
Multipartite entanglement and quantum Fisher information
in conformal field theories

M. A. Rajabpour
Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n,

Gragoatá, 24210-346 Niterói, Rio de Janeiro, Brazil
(Received 6 May 2017; revised manuscript received 10 October 2017; published 13 December 2017)

The bipartite entanglement entropy of a segment of length l in 1þ 1-dimensional conformal field
theories (CFT) follows the formula S ¼ c

3
ln lþ γ, where c is the central charge of the CFT and γ is a cutoff-

dependent constant which diverges in the absence of an ultraviolet cutoff. According to this formula,
systems with larger central charges have more bipartite entanglement entropy. Using quantum Fisher
information (QFI), we argue that systems with bigger central charges not only have larger bipartite
entanglement entropy, but also have more multipartite entanglement content. In particular, we argue that
since a system with a smaller smallest scaling dimension has a larger QFI, the multipartite entanglement
content of a CFT is dependent on the value of the smallest scaling dimension present in the spectrum of the
system. We show that our argument seems to be consistent with some of the existing results regarding the
von Neumann entropy, negativity, and localizable entanglement in 1þ 1 dimensions. Furthermore, we also
argue that the QFI decays under renormalization group flow between two unitary CFTs. Finally, we also
comment on nonconformal but scale-invariant systems.
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I. INTRODUCTION

Understanding quantum field theories (QFT) based on
their entanglement content has been one of the most active
lines of research in the last few decades. Entanglement
entropy is one of the most studied bipartite entangle-
ment measures, and it has been investigated in great
detail in many quantum field theories. Strictly speaking,
entanglement entropy in quantum field theories is a cutoff-
dependent quantity [1–3]. However, the interesting obser-
vation is that the divergence of this quantity in some cases
is related to the universal structure of the quantum field
theory. For example, in 1þ 1-dimensional conformal field
theories (CFTs) the entanglement entropy of a segment of
length l with respect to the rest of the system is
S ¼ c

3
ln lþ γ, where c is the central charge of the CFT

and γ is a cutoff-dependent constant, which diverges in the
absence of an ultraviolet cutoff [1,4]. In the presence of the
same cutoff schemes, it makes sense to say that a fixed point
with a larger central charge has more bipartite entanglement
than one with a smaller central charge. The celebrated
c-theorem in 1þ 1 dimensions seems to put the discussion
on a more solid ground [5,6]. The first version of the
c-theorem [5] is about the behavior of particular correlation
functions under the renormalization group (RG); however,
the second version [6] is explicitly based on the actual
behavior of the entanglement entropy under the RG. For
related discussions in higher dimensions, see Refs. [7–11].
Other information theory quantities—such as relative
entropy and Fisher information—have also been used to
study the renormalization group flows in different quantum
field theories; see for example Refs. [12–15]. Such kind

of studies are useful in the classification of different
quantum (conformal) field theories [12]. Apart from these
studies, there are also many other, more traditional studies
regarding the renormalization group; see Ref. [16] and
references therein. One of the results in this direction is the
η-conjecture, which states that in the Φ4 theories the stable
fixed point corresponds to the fastest decay of the corre-
lation [17]; for earlier related works, see Refs. [18,19]. In
the next sections, we will elaborate more on this conjecture
and its possible connection to the entanglement content of a
field theory.
Although entanglement entropy is a perfect measure to

study bipartite entanglement, there is no widely accepted
multipartite entanglement measure for many-body systems;
for a review, see Ref. [20]. In CFT, the only related
concepts that have been studied recently are the entangle-
ment negativity [21] and localizable entanglement [22].
Recently, quantum Fisher information (QFI) was intro-
duced (see Refs. [23,24]) as a quantity that allows certain
types of multipartite entanglement to be traced from its
scaling with the system size. Fisher information has been
known for a long time as a quantity that can quantify phase
parameter estimation; for a review see Ref. [25]. In
condensed matter physics, a related quantity called fidelity
has been used for more than a decade to study the quantum
phase transition in different systems [26–40]. Fidelity
susceptibility has also been studied extensively in high-
energy physics in the holographic context in Refs. [41–46].
Although Fisher information (fidelity) has been studied for
many years in different areas, recent developments have
shown that one can determine the presence of certain types
of multipartite entanglement by studying the optimization
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of this quantity [23,24]. With this application in mind, QFI
has been revisited in the context of the quantum phase
transition, and many of its universal features have been
investigated in Ref. [47]. In the same work, using the
connection between QFI and dynamical susceptibility, an
experimental setup was proposed to measure this quantity
(see also Ref. [48]). Around the quantum phase transition
point, QFI is universal and allows us to identify strongly
entangled phase transitions with a divergent multipartite
entanglement. Naturally, one expects to also have infinite
multipartite entanglement in the CFTs that describe the
universality class of the quantum phase transition.
However, similar to what we described for bipartite
entanglement entropy, here the way that QFI diverges is
related to the universal structure of the QFT. In particular,
we show that the scaling operator with the smallest scaling
dimension plays the most important role. This observation
and the presence of the η-conjecture makes us believe that
QFI might have interesting behavior under RG. After
establishing this connection, one can make a lot of
consistency checks and also interesting predictions. In this
article, we first review QFI and its connection to multi-
partite entanglement entropy. Then, by using the results of
Ref. [47], we highlight the very important role of the
smallest scaling dimension in the spectrum of QFT. Then,
based on this observation, we show how one can derive
some of the old conclusions and also predict new results
regarding the multipartite entanglement content of quantum
(conformal) field theories.

II. QUANTUM FISHER INFORMATION

Quantum Fisher information quantifies the distinguish-
ability of the density matrix ρ from the unitarily shifted
probe state ρðθÞ ¼ e−iθOρeiθO, for a Hermitian operator O.
The interesting result is the quantum Cramér-Rao bound
which states that for M measurements the variance of the
parameter θ is bounded by the QFI, i.e., ðΔθÞ2 ≥ 1

MFQ
. In

other words, for every outcome of the measurement on a
probe state, we have an estimator for θ. The variance of the
estimator is bounded by the QFI, i.e., FQ. For pure states,
FQ has a very simple form [49]:

FQ ¼ 4ΔðOÞ2 ¼ 4ðhψ jOOjψi − hψ jOjψiÞ2: ð1Þ

For mixed states, another compact formula is available; see
Ref. [49]. To connect the QFI to the multipartite entangle-
ment content of a system, we first need to define k-
producible pure states. Consider a state of N particles; then,
the state jΨk−prodi is k-producible if jΨk−prodi ¼ ⊗P

l¼1 jϕli,
where the jϕli’s are not producible states ofNl ≤ k particles,
such that

P
P
l¼1Nl ¼ N. A state is a genuine k-partite

entangled pure state if it is k-producible but not (k − 1)-
producible. This definition can also be extended to mixed
states [50].

In Refs. [23,24], it was shown that for a system of N
particles with spin 1

2
, the QFI can detect certain types of

multipartite entanglement. The precise statement is as
follows: consider the operator Olin ¼ 1

2

P
N
l¼1 nl:σl, where

σl is the vector of Pauli matrices and nl is a vector on the
Bloch sphere. Optimize the QFI over all of the possible
choices of Olin. The remarkable result of Refs. [23,24] is
that the system has useful kþ 1-partite entanglement if

FQ½ρk−prod� > ⌊
N
k
⌋k2 þ

�
N − ⌊

N
k
⌋k

�
2

; ð2Þ

where ⌊x⌋ is the floor function. When k is a divisor of N
the above equation has a simple form with respect to the
density of QFI,

fQ ≔
FQ½ρk−prod�

N
> k: ð3Þ

A similar conclusion is also valid for systems with higher
spins as far as O represents a sum of local operators with a
bounded spectrum [25]. The application of the above
theorem to a quantum phase transition point has remarkable
consequences. Consider a local scaling operatorOα

i at site i
with scaling dimension Δα. Then, if one defines the global
operator Oα ¼ P

N
i¼1O

α
i as we defined it above, one can

show that [47]

fαQ ≍Nd−2Δα : ð4Þ
One can now optimize the density of QFI by considering
the smallest scaling dimension present in the system. Of
course, this will lead us to the conclusion that if there is any
relevant operator in the spectrum of the system, fQ will
diverge with the system size and, consequently, one can
conclude that the system has divergent multipartite entan-
glement. This is not surprising at all because we already
explained that in QFT the entanglement measures are
often divergent, but the interesting observation is that the
operator with the smallest scaling dimension is the one that
dictates the way that the measure diverges. In other words,
in the presence of the same renormalization group scheme,
one can argue that a system with a smaller smallest scaling
dimension has more multipartite entanglement content.
Although the above argument seems very natural, one
should recall that the proof in Refs. [23,24] considered a
discrete system with particular conditions. One should also
recall that elevating the validity of such arguments to the
quantum field theories is not a trivial thing. We will come
back to this point again in the next section.

III. η-CONJECTURE AND POSSIBLE
GENERALIZATIONS

In the previous section, we highlighted the important role
of the smallest scaling dimension present in the system. In
the field theories written in the Ginzburg-Landau form, it
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seems natural to expect that the operator with the smallest
scaling dimension is the Ginzburg-Landau field Φ itself.
Based on the η-conjecture we have the following [17].

η-conjecture: In general, Φ4 theories with a single
quadratic invariant, the infrared stable fixed point
is the one that corresponds to the fastest decay of
correlations.

Based on this conjecture, the scaling dimension of the Φ
field in the Φ4 theories goes uphill. If we assume that this
field is the operator with the smallest scaling dimension and
all the argument in Refs. [23,24] can be generalized to Φ4

theories, then one can argue that the multipartite entangle-
ment entropy decreases under the RG flow. It is tempting
to try to generalize the above conjecture to more generic
cases. One possible generalization in two dimensions is as
follows.

Conjecture: The smallest scaling dimension in the
spectrum of a system always increases under renorm-
alization group between two unitary diagonal conformal
fixed points.

We support this fact using Polyakov’s one-loop con-
formal perturbation theory; see for example Refs. [51,52].
Consider a conformal fixed point perturbed by an operator
ϕ (and corresponding coupling gϕ) with scaling dimension
Δϕ, which is the least relevant scaling operator in the
spectrum of the system. Since the operator with the smallest
scaling dimensionO does not mix with the other operators,
the β functions can be written as

βðgϕÞ ¼ ðd − ΔϕÞgϕ − cϕϕϕg2ϕ − cOOϕg2O þ � � � ; ð5Þ

βðgOÞ ¼ ðd − ΔOÞgO − cOOOg2O − cOOϕgOgϕ þ � � � ; ð6Þ

where the cijk’s are the structure constants of the CFT.
Because of the perturbation the RG flow takes the system

to a new fixed point with ðg�ϕ; g�OÞ ¼ ðd−Δϕ

cϕϕϕ
; 0Þ. At the new

fixed point, the conformal weight of the smallest scaling
dimension is

Δ0
O ¼ ΔO þ ðd − ΔϕÞ

cOOϕ

cϕϕϕ
þ � � � ð7Þ

The second term is positive if the structure constants are
both positive or negative. In diagonal 1þ 1-dimensional
CFTs, it is already proven that the structure constants are all
positive for unitary CFTs; see Ref. [53]. Then, based on
Eq. (7), one can conclude that up to one-loop calculations,
the smallest scaling dimension goes uphill under RG. Note
that in our discussion, we only consider massless pertur-
bations, which take the system from a nontrivial CFT to
another nontrivial CFT. These are the cases in which the

Polyakov conformal perturbation theory can be safely
applied. The other important fact is that one cannot use
the above argument for generic scaling operators simply
because they usually mix with the other operators under the
RG, and thus they have very different forms at different
fixed points. Note that our analysis is reminiscent of the
famous Δ-theorem discussed in Ref. [52].
Having the above result, one can now argue that the

quantum Fisher information and, consequently, the multi-
partite entanglement entropy decrease under RG flow,
which is very similar to what we have for bipartite
entanglement entropy [6].

A. 1 + 1-dimensional diagonal CFTs:
Ginzburg-Landau description

A field theory which fits perfectly to our line of argument
is the Ginzburg-Landau description of unitary minimal
models [54], with the Lagrangian

L ¼
Z

d2z

�
1

2
ð∂ΦÞ2 þΦ2ðm−1Þ

�
; ð8Þ

with the central charge cðmÞ ¼ 1 − 6
mðmþ1Þ. The operator

with the smallest scaling dimension is Φ, which corre-
sponds to the operator ϕ2;2 in the Kac table with the
conformal dimension Δ2;2 ¼ 3

2mðmþ1Þ. It is not difficult to

see that Δ22 ¼ 1−c
4
. This simple analysis shows that one

expects larger entanglement content for systems with larger
central charges, because they have smaller smallest scaling
dimensions. Also, it is quite well-known that perturbing the
Ginzburg-Landau Lagrangian with the relevant operator
Φ2ðm−2Þ takes the system from the fixed point with the
central charge cðmÞ to the fixed point with the central
charge cðm − 1Þ, which is smaller; however, since
Δ22ðm − 1Þ > Δ22ðmÞ, we expect less entanglement at
the end of the RG flow. This picture is perfectly consistent
with the famous result regarding bipartite entanglement
entropy which follows the formula S ¼ c

3
ln lþ γ; see

Ref. [6]. One should notice that our line of argument is
radically different from the common arguments because
here, instead of emphasizing the behavior of the central
charge, we are giving more importance to the smallest
scaling dimension in the system.

B. 1 + 1-dimensional nondiagonal CFTs

Note that the above results are true for any QFT that can
be described by the A series of the minimal unitary CFTs.
In general, it is not true that any CFT with a larger central
charge has a smaller smallest scaling dimension. For
example, a CFT in the D series with larger central charge
might have a larger smallest scaling dimension than a CFT
in the A series. In addition, two CFTs in different series
might have the same central charge but different smallest
scaling dimensions [54]. The most famous one is the
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conformal field theory with the central charge c ¼ 4
5
, which

describes the Q ¼ 3-states Potts model. We will discuss
this model in more detail later. It is quite interesting to see
what prevents us from extending the conjecture of the last
section to nondiagonal cases. First of all, the structure
constants in the DE series are not always non-negative
[55–57]; however, it seems that the structure constants
appearing in the operator product expansion of the smallest
scaling dimension with the rest of the operators can be
chosen positive. This, however, does not guarantee that
the smallest scaling dimension always goes up under RG.
For example, in the D series there are two copies of one
operator, and—although their structure constants in a
particular basis can be chosen non-negative—they can
have negative structure constants in other relevant bases.
For particular perturbation of these CFTs, the latter basis is
the one which should be considered in the calculations. The
most famous example is possibly the conjectured flow from
D4 (the nondiagonal Q ¼ 3-states Potts model) to A4

(tricritical Ising model) discussed in Refs. [58,59]. This
counterexample forces us to take a closer look at the
concept of the operator content.

IV. OPERATOR CONTENT IN QFT, CFT,
AND THE DISCRETE MODEL

Having a discrete model, it is normally very difficult to
find the full operator content of the system, especially if the
system is not integrable. The problem is more tractable in
two-dimensional CFTs. In two dimensions, when we talk
about the operator content of a CFT we mean that in the
torus partition function of the model, the characteristics of
certain operators begin to appear. For example, in the Ising
CFT partition function on the torus the operators ϵ and σ
play important roles. Now consider the partition function of
the discrete Ising model on the torus. This partition function
is proportional to the Ising CFT partition function that we
just discussed. Although the operator content has a well-
defined definition in CFTs on the torus, it is not necessarily
a full description of the discrete model. A discrete model
with different boundary conditions can lead to different
CFTs on the torus. On top of that, it is possible to define
different operators for the discrete model and study their
correlations, but the characteristics of these operators do
not necessarily appear in the torus partition function. The
same is true also when one studies a Lagrangian QFT. In the
next subsection, we will discuss a concrete example. In
Ref. [12] (for an earlier similar discussion, see Ref. [60]),
one can find a related interesting discussion regarding the
proximity of quantum field theories and their operator
content. In Ref. [12], the authors defined a theory called a
master UV theory, which can be a discrete model or a
continuum CFT in such a way that its deformation leads us
to various low-energy effective field theories. The idea is
based on labeling the operator content based on the master
theory. This concept seems to be useful for our discussion

regarding the quantum Fisher information and the entan-
glement content. The idea is based on the fact that one can
always starts with a master theory and find the operator
with the smallest scaling dimension. The characteristics
of this operator might not appear in the partition function,
but it can be defined and used to detect the entanglement for
the discrete model.

A. Q = 3-states Potts model

The quantum Q ¼ 3-states Potts model is a very inter-
esting model for discussing some aspects of the arguments
regarding the operator content of a QFT and a discrete
model. We first define the Hamiltonian of the discrete
critical quantum model as

H ¼ −J
X
j

ðσ†jþ1σj þ σ†jσjþ1Þ − J
X
j

ðτ†j þ τjÞ; ð9Þ

where the operators on different sites commute, but for
those on the same sites we have σ3j ¼ τ3j ¼ 1 and
σjτj ¼ ωτjσj, with ω ¼ e2π=3. As it is clear the
Hamiltonian has Z3 symmetry. The operator content of
this model for different boundary conditions was discussed
in Ref. [61]. Instead of going through all of the possibilities,
we stick to cases that are useful for our discussion. For
periodic boundary conditions, the operators that appear in
the partition function are the ones with dimensions (0,0)
(identity operator I), ð2

5
; 2
5
Þ (energy operator ϵ), ð7

5
; 7
5
Þ

(operator X), (3,3) (operator Y), (3,0) and (0,3) (operators
Φ3;0 and Φ0;3), ð75 ; 25Þ and ð2

5
; 7
5
Þ (operators Φ7

5
;2
5
and Φ2

5
;7
5
),

and two copies of the operators with dimensions ð 1
15
; 1
15
Þ

(operators σ and σ†) and ð2
3
; 2
3
Þ (operators Z and Z†). This

CFT is called D4 and, as it can be seen here, the smallest
scaling dimension is ð 1

15
; 1
15
Þ. The lattice form of these

operators can be written explicitly with respect to lattice
parafermions, spins, and dual spins; see Ref. [62].
For twisted boundary conditions, different operators with

different scaling dimensions begin to appear [61], including
ð1
8
; 1
8
Þ, ð 1

40
; 1
40
Þ, ð21

40
; 21
40
Þ, ð13

8
; 13
8
Þ, ð13

8
; 1
8
Þ, ð1

8
; 13
8
Þ, ð21

40
; 1
40
Þ, and

ð 1
40
; 21
40
Þ. They can be labeled as Ra;b, where ða; bÞ is the

scaling dimension of the operator. The operators R1
8
;1
8
and

R 1
40
; 1
40
are called disorder operators (see Ref. [63]) and their

presence is attributed to the fact that the Hamiltonian is
actually symmetric with respect to the dihedral group D6,
which is equivalent to ðZ3; ~Z3Þ. This extra part comes from
the fact that the Hamiltonian is also invariant under charge
conjugation. As it is clear, the smallest scaling dimension in
this sector is ð 1

40
; 1
40
Þ, which is also the case for the diagonal

CFT A6. In the A6 CFT, we have all of the scaling spinless
operators that we introduced so far [54]. The disorder
operators R 1

40
; 1
40
and R1

8
;1
8
can be defined for the Hamiltonian

(9) as a string of charge-conjugation operators [51,62,63].
These lattice operators can be defined independent of the
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boundary conditions, and so in some sense they are present
even if they do not appear explicitly in the partition
function. For example, when one discusses the quantum
Fisher information, they can be used to detect the multi-
partite entanglement. We note that apparently their nonlocal
nature is not an obstacle [64]. The above discussion means
that if we take the periodic latticeQ ¼ 3-states Potts model,
then the smallest scaling dimension of an operator that we
can define has dimension ð 1

40
; 1
40
Þ, but the characteristics of

this operator are absent in the partition function. A similar
argument seems to be valid for the Ginzburg-Landau
representation of the D4 model. In this case, the
Ginzburg-Landau field theory has the form [61,65]

S� ¼
Z

ddr

�
ð∂Φ1Þ2 þ ð∂Φ2Þ2 þ

λffiffiffi
2

p ðΦ3
1 − 3Φ1Φ2

2Þ
�
;

ð10Þ

which after the redefinition Φ ¼ ðϕ1 þ iϕ2Þ=
ffiffiffi
2

p
and

Φ� ¼ ðϕ1 − iϕ2Þ=
ffiffiffi
2

p
can also be written as

S� ¼
Z

dDr½j∂Φj2 þ λðΦ3 þΦ�3Þ�: ð11Þ

In this form, the Z3 symmetry is more manifest. In this field
theory, the two copies of the spin operator σ are Φ and Φ�

operators with conformal dimension h ¼ 1
15
. The other two

copies of the spin operator Z are

Φþ
13 ¼

Φ�2ΦþΦ2Φ�ffiffiffi
2

p ¼ ϕ3
1 þ ϕ1ϕ

2
2

2
; ð12Þ

Φ−
13 ¼

−Φ�2ΦþΦ2Φ�ffiffiffi
2

p
i

¼ ϕ3
2 þ ϕ2

1ϕ2

2
; ð13Þ

with conformal dimension h ¼ 2
3
. Obviously, in this theory

the Ginzburg-Landau field has the dimension ð 1
15
; 1
15
Þ,

which (as we discussed in the previous section) could be
the operator with the smallest scaling dimension. However,
as we discussed for the discrete case, one might be able
to define a charge-conjugation string operator which has a
smaller scaling dimension. Although this has not been
investigated in detail, the lessons taken from the discrete
model support the idea that the smallest scaling dimension
might be this string operator. Now, consider the following
perturbation of the field theory in Eq. (10):

S ¼ S� þ g
Z

dDrΦþ
13: ð14Þ

It was conjectured in Ref. [58] that the field theory after
perturbation flow to a new fixed point, which is in the
universality class of the tricritical Ising model with the
central charge c ¼ 7

10
. Note that the above perturbation can

also be done explicitly for the discrete model. In the same
paper, it was argued that the conformal dimensions of ϕ1

and ϕ2 at the new fixed point are 7
16
and 3

80
. If this is true, it

means that the scaling dimension of ϕ2 is actually getting
smaller under RG, in contradiction to what we have in the
η-conjecture for the Φ4 theories. The conclusion is that the
dimension of the Ginzburg-Landau field might not always
increase under RG, but the value of the smallest scaling
dimension possibly always increases under RG. Assuming
that there is a UV master theory that allows us to explore
different low-energy effective QFTs, it is tempting to make
the following statement:

Starting from a master UV theory, the smallest scaling
dimension in the spectrum of a system always increases
under renormalization group between two unitary
conformal fixed points.

An equivalent statement is to say that the QFI decreases
under renormalization group.

B. The cut effect

Another important (often overlooked) issue in the study
of the entanglement entropy in QFTs is the effect of the cut
[1,66–68]. Consider a quantum spin chain; then, it is easy
to say that one is interested in the entanglement of one part
of the chain with respect to the rest. However, in the
continuum field theory, the boundary between two regions
is not well defined. Normally, one needs to consider a small
UV cutoff size region between the two domains if we want
to calculate their entanglement. However, then one needs to
consider a particular boundary condition there. The nature
of this boundary condition depends on the form of the cut.
In the discrete models it comes naturally, but in a field
theory it is in general more obscure. In 1þ 1 dimensions,
the cut forces us to work with the partition function on the
annulus with particular boundary conditions; see
Refs. [1,67]. The effect of the boundary conditions on
the entanglement is always subleading. For example, in
1þ 1-dimensional CFTs, the entanglement entropy of a
domain of size lwith respect to the rest is (see Ref. [67] and
references therein)

S ¼ c
6
ln
lðlþ s1Þ
s2s1

þ ln b1 þ ln b2 þ
b21
b20

�
s2s1

2lðlþ s1Þ
�

2Δ1

þ � � � ; ð15Þ

where s1 and s2 are the sizes of the regions at the boundary
of the two domains and b1;2 are related to the boundary
conditions on the cuts, and the corresponding terms are
called the Affleck-Ludwig boundary entropy. In the last
term, Δ1 is the smallest scaling dimension that appears
in the partition function of the annulus. Here again, we
encounter the smallest scaling dimension, but in a
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subleading term. However, this time it is quite clear that the
operator with the smallest scaling dimension is the one
which appears explicitly in the annulus partition function.

V. BIPARTITE ENTANGLEMENT MEASURES

In this section, we discuss a few more examples that
show that knowing the smallest scaling dimension in a
system can lead to statements regarding the entanglement
content of the discrete model or the QFT.

A. 1 + 1-dimensional CFTs with c = 1

The models with a central charge c ¼ 1 are very
interesting because they normally have a critical line with
changing critical exponents. A perfect example is com-
pactified bosons on a circle or an orbifold with radius r.
Since in these models the central charge is the same, the
bipartite entanglement entropy of a segment in the leading
order is the same all along the critical line; however, the
subleading terms are controlled by the smallest scaling
dimension Δ1 ¼ 1

2
minðr2; 1

4r2Þ as S ¼ 1
3
ln lþ c1 þ b 1

l4Δ1 ,
with positive b (see Ref. [69]). This means that after
subtracting the leading term, one can see that the critical
points with a smaller smallest scaling dimension have a
bigger entanglement entropy. This fact was numerically
checked in the case of the Ashkin-Teller model in Ref. [69].
This argument is also correct at the level of the mutual
information of two disjoint intervals. Note that the sub-
leading terms in every critical model are controlled by the
smallest scaling dimension present in the system indepen-
dent of the central charge; see, for example, Ref. [67] and
references therein.

B. Entanglement negativity in 1 + 1-dimensional CFT

Entanglement negativity has been used recently to study
the entanglement entropy in tripartite many-body systems
[70] and CFT [21]. The idea goes as follows. Consider a
tripartition A∪ B∪ B̄ of a system which is in the pure state
ρ ¼ jψihψ j, and then trace out part A of the system, i.e.,
ρB∪B̄ ¼ trAρ. Finally, calculate the (logarithmic) entangle-
ment negativity (LEN) of B with respect to B̄, defined as

EB∶B̄ ¼ ln trjρT2

B∪B̄j; ð16Þ

where ρT2

B∪B̄ is the partially transposed reduced density
matrix with respect to B̄. The LEN of two adjacent intervals
of lengths l1 and l2 is [21] E ¼ c

4
ln l1l2

l1þl2
þ γ2, which is only

dependent on the central charge, and thus it is compatible
with our line of argument. The c ¼ 1 and two disjoint
intervals are more interesting because one has a line of
critical exponents. Based on our argument, the LEN should
be bigger for critical points with a smaller smallest scaling
dimension. This is apparently consistent with the numerical
calculations available for the Rényi version of the LEN

performed on the XXZ chain in Ref. [71]. We conjecture
that it is also true for the logarithmic entanglement
negativity itself.

C. Localizable entanglement

Localizable entanglement (LE) is another measure of
multipartite entanglement first studied in Refs. [72,73], and
it is based on localizing entanglement in two sections by
performing projective measurements in other parts. The
localizable entanglement between the two parts B and B̄
after performing a local projective measurement in the rest
of the system A is defined as

ElocðB; B̄Þ ¼ supE
X
i

piEðjψ iiBB̄Þ; ð17Þ

where E is the set of all possible outcomes ðpi; Eðjψ iiBB̄Þ
of the measurements, and E is the chosen entanglement
measure. The maximization is done with respect to all of
the possible observables to make the quantity independent
of the observable. In Refs. [22,67], we found a lower bound
for the localizable entanglement when the chosen measure
is the von Neumann entropy. When the two regions B and B̄
are adjacent, we have

SlocðB; B̄Þ >
c
6
ln
lðlþ sÞ

as
þ γ2; ð18Þ

where s and l are the sizes of the regions A and B. Since
again the dominant term is proportional to the central
charge, all of the previous discussions are valid. However,
the situation is more interesting when the two regions B and
B̄ are completely decoupled and far away from each other.
In this case, we have [67]

SlocðB; B̄Þ >
�

l
8s

�
2Δ

ln
l
8s

; ð19Þ

where Δ is the smallest scaling dimension present in the
spectrum of the system. The localizable entanglement of
two disjoint regions is controlled by the smallest scaling
dimension present in the spectrum of the system. This is in
perfect agreement with the behavior of the QFI.

D. Nonconformal scale-invariant systems

Our argument based on QFI is independent of the
conformal symmetry and, in principle, it should also be
valid for the scale-invariant (but not conformally invariant)
systems. In other words, our argument should also work for
systems where the Lorentz invariance is lost. Here, we first
discuss the coupled long-range harmonic oscillators with
the Hamiltonian in momentum space:
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H ¼
X
k

1

2
πkπ−k þ

1

2
ω2ðkÞϕkϕ−k; ð20Þ

where ω2ðkÞ ¼ jkjα with 0 < α ≤ 2. The scaling exponent
of the operator ϕ (which is the operator with the smallest
scaling dimension) is Δϕ ¼ 2−α

4
. Based on this exponent,

one can argue that the entanglement content of the systems
with smaller α’s should be smaller than the oscillators with
bigger α’s. It was shown numerically in Ref. [74] that in
1þ 1 dimensions the entanglement entropy of a subsystem
of length l follows the formula

S ¼ cðαÞ
3

ln lþ γðαÞ; ð21Þ

where cðαÞ increases monotonically from zero up to one.
This is remarkably consistent with our argument based on
QFI and a very nontrivial check of what we have discussed
so far. For results regarding α > 2, see Ref. [75]. Similar
numerical calculations were also performed on the long-
range Ising chain in Ref. [76] with the Hamiltonian

H ¼ sin θ
XL
i¼;j>i

σxi σ
x
j

ji − jjα þ cos θ
XL
i¼1

σzi ; ð22Þ

where θ and h are some parameters. In paramagnetic phases
(called PM2 in Ref. [76]), the scaling exponent of σx

decreases with increasing α. Since σx is the operator with
the smallest scaling dimension we expect that cðαÞ
decreases with increasing α. This is in contrast to the
long-range coupled harmonic oscillators that we discussed
above. Remarkably, the numerical calculations of Ref. [76]
confirm this expectation perfectly. Similar arguments are
also valid for the long-range Kitaev chain investigated
in Ref. [76].

VI. CONCLUSIONS

In this paper, using QFI, we studied the multipartite
entanglement entropy in conformal field theories and
argued that systems with larger central charges have more
entanglement content than systems with smaller central
charges. We showed this by studying the smallest scaling
dimension in the spectrum of the system. We also men-
tioned that the concept of the operator content of a QFT
can be a very delicate problem. Some of the conclusions
regarding the bipartite (von Neumann) and multipartite
entanglement (LEN and LE) entropies can be understood in
a unified framework by studying QFI. This quantity is quite
useful when one is interested in comparing the entangle-
ment content of two or more different models. In particular,
it can be very useful if one thinks about it in the context
of RG. We believe most of the conclusions in this paper
can be extended more or less straightforwardly to higher
dimensions. One example is the mutual information of
two spheres, which is controlled by the smallest scaling
dimension, as discussed in Ref. [77]. There are also other
quantum information measures that are cutoff independent
and are related to entanglement entropy; see Refs. [78–80].
It would be interesting to study these measures in the
language of QFI.
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