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I. INTRODUCTION

Entanglement entropy (EE) is a measure of how much
information is stored in a quantum system. One expects
that EE is directly related to the degrees of freedom.
In this sense it can be used to gain insight into the
quantum dynamics of diverse and complex phenomena.
In recent years it also became a powerful bridge between
string/gravity and condensed matter physics. For exam-
ple, in holographic systems, the entanglement entropy is
encoded in the geometric features of different string
backgrounds [1,2]. This is closely related to the concept
of emergent spacetime in such models [3–5]. The
progress so far suggests that one can also study relevant
aspects of string theory on the microscopic level by
making use of thermodynamic and information-theoretic
quantities.
Our interest is focused specifically on the study of

quantum entanglement entropy and the Fisher information
for a particular string model, namely, closed bosonic strings
on homogeneous plane wave backgrounds. In general, it is
difficult to calculate the entanglement entropy, especially in
quantum field theory on curved spacetime. However, the
recent progress in thermo field dynamics (TFD) [6–10]
offers a relatively easy and straightforward way of treating
quantum states, which facilitates the derivation of the EE
and the Fisher matrix for the relevant models considered in
this paper.
Thermo field dynamics requires a “statistical” state

defined in a double Hilbert space, which is a direct product
of the original space and an isomorphic copy of it. If one
chooses to work in the energy basis fjnig, where Ĥjni ¼
Enjni, n ¼ 0; 1;…, then the bases in the double Hilbert

space are labeled as fjni ⊗ j ~nig ¼ fjnij ~nig ¼ fjn; ~nig.
The extended states were defined originally by [6,8,9]

jΨi ¼ 1

Z
e−βH=2jIi; jIi ¼

X
n

jn; ~ni; ð1:1Þ

where Z ¼ ZðβÞ is the partition function. It was shown
in [11] that the extended state jIi is invariant for
any orthogonal complete set fjαig, jIi ¼ P

njn; ~ni ¼P
αjα; ~αi. Thus, the statistical state jΨi is independent

of the chosen representation. This result is known as “the
general representation theorem” in TFD. It allows one to
use TFD techniques even in the nonequilibrium case. The
notion of double Hilbert space is very useful in treating
quantum states directly and facilitates the calculation of
entanglement entropy of the quantum systems. Although
TFD works for arbitrary nondiagonal Hamiltonians the
calculations simplify if one is allowed to work only with
diagonal Hamiltonians, which is the case we prefer in
this study.
Let the Hamiltonian be a bilinear function in creation

and annihilation operators. One can diagonalize it by
an appropriate procedure, commonly known as the
Bogoliubov transformation [12,13]. It mixes the creation
and annihilation operators, but leaves the form of the
commutation relations unchanged. In this case, operator
eigenvalues, calculated with the diagonalized Hamiltonian
on the transformed state functions, remain unchanged.
Many such examples exist with important applications in
condensed matter physics and string theory.
This paper is structured as follows. In Sec. II we consider

a rather generic case of a system in equilibrium, where one
applies TFD techniques to calculate the extended entangle-
ment entropy and the Fisher information metric. In Sec. III
we show that our result is applicable for certain bosonic and
fermionic systems, naturally found in condensed matter
systems such as superfluidity, superconductivity, and spin
chains. In Sec. IV we calculate the extended renormalized
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entanglement entropy (EREE) and the Fisher metric for a
nontrivial example of closed bosonic string theory in a class
of curved plane wave backgrounds. In Sec. V we consider a
nonequilibrium case with dissipation and generalize the
formula for EREE found in [14]. Finally, in Sec. VI we
make a short summary of our results.

II. ENTANGLEMENT ENTROPY FOR
TIME-INDEPENDENT QUADRATIC

HAMILTONIANS

A. Extended entanglement entropy
for systems in equilibrium

Let jϕni be a complete basis of eigenfunctions of the
operator F,

Fjϕni ¼ Fnjϕni; hϕmjϕni ¼ δmn: ð2:1Þ

In general, the Hamiltonian in such a basis is nondiagonal,

H ¼
X
mn

Hmna
†
man; Hmn ¼ hϕmjHjϕni; ð2:2Þ

where the creation and annihilation operators satisfy
standard commutation relations,

½am; a†n� ¼ δmn; ½am; an� ¼ 0; ½a†m; a†n� ¼ 0: ð2:3Þ

If the Hamiltonian is diagonalizable one can write it in the
following form [12,13,15]1:

H ¼
XN
i¼1

Eib
†
i bi þ E0; ð2:4Þ

where the energy coefficients Ei and the energy E0 of the
ground state depend on the matrix elements Hmn of the
original Hamiltonian (2.2). The new creation and annihi-
lation operators b†i and bi satisfy the same commutation
relations as the previous operators a†n and an:

½bi; b†j � ¼ δij; ½bi; bj� ¼ 0;

½b†i ; b†j � ¼ 0; i; j ¼ 1;…; N: ð2:5Þ

Following [14,17] we can apply TFD techniques to find
the EREE for the new system of quasiparticles, described
by the Hamiltonian (2.4). Consider the excited states
jn1;…; nNi, which satisfy the orthonormal relation

hm1;…; mN jn1;…; nNi ¼
YN
i¼1

δmi;ni : ð2:6Þ

One can write the Hamiltonian in matrix form such as2

Ĥ¼
X∞

fnig¼0

�XN
i¼1

EiniþE0

�
jn1;…;nNihn1;…;nN j; ð2:7Þ

where ni ¼ b†i bi are the number operators, fnig ¼
fnigNi¼1 ¼ n1;…; nN . Once the Hamiltonian assumes
diagonal form it is straightforward to compute the
relevant statistical quantities. The first one is the partition
function Z,

Z ¼ Trfigðe−βĤÞ

¼
X∞

flig¼0

hfligje−βĤjfligi

¼
YN
i¼1

e−βE0

1 − e−βEi
¼

YN
i¼1

e−K0

1 − e−Ki
; ð2:8Þ

where hfligj ¼ hl1;l2;…;lN j ¼ hl1jhl2j…hlN j and
β ¼ 1=T, (kB ¼ 1). We also introduce the notations
K0 ¼ βE0 and Ki ¼ βEi, i ¼ 1;…; N, usually called
inverse scaled temperatures. The ordinary density matrix
in equilibrium is given by

ρ̂eq ¼
e−βĤ

Z
¼ 1

Z

X∞
fnig¼0

e−
P

N
i¼1

Kini−K0 jfnigihfnigj: ð2:9Þ

In order to define the entanglement entropy the whole
system is divided into two subsystems A and B, tradition-
ally called “Alice” and “Bob.” Then, the standard EE ΣA for
the first system is found as3

ΣA ¼ −kBTrAρA log ρA; ρA ¼ TrBρ̂eq: ð2:10Þ

In the TFD formulation of the double Hilbert space the
statistical state, jΨi, is defined as

1For more general discussion on quantum quadratic Hamil-
tonians see the lecture notes [16].

2Let us clarify the notations to avoid unnecessary confusion. If
we define I ¼ fn1;…; nNg, then a nondiagonal Hamiltonian can
be written in the form

Ĥ ¼
X

n1 ;…;nN ;
m1 ;…;mN

Hn1;…;nN ;m1;…;mN
jn1;…; nNihm1;…; mN j

¼
X
IJ

HIJjIihJj:

The last expression allows one to write Ĥ as a matrix, where I and
J run over all possible states, defined by the quantum numbers ni
(for explicit examples see [17,18]).

3We prefer to work in units kB ¼ 1, where kB is the Boltzmann
constant.
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jΨi ¼
X∞

fnig¼0

ffiffiffiffiffiffiffi
ρ̂eq

q
jfnigijf ~nigi

¼ 1ffiffiffiffi
Z

p
X∞

fnig¼0

e−
1
2
ð
P

N
i¼1

KiniþK0Þjfnigijf ~nigi: ð2:11Þ

Thus, the extended density operator assumes the form

ρ̂ ¼ jΨihΨj

¼ 1

Z

X∞
fnig¼0

X∞
fmig¼0

e−
1
2
ð
P

N
i¼1

KiðniþmiÞþ2K0Þ

× jfnigihfmigjjf ~nigihf ~migj: ð2:12Þ

One can choose a bipartite system, namely,

fnigNi¼1 ¼ fnμgpμ¼1 ⋃ fnkgNk¼pþ1; p ≤ N − 1; N ≥ 2:

ð2:13Þ

The extended density matrix ρ̂A for Alice is obtained as a
trace over the parameters of the second system B,

ρ̂A ¼ TrfBgρ̂ ¼
X∞

flkg¼0

X∞
f ~lkg¼0

hflkgjhf ~lkgjρ̂jflkgijf ~lkgi;

ð2:14Þ

which leads to

ρ̂A ¼
X∞

fnμg¼0

X∞
fmμg¼0

e−
1
2

P
p
μ¼1

Kμð2þnμþmμÞ

× jfnμgihfmμgjjf ~nμgihf ~mμgj
Yp
α¼1

ðeKα − 1Þ: ð2:15Þ

Finally, the extended renormalized entanglement entropy,
SA ¼ −TrfAgðρ̂A ln ρ̂AÞ, follows as

SAðKμÞ ¼ −
Xp
μ¼1

�
lnðeKμ − 1Þ − Kμ

−
Kμ

Q
γ≠μðeKγ=2 − 1ÞQp

α¼1ðeKα=2 − 1Þ
�Yp

α¼1

coth
Kα

4
: ð2:16Þ

The result simplifies in terms of hyperbolic functions:

SAðKμÞ ¼
1

2

�Yp
μ¼1

coth
Kμ

4

�Xp
μ¼1

�
Kμ

�
1þ coth

Kμ

4

�

− 2 lnðeKμ − 1Þ
�
: ð2:17Þ

This is the desired expression for the EREE. If p ¼ 1, the
formula reduces to (3.14). If p ¼ 2, it reproduces the result
for the EE of the Pais-Uhlenbeck oscillator, found in [19].
For comparison the standard entanglement entropy from
(2.10) is written by

ΣAðKμÞ¼
Xp
μ¼1

�
Kμ

4

Y
γ≠μ

ðeKγ −1Þ
Yp
α¼1

�
ð1−e−KαÞcsch2

�
Kα

2

��

− lnð1−e−KμÞ
�
: ð2:18Þ

B. Fisher information metric

Equation (2.17) allows one to calculate the Fisher
information metric. It can be expressed as a second
derivative of the entanglement entropy [20,21]:

gμν ¼ ∂μ∂νSA ¼ −
1

8
FðAμBν þ AνBμ þ Cμν þ EDμνÞ;

ð2:19Þ

where ∂μ ¼ ∂=∂Kμ and

Aμ ¼ 2csch
Kμ

2
; ð2:20Þ

Bμ ¼ 1þ coth
Kμ

4
−
Kμ

4
csch2

Kμ

4
−

2

1 − e−Kμ
; ð2:21Þ

Cμν ¼ δμν

��
2 −

Kμ

2
coth

Kμ

4

�
csch2

Kμ

4
þ 4

1 − coshKμ

�
;

ð2:22Þ

Dμν ¼ 2csch2
Kν

4

�
δμν þ tanh

Kν

4

X
τ≠ν

�
δμτcsch

Kτ

2

��
;

ð2:23Þ

E¼ −
1

4

Xp
α¼1

�
Kα

�
1þ coth

Kα

4

�
− 2 lnðeKα − 1Þ

�
; ð2:24Þ

F ¼
Yp
σ¼1

coth
Kσ

4
: ð2:25Þ

Formula (2.19) differs by a sign from the standard
definition of the metric due to the requirement that the
metric components be positive defined, which is a neces-
sary condition for thermodynamic stability (for extended
discussion see [22] and references therein). The case of
p ¼ 2 corresponds to the Fisher metric obtained by [19,23].
On the level of the space of probability distributions the

Fisher metric represents a continuous setting even if the
underlying features of the system (for example, the state
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space) are discrete. This allows one to take advantage of
the powerful framework of differential geometry to treat
statistical structures as geometrical ones. As it turns out the
expressions for the EE and Fisher metric are applicable for
variety of systems as shown below.

III. EXAMPLES FROM CONDENSED
MATTER PHYSICS

Diagonalizable or approximately diagonalizable bosonic
and fermionic Hamiltonians naturally arise in condensed
matter physics such as spin wave theory, Heisenberg ferro-
and antiferromagnets, spin chains, spin liquids, and BCS
theory of superconductivity [24], but also in quantum field
theory and string theory. In this section we give explicit
examples of EREE for bosonic and fermionic systems,
correspondingly.

A. Entanglement entropy for bosonic system

For simplicity let us consider the following BCS type
bosonic Hamiltonian:

H ¼ Aa†1a1 þ Ba†2a2 þ Cða†1a†2 þ a1a2Þ; ð3:1Þ

where A, B, and C are some energy coefficients and

½ai; a†j � ¼ δij; ½ai; aj� ¼ 0; i; j ¼ 1; 2: ð3:2Þ

Following [12], we want to transform the given Hamiltonian
by introducing a new set of operators b†i and bi, such that
(3.1) takes the following diagonal form:

H ¼ E0 þ E1b
†
1b1 þ E2b

†
2b2: ð3:3Þ

Here, the creation and annihilation operators b†i and bi also
satisfy (3.2),

½bi; b†j � ¼ δij; ½bi; bj� ¼ 0; i; j ¼ 1; 2: ð3:4Þ

The diagonalization is achieved by the following
Bogoliubov transformations:

b1 ¼ coshφa1 þ sinhφa†2;

b2 ¼ sinhφa†1 þ coshφa2: ð3:5Þ

After some trivial calculations one arrives at the following
expressions for the new Hamiltonian coefficients:

E1 ¼
1

2

	
A − Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ BÞ2 − 4C2

q 

; ð3:6Þ

E2 ¼
1

2

	
B − Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ BÞ2 − 4C2

q 

; ð3:7Þ

E0 ¼ −ðE1 þ E2Þsinh2φ; ð3:8Þ

where E0 is the energy of the ground state. Now, let us focus
on the calculation of the EREE for the system described by
the Hamiltonian (3.3). First, we calculate the partition
function

Z ¼ Tr1;2ðe−βHÞ ¼
e−βE0

ð1 − e−βE1Þð1 − e−βE2Þ : ð3:9Þ

The ordinary equilibrium density matrix is written by

ρ̂eq ¼
e−βH

Z
¼

X∞
n1¼0

X∞
n2¼0

e−βðE1n1þE2n2þE0Þjn1; n2ihn1; n2j;

ð3:10Þ

where ni ¼ b†i bi, i ¼ 1, 2, are the number operators of the
Bogoliubov quasiparticles. The TFD statistical state, jΨi, is
defined as

jΨi ¼
X∞
n1¼0

X∞
n2¼0

ffiffiffiffiffiffiffi
ρ̂eq

q
jn1; n2ij ~n1; ~n2i

¼ 1ffiffiffiffi
Z

p
X∞
n1¼0

X∞
n2¼0

e−
β
2
ðE1n1þE2n2þE0Þjn1; n2ij ~n1; ~n2i:

ð3:11Þ

Therefore, the extended density operator, ρ̂ ¼ jΨihΨj, takes
the form

ρ̂ ¼ 1

Z

X∞
n1¼0

X∞
n2¼0

X∞
m1¼0

X∞
m2¼0

e−
β
2
ð2E0þE1ðn1þm1ÞþE2ðn2þm2ÞÞ

× jn1; n2ihm1; m2jj ~n1; ~n2ih ~m1; ~m2j: ð3:12Þ

Tracing out the states of the second system, one finds

ρ̂1 ¼ Tr2ðρ̂Þ

¼ 1

Z

X∞
n1¼0

X∞
m1¼0

e−βðE0−E2þE1ðm1þn1Þ
2

Þ

eβE2 − 1
jn1ihm1jj ~n1ih ~m1j:

ð3:13Þ

Finally, the renormalized extended entanglement entropy for
the given bosonic system is written by

S1ðK1Þ ¼ −Tr1ðρ̂1 ln ρ̂1Þ

¼ 1

2
coth

K1

4

��
1þ coth

K1

4

�
K1 − 2 logðeK1 − 1Þ

�
:

ð3:14Þ

Here K1 ¼ βE1 is the inverse scaled temperature. As
expected the result agrees with Eq. (2.17) for p ¼ 1. The
dependence of the entropy on K1 is illustrated in Fig. 1.
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In this case the Fisher information (2.19) is a one
parameter function given by

FðK1Þ ¼
K1

32
csch4

K1

4

�
4þ 2 cosh

K1

2
þ sinh

K1

2

�

−
1

16
csch3

K1

4

�
3þ logðeK1 − 1Þ

þ cosh
K1

2
ð2þ logðeK1 − 1ÞÞ

�
sech

K1

4
: ð3:15Þ

It measures the amount of information that an observed
random variable provides about an unknown parameter. It
can be used in studying phase transitions, especially the
second-order phase transitions, during which the Fisher
information exhibits divergence. From Eq. (3.15) one
notices that the Fisher information is singular at the origin,
K1 ¼ 0. This suggest that at very high temperatures the
Bogoliubov quasisystem undergoes a second-order phase
transition, which is in agreement with the statement that the
Fisher information is maximized at the phase transition
points [25].
One can use the Fisher information (3.15) to define a

distance between points on the statistical manifold, spanned
by the inverse scaled temperaturesKμ, or in this case—only
by θ ¼ K1. The information-metric distance, or Fisher
information distance [26] DF between two distributions
fðθ1; xÞ and fðθ2; xÞ in a single parameter family is
defined by

DFðθ1; θ2Þ ¼
Z

θ2

θ1

ffiffiffiffiffiffiffiffiffiffi
FðθÞ

p
dθ; ð3:16Þ

where θ1 and θ2 are parameter values corresponding to
the two probability distribution functions. In Fig. 2 are
depicted several values of the Fisher distanceDF for several
increasing positive values of the upper integral limit θ2,
while keeping the lower limit θ1 fixed. This setup chooses
different points on the statistical manifolds. One notices

that DF increases monotonously for increasing values of
the upper limit θ2. For nearby states, the square of the
lengths of the geodesic paths gives the probability of a
fluctuation between the states. In other words, the less the
probability of a fluctuation between two states, the further
apart they are [22].

B. Entanglement entropy for fermionic system

In this section we are going to consider a fermionic
example, namely, an XY model in a magnetic field. It is a
generalization of the Ising model in which an anisotropy
is introduced with respect to the x and y directions by
means of a real deformation parameter γ. In what follows
we are going to shortly sketch the diagonalization of the
Hamiltonian, which is given by [27]

H ¼ −
XM
l¼−M

��
1þ γ

2

�
σxlσ

x
lþ1 þ

�
1 − γ

2

�
σylσ

y
lþ1 þ hσzl

�
:

ð3:17Þ

Here N ¼ 2M þ 1 gives the total odd number of spins and
h is the transverse magnetic field. In the γ ¼ 1 case the
system reduces to the one-dimensional Ising model with a
transverse magnetic field. In order to diagonalize the
Hamiltonian we begin by defining the following operators:

σþ ¼ 1

2
ðσx þ iσyÞ; σ− ¼ 1

2
ðσx − iσyÞ: ð3:18Þ

Next we perform the Jordan-Wigner transformation, which
relates the spin operators σl to a set of fermionic operators
al and a†l via

5 10 15 20 25 30

26

28

30

32

Number of samples for θ2

FIG. 2. Monotonously increasing Fisher information distance
DF between two distributions fðθ1; xÞ and fðθ2; xÞ in a single
parameter family for θ1 ¼ 0.1 and θ2 ∈ ½0.3; 10�, with step size
δθ2 ¼ 0.3. One can interpret this within the framework of the
fluctuation theory as follows: the less the probability of a
fluctuation between two states, the further apart they are.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

Inverse scaled temperature K1

E
nt

ro
py

EREE

EE

FIG. 1. The extended renormalized entanglement entropy S1
(thick line) compared to the standard entanglement entropy Σ1

(dashed line). As expected the EREE is bigger than the normal
EE, but both diverge at the origin (at very high temperatures).
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σþl ¼
�Yl−1

j¼1

σzj

�
al; σ−l ¼

�Yl−1
j¼1

σzj

�
a†l; σzl¼1−2a†lal:

ð3:19Þ

Here the operators al and a
†
l satisfy the standard fermionic

anticommutation relations:

fa†l; amg ¼ δlm; fa†l; a†mg ¼ fal; amg ¼ 0: ð3:20Þ

The Hamiltonian, written in terms of these fermionic
operators, assumes the form

H ¼ −
XM
l¼−M

�
1þ γ

2
ðalþ1al þ a†lþ1al þ a†lalþ1 þ a†la

†
lþ1Þ

þ γ − 1

2
ðalþ1al − a†lalþ1 − a†lalþ1 þ a†la

†
lþ1Þ

þ hð1− 2a†lalÞ
�
: ð3:21Þ

Now we Fourier transform the creation and annihilation
operators by

al ¼ 1ffiffiffiffi
N

p
X
k

e−ikldk; a†l ¼ 1ffiffiffiffi
N

p
X
k

eikld†k;

δkk0 ¼
1

N

X
l

eilðk−k0Þ; ð3:22Þ

where k ¼ 2π=N; 4π=N…; 2π. The Hamiltonian is
expressed as

H ¼ −
X
k

½2ðcos k − hÞd†kdk

− iγ sin kðdkd−k þ d†kd
†
−kÞ� − hN: ð3:23Þ

After applying the following Bogoliubov transformations:

dk ¼ cos
θk
2
bk þ i sin

θk
2
b†−k;

d†k ¼ cos
θk
2
b†k − i sin

θk
2
b−k; ð3:24Þ

one finds

H ¼ −
X
k

2γ sin k sin θkb
†
kbk − 2 cos θkðcos k − hÞb†kbk

− i
X
k

ðsin θkðcos k − hÞ − γ sin k sin θkÞ

× ðbkb−k þ b†kb
†
−kÞ þ const: ð3:25Þ

Imposing that the cross-terms be zero we arrive at the
expressions relating θk with the original parameters (k, h, γ):

cos θk ¼
cos k − hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcos k − hÞ2 þ γ2sin2k
p ;

sin θk ¼ −
γ sin kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcos k − hÞ2 þ γ2sin2k
p : ð3:26Þ

Finally, the Hamiltonian assumes the form of a quasifree
fermionic system:

H ¼
X
k

Λkðnk − 1Þ; ð3:27Þ

where nk ¼ b†kbk defines number operators for the quasi-
particles and Λk sets the following dispersion relation:

Λk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos k − hÞ2 þ γ2sin2k

q
: ð3:28Þ

One can repeat the TFD analysis from Sec. II to calculate the
extended entanglement entropy, which, for arbitrary number
of spins N, coincides with Eq. (2.17):

SAðKμÞ ¼
1

2

�Yp
μ¼1

coth
Kμ

4

�Xp
μ¼1

�
Kμ

�
1þ coth

Kμ

4

�

− 2 lnðeKμ − 1Þ
�
; ð3:29Þ

where the inverse scaled temperatures are given by
Kμ ¼ βΛμ. Here we used natural numbers to count the
number of spins involved. In such notations one has to be
careful with the expressions for Λμ and Λk, where 1 ≤ μ ≤
p ≤ N − 1; N > 1, and the angle k ¼ 2π=p; 4π=p…; 2π.
This implies the following relation μ → k ¼ 2π=μ, thus,

Λμ → Λ2π=μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cos

�
2π

μ

�
− h

�
2

þ γ2sin2
�
2π

μ

�s
:

ð3:30Þ

The Fisher information metric in this case is the same as in
Sec. II for particular values of k.

IV. ENTANGLEMENT ENTROPY FOR CLOSED
BOSONIC STRINGS IN HOMOGENEOUS

PLANE-WAVE BACKGROUNDS

In this section we consider the closed bosonic string
vibrating in regular homogeneous plane wave back-
grounds. The given curved backgrounds have nonvanishing
Neveu-Schwarz three-form field strength and a dilaton. We
will closely follow [28], where the authors develop a
general procedure for solving linear, but nondiagonal
equations for the string coordinates, and determine the
corresponding oscillator frequencies and the light-cone
Hamiltonian. In this setup the Hamiltonian is automatically
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diagonalized and time independent. Therefore, finding the
entanglement entropy in the framework of TFD naturally
follows the steps shown in the previous sections. Bellow we
will sketch the relevant result of [28].

A. String equations of motion and quantization

We begin by considering a closed relativistic string in
nonsingular 2þ d dimensional homogeneous plane wave
backgrounds with a metric of the following form:

ds2 ¼ 2dudvþ kijxixjdu2 þ 2fijxidxjduþ dxidxj:

ð4:1Þ

Here kij and fij are constant, and the B field is given by
Biu ¼ −hijxj. Our aim is to solve the classical equations of
motion for this string sigma model. We denote the string
embedding coordinates as XM ¼ ðU;V; XiÞ. Choosing the
orthogonal gauge for the world-sheet metric, the standard
sigma model Lagrangian is written by

L ¼ 1

2π
ðGMNðXÞ þ BMNðXÞÞ∂þXM∂−XN: ð4:2Þ

The equations of motion for the bosonic field U are easily
obtained:

∂þ∂−U ¼ 0: ð4:3Þ

Similarly, for the fields Xi, i ¼ 1;…; d, one finds

− ∂þ∂−Xi þ ðfij þ hijÞ∂−U∂þXj þ ðfij − hijÞ∂þU∂−Xj

þ kijXj∂þU∂−U ¼ 0; ð4:4Þ

where σ� ¼ τ � σ and ∂� ¼ ∂τ � ∂σ. In the light-cone
gauge U becomes

U ¼ pþσþ þ p−σ
− ¼ pv

2
; ð4:5Þ

where the condition of periodicity of U in σ implies that
pþ ¼ p− ¼ pv=2. To solve Eq. (4.4) one makes the
following mode expansion of the transverse coordinates:

Xiðτ;σÞ ¼
X∞
n¼−∞

Xi
nðτÞe2inσ; Xi

n ¼ ðXi
−nÞ�; 0< σ ≤ π:

ð4:6Þ

The substitution of the mode expansion in Eq. (4.4) leads to

−Ẍi
n þ 2pvfij _X

j
n þ ðp2

vkij − 4n2δijÞXj
n þ 4inpvhijX

j
n ¼ 0:

ð4:7Þ

For simplicity one can set pv ¼ 1 and assume that kij is
diagonal, kij ¼ kiδij. As explained in [28], the general
method to solve systems like (4.7) is to rewrite it as a set of
2d first-order equations and then use the appropriate
methods available at hand. Fortunately, the authors noted
that for generic values of the parameters in (4.7) one can
use a much simpler procedure. Namely, to solve these
equations, one makes the following ansatz:

Xi
nðτÞ ¼

X2d
J¼1

ζðnÞJ aðnÞiJ eiω
ðnÞ
J τ; ð4:8Þ

with the frequencies ωðnÞ
J and their eigendirections aðnÞiJ to

be determined. This frequency based ansatz for the modes
leads to the matrix equation in the form

MikðωðnÞ
J ; nÞaðnÞkJ ¼ 0; ð4:9Þ

where (for short ω ¼ ωðnÞ
J ):

Mik ¼ ðω2 þ ki − 4n2Þδik þ 2iωfik þ 4inhik: ð4:10Þ

The matrix equation (4.9) is a homogeneous algebraic
system. The necessary condition for finding a nontrivial
solution is

detMðω; nÞ ¼ 0: ð4:11Þ

The later equation has 2d roots ω ¼ ωðnÞ
J , J ¼ 1;…; 2d,

which are the frequencies from (4.8). The ansatz (4.8) is
justified only if all the roots are distinct, or if equal roots
are associated with linearly independent null eigenvectors,
because it involves all the 2d linearly independent
solutions of the equation (4.7). The degenerate case
requires separate considerations. In what follows we will
always assume distinct roots. From (4.10) one immediately
notes that MTðω; nÞ ¼ Mð−ω;−nÞ. This property means
that Mðω; nÞ and Mð−ω;−nÞ have the same determinant
and hence the same roots. This leads to the situation
where for n ¼ 0 the frequencies come in pairs, fωJg ¼
f�ωj; j ¼ 1;…; dg. It is then convenient to rewrite the
expansion of the zero mode as

Xi
0ðτÞ ¼

Xd
j¼1

ðζþj aþijeiωjτ þ ζ−j a
−
ije

−iωjτÞ: ð4:12Þ

For the higher modes (n ≠ 0) the �n modes are paired,

ωðnÞ
J ¼ −ωðnÞ

j , J ¼ 1;…; 2d. It is useful to chose the

eigendirections aðnÞiJ in the following way:

aðnÞiJ ¼ ð−1Þim1iðωðnÞ
J Þ; ð4:13Þ
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where mijðωðnÞ
J Þ, i; j ¼ 1;…; d, are the minors mij of the

matrixMðω; nÞ, evaluated for ω ¼ ωðnÞ
J . Therefore one can

rewrite the solution for the string modes explicitly as

Xi
0ðτÞ ¼ ð−1Þi

Xd
j¼1

ðζþj m1iðωjÞeiωjτ þ ζ−j mi1ðωjÞe−iωjτÞ;

n ¼ 0; ð4:14Þ

Xi
nðτÞ ¼ ð−1Þi

X2d
J¼1

ζðnÞJ m1iðωðnÞ
J ÞeiωðnÞ

J τ; n ≠ 0: ð4:15Þ

In order to find the Hamiltonian we promote the ζ’s to
operators with commutation relations given by

Cj ¼ ½ζ−j ; ζþj �; CðnÞ
J ¼ ½ζð−nÞJ ; ζnJ �; Cð−nÞ

J ¼ −CðnÞ
J ;

ð4:16Þ

where one has

Cj ¼
1

2m11ðωjÞωj
Q

k≠jðω2
j − ω2

kÞ
;

CðnÞ
J ¼ 1

m11ðωðnÞ
J ÞQK≠JðωðnÞ

J − ωðnÞ
K Þ

: ð4:17Þ

The expressions for these coefficients follow from the
canonical equal-time commutation relations between the
string modes X. The relations between the ζ’s and
the canonically normalized operators a�j , ½a−j ; aþk � ¼ δjk,
are given by

a�σ
j ¼ ζ�jffiffiffiffiffiffiffiffijCjj

p ; ð4:18Þ

where σ ¼ signðCjÞ. With this choice for the a’s the
bilinear combination ζþj ζ

−
j þ ζ−j ζ

þ
j is related to the number

operator, N j ¼ aþj a
−
j , by

1

2
ðζþj ζ−j þ ζ−j ζ

þ
j Þ ¼ jCjj

�
N j þ

1

2

�
: ð4:19Þ

Similar relation holds for the higher modes,

1

2
ðζðnÞJ ζð−nÞJ þ ζð−nÞJ ζðnÞJ Þ ¼ jCðnÞ

J j
�
N ðnÞ

J þ 1

2

�
; ð4:20Þ

which connects the number operatorN ðnÞ
J ¼ aðnÞJ að−nÞJ with

the ζ operators. Hence, one has an explicit string mode
expansion. Thus, the string Hamiltonian,

H ¼ 1

2π

Z
π

0

dσ½δijð _Xi _Xj þ Xi0Xj0 − kiXiXjÞ − 2hijXiXj0�;

ð4:21Þ

can be written as a sum of n-level harmonic oscillator
Hamiltonians

H ¼
X∞
n¼0

HðnÞ: ð4:22Þ

Here the zero-mode part Hamiltonian assumes the form

H0 ¼
Xd
j¼1

signðCjÞΩj

�
N j þ

1

2

�
; ð4:23Þ

with frequencies

Ωj ¼
P

d
i¼1ðω2

j − kiÞmiiðωjÞ
2ωj

Q
k≠jðω2

j − ω2
kÞ

: ð4:24Þ

Likewise, the Hamiltonians for higher modes of the string
are given by

HðnÞ ¼
X2d
J¼1

signðCðnÞ
J ÞΩðnÞ

J

�
N ðnÞ

J þ1

2

�
; n>0; ð4:25Þ

where the frequency ΩðnÞ
J is a sum of two terms—one

coming from the plane wave metric, and the other coming
from the Kalb-Ramond B field:

ΩðnÞ
J ¼ 2ωðnÞ

J CðnÞ
J m11ðωðnÞ

J Þ
×
X
i;j

ðωðnÞ
J δij þ ið−1ÞiþjfijÞmijðωðnÞ

J Þ: ð4:26Þ

B. Extended entanglement entropy in the ground
state of the bosonic string

We are now ready to apply the TFD technique for the
entanglement entropy on every energy level of the string
spectrum. Here, for convenience, we consider only the
n ¼ 0 Hamiltonian of the string from Eq. (4.23). Assume
the following two subsystems:

fN jgdj¼1
¼ fN μgpμ¼1 ⋃ fN kgdk¼pþ1;

p ≤ d − 1; 2 ≤ d ≤ 9; ð4:27Þ
the resulting entanglement entropy agrees with Eq. (2.17):

SAð ~KμÞ ¼
1

2

�Yp
μ¼1

coth
~Kμ

4

�Xp
μ¼1

�
Kμ

�
1þ coth

~Kμ

4

�

− 2 lnðe ~Kμ − 1Þ
�
: ð4:28Þ
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The thermal parameters, ~Kμ ¼ βsignðCμÞΩμ, depend on
the frequencies of the classical string modes ωμ,
μ ¼ 1;…; p. In four-dimensional spacetime d ¼ 2, thus
p ¼ 1, the space of parameters is one-dimensional
spanned by the values of ~K1. The entanglement entropy
behaves as shown in Fig. 1. In five dimensions (d ¼ 3,
p ¼ 2), the space of parameters is a two-dimensional
Riemannian manifold spanned by ð ~K1; ~K2Þ. The entan-
glement entropy is given by

SAð ~K1; ~K2Þ ¼
1

2
coth

~K1

4
coth

~K2

4

×

�
~K1

�
1þ coth

~K1

4

�
þ ~K2

�
1þ coth

~K2

4

�

− 2 log½ðe ~K1 − 1Þðe ~K2 − 1Þ� coth
~K1

4

�
:

ð4:29Þ

The inverse scaled temperatures, ~K1;2, depend on the sign
of the coefficients C1;2, which leads to two regions on the
plot (Fig. 3)—one for positive values of the K’s, and one
for negative ones.
As expected for very high temperatures ( ~Ki → 0) the

entropy diverges. One finds similar situation for the
standard entanglement entropy,

ΣAð ~K1; ~K2Þ ¼
4 ~K1

e ~K1 − 1
þ 4 ~K2

e ~K2 − 1

− log½ð1 − e− ~K1Þð1 − e− ~K2Þ�; ð4:30Þ

shown in Fig. 4 below,
The Fisher metric, gμν¼∂μ∂νS, at the point ( ~K1¼0;

~K2¼0), is also singular, as can be seen from the following
expressions for the metric coefficients:

g11 ¼
1

64
coth

~K2

4
csch2

~K1

4

�
~K1

�
3þ 5coth2

~K1

4
þ 7csch2

~K1

4

�

þ 4 tanh
~K1

4
þ 4 coth

~K1

4

�
~K1 þ ~K2 − 5þ ~K2 coth

~K2

4
− 2 log½ðe ~K1 − 1Þðe ~K2 − 1Þ�

��
; ð4:31Þ

g12 ¼ g21 ¼
1

32
csch2

~K1

4
csch2

~K2

4

�
~K1

�
1þ 2 coth

~K1

4

�
þ ~K2

�
1þ 2 coth

~K2

4

�
− 4 − 2 log ½ðe ~K1 − 1Þðe ~K2 − 1Þ�

�
; ð4:32Þ

g22 ¼
1

64
coth

~K1

4
csch2

~K2

4

�
~K2

�
3þ 5coth2

~K2

4
þ 7csch2

~K2

4

�
þ 4 tanh

~K2

4

þ 4 coth
~K2

4

�
~K1 þ ~K2 − 5þ ~K1 coth

~K1

4
− 2 log ½ðe ~K1 − 1Þðe ~K2 − 1Þ�

��
: ð4:33Þ

FIG. 3. The renormalized entanglement entropy for closed
string in five-dimensional regular plane wave background,
kB ¼ 1. At the origin (at very high temperatures) EREE diverges.

FIG. 4. The standard entanglement entropy for closed bosonic
string in the five-dimensional regular plane wave background.
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This result is already familiar [19]. The singular point at the
origin is a signal of a phase transition. As shown from the
geometric analysis of the Fisher metric in Sec. IVC its Ricci
scalar is regular at the origin, which suggests that the point
(K1 ¼ 0, K2 ¼ 0) is not a second-order phase transition.
Furthermore, the scalar curvature at that point is zero,
corresponding to a free quasisystemat veryhigh temperatures.

C. Geometric analysis of the Fisher metric
and phase transitions

A well-known fact is that the Fisher information
metric defines a Riemannian metric on the space of
parameters [29–31] for variety of statistical systems.
Such geometrization is often useful in the analysis of
the phase structure for a given statistical model [22,32].
Here the scalar curvature, R, plays a central role, e.g., a

noninteracting model shows a flat geometry (R ¼ 0),
while R diverges at the critical points of an interacting
one, thus effectively preventing geodesics from crossing
into the nonphysical area of phase space [33–36]. The
specific critical points, where the phase transition occurs,
lie on the spinodal curve. An advantage of the probabi-
listic description of the system’s phase structure is that
one does not require the definition of order parameters.
This is useful for systems where an order parameter is
difficult to identify, or does not exist.
In what follows we analyze the scalar curvature R of the

Fisher metric from (4.31), (4.32), and (4.33). The scalar
curvature is independent of the chosen coordinates, so, for
convenience, we perform a change of variables from K1

and K2 to t1 ¼ eK1 and t2 ¼ eK2 . The Fisher metric in the
new coordinates is given by

g11 ¼
1

4t3=21 ðT−
1 Þ4Tþ

1 ðT−
2 Þ2

fTþ
1 ð1þ 8

ffiffiffiffi
t1

p þ 3t1Þðt2 − 1Þ log t1 þ 2T−
1 ð2ð1þ 3

ffiffiffiffi
t1

p þ t1Þð1 − t2Þ

þ ðTþ
1 Þ2ðð1 − t2Þ log½ðt1 − 1Þðt2 − 1Þ� þ ð ffiffiffiffi

t2
p þ t2Þ log t2ÞÞg; ð4:34Þ

g12 ¼ g21

¼ 1

2t2
ffiffiffiffi
t1

p ðT−
1 Þ3ðT−

2 Þ3
fðt2 −

ffiffiffiffi
t2

p Þ × ðð1þ 3
ffiffiffiffi
t1

p Þ log t1 − 2T−
1 ð2þ log½ðt1 − 1Þðt2 − 1Þ�ÞÞ þ T−

1 ð
ffiffiffiffi
t2

p þ 3t2Þ log t2g;

ð4:35Þ

g22 ¼
1

4t3=22 Tþ
2 ðT−

1 Þ2ðT−
2 Þ4

f2Tþ
1 T

−
2

ffiffiffiffi
t1

p ðTþ
2 Þ2 log t1

þ ðt1 − 1Þð−2T−
2 ð2ð1þ 3

ffiffiffiffi
t2

p þ t2Þ þ ðTþ
2 Þ2 log½ðt1 − 1Þðt2 − 1Þ�Þ þ Tþ

2 ð1þ 8
ffiffiffiffi
t2

p þ 3t2Þ log t2Þg; ð4:36Þ

where 1 ≤ t1; t2 ≤ ∞ and

T−
1 ¼ ffiffiffiffi

t1
p

− 1; Tþ
1 ¼ 1þ ffiffiffiffi

t1
p

;

T−
2 ¼ ffiffiffiffi

t2
p

− 1; Tþ
2 ¼ 1þ ffiffiffiffi

t2
p

: ð4:37Þ

The explicit expression for R is too lengthy to be presented
here. However, its functional dependence on (t1, t2) near
the origin (1,1) is shown on Fig. 5. One notes that the Ricci
scalar is positive defined and shows local maximum near
the point (t1 ¼ 1.3, t2 ¼ 1.3). The positive values of the
scalar curvature suggest elliptic geometry in the thermo-
dynamic parameter space, while the local maximum
corresponds to the strongest interaction between the con-
stituents of the quasisystem. There is a level curve kðt1; t2Þ
for which R ¼ 0, corresponding to free noninteracting
system (Fig. 6). At the origin the scalar curvature is also
regular and tends to zero, which implies that the singular
point ðK1 ¼ 0; K2 ¼ 0Þ in the Fisher metric is not a
second-order phase transition and also shows that at very
high temperatures the system is free. One notes that the

values of R do not deviate much from zero, which makes
the entire quasisystem almost noninteracting. This kind
of behavior is expected due to the properties of the
Bogoliubov transformation, which smoothens out the

FIG. 5. Visualization of the scalar curvature R in terms of t1, t2,
near the origin (t1 ¼ 1, t2 ¼ 1). The curvature is positive defined
implying elliptic geometry on the statistical manifold of thermo-
dynamic parameters. The local maximum corresponds to the
strongest interaction in the quasisystem.
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strength of the interactions in the original quantum system
and effectively produces a noninteracting quasisystem.
For larger values of the parameters, the Ricci scalar is not

positive defined as shown in Fig. 7. In this case the
geometry in the space of parameters is hyperbolic. The
nonzero values of the scalar curvature suggest also an
interacting system. There is a local minimum, correspond-
ing to the highest strength of the interactions in the
hyperbolic case. For low temperatures (K1;2 → ∞) the
scalar curvature tends to zero once again corresponding
to a free noninteracting quasisystem. The TFD scalar
curvature is regular for all points from the two-dimensional
space of parameters. Therefore, one concludes that the
closed bosonic string system in a five-dimensional

homogeneous plane wave background does not show
any second-order phase transitions.

V. NONEQUILIBRIUM ENTANGLEMENT
ENTROPY FOR DISSIPATIVE SYSTEMS

A. Extended entanglement entropy
for a dissipative system

Following [14], one can consider the Hamiltonian from
Eq. (2.7) as a nonequilibrium system with dissipations.
In this case the time-dependent density operator ρ̂neqðtÞ
satisfies the dissipative von Neumann equation:

i∂tρ̂neqðtÞ ¼ ½Ĥ; ρ̂neqðtÞ� − εðρ̂neqðtÞ − ρ̂eqÞ; ð5:1Þ

where ε is a dissipation parameter and ρ̂eq is defined in
Eq. (2.9). The solution to this equation is formally given by

ρ̂neqðtÞ ¼ e−εtÛ†ðtÞρ̂ð0ÞÛðtÞ þ ð1 − e−εtÞρ̂eq; ð5:2Þ

where ρ̂ð0Þ is an arbitrary initial density matrix and
ÛðtÞ ≔ eitĤ. The diagonal form of the Hamiltonian allows
one to write

ÛðtÞ ¼
X∞

fnig¼0

eitð
P

N
i¼1

EiniþE0Þjfnigihfnigj: ð5:3Þ

The case of arbitrary initial conditions significantly com-
plicates the calculations. Therefore one can consider
only initial conditions in the ground state as suggested
in Ref. [14]:

ρ̂ð0Þ ¼ e−K0

Z
jf0gihf0gj: ð5:4Þ

Here K0 ¼ βE0, E0 is the energy in the ground state, and
ZðKiÞ is given by Eq. (2.8). Once again we use the simple
bipartition of the bulk system, namely,

fnigNi¼1¼fnAgpA¼1⋃fnBgNB¼pþ1; p≤N−1; N≥2:

ð5:5Þ

Following the steps shown in [17], one finds the renor-
malized extended entanglement entropy in the form
(kB ¼ 1):

SAðKi; ε; tÞ ¼ −e−εtaðtÞ logaðtÞ þ ð1 − e−εtÞ

×
Xp
μ¼1

�
SμðtÞ tanh

Kμ

4

�Yp
α¼1

coth
Kα

4
; ð5:6Þ

where i ¼ 1;…; p; pþ 1;…; N, and

FIG. 7. The behavior of the scalar curvature R in terms of K1,
K2 for large values of the inverse scale temperatures. There is
an obvious local minimum, corresponding to the strongest
interaction in the hyperbolic case.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

FIG. 6. The contour plot of the level curve R ¼ 0, correspond-
ing to the values of the parameters for which the quasisystem is
effectively free. In this picture one should also include the origin
(high temperatures), t1 ¼ t2 ¼ 1, and infinity (low temperatures),
t1, t2 → ∞.
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SμðtÞ ¼ −aμðtÞ log aμðtÞ −
1

2
e−Kμ coth

Kμ

4

�
bðtÞðeKμ=2 − 1Þ

�
4 log bðtÞ þ 4 logðeKμ − 1Þ − Kμ

�
5þ coth

Kμ

4

��

þ ð1 − e−εtÞ
�
2 logð1 − e−εtÞ þ 2 logðeKμ − 1Þ − Kμ

�
3þ coth

Kμ

4

���
; ð5:7Þ

aðtÞ ¼
�
ð1 − e−εÞ

YN
r¼pþ1

ð1 − e−KrÞ−1 þ e−εt
�Yp

μ¼1

ð1 − e−KμÞ
YN

r¼pþ1

ð1 − e−KrÞ; ð5:8Þ

bðtÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−εt
p

− ð1 − e−εtÞ
� YN

r¼pþ1

ð1 − e−KrÞ−1 − 1

�� YN
r¼pþ1

ð1 − e−KrÞ; ð5:9Þ

aμðtÞ ¼ ð1 − e−KμÞ
�
ð1 − e−εtÞ

YN
r¼pþ1

ð1 − e−KrÞ−1 þ e−εt
� YN

r¼pþ1

ð1 − e−KrÞ: ð5:10Þ

The limit, t → ∞, coincides with the equilibrium case (2.16):

lim
t→∞

SAðKi; ε; tÞ ¼
1

2

�Yp
μ¼1

coth
Kμ

4

�Xp
μ¼1

�
Kμ

�
1þ coth

Kμ

4

�
− 2 lnðeKμ − 1Þ

�
: ð5:11Þ

The limit at t → 0 reduces to the ground state:

lim
t→0

SAðKμ; ε; tÞ ¼ −
e−K0

Z
log

e−K0

Z
: ð5:12Þ

In Fig. 8 is shown the time dependence of the entropy for
several values of the dissipation parameter ε. Clearly, given
enough time, the entropy reaches the equilibrium case from
(2.17) (depicted as a black dashed line). This is consistent
with the second law of thermodynamics.
One also depicts a generic behavior of the entropy, which

has been observed for various systems prepared in a state
with initially low entanglement entropy, SAðt0Þ ≤ Seq: after
some short transient period of time, which depends on the
initial state of the system, the entanglement entropy goes

through a phase of linear or almost linear growth,
SAðtÞ ∼ ΛAt, until it settles at the saturation phase. This
kind of behavior is observed in the time evolution of
various quantum systems that bear the signatures of
quantum chaos [37–40], or in the study of thermalization
in some holographic systems [41–44]. In particular, the rate
of growth ΛA of the entanglement entropy in the phase of
linear growth is connected to the scrambling time in chaotic
quantum systems, or the Kolmogorov-Sinai entropy rate
[45], in cases where the quantum system has a classical
counterpart.
Finally, in Fig. 9 we show the logarithm of the entan-

glement entropy as a function of the scaled inverse temper-
ature parameter K1 at a fixed finite moment of time t. As
expected the entropy decreases with increasing K1.
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FIG. 8. Nonequilibrium EREE as a function of time in the
p ¼ 1 case (also kB ¼ 1 and K1 ¼ 1). The dashed line is the
equilibrium value of the entropy saturated at t → ∞. Different
curves correspond to different values of ε in the interval [0,1].
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FIG. 9. Nonequilibrium EREE (p ¼ 1) as a function of the
scaled inverse temperature parameter K1 at fixed moment
t ¼ 0.5, for different values of the dissipation parameter
ε ∈ ½0; 1�.
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B. Entanglement entropy production rate

We calculate and analyze the entanglement production
during the evolution of a quantum mechanical dissipative
system. Although entanglement entropy plays an essential
role in the thermalization of isolated quantum systems
[46–48], the central quantity in nonequilibrium systems is

not the entropy, but the rate of change of the entropy, which
is known as entropy production [49]. It serves as a measure
of the irreversibility of a physical process.
One can obtain the TFD entanglement entropy produc-

tion rate (EEPR) by taking the time derivative of the
extended nonequilibrium EE (5.6):

_SAðtÞ ¼ −e−εt
�
_aðtÞðlog aðtÞ − 1Þ − εðaðtÞ log aðtÞ þ

Xp
μ¼1

�
SμðtÞ tanh

Kμ

4

�Yp
α¼1

coth
Kα

4

��

þ ð1 − e−εtÞ
Xp
μ¼1

�
_SμðtÞ tanh

Kμ

4

�Yp
α¼1

coth
Kα

4
; ð5:13Þ

where the dot denotes derivative with respect to time t. The
entanglement entropy production rate _SAðtÞ is shown in
Fig. 10 for several values of the dissipation parameter ε.
One notices that for a short time, the EEPR reaches peak
value, after which it monotonously decreases with time.
The local maximum of _SAðtÞ agrees with the Zeigler’s
principle of maximum entropy production [50–52]. Fur-
thermore the EEPR is a positive quantity which is expected
and confirms the statement of the second law of thermo-
dynamics for nonequilibrium systems. One also notes that
the peak entropy production is bigger for strongly dis-
sipative systems (large values of ε).

VI. CONCLUSION

In this paper we study the extended entanglement entropy
of a nontrivial quantized system, namely, the closed bosonic
string in a homogeneous plane wave geometry.
The EREE dependence on the inverse scaled temper-

atures in the ground state of the string has been explicitly

shown analytically and graphically in four and five dimen-
sions. The parameter space in these cases is one- and two-
dimensional manifold correspondingly. The result shows
that EREE increases with increasing temperature, while at
very high temperatures (zero inverse scaled temperatures)
the entropy diverges. This is also true for the components
of the Fisher metric, which is an indication of an instability
of the system or a phase transition. To address this problem,
we have analyzed analytically the singularities in the scalar
curvature of the metric. We have shown that the Ricci scalar
is regular everywhere, including at very high temperatures.
This suggests that the considered bosonic string system
does not possess any critical points, representing a second-
order phase transition, although a first-order phase tran-
sition is not excluded at high temperature.
The graphical and analytical study of the scalar curvature

showed that there are three geometrically different regions,
corresponding to different types of interactions. Near the
origin (Fig. 5) the scalar curvature is nonzero and positive,
thus defining elliptical geometry on the statistical manifold
of thermodynamic parameters. In this case the absolute
value of the local maximum of the curvature corresponds to
the strongest interaction in the quasisystem. For lower
temperatures (Fig. 7) the curvature becomes negative, thus
defining a hyperbolic geometry. Here, the strongest inter-
action is given by the absolute value of the local minimum
of the curvature. The value of the scalar curvature on the
level curve (Fig. 6), which separates the different geometric
regions, is zero, thus corresponding to a free, noninteract-
ing theory. The limit value of the Ricci scalar at the origin
(high temperatures) and at infinity (low temperatures) is
also zero, which again leads to a free theory in these cases.
In the one-parameter case the Fisher distance has been

derived, which is a measure of dissimilarity between two
probability distribution functions. We have shown graphi-
cally that in this case the Fisher distance increases monoto-
nously for increasing values of the upper limit of the
defining integral. This is interpreted by the theory of
fluctuations due to Ruppeiner [22] in the following manner:
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FIG. 10. The entropy increase rate _SAðtÞ for several values of
the dissipation parameter ε. One notes that for a short time the
entropy production rate reaches peak value, after which it
monotonously decreases with time. Also the peak entropy
production is bigger for strongly dissipative systems (large values
of ε).
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the probability of a fluctuation between two equilibrium
string states decreases with the increasing of the distance
between them.
We have also shown that the general expressions for the

entanglement entropy (2.18) and the Fisher information
matrix (2.19) work also for other quantum models. Some
particular examples were considered, namely, BCS-type
bosonic systems and the XY model in a magnetic field,
which is a generalization of the Ising model.
We also manage to derive explicit expressions for the

entanglement entropy in the nonequilibrium case for a
system with dissipation. We showed that the time-
dependent entropy increases with time, until it settles at
equilibrium (thermalization of the system). The equilibrium
value of the entanglement entropy coincides with the
thermal equilibrium entanglement entropy derived for a
time-independent system. This is also in agreement with
the second law of thermodynamics.
We also depicted one generic behavior of the entangle-

ment entropy, namely, after a transient time which depends
on the details of the initial state of the system, the
entanglement entropy goes through a phase of linear or
almost linear growth, SAðtÞ ∼ ΛAt, until it settles at the
saturation phase. It is also interesting to point out that this
kind of behavior of the entanglement entropy is observed in
the time evolution of various quantum systems that signify
quantum chaos [37–40], or in the study of thermalization in
some holographic systems [41–44].
The entropy increase rate _SAðtÞ has also been studied

for several values of the dissipation parameter ε. We have
shown that shortly after the initial moment the entangle-
ment entropy production rate reaches peak value, it
monotonously decreases with time. The local maximum
of _SAðtÞ confirms Zeigler’s principle of maximum entropy
production [50–52]. Furthermore, the EEPR is a positive
quantity which is just the statement of the second law of
thermodynamics.
Another interesting question is how to reconstruct a

parametric family of probability distributions correspond-
ing to the given Fisher metric and to define under what
conditions such reconstruction is possible. The Fisher
information metric can be straightforwardly calculated
once a probability distribution has been chosen. A set of

distributions fðx⃗; θ⃗Þ, parametrized by θ⃗, forms a statistical
manifold. The Riemannian metric on this manifold is the
Fisher information metric defined by the following
Lebesgue integral:

gμνðθ⃗Þ ¼
Z
X
Dfðx⃗; θ⃗Þ ∂ ln fðx⃗; θ⃗Þ∂θμ

∂ ln fðx⃗; θ⃗Þ
∂θν : ð6:1Þ

Here x⃗ ∈ X is a point from the sample space X. It can be
proved that the only Riemannian metric is the Fisher metric
for which the geometry is invariant under coordinate
transformations of θ⃗ and also under one-to-one trans-
formations of the random variable x⃗ [30,31]. The Fisher
metric is also a solution to the Einstein field equations,
which can be useful in finding the corresponding family of
probability distributions fðx⃗; θ⃗Þ. Unfortunately the equa-
tions are highly nonlinear and cumbersome. The defining
integral (6.1) only imposes nontrivial constraints on the
probability distribution.
Although this survey is instigated more or less by the

fact that superstring theory on pp-wave backgrounds is
exactly solvable, the TFD framework is powerful enough
to treat more complicated supergravity background solu-
tions. Extending the scope of the present research, the next
natural step is to initiate a more thorough investigation of
the geometric, thermodynamic, and information-theoretic
aspects of some certain holographic models. Such models,
for instance, are the N ¼ 1 and N ¼ 2� Pilch-Warner
solutions [53–55], Lunin-Maldacena background [56],
some recent non-Abelian T-dual solutions [57–62], and
their Penrose-Güven limit [63,64] or pp-wave limit
[62,65,66], the latter being easier to study with the
techniques used in this paper. Such investigations are
expected to shed light on the interplay between spacetime,
global, and local properties in holography.
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