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Solvability of the ubiquitous quantum harmonic oscillator relies on a spectrum generating ospð1j2Þ
superconformal symmetry. We study the problem of constructing all quantum mechanical models with a
hidden ospð1j2Þ symmetry on a given space of states. This problem stems from interacting higher spin
models coupled to gravity. In one dimension, we show that the solution to this problem is the Vasiliev–
Plyushchay family of quantum mechanical models with hidden superconformal symmetry obtained by
viewing the harmonic oscillator as a one dimensional Dirac system, so that Grassmann parity equals wave
function parity. These models—both oscillator and particlelike—realize all possible unitary irreducible
representations of ospð1j2Þ.
DOI: 10.1103/PhysRevD.96.126005

I. INTRODUCTION

The quantum harmonic oscillator

H ¼ 1

2
ðp2 þ q2Þ; ½p; q� ¼ −i;

is solvable because the ladder operators

a ¼ qþ ipffiffiffi
2

p ; a† ¼ q − ipffiffiffi
2

p ; ð1Þ

generate the spectrum. This is perhaps the simplest example
of the Lie superalgebra ospð1j2Þ: to see this, one treats the
ladder operators as supercharges [1]

Sþ ≔ a†; S− ≔ a:

Then defining the spð2Þ generators [2]

Qþþ ¼ ða†Þ2; Qþ− ¼ H; Q−− ¼ a2;

the five generators fS�; Q��; Qþ−g generate the algebra
[3] ospð1j2Þ,

fS�; S�g ¼ 2Q��; fSþ; S−g ¼ 2Qþ−;

½S∓; Q��� ¼ �2S�; ½Qþ−; S�� ¼ �S�: ð2Þ

Strangely enough, here one assigns the ladder operators a
Grassmann odd grading, even though these are the standard
complex combinations of position and momentum given in
Eq. (1). Thus, the fermion number operator F that grades
the ospð1j2Þ algebra counts one for odd powers of ladder
operators (and zero for even powers) and therefore labels
wave function parity [4].
The basic question we address is the existence of

operator quintuples acting on the harmonic oscillator
Fock space obeying the ospð1j2Þ Lie superalgebra. The
solution to this problem is a class of quantum mechanical
models first introduced by Vasiliev in [5] that have been
studied in great detail by Plyushchay [6]. These Vasiliev–
Plyushchay models may be viewed as representations of the
SN-extended Heisenberg algebra of [7] at N ¼ 1. We also
answer the above operator question for generalized particle
models with plane wave normalizable spectra for which the
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ospð1j2Þ algebra acts as a generalized one dimensional
superconformal symmetry.
Our study is motivated by a proposal of Bars et al. [8],

who suggested that the space of operators obeying an spð2Þ
algebra and acting on functions of a dþ 2 dimensional
spacetime with two times, could describe gravitating,
interacting higher spin theories. We have shown [9,10]
that this proposal is intimately linked to the study of d
dimensional conformal geometries in terms of a dþ 2
dimensional ambient space initiated by Fefferman and
Graham [11]. The inclusion of fermions in such models
leads to an ospð1j2Þ generalization of Bars’ theory [12]
(see also [13]). The study of the detailed spectra, inter-
actions, ultraviolet and unitarity properties of these models
is a complicated problem commensurate with that of string
field theories, as one is dealing with field equations for
operator-valued fields. Although the solution we find in one
dimension is largely controlled by orthosymplectic repre-
sentation theory, the existence of a mathematically well-
defined answer in this setting is an important first step
towards analyzing models in dþ 2 dimensions, for which
the solution space already includes all d-dimensional
conformal geometries. Moreover D’Hoker and Vinet [14]
have analyzed a hidden ospð1j2Þ symmetry of the Dirac
equation in monopole backgrounds, which indicates tractabil-
ity for models in higher dimensions.
Our analysis begins in Sec. II with the “master”

equations of motion and gauge symmetries for the super-
charges S�. Sections III–VII are devoted to solving these
equations on a harmonic oscillator Fock space while
Secs. VIII–X focus on particle models with hidden super-
conformal symmetry. Appendix B reviews ospð1j2Þ
representations.

II. EQUATIONS OF MOTION

To answer the question posed in the Introduction, we
view the supercharges S� as the fundamental “fields” and
study “equations of motion” for these that guarantee that
the algebra ospð1j2Þ of Eq. (2) holds. These have been
formulated in [12]; the result is [15]:

½S−; SþSþ� ¼ 2Sþ; ½S−; S−Sþ� ¼ 2S−: ð3Þ

The statement here is that if the pair of operators S� obey
these equations, then the operator quintuple fS�; Q�� ¼
S�S�; Qþ− ¼ 1

2
½SþS− þ SþS−�g satisfies the ospð1j2Þ Lie

superalgebra (2).
Clearly, if S� solve Eq. (3), then so too do U−1S�U for

any invertible operatorU. LinearizingU around the identity
U ≈ Idþ ε gives the gauge invariance

S� ∼ S� þ ½S�; ε�; ð4Þ

of the equations of motion (3). Here the gauge parameter ε
is itself also an operator.
The problem of solving Eq. (3) for operators S� is not

defined without specifying the state space H on which
these operators act [16]. The set of possible choices for an
underlying Hilbert space H is clearly enormous. We
commence with perhaps the simplest case in which H is
the harmonic oscillator Fock space.

III. THE SPACE OF OPERATORS

We now let H equal the quantum harmonic oscillator
Hilbert space with Fock basis fjni∶n ∈ Z≥0g. We employ
the slightly nonstandard normalization hmjni ¼ n!δmn for
states jni, since this allows us to identify jni with the
monomial zn and in turn study wave functions given by
polynomials, or more generally suitable analytic functions,
in z [17]. Thus we study operators

S� ¼ s�0 ðzÞ þ s�1 ðzÞ
∂
∂zþ s�2 ðzÞ

∂2

∂z2 þ � � � ; ð5Þ

where s�i ðzÞ are analytic functions of z in a neighborhood
of the origin. In terms of ladder operators, this amounts to
studying operators given by sums of normal ordered
products of a’s and a†’s. More precisely, we are looking
for the most general set of formal power series in ladder
operators obeying the ospð1j2Þ superalgebra.

IV. GAUGE CHOICES

To simplify our problem we fix a gauge using the
freedom in Eq. (4). A propitious choice is

Sþ ¼ z: ð6Þ

To verify gauge reachability, we consider

ε ¼ ϵ0ðzÞ þ ϵ1ðzÞ
∂
∂zþ ϵ2ðzÞ

∂2

∂z2 þ � � � :

Then a short computation gives

½ε; z� ¼ ϵ1ðzÞ þ 2ϵ2ðzÞ
∂
∂zþ 3ϵ3ðzÞ

∂2

∂z2 þ � � � :

Thus by solving for ϵ1ðzÞ, ϵ2ðzÞ;… we can bring Sþ ¼ z to
an operator of the general form (5) by a gauge trans-
formation (4). The function ϵ0ðzÞ remains undetermined
because there are still residual gauge transformations,
respecting our choice Sþ ¼ z, of the form

S� ↦ ð1=UðzÞÞS�UðzÞ:
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The beauty of the gauge choice (6) is that the first equation
of motion in (3) is now linear.

V. THE LINEAR EQUATION

The linear equation for S− reads

½S−; z2� ¼ 2z: ð7Þ

Using the identity

� ∂k

∂zk ; z
2

�
¼ k

�
2z

∂
∂zþ ðk − 1Þ

� ∂k−2

∂zk−2 ;

we can solve this order by order for S− and find

S− ¼ ∂
∂zþ AðzÞ þ BðzÞ

�
1 − z

∂
∂zþ

2

3
z2

∂2

∂z2 þ � � �
� ∂
∂z :

In the above AðzÞ and BðzÞ are arbitrary functions. Defining
the number operator N ≔ z ∂

∂z and denoting normal order-

ing by ∶•∶ [e.g., ∶N2∶ ¼ z2 ∂2
∂z2 ¼ NðN − 1Þ], the above

display becomes [18]

S− ¼ ∂
∂zþ AðzÞ þ BðzÞ∶

�
1 − e−2N

2N

�
∶
∂
∂z :

Using the identity

z∶fðNÞ∶ ∂
∂z ¼ ∶NfðNÞ∶;

we have

S− ¼ ∂
∂zþ AðzÞ þ BðzÞ

z
∶
�
1 − e−2N

2

�
∶: ð8Þ

The normal ordered operator in the above expression is
related to the Klein operator of [19]. It has an interesting
action on number operator eigenstates

∶
�
1 − e−2N

2

�
∶jni ¼ 1

2
ð1 − ð−1ÞnÞjni;

i.e., it vanishes on the space of even number operator
eigenstates B and is unity on the space of odd number
operator eigenstates F . This means that the operator 1=z
appearing in Eq. (8) is well-defined. Also, the operator in
the above display is the fermion number operator

F∶ ¼ 1

2
ð1 − ð−1ÞNÞ ¼ F2:

This obeys fF; zg ¼ z and ½F; z2� ¼ 0. In addition to
providing a Z2 grading of the Hilbert space

H ¼ B ⊕ F ;

we may demand that F also coincides with the Z2 grading
of the Lie superalgebra ospð1j2Þ ¼ spð2Þ ⨭ R2. In the
following we focus on the case where the two gradings
coincide, since it leads quickly to the solution space; we
prove that this yields the most general solution in
Appendix A.

VI. HARMONIC OSCILLATOR SOLUTION

Requiring coincidence of Z2 gradings in conjunction
with the solution to the linear equation (8) forces us to
consider an ansatz of the form

Sþ ¼ z; S− ¼ ∂
∂zþ αðzÞ þ ð−1ÞFβðzÞ; ð9Þ

where αðzÞ and βðzÞ are both odd with respect to the Z2

grading (i.e., even and odd functions of z). Here we also
used that ð−1ÞF ¼ 1–2F.
It remains to solve the second, nonlinear equation in (3)

which we rewrite as

½H; S−� þ S− ¼ 0;

where the Hamiltonian is easily computed from Eq. (9),

H ¼ 1

2
fSþ; S−g ¼ N þ 1

2
þ zαðzÞ:

The above leads to the relation

zβ0ðzÞ þ βðzÞ ¼ 0 ⇒ βðzÞ ¼ c
2z

;

for some constant c. Requiring that S− acting on the
Fock space H (and in particular on the vacuum j0i) is
well-defined we set

αðzÞ ¼ c
2z

þ AðzÞ;

where AðzÞ is analytic and odd. Thus

S− ¼ ∂
∂zþ AðzÞ þ c

z
F: ð10Þ

First observe that since Fj0i ¼ 0, the operator 1
z F is, as

promised, well-defined. Moreover, since AðzÞ is odd, the
function UðzÞ ¼ expð− R

z AðzÞÞ is even and thus com-
mutes with F. Hence ð1=UðzÞÞS−UðzÞ ¼ ∂

∂z þ c
z F.

The constant ðcþ 1Þ=2 measures the zero point energy
E0 of the vacuum j0i, so we now call c ¼ 2E0 − 1.
Altogether then, we find a one parameter family of
solutions

QUANTUM MECHANICS AND HIDDEN SUPERCONFORMAL … PHYSICAL REVIEW D 96, 126005 (2017)

126005-3



Sþ ¼ z; S− ¼ ∂
∂zþ

2E0 − 1

z
F;

Qþ− ¼ N þ E0; Qþþ ¼ z2;

Q−− ¼ ∂2

∂z2 þ
2E0 − 1

z
∂
∂z −

2E0 − 1

z2
F: ð11Þ

Notice the Hamiltonian H ¼ Qþ− only receives a shift in
its zero point energy. The commutator of the deformed
oscillators S� is easily calculated to be

½S−; Sþ� ¼ 1 − ð2E0 − 1Þð2F − 1Þ: ð12Þ

This is exactly the Vasiliev–Plyushchay model [5,6]
(although the study of basic quantum commutators dates
back to [20]). The operator S− is a Yang–Dunkl type
operator [21], and Fmay be viewed as Klein operator in the
sense employed in [22]. The above modification is an
example of the more general symmetric group extensions
of the Heisenberg algebra given in [7]. Representations of
the ospð1j2Þ algebra using the Klein operator appear in the
representation theory of the W∞ðλÞ algebra of [23]; these
were first studied in [24]. The particular ospð1j2Þ repre-
sentation obeyed by the above oscillator realization was
first studied in [5,25] and analyzed in detail in [19] (and
also recently discussed in [26]), this is summarized in the
next section [27].

VII. OSCILLATOR ORTHOSYMPLECTIC
REPRESENTATION

Our solution (11) obeys the ospð1j2Þ Lie superalgebra
and therefore provides a representation thereof. To analyze
this we start by searching for states annihilated by S− so
consider ψðzÞ subject to

S−ψðzÞ ¼ 0;

which we decompose as

ψðzÞ ¼ ψþðzÞ þ ψ−ðzÞ;

where the two terms on the right-hand side are analytic and
even/odd respectively. Since S− is odd we must separately
have

�ψ 0þðzÞ ¼ 0;

ψ 0
−ðzÞ þ 2E0−1

z ψ−ðzÞ ¼ 0:

Thus ψþðzÞ ¼ 1 ¼ j0i, the standard Fock vacuum. There
is in addition the possibility of a second solution
ψ−ðzÞ ¼ z1−2E0 . Because ψ−ðzÞ is analytic and odd this
occurs only when E0 ¼ −n with n ∈ Z≥0, whence
ψ−ðzÞ ¼ j2nþ 1i ¼ S2nþ1

þ j0i. Thus

ker S− ¼
�
spanfj0i; j2nþ 1ig; E0 ∈ Z≤0;

spanfj0ig; E0 ∉ Z≤0:

Thus j0i is always a highest weight state subject to

Hj0i ¼ E0j0i;

while j2nþ 1i is a singular vector when E0 ¼ −n and then
obeys

Hj2nþ 1i ¼ ðnþ 1Þj2nþ 1i:

At the harmonic oscillator value E0 ¼ 1
2
, we have S− ¼

∂=∂z ¼ a ¼ ðSþÞ† and Q−− ¼ ðQþþÞ†. The Hilbert space
is then the unitary irreducible representation Sð1=2Þ ¼
Dð1=2Þ ⊕ Dð3=2Þ given by a direct sum of two discrete
series unitary irreducible spð2Þ representations. Indeed,
unlike spð2Þ, which also has supplementary and principal
series representations, the Lie superalgebra ospð1j2Þ only
has discrete series unitary irreducible representations [28]
(see Appendix B for further details).
When E0 ∉ Z≤0, the even and odd states B ¼

fj0i; j2i; j4i;…g and F ¼ fj1i; j3i; j5i…g, respectively,
separately diagonalize the spð2Þ Casimir

cspð2Þ ¼
1

4
ðQþ−Þ2 − 1

8
fQþþ; Q−−g;

which takes values

cspð2ÞðBÞ¼
E0ðE0−2Þ

4
and cspð2ÞðF Þ¼ðE0−1ÞðE0þ1Þ

4
:

When E0 > 0, these precisely match the Casimirs of the
discrete series representations DðE0Þ and DðE0 þ 1Þ.
Moreover, the direct sum of these representations yields
the ospð1j2Þ discrete series representation SðE0Þ. Indeed,
the orthosymplectic Casimir

cospð1j2Þ ¼
1

4
ðQþ−Þ2 − 1

8
fQþþ; Q−−g − 1

8
½Sþ; S−�;

obeys

cospð1j2ÞðHÞ ¼ E0ðE0 − 1Þ
4

¼ cospð1j2ÞðSðE0ÞÞ

on the harmonic oscillator state space H ¼ B ⊕ F .
However, when E0 ≠ 1=2, the operators Q−− and S− are
no longer the Hermitean conjugates of Qþþ and Sþ with
respect to the standard Fock space inner product. But, since
the ospð1j2Þ action on the harmonic oscillator Fock space
is isomorphic to that of the orthosymplectic discrete series,
there exists a corresponding inner product with respect to
which this is a unitary representation. This inner product
can be computed as follows:
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First observe that with respect to the Fock norm the state
jE0; ni ¼ ðSþÞnj0i ¼ jni obeys

∥jE0; ni∥2Fock ¼ h0janða†Þnj0i ¼ n!h0j0i ¼ n!:

However, with respect to the unitary discrete series norm,

∥jE0;ni∥2osp ¼ hjE0;ni; jE0;niiosp
¼ hE0;0jðS−ÞnðSþÞnjE0;0i
¼ hE0;0jðS−Þn−1S−jE0;ni

¼
��

E0 −
1

2

�
ð1− ð−1ÞnÞþn

�
∥jE0;n−1i∥2osp

¼ 2nðE0Þ½nþ1
2
�
�hn

2

i�
!:

Here we have employed the standard Pochhammer notation
and used the identity (valid for n ∈ Z≥1)

S−jE0; ni ¼ ðð2E0 − 1Þð1 − FÞ þ nÞjE0; n − 1i: ð13Þ

The operator version of this identity is given in (12).
Importantly, the above derivation uses only the ospð1j2Þ

algebra. Hence we have the relation between Fock and
discrete series inner products [29] for the complete set of
states fjE0; nijn ∈ Z≥0g

hjE0; ni; jE0; miiosp

¼
2½

nþ1
2
�ðE0Þ½nþ1

2
�

ð2½nþ1
2
� − 1Þ!! hE0; njE0; mi

¼ 2E0n!δn;m

�
1þ 2E0 − 1

3

	�
1þ 2E0 − 1

5

	
� � �

×

�
1þ 2E0 − 1

2½nþ1
2
� − 1

	
:

We would like to encode this using an operator built from
the Casimir and number operators, and therefore note that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cospð1j2Þ þ

1

4

r
jE0; ni ¼





E0 −
1

2





jE0; ni: ð14Þ

Thus, by virtue of the identity (13), we introduce the
operator

I ¼
2
NþF
2 ðÊ0ÞNþF

2

ðN þ F − 1Þ!! ;

where the operator-valued Pochhammer and double facto-
rial are defined by expanding in eigenstates of N, while the
operator Ê0 returns E0 on all states and can be expressed in
terms of the Casimir via (14). By construction aI jE0; ni ¼
IS−jE0; ni whence

aI ¼ IS−:

Thus, the discrete series unitary inner product h·; ·iosp
between states Ψ ¼ jψi and Φ ¼ jϕi then reads

hΨ;Φiosp ¼ hψ jI jϕi:

Hence, when E0 > 0 we have found a realization of the
unitary orthosymplectic discrete series representations
SðE0Þ in terms of the harmonic oscillator state space.
Finally, note that when E0 ¼ −n ∈ Z≤0 the harmonic

oscillator no longer gives an irreducible orthosymplectic
representation. However, the space of descendants H− of
the singular vector

jnþ1;0i≔ j2nþ1i; whereHjnþ1;0i¼ðnþ1Þjnþ1;0i;

form a unitary discrete series representation Sðnþ 1Þ (with
respect to the E0 ¼ nþ 1 inner product). The quotient
H=H− then gives a finite dimensional (nonunitary) ortho-
symplectic representation.

VIII. SUPERCONFORMAL
QUANTUM MECHANICS

We now want to repurpose our harmonic oscillator
analysis for a study of novel superconformal theories.
For that we will modify our Hilbert space such that the
operator − 1

2
Q−− is self-adjoint and plays the rôle of the

HamiltonianH. We may then view ospð1j2Þ as a conformal
superalgebra,

H ¼ −
1

2
ðS−Þ2; D ¼ 1

2
fSþ; S−g; K ¼ 1

2
ðSþÞ2;

iQ ¼ S−; S ¼ Sþ:

Here, because ospð1j2Þ imposes

Q2 ¼ 2H;

the operator Q is the SUSY generator. Also D and K
correspond to dilations and conformal boosts while S is the
conformal SUSY charge.
We now need to build the Hilbert space on whichH andQ

act. For that we begin by studying the space of wave
functions ψðxÞ on the line R. Since the de Rham coho-
mology of this space is trivial, we will assume that the
abelian gauge field A appearing in Eq. (10) can be gauged
away in the following analysis. Thus the SUSY charge is

iQ ¼ ∂
∂xþ

2E0 − 1

x
F;

while half its square gives the Hamiltonian
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H ¼ −
1

2

∂2

∂x2 −
�
E0 −

1

2

	�
1

x
∂
∂x −

1

x2
F

	
:

In the above displays, the fermion occupation number F
equals unity on odd wave functions ψ−ðxÞ ¼ −ψ−ð−xÞ and
vanishes on even wave functions ψþðxÞ ¼ ψþð−xÞ. The
remaining ospð1j2Þ generators are obtained by the replace-
ment z ↦ x in the solution given in Eq. (11). Observe, that
theZ2 grading ospð1j2Þ¼B⨭F withB¼spanfQ��;Qþ−g
and F ¼ spanfS�g still holds when F is defined by wave
function parity.
The inverse square potential in the above Hamiltonian is

typical of conformal quantum mechanical models [31].
Supersymmetry charges and Hamiltonians of this type were
also studied by Plyushchay [6,19,30]. Our next task is to
develop an inner product with respect to which they are
self-adjoint. This will require a careful analysis of the
space of self-adjoint extensions for these operators [32].
There is, of course, a large literature on self-adjoint
extension problems, particularly relevant here is the analy-
sis of Calogero Hamiltonians in [34].

IX. THE INNER PRODUCT

Our first task is to ensure definite Hermiticity for
the supercharge Q (thereafter we will examine its self-
adjointness). For that, first observe that acting on odd
functions iQ simply acts as ∂

∂x þ 2E0−1
x . Therefore it is

convenient to define

ψ−ðxÞ ≕ x1−2E0 ~ψðxÞ ð15Þ

so that we have the identity

iQψ−ðxÞ ¼ x1−2E0
∂
∂x ~ψðxÞ:

Note that E0 is an, a priori arbitrary, complex number.
Firstly let decompose wave functions into even and odd
parts according to

ψ ¼ ψþ þ ψ−;

and then use that the information of ψ is stored by ψ� on
the positive half line x > 0. On the whole line we thus
define [35]

ψ�ðxÞ ≔
�
ψ�ðxÞ; x > 0;

�ψ�ð−xÞ; x < 0:

Using the parametrization (15) for the odd part we may thus
define the inner product

hφ;ψi ≔ 2

Z
∞

0

dxx2E0−1½φ�þψþ þ φ�
−ψ−�

¼ 2

Z
∞

0

dx½x2E0−1φ�þψþ þ x1−2E0 ~φ� ~ψ �: ð16Þ

For E0 ∈ R, this inner product is positive definite and
sesquilinear, but restricts the allowed behavior of wave
functions at x ¼ 0;∞. In particular ψ� must be square
integrable with respect to the measure x2E0−1 on R. In
particular this requires that for small x, the fastest decay
behavior of ψ� is ψ� ∼ xa� , with

a� > −E0: ð17Þ

We denote the space of functions with square integrable
behavior at large x and decay rate at the origin satisfying the
above bound byHaþ;a−. We next examine the SUSY charge
on these spaces.
Now since iQψ ¼ ψþ0 þ x1−2E0 ~ψ 0 (primes denote x

derivatives), it follows that

ðiQψÞþ ¼ x1−2E0 ~ψ 0; ðiQψÞ− ¼ ψ 0þ:

A wave function ψ sits inside the domain domðQÞ of Q
provided it has the following small-x behavior:

ψ� ∼ xa� ; a� > 1 − E0: ð18Þ

The operator Q is Hermitian, since

hθ;Qψi� ¼2i
Z

∞

0

dx½θ�þ ~ψ 0 þ ~θ�ψ 0þ��

¼−2i
Z

∞

0

dx½ψ�þ ~θ
0 þ ~ψ�θ0þ�−2i½ψ�þ ~θþ ~ψ�θþ�jx¼0

¼hψ ;Qθi; ∀ θ; ψ ∈domðQÞ: ð19Þ

In the above, the condition (18) guarantees cancellation of
the boundary term, which only requires the (weaker)
condition aþ þ a− > 1 − 2E0. Thus the SUSY charge is
Hermitean [indeed we chose the inner product (16) pre-
cisely for this reason]. It remains to examine whether Q is
(essentially) self-adjoint, or more precisely whether it
admits self-adjoint extensions. The following analysis is
standard and follows classical work by Von Neumann [36].
Also, the work of [34] analyzes the deformed oscillator
self-adjoint extension problem for Calogero models with
the closely related Hamiltonian H ¼ − 1

2
∂2
∂x2 þ α

2x2.
The space domðQÞ is dense in H so Q possibly has self-

adjoint extensions. The dimension of the space of exten-
sions equals the dimensions of ½ranðQ� iλÞ�⊥ for λ real and
positive—if these dimensions differ for �λ the operator Q
has no self-adjoint extensions—these dimensions are
known as deficiency indices. It is, of course, equivalent
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to compute the dimensions of kerðQ� iλÞ, and the con-
dition Qψ ¼ −iλψ amounts to

ψ 0þ ¼ λψ−; x1−2E0ðx2E0−1ψ−Þ0 ¼ λψþ: ð20Þ

These can be reduced to a pair of modified Bessel
equations: we call y ¼ λx and ψ�ðxÞ ¼ x1−E0u�ðyÞ and
feed the two equations into one another which gives

u00�ðyÞ þ
1

y
u0�ðyÞ −

�
1þ α2�

y2

�
u�ðyÞ ¼ 0; ð21Þ

where αþ ¼ E0 − 1 and α− ¼ E0.
Equations (21) are identical for both �λ, so that the

deficiency indices are equal. Solutions to (21) are modified
Bessel functions (Iα, Kα) with indices α�. Of these
solutions only KαðλxÞ has a good behavior at x → ∞.
On the other hand, for small, positive, x it behaves (up to a
nonzero coefficient) as [37]

KαðλxÞ ∼ x−jαj;

so that

ψþðxÞ ∼ x1−E0−jE0−1j; ψ−ðxÞ ∼ x1−E0−jE0j:

Hence, solutions to the kernel condition (20) are in H if
the above exponents satisfy the condition (17), which
amounts to

0 < E0 < 1: ð22Þ

In other words, when the parameter E0 satisfies the above
condition both deficiency indices are unity, and there is a
one-parameter set of self-adjoint extensions [38]. On the
other hand if E0 does not satisfy (22) there is a unique
extension. Since 2H ¼ Q2, it follows that the Hamiltonian
also has a unique self-adjoint extension in the latter case.
Moreover, we immediately learn that the spectrum of H is
bounded below by zero. This can also be seen by explicitly
computing the expectation value of the Hamiltonian for
some state ψ ¼ ψþ þ ψ− ≔ ψþ þ x

1
2
−E0χ,

hψ ;Hψi¼−
Z

∞

0

dxx2E0−1
�
ψ�þψ 00þþ

2E0−1

x
ψ�þψ 0þ

�

−
Z

∞

0

dxx2E0−1
�
ψ�
−ψ

00
−þ

2E0−1

x

�
ψ�
−ψ

0−−
jψ−j2
x

	�

¼
Z

∞

0

dxx2E0−1jψ 0þj2þ
Z

∞

0

dx

�
jχ0j2þE2

0−1
4

x2
jχj2

�

¼
Z

∞

0

dxx2E0−1jψ 0þj2þ
Z

∞

0

dx





χ0þE0−1
2

x
χ






2

:

Here we have used that ψ is in the domain of H to kill
boundary terms at the origin generated by integrations by

parts in the above computation. The final result is mani-
festly positive for all E0 (even though the Hamiltonian has a
nonpositive potential term for E0 < 1

2
acting on odd wave

functions).

X. THE SPECTRUM

To compute the spectrum of the model we diagonalize
the SUSY charge Q in order to solve the Schrödinger
equationHψ ¼ Eψ . The “BPS” states obeyingQψ ¼ 0 are
constants which are not finite norm. This indicates that we
expect to find a plane wave normalizable spectrum, just as
for the free particle on a line.
Indeed, we may recycle our deficiency index computa-

tion to solve Hψ ¼ Eψ by replacing λ → i
ffiffiffiffiffiffi
2E

p
. We find

ψ� ¼ x1−E0v�ð
ffiffiffiffiffiffi
2E

p
xÞ where v�ðyÞ obeys the Bessel

equation

v00�ðyÞ þ
1

y
v0�ðyÞ þ

�
1 −

ν2�
y2

�
v�ðyÞ ¼ 0;

with indexes

νþ ¼ jE0 − 1j; ν− ¼ jE0j: ð23Þ

Here we have chosen ν� ≥ 0 in order that we get plane
wave normalizable solutions. Thus we have

ψEðxÞ ¼
βþJjE0−1jð

ffiffiffiffiffiffi
2E

p
xÞ þ β−JjE0jð

ffiffiffiffiffiffi
2E

p
xÞ

xE0−1
;

where the complex constants β� multiply the even/odd
solutions. It follows from our previous deficiency index
computations that these solutions are not normalizable;
nonetheless, they obey an analog of plane wave normal-
izability by virtue of the closure relation for Bessel
functions [valid for ν > −1=2 and hence for any values
of the positive indexes ν� in Eq. (23)]

Z
∞

0

xdxJνð
ffiffiffiffiffiffi
2E

p
xÞJνð

ffiffiffiffiffiffiffi
2E0p

xÞ ¼ δð ffiffiffiffiffiffi
2E

p
−

ffiffiffiffiffiffiffi
2E0p

Þffiffiffiffiffiffi
2E

p

¼ δðE − E0Þ:

Indeed, if we define Bose and Fermi scattering states by

jE;þi ¼ JjE0−1jð
ffiffiffiffiffiffi
2E

p
xÞffiffiffi

2
p

xE0−1
; jE;−i ¼ JjE0jð

ffiffiffiffiffiffi
2E

p
xÞffiffiffi

2
p

xE0−1
;

then hE;−jE;þi ¼ 0 and

hE;þjE0;þi ¼ δðE − E0Þ ¼ hE;−jE0;−i:

In addition to particle scattering states, it is interesting to
look for the ospð1j2Þ analog of the spð2Þ spherical vector.
Indeed recall that the spherical vector for the metaplectic
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representation of Spð2;RÞ is the state with minimal
eigenvalue of the generatorH þ K of the maximal compact
subgroup SOð2Þ. Indeed, this is none other than the
harmonic oscillator ground state ψ0 ¼ expð− 1

2
x2Þ. When

E0 ¼ 1
2
, this state is annihilated by Sþ iQ. For the ospð1j2Þ

algebra, we therefore search for states in the kernel of
Sþ iQ. For bosonic (even) states, the only solution is again

ψB
0 ¼ exp

�
−
1

2
x2
	
;

which is in the Hilbert space H so long as E0 > 0. For
fermionic (odd) states, we must solve

ψ 0 þ 2E0 − 1

x
ψ þ xψ ¼ 0

and find

ψF
0 ¼

8<
:

e−
1
2
x2

x2E0−1 ; x > 0;

− e−
1
2
x2

jxj2E0−1 ; x < 0:

The above state is inH whenever E0 < 1. Note that strictly
speaking, for values of the parameter E0 with 0 < E0 < 1 a
detailed analysis of the self-adjoint extensions of Q is
required to decide which combination(s) of the above two
states is actually in the kernel of Sþ iQ. The above states
will play the rôle of highest weights in the next section.

XI. PARTICLE ORTHOSYMPLECTIC
REPRESENTATION

It remains to identify the orthosymplectic representations
realized by the particle solutions to the deformation
equations.
First we compute the Casimir operator for the spð2Þ

subalgebra ðH;K;DÞ, which reads

cspð2Þ ¼
1

4
D2 þ 1

2
fH;Kg ¼ 1

16
½iQ; S�ð½iQ; S� − 4Þ: ð24Þ

Using ½F; x� ¼ xð1 − 2FÞ, we here have

½iQ; S� ¼
� ∂
∂xþ

2E0 − 1

x
F; x

�

¼ 1 − ð2E0 − 1Þð2F − 1Þ; ð25Þ

so once again find

cspð2ÞðBÞ¼
E0ðE0−2Þ

4
and cspð2ÞðF Þ¼ ðE0−1ÞðE0þ1Þ

4
;

and in turn H ¼ B ⊕ F obeys

cospð1j2ÞðHÞ ¼ E0ðE0 − 1Þ
4

¼ cospð1j2ÞðSðE0ÞÞ:

Unitarity requires that the generators fiQ; S;H; iD;Kg
are self-adjoint. Our deficiency index analysis shows that
this holds for all E0, modulo the choice of self-adjoint
extension when 0 < E0 < 1.
To analyze the ospð1j2Þ content of the model, we can

consider an oscillator-like basis for the generators with the
reality condition (B6) by employing the map (B7). Indeed,
calling

A ≔
Sþ iQffiffiffi

2
p ; A† ¼ S − iQffiffiffi

2
p ;

we have [using (25)]

½A; A†� ¼ 1 − ð2E0 − 1Þð2F − 1Þ;

and Sþ ¼ A†, S− ¼ A obey the ospð1j2Þ algebra (2). [Note
that this is a different solution to that given in Eq. (11).] At
this point the operators A and A† obey the same algebra as
analyzed for the oscillator models in Sec. VII, so we can
inherit that analysis; however some care is required
when 0 < E0 < 1.
Firstly when jE0 − 1

2
j ≥ 1=2 the self-adjoint extension

problem gives a unique answer, and indeed there is a
unique highest weight state

jE0; 0i ¼
�
ψB
0 ; E0 ≥ 1;

ψF
0 ; E0 ≤ 0:

The descendants of jE0; 0i (generated by acting with A†)
then span the irreducible representation SðE0Þ.
When 0 < E0 < 1 there are potentially two highest

weight states ψB
0 and ψF

0 ; however, we conjecture that
only one combination of these is a zero mode of A for a
given choice of self-adjoint extension of Q.
As an example consider the undeformed models with

E0 ¼ 1
2
and Q ¼ d

dx. Here, the Hilbert space is H ¼
L2ðRþÞ ⊕ L2ðRþÞ. There are of course no self-adjoint
extensions of d

dx on the half line, but it is easy to find one for
d
dx defined on two copies ofR

þ, namely by viewing pairs of
wave functions there as the even and odd parts of wave
functions in L2ðRÞ, on which d

dx is essentially self-adjoint.
In that case AψB

0 ¼ 0 because ψB
0 is the usual harmonic

oscillator ground state, while AψF
0 ðxÞ ¼ 2δðxÞ ≠ 0. The

descendants of ψB
0 then give the unitary irreducible ortho-

symplectic representation Sð1
2
Þ.

We have summarized the orthosymplectic representa-
tions realized by deformations of superconformal quantum
mechanics in the diagram below,
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XII. SUMMARY AND CONCLUSIONS

Although supersymmetric quantum mechanics has a
long history [40], its presence in even the simplest of
quantum mechanical models is often underappreciated—
both the free particle and harmonic oscillator enjoy a
hidden ospð1j2Þ superconformal symmetry realized by
employing wave function parity for the Bose–Fermi Z2-
grading. Given a particle/oscillator Hilbert space, we
studied the natural question whether other sets of operators
realize this algebra. In higher dimensions the moduli space
of such operators has a particularly interesting geometric
structure: For example, on any (pseudo)-Riemannian
manifold whose metric gμν is the gradient of a covector
gμν ¼ ∇μξν, the triplet of operators fξμξμ; ξμ∇μ;∇μ∇μg
generate the algebra spð2Þ. Including spinors and the Dirac
operator, this algebra can be extended to the ospð1j2Þ
superalgebra studied here, and indeed our study is the
special case when the underlying manifold is one dimen-
sional. The fact that we were able to give a detailed
classification of this space of operators in a one-dimen-
sional setting suggests that similar general results ought be
obtainable in higher dimensions. This is exciting because of
its relevance to interacting higher spin and quantum gravity
models [8–10,12,13].
The one dimensional solutions to the ospð1j2Þ operator

question are parametrized by a one (complex) parameter
moduli space. It would be interesting to try and mimic these
results for higher hidden quantum mechanical SUSY
algebras, the results of [44] indicates that this ought be
possible [45]. Here, once one studies Hilbert spaces for
mechanics in higher dimensions, one expects a moduli
space of solutions with more constraining geometric
structures than conformal geometries.
One might wonder whether our results contravene the

Stone–Von Neumann theorem on unitary equivalence of
Heisenberg representations. This is not the case because the
Vasiliev–Plyushchay-type models generate ospð1j2Þ rep-
resentations with differing values of E0 and inner product
by modifying the commutation relation ½a; a†� ¼ 1 to
½S; S†� ¼ 1 − ð2E0 − 1Þð2F − 1Þ, where E0 ¼ 1=2 gives
the standard harmonic oscillator model. It interesting to
note that this deformation is important for deformations
higher spin algebras leading to interactions [47,48].

The E0 ¼ 1=2 orthosymplectic representation is a
sum of two discrete series slð2;RÞ representations analo-
gous to the double cover half integer spin representations in
the theory of angular momentum. Indeed, this is the
so-called metaplectic representation of Slð2;RÞ. It would
be interesting to exponentiate these realizations of
ospð1j2Þ representations to give analogs of the metaplectic
representation.
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APPENDIX A: GENERAL
AND PARITY SOLUTIONS

To show that the solution (11) is general, we must relax
the requirement that the Z2 gradings of the ospð1j2Þ Lie
superalgebra and the Hilbert space H are coincident. Thus
we study a general version of the ansatz Eq. (9), namely

S− ¼ ∂
∂zþ αþðzÞ þ α−ðzÞ þ ð−1ÞF½βþðzÞ þ β−ðzÞ�:

Here and in what follows, we denote even/odd functions of
z by a subscript �. The second, nonlinear equation in (3)
now yields a Dirac-like equation

�
z
∂
∂zþ 1

	�
βþðzÞ
β−ðzÞ

	
− 2zαþðzÞ

�
β−ðzÞ
βþðzÞ

	
¼ 0:

Notice that α−ðzÞ is completely free while we can solve for
βðzÞ ¼ βþðzÞ þ β−ðzÞ in terms of αþðzÞ as

βðzÞ ¼ E0 − 1
2

z
exp

�
2

Z
z
αþ

	
:

QUANTUM MECHANICS AND HIDDEN SUPERCONFORMAL … PHYSICAL REVIEW D 96, 126005 (2017)

126005-9



Hence we find

S− ¼ ∂
∂zþ αðzÞ þ ð−ÞF E0 − 1

2

z
exp

�
2

Z
z
αþ

	
:

Here αðzÞ ¼ αþðzÞ þ α−ðzÞ, and we must set α−ðzÞ¼
2E0−1
2z þa−ðzÞ [with a−ðzÞ odd and analytic] to cancel the

1=z pole in S−. Again, evenness of UðzÞ¼expð−R za−ðzÞÞ
allows us to gauge away a−ðzÞ. This yields

S− ¼ ∂
∂zþ

2E0 − 1

z
F þ αþðzÞ

þ ð−1ÞF E0 − 1
2

z

�
exp

�
2

Z
z
αþ

	
− 1

�
;

which is the sum of our previous ospð1j2Þ odd solution and
a mixed ospð1j2Þ parity solution parametrized by the even,
analytic function αþðzÞ.
The Hamiltonian for this class of models is given by

H ¼ N þ E0 þ zαþðzÞ:
The Casimir is again cospð1j2Þ ¼ E0ðE0 − 1Þ=4 which
suggests that this solution is gauge equivalent to our
previous one. Indeed the additional gauge transformation
UðzÞ ¼ expð− R

z aþðzÞÞ can be used to remove the aþðzÞ
dependence of the Hamiltonian and the ladder operator S−,
whence H¼NþE0 and S− ¼ ∂

∂z þ 2E0−1
z F. Remembering

that Sþ ¼ z, we recognize our previous solution in Eq. (11).

APPENDIX B: ORTHOSYMPLECTIC
REPRESENTATION THEORY

The following material reviews basic results from the
representation theory of slð2;RÞ and ospð1j2Þ. We also
provide a translation between common notations found in
the literature and those used here.
The Lie algebra slð2;CÞ ¼ fe; h; fg where [49]

½h; e� ¼ 2e; ½e; f� ¼ h; ½f; h� ¼ 2f; ðB1Þ
has two inequivalent real forms; since we are interested in
quantum mechanical models with infinite dimensional
Hilbert spaces, our focus is on the noncompact slð2;RÞ ≅
spð2;RÞ form [50]

e† ¼ −f; h† ¼ h; f† ¼ −e: ðB2Þ
For example, the harmonic oscillator obeys the above by
setting h ¼ H ¼ a†aþ 1

2
, e ¼ 1

2
ða†Þ2 and f ¼ − 1

2
a2. The

real linear map

e↦
1

2
ðhþe−fÞ; h↦−e−f; f↦

1

2
ðh−eþfÞ; ðB3Þ

preserves the slð2Þ Lie algebra but gives reality conditions

e† ¼ e; h† ¼ −h; f† ¼ f: ðB4Þ

This choice of slð2;RÞ generators corresponds to the
free particle on a line with e ¼ 1

2
x2, h ¼ x ∂

∂x þ 1
2
and

f ¼ H ¼ − 1
2
∂2
∂x2.

The Lie algebra (B1) is extended to the Z2 graded
algebra ospð1j2Þ ≅ spð2Þ ⨭ R2 by adding odd generators
s and q that obey

fs; sg ¼ e; fs; qg ¼ 1

2
h; fq; qg ¼ −f: ðB5Þ

In the notation of the Introduction, s ¼ 1
2
Sþ, q ¼ 1

2
S− so

the remaining commutation relations may be read off the
second line of (2) which gives

½s; f� ¼ q; ½h; s� ¼ s; ½q; h� ¼ q; ½q; e� ¼ s:

Given the reality conditions (B2), there are two inequi-
valent reality conditions for the odd generators [51]

s† ¼ �q; q† ¼ �s: ðB6Þ

The first choice above is realized by the harmonic oscillator
with s ¼ 1

2
a† and q ¼ 1

2
a. The real linear map

s ↦
1ffiffiffi
2

p ðsþ qÞ; q ↦
1ffiffiffi
2

p ð−sþ qÞ; ðB7Þ

induces the map (B3) through the relations (B5) and
preserves the ospð1j2Þ algebra. It gives again the free
particle-type reality conditions (B4) and reality conditions

s† ¼ �s; q† ¼ ∓q:

The first case corresponds to a free particle on the line with
s ¼ 1

2
x and q ¼ i

2
Q ¼ 1

2
∂
∂x.

Unitary irreducible representations ofslð2;RÞ are infinite
dimensional [52] and fall into three series: principal,
supplementary and discrete. Unitary irreducible representa-
tions of ospð1j2Þ are also infinite dimensional and are built
from a direct sum of discrete series representations [28]: call

DðE0Þ ≔ spanfjE0; 2ki ¼ ekjE0; 0ijk ∈ Z≥0; hjE0; 0i ¼ E0jE0; 0i; fjE0; 0i ¼ 0g:
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The reality conditions (B6) imply that

∥jE0; 2ki∥2 ¼ k!E0ðE0 þ 1Þ � � � ðE0 þ k − 1Þ∥jE0; 0i∥2:

The right-hand side above is certainly positive whenever
the “ground state energy” E0 ∈ R>0. Indeed the Hilbert
space DðE0Þ for real positive E0 is the unitary irreducible
(positive) discrete series representation of slð2;RÞ. It has
quadratic Casimir

cspð2Þ ¼
1

4
h2 þ 1

2
ðef þ feÞ

given by

cspð2ÞðDðE0ÞÞ ¼
E0ðE0 − 2Þ

4
¼ 1

4
½ðE0 − 1Þ2 − 1�:

Hence the representations DðE0Þ and Dð2 − E0Þ have the
same Casimir. In particular, the harmonic oscillator Hilbert
space is

Dð1=2Þ ⊕ Dð3=2Þ;

where both discrete series representations have cspð2Þ ¼
− 3

16
. Indeed Dð1=2Þ is spanned by even number

operator eigenstates fj0i; j2i;…gwith j1=2; 0i ¼ j0iwhile
Dð3=2Þ is spanned by odd eigenstates fj1i; j3i;…g with
j3=2; 0i ¼ j1i. The above Hilbert space also forms the
metaplectic representation of the group Slð2;RÞ; this can

be viewed as the noncompact analog of the double cover
spin representations of SUð2Þ.
The unitary irreducible representations of ospð1j2Þ

generalize the harmonic oscillator example and are given
by the Z2-graded vector space [28]

SðE0Þ ¼ spanfjE0; 2ki ¼ ekjE0; 0i;
jE0 þ 1; 2ki ¼ eksjE0; 0ijk ∈ Z≥0;

hjE0; 0i ¼ E0jE0; 0i; fjE0; 0i ¼ 0 ¼ qjE0; 0ig
¼ DðE0Þ ⊕ DðE0 þ 1Þ ¼ DðE0Þ ⊕ sDðE0Þ;

where E0 > 0. The respective spð2Þ Casimirs differ by
1
2
ðE0 − 1

2
Þ. The ospð1j2Þ Casimir is

cospð1j2Þ ¼ cspð2Þ þ
1

2
ðqs − sqÞ: ðB8Þ

This can be reexpressed in the enveloping algebra as

cospð1j2Þ ¼ ½q; s�
�
½q; s� − 1

2

	
:

On the orthosymplectic discrete series it takes the value

cospð1j2ÞðSðE0ÞÞ ¼
1

4
E0ðE0 − 1Þ ¼ 1

4

��
E0 −

1

2

	
2

−
1

4

�
:

Observe that this is minimized by E0 ¼ 1
2
which corre-

sponds to the harmonic oscillator.
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