenN2MC
contact terms rather than reapplying the formula (4.10).
Otherwise, care is needed to ensure that a uniform off-shell
continuation is used every time the contribution of a
previously determined contact term is subtracted. The same
principles, of course, hold in general whenever nonlocalities
are subtracted by lower-level contact terms [which are part of
the cut of the incomplete integrand; cf. Eq. (2.22)].

B. One five-point and one four-point tree amplitude

Amuch more interesting and intricate case is that of a cut
with one five-point and one four-point tree amplitude. For
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the five-point tree we follow the same labeling as for the
case of a cut with a single five-point tree amplitude
discussed in Sec. IV B. The four-point amplitude factor
will be labeled as before. Thus, the gauge-theory cut is

C5×4YM ¼
X15
i¼1

X3
j¼1

nijcij

dð1;1Þi dð1;2Þi dð2Þj

: ð5:12Þ

The indices i and j run over the 15 and 3 diagrams of the
five-point and four-point amplitude factors, respectively;
we shall refer to the five-point amplitude as the first factor
and the four-point amplitude as the second factor. The first
upper index on the propagators labels whether the propa-
gator belongs to the first or the second tree amplitude
factor; the second upper index locates the propagator in the
ordered list of propagators of each graph. For the five-point
amplitude factor this list is in Eq. (4.12); as before, for the
four-point amplitude factor we suppress this index since
this amplitude has a single propagator per graph.
The color-Jacobi identities are

sði; 1Þ1ctði;1Þ1;j þ sði; 1Þ2ctði;1Þ2;j þ sði; 1Þ3ctði;1Þ3;j ¼ 0;

sði; 2Þ1ctði;2Þ1j þ sði; 2Þ2ctði;2Þ2;j þ sði; 2Þ3ctði;2Þ3;j ¼ 0;

ci;1 þ ci;2 þ ci;3 ¼ 0 i ¼ 1;…; 15 j ¼ 1; 2; 3;

ð5:13Þ
where we used the triplet and sign functions in Eq. (3.12).
The values of these functions are found in Table I.
The generalized gauge transformation relating ni;j to

color-kinematics duality-satisfying ones is

Δi;j ≡ ni;j − nBCJi;j ¼ dð1;1Þi αð1;1Þi;j þ dð1;2Þi αð1;2Þi;j þ dð2Þj αð2Þi :

ð5:14Þ
There are 2 × 15 × 3þ 15 ¼ 105 functions; of these 12 are
determined by the requirement (3.19) [or alternatively,
(3.27)] that the cuts are invariant under such shifts. This
leaves 93 functions, some of which will be determined in
terms of BCJ discrepancy functions.
From Eq. (3.22) the extra contribution besides the naive

double copy in terms of α functions is

E5×4
GR ¼ −

X15
i¼1

X3
j¼1

1

dð1;1Þi dð1;2Þi dð2Þj

× ðdð1;1Þi αð1;1Þi;j þ dð1;2Þi αð1;2Þi;j þ dð2Þj αð2Þi Þ
× ðdð1;1Þi ~αð1;1Þi;j þ dð1;2Þi ~αð1;2Þi;j þ dð2Þj ~αð2Þi Þ; ð5:15Þ

where, to keep the equation short, we did not substitute the
12α functions determined by the requirement of invariance
under generalized gauge transformations. Our task is to
reexpress Eq. (5.15) in terms of easy-to-obtain BCJ
discrepancy functions, defined by substituting kinematic
numerators in place of color factors in Eq. (5.13):

Jfi;1g;j ¼ sði;1Þ1ntði;1Þ1;jþ sði;1Þ2ntði;1Þ2;jþ sði;1Þ3ntði;1Þ3;j;
Jfi;2g;j ¼ sði;2Þ1ntði;2Þ1jþ sði;2Þ2ntði;2Þ2;jþ sði;2Þ3ntði;2Þ3;j;

Ji;• ¼ ni;1þni;2þni;3; i¼ 1;…;15; j¼ 1;2;3:

ð5:16Þ

As in the case of the color-Jacobi identities, the triplet and
sign functions t and s are taken from Table I. Once the label
fi; λig for a graph in the five-point amplitude is specified,
the remaining graphs in the triplet are also fixed.
Similar to the 4 × 4 × 4 case, we also define double-

discrepancy functions in the spirit of (5.7),

Jfi;1g;• ≡
X3
j¼1

Jfi;1g;j; Jfi;2g;• ≡
X3
j¼1

Jfi;2g;j: ð5:17Þ

Lastly, we also define,

Jfi;1;2g;j ¼ sði;1Þ2Jftði;1Þ2;2g;jþ sði;1Þ3Jftði;1Þ3;2g;j;
Jfi;2;1g;j ¼ sði;2Þ2Jftði;2Þ2;1g;jþ sði;2Þ3Jftði;2Þ3;1g;j; ð5:18Þ

where we did not include terms for Jftði;1Þ1;2g;j or
Jftði;2Þ1;1g;j, because they are already accounted for by
Jfi;1g;j and Jfi;2g;j defined in Eq. (5.16). The functions in
Eq. (5.18) can be interpreted as double-discrepancy func-
tions when the propagators participating in the two Jacobi
relations meet at a vertex. In total, there are 105 Js defined
in Eqs. (5.16), (5.17) and (5.18).
As before Js are not independent but satisfy a variety of

constraints. There are the trivial ones coming from the fact
that each Jacobi relation has a triplet overcount similar to
the ones for the single five-point tree amplitude case (4.19),

Jf1;1g;j ¼ Jf6;1g;j; Jf2;1g;j ¼ Jf12;1g;j;

Jf1;2g;j ¼ Jf2;2g;j; Jf10;1g;j ¼ −Jf9;2g;j; ð5:19Þ

for any value of j corresponding to the three diagrams in the
four-point tree amplitude. As for Eq. (4.19), we can read off
all such remaining cases from Table I. This gives a total of
60 constraints. There are also linear relations such as

0 ¼ −J5;• − J1;• þ Jf1;2g;1 þ Jf1;2g;2 þ Jf1;2g;3 − J2;•;

0 ¼ −J11;• þ Jf1;1g;1 þ Jf1;1g;2 þ Jf1;1g;3 − J1;• − J6;•;

0 ¼ −J4;• þ J5;• þ Jf3;2g;1 þ Jf3;2g;2 þ Jf3;2g;3 − J3;•:

ð5:20Þ

They are just special cases of Eq. (5.17) and can also be
understood as corresponding to certain zero eigenvectors of
the matrix σ defined in Eqs. (3.15) and (3.16). There are a
total of 12 such independent equations. Finally, there are
generalizations of Eq. (4.20) that also involve kinematic
variables, for example,
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0 ¼ 1

dð2Þj1

�
Jf6;2g;j1
dð1;1Þ6

þ Jf2;1g;j1
dð1;2Þ2

−
Jf1;2g;j1
dð1;1Þ1

−
Jf3;1g;j1
dð1;2Þ3

�

−
1

dð2Þj2

�
Jf6;2g;j2
dð1;1Þ6

þ Jf2;1g;j2
dð1;2Þ2

−
Jf1;2g;j2
dð1;1Þ1

−
Jf3;1g;j2
dð1;2Þ3

�
;

0 ¼ 1

dð2Þj1

�
Jf2;1g;j1
dð1;2Þ2

þ Jf3;2g;j1
dð1;1Þ3

−
Jf7;2g;j1
dð1;1Þ7

−
Jf3;1g;j1
dð1;2Þ3

�

−
1

dð2Þj2

�
Jf2;1g;j2
dð1;2Þ2

þ Jf3;2g;j2
dð1;1Þ3

−
Jf7;2g;j2
dð1;1Þ7

−
Jf3;1g;j2
dð1;2Þ3

�
;

ð5:21Þ
where j1, j2 ¼ 1, 2, 3 and j1 ≠ j2. Further similar equa-
tions can be obtained from the final three equations in

Eq. (4.20) by dividing by dð2Þj1
, inserting the j1 index into the

J’s and subtracting from the result a similar term generated

by interchanging j1 and j2. As we shall see, the fact that
there is a simple pattern for how the constraints are related
to the case of the single five-point amplitude in the cut will
lead to simple relations for the solution. Altogether there
are a total of 10 independent such equations. In total there
are 82 relations between the Js leaving 23 independent
discrepancy functions.
Constructing and analyzing the 5 × 4 case of Eq. (3.23)

reveals that of the remaining 93α functions parametrizing a
generalized gauge transformation for such a cut, only 23 are
independent and are determined in terms of 23 independent
BCJ discrepancy functions. The remaining 82 BCJ dis-
crepancy functions are in turn expressed in terms of 23
independent ones (and no α functions).
After using an ansatz to find an expression with a simple

structure, the extra terms completing a 5 × 4 cut of the
naive double copy to a cut of a gravity amplitude are

E5×4
GR ¼

X15
i¼1

X3
j¼1

1

dð1;1Þi dð1;2Þi dð2Þj

�
−
1

6
Jfi;1g;jJ̃fi;2g;j −

�
−
1

3

�
×
1

6
ðJfi;1g;jJ̃fi;2g;• þ Jfi;2g;jJ̃fi;1g;•Þ

− aiJfi;1g;jJ̃i;• − aiJfi;2g;jJ̃i;• þ að1Þi Jfi;1;2g;jJ̃i;• þ að2Þi Jfi;2;1g;jJ̃i;•

�
þ fJ ↔ J̃g: ð5:22Þ

The first term is the direct extension of E5
GR. The numerical

coefficients ai, a
ð1Þ
i and að2Þi are given in Table II.

The values of these coefficients depend critically on the
definition and order of the graphs of the five-point amplitude
factor as well as on the choice of order of propagators for
each graph. They moreover depend on the definitions of
Jfi;1;2g;j and Jfi;2;1g;j in Eq. (5.18). For example, one may
choose the ai to be all identical at the expense of modifying
these definitions. It does not appear straightforward, how-

ever, to have a simpler, more systematic form for all ai, a
ð1Þ
i

and að2Þi coefficients simultaneously.
As for the 4 × 4 × 4 case, E5×4

GR is not local. To extract its
corresponding contact term we need to subtract the con-
tribution of the 4 × 4- and 5-contact terms the cut overlaps
with. The discussion in the previous section applies here as
well, so we do not repeat it.

C. One six-point amplitude in cut

Following the above discussion we also have found a
solution for a single six-point amplitude insertion in a

generalized cut. Our solution is given in the ancillary file
ExtraJ_6pt.m [45]. We follow a similar organization
as for the five-point case discussed in Sec. IV B, except
that at six points there are 105 diagrams, instead of the 15 at
five points. To apply it in cuts with a single six-point
amplitude, as usual we need to relabel to match the labels
in the cut. The file lists the Jacobi triplets, analogous to
those of Table I, as well as the constraints on J’s analogous
to those of Eq. (4.20). Finally, the file contains the formula
for the extra terms needed to correct the naive double-copy
contributions in terms of the J and J̃. The presented
solution is not manifestly crossing symmetric, but is instead
expressed in terms of a set of independent J’s obtained by
solving the constraint equations. Nor are all the kinematic
denominators manifestly organized in terms of diagrams.
Nevertheless, this is adequate for our purpose of simplify-
ing the analytic structure of N3MC with a single six-point
tree amplitude, compared to directly evaluating the cuts via
Eq. (2.31). It would be an interesting problem to find a
more symmetric form that generalizes to higher points.
As for the earlier cases, one can encounter terms that

behave as 0=0, when inserted into a cut. These are harmless

TABLE II. The coefficients for a particularly simple solution for the 5 × 4 case.

Graph 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ai 1
12

1
6

1
12

1
12

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
12

1
12

1
6

1
12

að1Þi 0 0 1
12

1
12

0 0 1
12

0 1
12

0 0 1
12

1
12

0 0
að2Þi

1
12

0 0 0 1
12

1
12

0 0 0 1
12

1
12

0 0 0 1
12
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when the 0 in the numerator is manifest, since it corre-
sponds to an absent contribution. One extra complication
for the six-point case is that sometimes the 0 in the
numerator is not manifest and requires cancellation
between distinct terms. When this occurs, the simplest
strategy is to take advantage of the asymmetry in the
formula, to relabel, to avoid these problematic cases.

D. Formulas for more general cuts

For the N4MC maximal cuts and beyond, the relative
simplicity of the contact terms can make it advantageous to
determine the missing contact terms by numerical analysis
of Eq. (2.22). Nevertheless it is important to study the
general cases because they display a pattern which points to
the possibility of general simple solutions for the contact
terms at any loop order. We now generalize the discussion
in the previous sections to the infinite classes of cuts
4 ×… × 4 and 5 × 4 ×… × 4.

1. Multiple four-point tree amplitudes in cuts

Consider an NkMC composed of k four-point tree
amplitudes. The analysis for these cases is very similar
to that of the N2MC and N3MC cases with only four-point
tree amplitudes in the cuts. What emerges is a simple
recursive pattern for generating the extra corrections terms
to the naive double copy (3.22). As in the 4 × 4 N2MC and
in the 4 × 4 × 4 N3MC cases, we label the contributing
graphs by the off-shell propagators they contain.
For NkMCs we generalize Eq. (5.9) by defining the

simple, double, triple and so forth BCJ discrepancy
functions,

J•;i2;i3;…;iq ≡
X3
i1¼1

ni1;i2;i3;…;iq ;

J•;•;i3;…;iq ≡
X3
i1;i2¼1

ni1;i2;i3;…;iq ;

J•;•;•;…;iq ≡
X3

i1;i2;i3¼1

ni1;i2;i3;…;iq ; ð5:23Þ

with similar definitions for the other combinations of
indices.
In terms of these quantities, we can generate the

correction to the naive double copy for the case of q
four-point tree amplitudes in the cut by simple substitution
rules. We start with the expression

−
X3

i1;ip;…;iq¼1

Ji1;…;ip;…;iq J̃i1;…;ip;…;iq

dð1Þi1
� � � dðpÞip

� � � dðqÞiq

: ð5:24Þ

Then one generates new terms by performing the following
substitutions repeatedly until no new terms are generated:

X3
ip¼1

Ja1;…;ip;…;aq J̃b1;…;ip;…;bq

dðpÞip

→ −
Ja1;…•;…;aq J̃b1;…;1;…;bq

dðpÞ1

þ fJ ↔ J̃g; ð5:25Þ

where the ar and br are unchanged by the substitution and
are either an ir, 1 or “•”. We drop all generated terms where
there is not at least one “•” in each J or J̃. Then we sum over
all unique terms generated by repeated substitutions of
Eq. (5.25). It is straightforward to see that these substitu-
tions reproduce the solutions in Eqs. (4.9) and (5.9) for the
4 × 4 and 4 × 4 × 4 cases. The 4 × 4 × 4 × 4 is given in
Appendix A.

2. One five-point and multiple four-point
tree amplitudes in cut

We now turn to the more intricate case of a single five-
point tree amplitude in the cut along with multiple
four-point tree amplitudes. Again we can give a simple
substitution rule for generating such contributions.
To generate the terms we start from

−
X15
i¼1

X3
j2;…jq¼1

Ji;j2;j3;…;jq J̃i;j2;j3;…;jq

dð1;1Þi dð1;2Þi dð2Þj2
� � � dðqÞjq

; ð5:26Þ

and perform the following substitutions:

Ji;j2;j3;…;jq J̃i;j2;j3;…;jq →
1

6
Jfi;1g;j2;j3;…;jq J̃fi;2g;j2;j3;…;jq þ fJ ↔ J̃g;

Ji;j2;…;jp;…;jq J̃i;j2;…;jp;…;jq → ai
X2
h¼1

Ji;j2;…;•;…;jq J̃fi;hg;j2;…;jp;…;jq þ fJ ↔ J̃g;

Ji;j2;…;jp;…;jq J̃i;j2;…;jp;…;jq → −að1Þi Ji;j2;…;•;…;jq J̃fi;1;2g;j2;…;jp;…;jq þ fJ ↔ J̃g;
Ji;j2;…;jp;…;jq J̃i;j2;…;jp;…;jq → −að2Þi Ji;j2;…;•;…;jq J̃fi;2;1g;j2;…;jp;…;jq þ fJ ↔ J̃g;

Jb;b2;…;ip;…;bq J̃c;c2;…;ip;…;cq → −
1

3
Jb;b2;…;•;…;bq J̃c;c2;…;ip;…;cq þ fJ ↔ J̃g; ð5:27Þ
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where in the last substitution b and c are one of i, fi; 1g,
fi; 2g, fi; 1; 2g or fi; 2; 1g and br and cr are either ir or “•”.
We drop terms where there is not at least one such alteration
in both J and J̃. The final substitution rule should be
repeatedly applied to all terms until no new terms are
generated. We then sum over the distinct terms generated
this way. As usual, terms should not be double counted. It is
straightforward to see that this generates both 5 and 5 × 4
solutions in Eqs. (4.22) and (5.22). We have also directly
confirmed that this correctly gives the 5 × 4 × 4 case given
in Appendix A.

VI. Five-loop four-point integrand
of N = 8 Supergravity

In this section we present results for the five-loop four-
point integrand of N ¼ 8 supergravity, obtained using the
methods described in the previous sections. In this case, the
two gauge theories used in the construction are bothN ¼ 4
super-Yang-Mills theory.

A. N = 4 super-Yang-Mills starting point

We start from the five-loop four-point integrand for
N ¼ 4 super-Yang-Mills theory obtained in Ref. [44]. To
make it a bit more useful we rearrange it slightly to remove
the spurious appearance of triangle subdiagrams. This
expresses the five-loop four-point N ¼ 4 super-Yang-
Mills amplitude in terms of 410 nonvanishing diagrams
containing only cubic vertices,

A5-loopN¼4
4 ¼ ig12stAtree

4

X
S4

X410
i¼1

Z Y9
j¼5

dDlj
ð2πÞD

1

Si

ciniQ
20
mi¼5 l

2
mi

:

ð6:1Þ

The label i runs over the 410 cubic diagrams; examples of
these are shown in Fig. 5. The other sum runs over the 24
permutations S4 of external leg labels. As in Eq. (2.17), the
symmetry factor Si for each diagram i removes overcounts,
including those arising from internal automorphism sym-
metries with external legs fixed. The color factor ci for each
graph is obtained by dressing every three-vertex in the
graph with a factor of ~fabc, normalized as in Eq. (2.17), and
the gauge coupling is g. We denote external momenta by kj
for j ¼ 1;…; 4 and the five independent loop momenta by
lj for j ¼ 5;…; 9. The remaining lj for j ¼ 10;…20 are
linear combinations of these following the labeling of the
diagram.
The prefactor Atree

4 ≡ Atree
4 ð1; 2; 3; 4Þ in Eq. (6.1) is the

color-ordered tree amplitude of N ¼ 4 super-Yang-Mills
theory, for any states of the theory. The presence of such a
universal prefactor is special to the four-point amplitudes of
N ¼ 4 super-Yang-Mills theory; in general, the depend-
ence on external states is part of the numerator factors ni. In
four dimensions the prefactor is conveniently organized

using an on-shell superspace [63]. The external kinematic
invariants are

s ¼ ðk1 þ k2Þ2; t ¼ ðk2 þ k3Þ2; u ¼ ðk1 þ k3Þ2;
ð6:2Þ

and the combination stAtree
4 is crossing symmetric.

The diagram, color factors, symmetry factors and kin-
ematic numerators corresponding to those in Eq. (6.1) are
given in the ancillary file Level0Diagrams.m [45].
Some of the N ¼ 4 super-Yang-Mills kinematic numer-
ators are rather simple. For example, the numerators of the
first 15 diagrams are

n1 ¼ n2 ¼ n3 ¼ n4 ¼ n5 ¼ n6 ¼ n7 ¼ n9 ¼ s4;

n10 ¼ n15 ¼
1

2
s3ðτ3;5 þ τ4;15Þ;

n11 ¼ n13 ¼
1

2
s3ðτ3;5 þ τ4;15 þ l25 þ l215Þ;

n12 ¼ sτ3;5;

n14 ¼ s3s3;5 þ s3l25 −
5

2
sl25l

2
13l

2
15; ð6:3Þ

where

τi;j ≡ 2ki · lj; ði ≤ 4; j ≥ 5Þ
τi;j ≡ 2li · lj; ði; j ≥ 5Þ: ð6:4Þ

Two slightly more complicated numerators are for dia-
grams 280 and 282,

n280 ¼ s4 þ s3ðτ10;13 þ τ18;20Þ þ
1

2
s2ðτ210;13 þ τ218;20Þ

þ 2tðl25 þ l26Þðl213l218 þ l210l
2
20Þ;

n283 ¼ s4 þ s3ðτ10;13 þ τ18;20Þ þ
1

2
s2ðτ210;13 þ τ218;20Þ

−
�
2sþ 5

2
t

�
ðl25 þ l26Þðl213l218 þ l210l

2
20Þ; ð6:5Þ

where these two diagrams are included in Fig. 5.
Some of the remaining kinematic numerators are also

relatively simple, while others are more complicated and
contain thousands of terms. An important feature of all the
numerators is that each term contains at most three inverse
propagators. After factoring out the overall stAtree

4 each
numerator term contains four kinematic invariants of which
at least one factor is either s or t, leaving at most three
kinematic invariants that can be inverse propagators. This
implies that the N ¼ 4 super-Yang-Mills five-loop four-
point amplitude can be fully constructed from generalized
cuts through the N3MC level [44].
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B. N = 8 supergravity naive double copy

We organize the results for the N ¼ 8 supergravity five-
loop four-point amplitude into contact term levels starting
with the naive double copy (2.18) of the cubic diagrams,
which we take as level 0. Each level k corresponds to the
contact diagrams that can be obtained from collapsing k
propagators in the cubic diagrams.
At level 0 there are 410 diagrams, in one-to-one

correspondence to the nonvanishing diagrams of the N ¼
4 super-Yang-Mills amplitude (6.1),

Mð0Þ5-loop
4 ¼ i

�
κ

2

�
12

stuMtree
4

×
X
S4

X410
i¼1

Z Y9
j¼5

dDlj
ð2πÞD

1

Si

Nð0Þ
iQ

20
mi¼5 l

2
mi

: ð6:6Þ

The N ¼ 8 supergravity numerators in the naive double
copy are simply squares of the N ¼ 4 super-Yang-Mills
ones,

Nð0Þ
i ¼ n2i ; ð6:7Þ

and where we used ½stAtree
4 �2 ¼ −istuMtree

4 to reexpress the
square of the prefactor in Eq. (6.1) in terms of four-point
supergravity tree amplitude,Mtree

4 . As for theN ¼ 4 super-
Yang-Mills case, this is valid for all states of the theory.
Since any N ¼ 4 super-Yang-Mills numerator has at

most three inverse propagators, by squaring them in the
naive double copy, we obtain no more than six inverse
propagators. This suggests that to construct the super-
gravity amplitude, the cuts through level 6 should be
sufficient. Indeed, we have explicitly confirmed that there
is no new information to be found in the N7MCs.

C. Contact terms

The next task is to construct the contact term corrections
to the naive double copy. The first level consists of all
independent diagrams generated by collapsing a single
propagator in all possible ways in the 410 level-0 diagrams.

One then removes diagrams that are identical up to
relabelings (the final assembly of the amplitude accounts
for such permutations). As indicated in Table III, at level 1
there are 2473 independent diagrams, not related by
relabelings. However, as already noted in Sec. II B, the
numerators of these diagrams all vanish because next-to-
maximal cuts of the naive double copy automatically match
those of the supergravity amplitude.
In order to obtain the contact terms for levels 2 and 3 we

use the formulas of Secs. IV and V to generate expressions
for the supergravity cuts. The contact terms are then
obtained from these. At level 2, the formulas directly give
the contact terms, but beyond this we need to consistently
subtract the previous levels.
The contact diagrams of level 2 are generated by

cancelling two propagators in each of the 410 top-level
diagrams. This gives diagrams with either a single five-
point vertex or two four-point vertices. Examples of such
diagrams are given in the first column of Fig. 7. There are
7917 independent contact diagrams at this level, as listed in
Table III. As can be deduced from Table III, 1597 of these
have a single five-point contact vertex and 6320 of these
have two four-point contact vertices. For the remaining
levels, Table III gives the number of independent diagrams
at each level, as well as finer information on the number of
diagrams with a given number of contact interactions. All
independent diagrams obtained from collapsing propaga-
tors starting from the 410 top-level diagrams are included,
except for the pathological case where all propagators of a
single loop are canceled. All other scale-free integrals such
as diagrams (4:9), (5:57), (6:983) and (6:2669) in Fig. 7 are
included.
As noted in Sec. II B, as one proceeds beyond level 3 the

contact terms get simpler. However, the cuts themselves
become significantly more complicated. By level 6 the
generalized cuts can have up to nine-point trees. These
features mean that, at level 4 and beyond it can become
efficient to use numerical analysis on the KLT-like formula
for the supergravity cut (2.31) to determine the missing
contact terms. Because the contact diagrams have fewer
propagators, the numerator kinematic polynomial is of
lower dimension, which in turn implies that it has fewer

TABLE III. Number of diagrams at each level defined by the number of collapsed propagators starting from the 410 top-level diagrams
(dropping pathological diagrams where a loop has no propagators). The columns labeled by the number of contacts i records the number
of diagrams containing i contact interactions where four or more lines meet at a vertex.

Number of contact interactions

Level Total number of diagrams 1 2 3 4 5 6

1 2473 2473 0 0 0 0 0
2 7917 1597 6320 0 0 0 0
3 15 156 940 6710 7506 0 0 0
4 19 567 434 5232 9510 4391 0 0
5 17 305 203 3012 7792 5185 1113 0
6 10 745 83 1567 4407 3694 896 98
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terms. For example, at level 2 there are 157 080 potential
numerator terms in each diagram prior to imposing diagram
symmetries. At level 3 this drops to 17 952 possible terms.
By level 4 this falls to 1584 potential terms, which is small
enough, especially once diagram symmetries are
accounted, to make numerical analysis efficient. By level
6, up to overall normalization, there are only three possible
terms and the contact diagram numerator are of the form

a1s2 þ a2stþ a3t2: ð6:8Þ

The parameters a1, a2 and a3 are easily determined from
three kinematic points that satisfy the cut conditions.
The complete amplitude is given by a sum over dia-

grams, including the naive-double-copy ones in Eq. (6.6)
and contact term diagrams,

M5-loop
4 ¼ i

�
κ

2

�
12

stuMtree
4

X6
k¼0

X
S4

XTk

i¼1

×
Z Y9

j¼5

dDlj
ð2πÞD

1

Si

NðkÞ
iQ

20−k
mi¼5 l

2
mi

; ð6:9Þ

where Tk is the total number of diagrams at each level,
which can be read off from Table III.
The results for the diagrams and their numerators

at each level are collected in plain-text Mathematica-
readable ancillary files [45]. The top-level file
Level0Diagrams.m gives the N ¼ 8 supergravity
result via the double copy (6.7). The six other files
Level1Diagrams.m, Level3Diagrams.m,…,
Level6Diagrams.m contain the level 1;…; 6 N ¼ 8
supergravity contact diagrams, combinatoric factors, and
kinematic numerators.
Unlike the top-level diagrams, the contact diagrams can

have triangle, bubble and tadpole contributions, as illus-
trated in Fig. 7. This can be attributed to the poor power
counting of the naive double copy. Representations with
better power counting without bubbles or triangles should
exist, though it would require further nontrivial work to
construct one.
We include diagrams that contain scale-free loop inte-

grals since these can affect ultraviolet divergences. If we
were to evaluate the integrals purely in dimensional
regularization, we could safely ignore such contributions,
since they integrate to zero and in dimensions D > 4 there
are no infrared singularities to mix with these. However, at
high loop orders it is much more efficient to extract the
ultraviolet divergences by series expanding in large loop
momentum or equivalently in small external momentum
and introducing infrared regulator, such as a mass for each
propagator. One might think that scale-free integrals should
not be an issue in dimensions D > 4, because there are no
physical infrared singularities to mix with the ultraviolet
ones. Unfortunately, this is not correct. There are two

sources of difficulties. The first is that the series expansion
of the integrand can generate infrared-singular integrals,
even in higher dimensions where there are no physical
infrared singularities. The second is that in the construction,
one can add and subtract scale free integrals, in such a way
that one of the contributions is manifestly a scale-free
integral, such as diagram (4:9) of Fig. 7, while the
contribution that should cancel it is absorbed into an
integral which is not scale free, by multiplying and dividing
by appropriate propagators. When mixed up with other
terms and momentum conservation is applied, it can be
unobvious that spurious scale-free integrals are mixed in.
While dimensional regularization would consistently set
both contributions individually to zero, in the presence of a
massive infrared regulator the two contributions can be
individually nonzero, but cancel only after combining
them. If we were to arbitrarily drop integrals that are
manifestly scale free, we would upset this cancellation and
obtain an incorrect result for the ultraviolet divergence.
This phenomenon is well studied at four loops inD ¼ 11=2
in Sec. III C of Ref. [11]. The upshot is that some care is
required to ensure that scale-free integrals that can affect
potential ultraviolet divergences in higher dimensions are
properly taken into account. For example, to ensure that
any potential contact term corresponding to diagram (4:9)
of Fig. 7 is properly taken into account, we evaluate the
corresponding generalized cut N4MC 9 in Fig. 4. In both
N ¼ 4 super-Yang-Mills theory and N ¼ 8 supergravity,
all such cuts vanish, as we directly verified in the latter case
using Eq. (2.31). The purpose of the contact term is to
ensure that the cut vanishes.
The derived contact terms contained in the Mathematica

files have some noteworthy properties. The most striking is
that most vanish. Specifically, at each level the following
number of diagram numerators vanish:

Level 2∶ 6158 of 7917;

Level 3∶ 11 894 of 15 156;

Level 4∶ 14 980 of 19 567;

Level 5∶ 13 239 of 17 305;

Level 6∶ 7941 of 10 745: ð6:10Þ

The precise number of vanishing diagrams depends on the
starting point we used in the naive double copy and also on
details of the off-shell continuation of the contact terms at
each level. The large number of vanishing contact terms is a
consequence of many dual Jacobi identities automatically
holding. One reason is that the duality generally holds
automatically around propagators that are part of one-loop
four-point subdiagrams, given these tend not to depend on
the momentum of that loop. Another reason is that the five-
loop N ¼ 4 super-Yang-Mills amplitude was constructed
by recycling the corresponding four-loop amplitude on a
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simple form [64]; it therefore automatically inherits a
variety of simplifying properties.
Another striking property is that the numerators of all

level-2 contact diagrams containing two four-point vertices
factorize. This is a direct consequence of Eq. (4.9), with
J̃ ¼ J since the two copies are identical. In fact, these
properties were originally used in Ref. [16], as an important
clue that a generalized double-copy construction in terms of
BCJ discrepancy functions should exist.
In order to confirm the correctness of our integrand

construction we performed a number of nontrivial checks.
We computed large numbers of additional generalized
unitarity cuts not used in the construction of the integrand.
This includes cuts generated, not only from releasing
on-shell conditions on the 410 nonvanishing top-level
diagrams, but also those obtained from a larger set of
910 top-level diagrams free of bubble and triangle subdia-
grams. We checked that all such cuts at the N2MC through
N6MC levels are correct, without requiring any additional
contributions. Furthermore, we numerically confirmed on a
complete set of N7MCs—excluding the technically chal-
lenging ones containing a ten-point tree amplitude—that no
further contact terms arise. We also numerically confirmed
over 300 cuts at the N8MC level without finding any
additional contributions.

VII. MAXIMAL CUT INTEGRATION
CHECK IN D= 22=5

In this section we describe a formalism for extracting
ultraviolet divergences and apply it to perform a nontrivial
check on the constructed integrand. We follow the standard
strategy of expanding the integrand at large loop momenta
or equivalently at small external momenta, as used in earlier
supergravity calculations [11,14]. The main difference is
that the integral relations needed to simplify the results are
much more complex, so we employ modern unitarity
compatible integration ideas [7,9,46,47] to streamline the
computations.
Specifically, we perform checks on the expected finite-

ness of N ¼ 8 supergravity in dimensions D < 24=5
[48,49]. While there is reason to believe that N ¼ 8
supergravity may be finite in D ¼ 24=5 as well, it is
nontrivial to perform the requisite loop integration, so here
we will content ourselves with demonstrating the expected
ultraviolet cancellations in D ¼ 22=5. While this result is
not a surprise, it does serve as a nontrivial verification of the
integrand. The integrand we constructed in the previous
section does not manifest the ultraviolet properties term by
term. In fact, some terms contain up to four extra powers of
loop momentum compared to that needed for manifest
finiteness in D ¼ 22=5. For example, if we square either of
the numerators in Eq. (6.5) to obtain the N ¼ 8 super-
gravity double-copy numerators (6.7), we find terms with
up to 6 inverse propagators or 12 powers of loop

momentum in the numerator. Given that there are 16
propagators and five independent loop momenta, individual
terms do lead to divergences even in four dimensions.
We could test the cancellation in D ¼ 4, but there are

complications for this case: the integrals have subdiver-
gences and in addition technical difficulties arise with the
Baikov representation that we use. Since these complica-
tions are not relevant for the interesting case of D ¼ 24=5,
it is much better to perform checks in D ¼ 22=5 which
requires a nontrivial series expansion of the integrand, but
is still far simpler than the D ¼ 24=5 case.
To carry out this expansion in large loop momenta, we

follow Refs. [11,12,14] which are based on Refs. [65].
Taylor-expanding in small external momenta (equivalent to
large loop momenta) expresses the integrand as a sum of
vacuum integrals. These are Feynman integrals whose
propagator structures are given by graphs without external
legs, but with numerators which can depend on external
momenta. The terms with six external powers of momenta
[not counting the overall ðstAtree

4 Þ2 factor] are log divergent
in D ¼ 22=5. Lorentz invariance can then be used to
perform tensor reduction which eliminates the appearance
of dot products of loop momenta with external momenta,
e.g., using

ðl5 · k1Þðl6 · k2Þ →
1

D
ðk1 · k2Þðl5 · l6Þ; ð7:1Þ

where li is a loop momentum, ki is an external momentum
and D is the spacetime dimension. This is valid inside the
vacuum integrals and eliminates dot products between loop
and external momenta in the numerators. Finally, a mass
regulator is introduced to deal with infrared singularities,
which are artifacts of the expansion. See Ref. [14] for
further details.
We apply this procedure to each diagram after summing

over all 24 permutations of external legs and dividing by
the appropriate symmetry factor that removes double
counts and inner automorphisms. This leaves us with a
large number of vacuum integrals with propagators raised
to various powers and with different numerators.
To simplify the expression we use IBP relations [6], with

the additional refinement of dropping any ultraviolet finite
integrals, to directly obtain linear relations between ultra-
violet poles of different vacuum integrals [66]. The linear
relations reduce the ultraviolet divergence of the amplitude
to a linear combination of a small number of master
integrals. We will check whether the coefficients of certain
master integrals vanish individually. Of course, if the
coefficients do not vanish individually, we would then
need to check for additional relations between master
integrals not captured by the reduction procedure, including
those with canceled propagators; at least for the D ¼ 22=5
case described here, no further relations are required.
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Given the large number of vacuum integrals generated by
the expansion procedure, a full IBP reduction would
involve solving a large linear system, which is a nontrivial
computational task. Instead, we will exploit recent
advances in IBP reduction on unitarity cuts [7,9,46,47]
to quickly obtain the coefficients of the two top-level
master integrals—master integrals corresponding to vac-
uum graphs with only cubic vertices—via the maximal cut
of vacuum integrals. We will find the two coefficients to be
both zero, which is consistent with ultraviolet-finiteness of
N ¼ 8 supergravity in D ¼ 22=5. The zero coefficients
result from nontrivial cancellations between hundreds of
diagrams that contribute to the top-level master integrals
after vacuum expansion and IBP reduction. Therefore this
provides a highly nontrivial check on the five-loop
integrand.
In general, for L-loop integrals that are dimensionally

regularized in D dimensions, there is no ultraviolet sub-
divergence if none of D; 2D;…; DðL − 1Þ is an even
integer. This implies there are no subdivergences in
D ¼ 22=5, simplifying our analysis, compared to, for
example, calculations of the five-loop QCD β-function
[67]. Only an overall 1=ϵ simple pole in D ¼ 22=5 − ϵ
needs to be evaluated. The high tensor powers nevertheless
make it nontrivial.

A. Warmup: Half-maximal supergravity
at two loops in D= 5

In order to explain the machinery that we use at five
loops, we briefly review the treatment in Ref. [66] of IBP
relations needed to demonstrate the ultraviolet finiteness of
half-maximal supergravity at two loops in D ¼ 5, and in
addition give a more intuitive treatment by computing cut
integrals [46,47,68,69] following the method of Ref. [47].
As explained in Ref. [66], after vacuum expansion and

tensor reduction, the potential ultraviolet divergence for
this case is given by

I1;1;3 þ 2I1;2;2; ð7:2Þ

where we omit an overall constant factor and

IA;B;C

¼
Z

dDl1dDl2
1

ðl21 −m2ÞAðl22 −m2ÞB½ðl1 þ l2Þ2 −m2�C ;

ð7:3Þ

withD ¼ 5 − 2ϵ. This corresponds to Fig. 10 withm being
a uniform mass to regulate the infrared divergences. IA;B;C
is invariant under S3 permutations of ðA;B; CÞ, a fact
which we will use without further mention. The task we are
interested in here is to show that the combination of
integrals in Eq. (7.2) is ultraviolet finite. Explicit calcu-
lation gives [66]

I1;1;3jUV div ¼ −
π

192ϵ
; I1;2;2jUV div ¼

π

96ϵ
; ð7:4Þ

which shows that the divergence in Eq. (7.2) cancels.
However, explicit evaluation becomes overwhelmingly

more challenging at five loops, and it is generally easier to
find relations between integrals rather than to evaluate them
explicitly. An example of a useful IBP identity is

0 ¼
Z

dDl1

Z
dDl2

�
lμ1

∂
∂lμ1 − lμ2

∂
∂lμ2

�
1

ðl21 −m2ÞAðl22 −m2ÞB½ðl1 þ l2Þ2 −m2�C
¼ ð−2Aþ 2BÞIA;B;C − 2CIA−1;B;Cþ1 þ 2CIA;B−1;Cþ1 þm2ð−2AIAþ1;B;C þ 2BIA;Bþ1;CÞ: ð7:5Þ

With Aþ Bþ C ¼ 5; A; B; C > 0 we have a leading
ultraviolet divergence. While the second line of
Eq. (7.5) is logarithmically ultraviolet divergent, the
terms proportional to m2 are ultraviolet convergent by
power counting. (Only the overall power counting is
needed because dimensional regularization does not yield
one-loop subdivergences near D ¼ 5.) Therefore, we
need only keep terms without an explicit factor of m2

to obtain linear relations between ultraviolet poles of
different vacuum integrals. The same relations can be

obtained by setting m2 ¼ 0 from the beginning. Further-
more, since this IBP relation has no explicit D depend-
ence in the coefficient of the integrals on the right-hand
side, we can set D ¼ 5 instead of D ¼ 5 − 2ϵ. In sum-
mary, explicit appearances of ϵ and m2 may be discarded
at the start of the calculation, leaving only implicit
dependence in the integrals. We employ this vast sim-
plification at five loops.
Following the above logic and setting A ¼ 1,

B ¼ C ¼ 2, Eq. (7.5) becomes

FIG. 10. The two-loop vacuum diagram corresponding to
Eq. (7.3).
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0 ¼ 2I1;2;2 − 4I0;2;3 þ 4I1;1;3 þ ultraviolet finite

¼ 2I1;2;2 þ 4I1;1;3 þ ultraviolet finite; ð7:6Þ

where in the second line we dropped I0;2;3, because the
integral factorizes into two one-loop integrals and is
therefore ultraviolet finite in dimensional regularization
near five dimensions. This completes the IBP-based proof
that Eq. (7.2) is ultraviolet finite in dimensional
regularization.
By five loops, the number of potential integrals and IBP

relations explodes, so it becomes important to find further
simplifications. A more direct derivation of the ultraviolet
finiteness of Eq. (7.2) comes from the study of “cut
integrals,” i.e. Feynman integrals computed on unitarity
cuts. In carrying this out some care is required, because
integration contours need to be chosen carefully to preserve
integral relations such as IBP identities. The Baikov
representation [70] of Feynman integrals, which uses
inverse propagators as integration variables, is the natural
representation to use for cut integrals in arbitrary dimen-
sions. For the two-loop vacuum integral Eq. (7.3) with
m2 ¼ 0 (as justified in the discussions above), the Baikov
representation can be derived using the following change of
variables:

z1 ¼ l21; z2 ¼ l22; z3 ¼ ðl1 þ l2Þ2: ð7:7Þ

Using polar coordinates one can show that

IA;B;C ∝
Z

dz1
zA1

Z
dz2
zB2

Z
dz3
zC3

½PðziÞ�ðD−3Þ=2; ð7:8Þ

where we omitted a constant of proportionality which
depends on only the dimension D. The Baikov polynomial
PðziÞ ¼ Pðz1; z2; z3Þ is defined as

PðziÞ ¼ detð2li · ljÞ ¼ 4½l21l22 − ðl1 · l2Þ2�
¼ 2z1z2 þ 2z2z3 þ 2z3z1 − z21 − z22 − z23: ð7:9Þ

The integration boundary in Eq. (7.8) is PðziÞ ¼ 0 because
with real l1 and l2, the triangle inequality implies that
PðziÞ ≥ 0. As discussed following Eq. (7.6), if any of the
three propagators of the integral is canceled, the integral
factorizes into two one-loop integrals and therefore
becomes ultraviolet finite. This leads us to compute
Eq. (7.8) on the maximal cut z1 ¼ z2 ¼ z3 ¼ 0. An obvious
prescription for imposing the maximal cut is turning each
propagator into a Dirac delta function,

Z
dzi
zi

→
Z

dziδðziÞ: ð7:10Þ

However, such a prescription breaks down because the
denominators zi are raised to general integer powers. A

consistent prescription is to turn each dzi integral into a
contour integral around zi ¼ 0 [69],

Z
dzi
zAi

→
1

2πi

I
dzi
zAi

¼ dzi
ðA − 1Þ!

� ∂
∂zi

�
A−1

����
zi¼0

; ð7:11Þ

which matches the naive prescription Eq. (7.10) when
A ¼ 1. Using the contour integral prescription, we compute
Eq. (7.8) on the maximal cut in D ¼ 5,

IA;B;Cjcut ∝
�

1

2πi

�
3
I

dz1
zA1

I
dz2
zB2

I
dz3
zC3

PðziÞ

¼ coefficient of zA−11 zB−12 zC−13 in

ð2z1z2þ2z2z3þ2z3z1−z21− z22− z23Þ; ð7:12Þ

which directly gives

I1;1;3jcut ∝ −1; I1;2;2jcut ∝ 2; ð7:13Þ

reproducing the IBP relation Eq. (7.6), up to ultraviolet
finite terms that are dropped because we imposed the
maximal cut along with m2 ¼ 0 and ϵ ¼ 0.
The above calculation can be straightforwardly gener-

alized to D ¼ 7, which is the ultraviolet critical dimension
ofN ¼ 8 supergravity at two loops, by changing the power
of the Baikov polynomial to ðD − 3Þ=2 ¼ 2. We reproduce
the relation between ultraviolet poles in 7 dimensions [53],

I3;1;3jdiv
I2;2;3jdiv

¼ 3

2
; ð7:14Þ

without a full evaluation of the two integrals. By five loops
this approach becomes enormously beneficial.

B. Ultraviolet cancellation inN = 8 super gravity at five
loops in D= 22=5

For our check of ultraviolet properties in D ¼ 22=5 we
will impose maximal cuts on the vacuum diagrams, similar
to the two-loop example above. While this is justified at
two loops because the daughter integrals are all ultraviolet
finite in dimensional regularization, in the five-loop case
there is no such argument. Nevertheless, we can simply
ignore the daughter vacuum diagrams and ask whether the
coefficient of the parent master integrals vanish. The case of
D ¼ 22=5 should be especially straightforward because it
is very likely that an integrand representation exists which
is term-by-term finite in this dimension, even if nontrivial
to construct.
As usual we organize the integration by parts identities

according to the topology of the vacuum integral. By
topology we mean the set of propagators, but not the
powers which the propagators are raised to. Therefore
every vacuum topology can be defined by a vacuum
diagram in which no two propagators have the same
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momentum. At five loops there are four top-level vacuum
diagrams without repeated propagators, among which only
the “cube” and the “crossed cube” (see Fig. 11) turn out to
have nontrivial top-level master integrals that cannot be
reduced to integrals with fewer propagators.
Here we will discuss the nonplanar crossed cube in some

detail. The planar cube topology can be treated similarly.
The first 12 integration variables are defined to be the
inverse propagators,

zi ¼ l2i ; 1 ≤ i ≤ 12; ð7:15Þ
where l1, l2, l3, l4 and l5 are the five independent
loop momenta labeled in the second diagram of Fig. 11,
while l6; l7;…; l12 are the momenta of the remaining
propagators, each being a linear combination of the five
independent momenta. There are three irreducible numer-
ators which cannot be written as linear combinations of
inverse propagators,

z13 ¼ l1 · l3; z14 ¼ ðl4 − l5Þ · ðl2 − l1 − l3Þ;
z15 ¼ −l3 · l4; ð7:16Þ

these are the last three integration variables. We consider
the maximal cut which does not allow any propagator to be
canceled. With the 12 propagators 1=zi raised to the powers
pi and with the three irreducible numerators z13, z14, z15
raised to the powers y1, y2, y3, respectively, the Baikov
representation of the vacuum integral is (again omitting an
overall constant factor)

Ipi;yi ¼
�Y12

i¼1

Z
dzi
zpi
i

�
dz13dz14dz15z

y1
13z

y2
14z

y3
15½PðziÞ�ðD−6Þ=2:

ð7:17Þ

In Eq. (7.17), PðziÞ is the Baikov polynomial which has
uniform degree 5. It is defined as a determinant in a way
similar to Eq. (7.9),

PðziÞ ¼ detð2li · ljÞ: ð7:18Þ

The full expression of the Baikov polynomial, in terms of
z1; z2;…; z15, is needed in the calculation prior to differ-
entiating, but omitted here as it can be easily reproduced.
On the maximal cut, we set zi ¼ 0; 1 ≤ i ≤ 12, leaving

PðziÞjcut ¼ 64z13z14z15ðz13− z14Þðz13þ z14þ z15Þ: ð7:19Þ

The vacuum expansion of the amplitude at five loops will
produce a linear combination of a large number of vacuum
integrals with different pi and yi indices in Eq. (7.17). For
each of these integrals, imposing the maximal cut using the
contour prescription Eq. (7.11), we obtain

Ipi;yi jcut ¼
Y12
i¼1

dzi
ðpi − 1Þ!

� ∂
∂zi

�
pi−1

× jzi¼0½zy113zy214zy315½PðziÞ�ðD−6Þ=2�: ð7:20Þ
Since all the inverse propagator variables are set to zero
after taking derivatives, Eq. (7.20) will become a linear
combination of different integrals (with different yi expo-
nents and Δd parameters below) of the following form:

Z
dz13

Z
dz14

Z
dz15z

y1
13z

y2
14z

y3
15PðziÞjðD−2ΔD−6Þ=2

cut ; ð7:21Þ

where the power of the Baikov polynomial has decreased
by some integer ΔD compared with the expression
Eq. (7.17). The value of ΔD is in fact correlated with
the y1, y2, y3, since the logarithmic power counting of the
integrals are preserved by the maximal cut. This turns
Eq. (7.21) intoZ

dz13

Z
dz14

Z
dz15z

y1
13z

y2
14z

y3
15PðziÞj−ð3þy1þy2þy3Þ=5

cut :

ð7:22Þ
The above integral has logarithmic power counting since
PðziÞjcut has uniform degree 5 in the zi variables, and each
zi variable has mass dimension 2.
The top-level master integral for the crossed cube top-

ology, VðNPÞ, is defined as the integral with a unit numerator
and with no propagator denominator raised to more than its
first power. We use integration-by-parts identities to reduce
all integrals Eq. (7.22) to the master integral VðNPÞ with
y1 ¼ y2 ¼ y3 ¼ 0. The integration-by-parts identities on
the maximal cut are given by

0¼
Z

dz13

Z
dz14

Z
dz15

∂
∂zj ½z

y1
13z

y2
14z

y3
15PðziÞjðD−2ΔD−6Þ=2

cut �;

ð7:23Þ
where the value of jmay be 13, 14, or 15, and the values of
y1, y2, y3, ΔD are any integers. We find it convenient to
adopt the strategy suggested in Ref. [9] to first use
dimension-shifting identities and then generate IBP

FIG. 11. The five-loop planar “cube” and nonplanar “crossed
cube” topologies are the top-level vacuum integrals divergent in
D ¼ 22=5.
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identities in the same spacetime dimension by solving
syzygy equations [8]. We omit the technical details and
refer the reader to the literature. As an alternative to IBP
reduction, in Appendix B we directly integrate Eq. (7.22)
with appropriate integration limits.
We carried out the same IBP procedure for the planar

cube topology to reduce all integrals on the maximal cut to
the master integral VðPÞ which again has a unit numerator
and no propagator raised to more than its first power.
After performing vacuum-diagram expansion and IBP

reduction, summing over permutations, and dividing by
appropriate symmetry factors, there are a total of 152
diagrams that give nonvanishing contributions to the
coefficient of the planar vacuum integral VðPÞ; they origi-
nate from contact levels 0, 2, 3 and 4. Similarly, 366
diagrams in total give nonvanishing contributions to the
nonplanar vacuum integral VðNPÞ. Of the diagrams listed in
Fig. 5, six give nontrivial contributions. Similarly of the
contact diagrams in Fig. 7, eleven give nontrivial contri-
butions. These seventeen contributions are collected in
Table IV, as examples of the numbers that appear. Since we
are keeping only the two parent master vacuum diagrams,
we obtain contribution only from levels k ≤ 4. Beyond this
there are too few propagators to contribute.
To find a cancellation we must sum over all the 152þ

366 contributions. In Table V we give the results for each

cut level, as well as the sum over all levels. It is noteworthy
that while the coefficients coming from individual con-
tributions involve ratios of large numbers, they completely
cancel in the sum over contributions. The nontriviality of
this cancellation strongly suggests that the terms contrib-
uting to this potential ultraviolet divergence are correct.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we described in some detail a generalized
double-copy construction, previously outlined in Ref. [16],
for obtaining gravity loop amplitudes from corresponding
gauge-theory loop amplitudes. It bypasses the task of finding
forms of gauge-theory amplitudes that satisfy color-kinemat-
ics duality, which has proven difficult in particular situations,
but retains our ability to obtain multiloop gravity integrands
in a useful form directly from gauge theory. We applied this
new method to construct the five-loop four-point amplitude
ofN ¼ 8 supergravity. At present, onlymethods that rely on
the double-copy principle are capable of obtaining super-
gravity loop integrands at such high loop orders.
Our construction starts with a slightly reorganized

version of the five-loop four-point N ¼ 4 super-Yang-
Mills integrand given in Ref. [44]. By taking a naive double
copy of this integrand, even though it does not manifest the
duality between color and kinematics, we obtain an
expression whose maximal and next-to-maximal cuts
automatically match those of the corresponding super-
gravity amplitude. Using the double copy and generalized
gauge symmetry, as outlined in Ref. [16] and fleshed out
here, we derive generic corrections that are bilinear in the
gauge-theory discrepancy functions that account for the
lack of manifest duality. These correction terms are generic
in the sense that they give explicit formulas that apply to
large numbers of different cuts that we encounter at five
loops; more generally, they apply to any loop order and
generic double-copy theory. For the case where a gener-
alized cut involves at most one five-point tree and an

TABLE IV. Ultraviolet divergences inD ¼ 22=5 from a sample
of the diagrams given in Figs. 5 and 7. The coefficients in the last
two columns corresponds to the contributions from the two
vacuum diagrams in Fig. 11.

Level Diagram number VðPÞ VðNPÞ

0 280 9792
55

0

0 283 0 − 1908
5

0 285 − 648
11

0

0 335 28734
175

0

0 404 604752003
123200

0

0 410 0 127594657
9600

2 448 − 196356
385

0

2 141 − 819501
19250

0

2 102 0 −96
2 617 0 − 168

5

3 196 − 15
7

0

3 186 − 75039
3080

0

3 91 0 − 75039
3080

3 68 0 338664
1925

4 42 4453833
3080

0

4 46 32842137
6160

0

4 9 0 − 219
11

TABLE V. Ultraviolet divergence in D ¼ 22=5 after summing
up individual contributions for two vacuum diagrams. For each
contact level we give the coefficients of the planar and nonplanar
top-level master integrals. The columns sum to zero confirming
the expected cancellation in D ¼ 22=5. Level 0 contributions are
from the naive double copy, levels 2, 3, 4 are contact term
corrections, and levels 5, 6 do not contribute to the top-level
vacuum integrals.

Level VðPÞ VðNPÞ

0 2439779211
154000

2911616507
7392000

2 374402283
308000

8846490651
224000

3 3535277
800

791440021
35200

4 − 18900121
880

− 1152620531
18480

sum 0 0
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arbitrary number of four-point trees, we found a simple
universal pattern for the correction terms. At five loops, out
of all the NkMCs that require corrections, slightly more
than half of them are of this type. For the remaining cuts,
which typically have corrections with simpler analytic
structure, we used a mixture of analytical and numerical
methods.
To ensure the reliability of the five-loop integrand we

carried out a number of checks. In particular, we verified a
large number of unitarity cuts that are redundant compared
to the ones used in the construction of the integrand. As a
further nontrivial check we confirmed that in the large loop-
momentum limit the ultraviolet divergences in D ¼ 22=5
cancel for the top-level master integrals. While this can-
cellation is completely expected, the individual diagrams
can be superficially divergent inD ≥ 4, and thus it provides
a nontrivial confirmation not only for our integration
techniques but also for our integrand.
There are a number of open problems. The most obvious

application of the results presented here would be to
integrate the expression for large loop momenta in the
next-higher spacetime dimension where an ultraviolet
divergence is possible; that is, in D ¼ 24=5 dimensions.
Knowing the ultraviolet behavior in D ¼ 24=5 is of critical
importance. Arguments have suggested that N ¼ 8 super-
gravity should diverge in this dimension at five loops [48],
and at the same time we know that similar arguments for
N ¼ 4 supergravity at three loops andN ¼ 5 supergravity
at four loops imply divergences in D ¼ 4 where none exist
[13,15]. In addition, in the case of half-maximal super-
gravity in D ¼ 5 analogous cancellations have been
explicitly linked to the double-copy structure [71].
The D ¼ 24=5 integration requires analyzing contribu-

tions that are four momentum powers suppressed compared
to the superficial divergence of the integrand, giving an
enormous proliferation of contributing terms compared to
the D ¼ 22=5 integration. The sheer number of contribu-
tions is a computational challenge, but also the greater
number of relations needed for the various vacuum dia-
grams encountered is technically demanding. In this paper
we presented new efficient methods based on modern
developments [7,9,46,47] that are suitable for carrying
out these integrations, and we tested them for the simpler
case of D ¼ 22=5. Further refinements would be important
for streamlining this.
The complications encountered in extracting the ultra-

violet behavior are not surprising given that the represen-
tation of the five-loop four-point amplitude we constructed
has a far worse diagram-by-diagram power counting than
ideal. As mentioned, individual terms are ultraviolet
divergent even in four dimensions where there should be
no divergences in the full amplitude [48,49]. This poor
behavior is inherited from our starting point: the repre-
sentation of the N ¼ 4 super-Yang-Mills integrand [44].
An obvious approach to this problem would be to find a

representation of the N ¼ 4 super-Yang-Mills amplitude
whose naive double copy would be manifestly ultraviolet
finite in D < 24=5. Then, as the contact term corrections
are added to the integrand, some care would be needed to
ensure that they do not increase the power counting. If this
could be done it would enormously simplify the loop
integration, especially in D ¼ 24=5.
A further important open issue is to find explicit

formulas for the contact-term corrections, such that they
are manifestly local without requiring nontrivial cancella-
tions. For the contact terms with two canceled propagators,
our derived formulas have this property. Beyond this, the
simple patterns of corrections to the cuts with zero or one
five-point tree amplitudes and the rest three- or four-point
amplitudes hints that it may be possible to find such
formulas.
Although we focused here on N ¼ 8 supergravity and

N ¼ 4 super-Yang-Mills, the construction generalizes in
the obvious way to different theories which obey BCJ
duality at tree level, and thus to all gravitational and
nongravitational [30,39,40] double-copy theories obtained
from them. In particular, we expect similar ideas to hold for
all double-copy theories whose single copies include fields
in the fundamental representation of the gauge group
[21,22]. A specific application of our generalized dou-
ble-copy procedure would be to construct the five-loop
four-point integrand of N ¼ 5 supergravity, which is
important for studying ultraviolet properties of supergravity
theories. While N ¼ 4 supergravity does diverge at four
loops, this appears tied to a U(1) anomaly [12,72]. Such
anomalies do not occur in N ≥ 5 supergravity, so it would
be important to test whether N ¼ 5 supergravity diverges
at five loops, given that the four-loop four-point amplitude
of this theory is ultraviolet finite [15].
Another interesting direction is that our results suggest

that it may be possible to convert any gauge-theory
classical solution to a gravitational one without needing
special generalized gauges. In particular, it will be inter-
esting to see if the ideas presented in this paper are helpful
for the problem of gravitational radiation, which has
recently been shown to have a double-copy structure [34].
We expect that the ideas presented in this paper will be

useful, not only for investigating the ultraviolet behavior of
perturbative quantum gravity, but also for understanding
general physical properties of gravity theories. We look
forward to exploring this in the coming years.
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APPENDIX A: SOME EXPLICIT
HIGHER-CUT FORMULAS

In this appendix we give the explicit result of applying
the substitution formulas (5.25) and (5.27) to the 4 × 4 ×
4 × 4 and 5 × 4 × 4 cases.

1. Four four-point tree amplitudes in the cut

To obtain the 4 × 4 × 4 × 4 case, we start with the
expression

X3
i1;i2;i3;i4¼1

Ji1;i2;i3;i4 J̃i1;i2;i3;i4
dð1Þi1

dð2Þi2
dð3Þi3

dð4Þi4

; ðA1Þ

and then apply the substitution in Eq. (5.25) repeatedly
until no further terms are found to generate the terms
needed to correct the cut of the naive double copy. This
gives

E4×4×4×4
GR ¼ T1 þ T2 þ T3; ðA2Þ

where

T1 ¼ −
X3
i;j¼1

�
J•;1;i;jJ̃1;•;i;j

dð1Þ1 dð2Þ1 dð3Þi dð4Þj

þ J•;i;1;jJ̃1;i;•;j

dð1Þ1 dð2Þi dð3Þ1 dð4Þj

þ J•;i;j;1J̃1;i;j;•

dð1Þ1 dð2Þi dð3Þj dð4Þ1

þ Ji;•;1;jJ̃i;1;•;j

dð1Þi dð2Þ1 dð3Þ1 dð4Þj

þ Ji;•;j;1J̃i;1;j;•

dð1Þi dð2Þ1 dð3Þj dð4Þ1

þ Ji;j;•;1J̃i;j;1;•

dð1Þi dð2Þj dð3Þ1 dð4Þ1

�
þ fJ ↔ J̃g; ðA3Þ

T2 ¼
X3
i¼1

�
J1;1;•;iJ̃•;•;1;i þ J1;•;1;iJ̃•;1;•;i þ J•;1;1;iJ̃1;•;•;i

dð1Þ1 dð2Þ1 dð3Þ1 dð4Þi

þ J1;1;i;•J̃•;•;i;1 þ J1;•;i;1J̃•;1;i;• þ J•;1;i;1J̃1;•;i;•

dð1Þ1 dð2Þ1 dð3Þi dð4Þ1

þ J1;i;1;•J̃•;i;•;1 þ J1;i;•;1J̃•;i;1;• þ J•;i;1;1J̃1;i;•;•

dð1Þ1 dð2Þi dð3Þ1 dð4Þ1

þ Ji;1;1;•J̃i;•;•;1 þ Ji;1;•;1J̃i;•;1;• þ Ji;•;1;1J̃i;1;•;•

dð1Þi dð2Þ1 dð3Þ1 dð4Þ1

Þ þ fJ ↔ J̃g; ðA4Þ

T3 ¼ −
1

dð1Þ1 dð2Þ1 dð3Þ1 dð4Þ1

ðJ•;1;1;1J̃1;•;•;• þ J1;•;1;1J̃•;1;•;• þ J1;1;•;1J̃•;•;1;• þ J1;1;1;•J̃•;•;•;1

þ J1;1;•;•J̃•;•;1;1 þ J1;•;1;•J̃•;1;•;1 þ J1;•;•;1J̃•;1;1;•Þ þ fJ ↔ J̃g: ðA5Þ

By solving the generalized gauge transformations in terms of the BCJ discrepancy functions, we have explicitly
confirmed that this indeed is a solution for the extra contributions correcting the naive double copy. In fact, this pattern
appears to continue for any number additional four-point tree amplitudes in the cut.

2. One five-point and two four-point amplitudes in the cut

To obtain the 5 × 4 × 4 case, we start with the expression

−
X15
i¼1

X3
j2;j3¼1

Ji;j2;j3 J̃i;j2;j3
dð1;1Þi dð1;2Þi dð2Þj2

dð3Þj3

: ðA6Þ

Applying the substitutions in Eq. (5.27) generates the terms

C5×4×4GR ¼
X15
i¼1

X3
j2;j3¼1

ni;j2;j3 ~ni;j2;j3
dð1;1Þi dð1;2Þi dð2Þj2

dð3Þj3

−
X6
i¼1

Ti; ðA7Þ

where
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T1 ¼
X
i;j2;j3

1

Dij2j3

�
1

6
Jfi;1g;j2;j3 J̃fi;2g;j2;j3 þ

�
−
1

3

�
2

Ji;•;j3 J̃i;j2;• þ
X2
h¼1

ðaiJfi;hg;j2;j3 J̃i;•;j3 þ aiJfi;hg;j2;j3 J̃i;j2;•Þ
�
þ fJ ↔ J̃g;

T2 ¼
�
−
1

3

�
×
1

6

X2
h1≠h2
h1 ;h2¼1

X
i;j2;j3

1

Dij2j3

ðJfi;h1g;j2;j3 J̃fi;h2g;•;j3 þ Jfi;h1g;j2;j3 J̃fi;h2g;j2;•Þ þ fJ ↔ J̃g;

T3 ¼
�
−
1

3

�
×
X2
h¼1

X
i;j2;j3

1

Dij2j3

ðaiJfi;hg;j2;j3 J̃i;•;• þ aiJi;•;j3 J̃fi;hg;j2;• þ aiJi;j2;•J̃fi;hg;j2;•Þ þ fJ ↔ J̃g;

T4 ¼ ð−1Þ
X2
h1≠h2
h1 ;h2¼1

X
i;j2;j3

1

Dij2j3

ðaðh1Þi Ji;•;j3 J̃fi;h1;h2g;j2;j3 þ aðh1Þi Ji;j2;•J̃fi;h1;h2g;j2;j3Þ þ fJ ↔ J̃g;

T5 ¼
X2
h1≠h2
h1 ;h2¼1

X
i;j2;j3

1

Dij2j3

��
−
1

3

�
2

×
1

6
Jfi;h1g;j2;j3 J̃fi;h2g;•;• þ

�
−
1

3

�
× ð−1Þaðh1Þi Ji;j2;•J̃fi;h1;h2g;•;j3

�
þ fJ ↔ J̃g;

T6 ¼
X2
h1≠h2
h1 ;h2¼1

X
i;j2;j3

1

Dij2j3

��
−
1

3

�
2

×
1

6
Jfi;h1g;j2;•J̃fi;h2g;•;j3 þ

�
−
1

3

�
× ð−1Þaðh1Þi Ji;•;•J̃fi;h1;h2g;j2;j3 � þ fJ ↔ J̃g; ðA8Þ

where we use the shorthand notation,

X
i;j2;j3

≡X15
i¼1

X3
j2;j3¼1

; Dij2j3 ≡ dð1;1Þi dð1;2Þi dð2Þj2
dð3Þj3

: ðA9Þ

The ai, a
ð1Þ
i and að2Þi coefficients are the same as for the

5 × 4 cut, given in Table II.

APPENDIX B: DIRECT EVALUATION OF
FIVE-LOOP CUT VACUUM INTEGRALS

In this appendix we present an alternative direct inte-
gration of the five-loop cut vacuum integrals. We work out
the crossed cube in Fig. 11 in detail. The task here is to
evaluate Eq. (7.21).
We set the integration region in Eq. (7.21) to be

z13 > 0; z14 > 0; z15 > 0: ðB1Þ
In the original uncut integral in the Baikov representation,
the boundary of the integration region is defined by the
points at which the Baikov polynomial vanishes, so there is
no boundary term in integration-by-parts identities

[46,47,73]. In the cut integrals, the boundary of the region
Eq. (B1) is

fðz13; z14; z15Þjz13 ¼ 0 or z14 ¼ 0 or z15 ¼ 0g;
ðB2Þ

on which the Baikov polynomial PðziÞjcut in Eq. (7.20)
evaluates to zero, as is the case for the uncut integral. This
means the cut integrals will inherit IBP identities of the
uncut integrals, which is crucial for the consistency of this
approach and for demonstrating ultraviolet cancellations. In
Eq. (7.21), we make a change of variables

z13 ¼ z α; z14 ¼ z β; z15 ¼ zð1 − α − βÞ; ðB3Þ
and factor out the overall integral independent of y1, y2, y3
(with the ϵ dependence reinstated for the purpose of
illustration), Z

∞

0

dz
z1þ5ϵ ; ðB4Þ

whose ultraviolet divergence is −1=ð5ϵÞ. This leaves us
with an integral

Z
1

0

dα
Z

1−α

0

dβαy1βy2ð1 − α − βÞy3 ½64αβð1 − α − βÞð1 − βÞ�−ð3þy1þy2þy3Þ=5

¼ ð64Þ−ð3þy1þy2þy3Þ=5 Γðð1þ 2y1 − 3y2 þ 2y3Þ=5Þ
Γðð3þ y1 þ y2 þ y3Þ=5ÞΓðð4þ 3y1 − 2y2 þ 3y3Þ=5Þ

× Γðð2þ 4y1 − y2 − y3Þ=5ÞΓðð2 − y1 þ 4y2 − y3Þ=5ÞΓðð2 − y1 − y2 þ 4y3Þ=5Þ; ðB5Þ
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which evaluates to nonsingular values with the values of
ðy1; y2; y3Þ appearing in our calculation.
The top-level master integral for the crossed cube top-

ology, VðNPÞ, is defined as the integral with a unit numerator
and with no propagator denominator raised to more than its
first power. The coefficient of the top-level master integral
is obtained by dividing Eq. (B5) by its value at
y1 ¼ y2 ¼ y3 ¼ 0. This method gives exactly the same
results for the coefficients of the top-level crossed cube
integral as the IBP method outlined in Sec. VII. As before,

adding up all contributions to the coefficients of crossed-
cube gives a vanishing result, providing a nontrivial check
on the integrand.
For the planar cube topology, the Baikov polynomial no

longer factorizes into linear polynomials as in Eq. (7.19), so
direct integration to obtain a closed form expression is more
difficult. This is not a problem for the IBP reduction
method in Sec. VII which is sufficient for our purposes. In
any case, this direct approach gives a powerful alternative
for dealing with five-loop vacuum integrals.
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