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How the transverse M5-branes are described in the matrix-model formulations of M-theory has been a
long-standing problem. We consider this problem for M-theory on the maximally supersymmetric pp-wave
geometry, which admits transverse spherical M5-branes with zero light-cone energy. By using the
localization, we directly analyze the strong coupling region of the corresponding matrix theory called the
plane wave matrix model (PWMM). Under the assumption that the low-energy modes of the scalar fields in
PWMM become mutually commuting in the strong coupling region, we show that the eigenvalue density of
the SOð6Þ scalars in the low-energy region exactly agrees with the shape of the spherical M5-branes in the
decoupling limit. This result gives strong evidence that the transverse M5-branes are indeed contained in
the matrix theory and the theory realizes a second quantization of the M-theory.
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I. INTRODUCTION

A nonperturbative formulation of M-theory in the light-
cone frame is conjectured to be given by the matrix theory
[1]. The matrix theory is expected to achieve the second
quantization of M-theory, in which all fundamental objects
in M-theory are described in terms of the internal degrees of
freedom of matrices. It has been shown that there exist
matrix configurations corresponding to various objects in
M-theory such as supergravitons, M2-branes, and longi-
tudinal M5-branes [1–4].
On the other hand, the description of transverse

M5-branes has not been fully understood. The charge
of the transverse M5-branes is known to be absent in the
supersymmetry algebra of the matrix theory, and hence
it seems to be impossible to construct matrix con-
figurations for transverse M5-branes with nonvanishing
charges.
The absence of the M5-brane charge, however, does not

prohibit the presence of M5-branes with compact world
volume, which have zero net charge. It should be clarified
whether such compact transverse M5-branes are included
in the matrix theory.
The plane wave matrix model (PWMM) provides a

very nice arena in which to understand this problem.
The PWMM is the matrix theory for M-theory on the
maximally supersymmetric pp-wave background of the
11-dimensional supergravity [5]. On this background,
M-theory admits a stable spherical transverse M5-brane
with vanishing light-cone energy. In general, objects with
zero light-cone energy in M-theory are mapped to vacuum

states in the matrix theory. Thus, in finding the description
of the spherical M5-branes, the target is restricted to the
vacuum sector of the PWMM.
As we will see below, vacua of the PWMM are given by

a fuzzy sphere and are labeled by the partition of N, where
N is the matrix size of the PWMM. For each vacuum, the
corresponding object with vanishing light-cone energy in
M-theory was conjectured in Ref. [6]. In particular, vacua
corresponding to the spherical transverse M5-brane and its
multiple generalization were specified. This conjecture was
tested for the case of a single M5-brane by comparing the
Bogomol'nyi-Prasad-Sommerfield (BPS) protected mass
spectra of the PWMM and those of the M5-brane [6].
In this paper, we explicitly show that the spherical

M5-brane emerges in the strong coupling regime of the
PWMM as the eigenvalue density of the low-energy modes
of SOð6Þ scalar fields [7]. We apply the localization method
[8] to the PWMM and reduce the partition function to a
simpler matrix integral. By evaluating the matrix integral in
the strong coupling limit, we find that the low-energy
moduli of the SOð6Þ scalar matrices form a five-dimen-
sional spherical shell and the radius of the five-dimensional
sphere exactly agrees with that of the spherical M5-brane in
the M-theory on the pp-wave background.

II. SPHERICAL M5-BRANE ON THE
PP-WAVE BACKGROUND

We first review the spherical transverse M5-brane on the
pp-wave background. The maximally supersymmetric pp-
wave solution of 11-dimensional supergravity is given by
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ds2 ¼ gμνdxμdxν ¼ −2dxþdx− þ
X9
A¼1

dxAdxA

−
�
μ2

9

X3
i¼1

xixi þ μ2

36

X9
a¼4

xaxa
�
dxþdxþ;

F123þ ¼ μ; ð1Þ

where μ is a constant parameter corresponding to the flux
of the 3-form field. Throughout this paper, we use the
notation such that μ;ν¼þ;−;1;2;…;9; A; B ¼ 1; 2;…; 9;
i, j ¼ 1, 2, 3; and a; b ¼ 4; 5;…; 9.
We consider a single M5-brane in this background [6].

Let XμðσÞ be embedding functions of the M5-brane, where
σαðα ¼ 0; 1;…; 5Þ are world volume coordinates on
the M5-brane. The bosonic part of the M5-brane action
is given by

SM5 ¼ −TM5

Z
d6σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det hαβ

q
þ TM5

Z
C6; ð2Þ

where hαβ is the induced metric hαβ ¼ gμνðXÞ∂αXμ∂βXν

and C6 is the potential for the magnetic flux dC6 ¼ �F4.
TM5 is the M5-brane tension, which is written in terms of
the 11-dimensional Planck length lp as TM5 ¼ 1

ð2πÞ5l6p.

By applying the standard procedure of the gauge fixing
in the light-cone frame [9], we obtain the light-cone
Hamiltonian of the M5-brane as

HM5 ¼
Z

d5σ

�
V5

2pþ

�
P2
A þ T2

M5

5!
fXA1 ;…; XA5g2

�

þ pþ

2V5

�
μ2

9
ðXiÞ2 þ μ2

36
ðXaÞ2

�

−
μTM5

6!
ϵa1a2���a6X

a1fXa2 ;…; Xa6g
�
; ð3Þ

where V5 ¼ π3, pþ is the total light-cone momentum,
PA are the conjugate momenta of the transverse modes
XA, and the curly bracket is defined by ff1;…; f5g ¼
ϵa1���a5ð∂a1f1Þ � � � ð∂a5f5Þ.
By noticing that the potential term for Xa in (3) can be

rewritten as a perfect square, one can easily find the vacuum
configuration as

PA ¼ 0; Xi ¼ 0; Xa ¼ rM5xa; ð4Þ

where xa are the embedding functions of the unit 5-sphere
into R6 satisfying xaxa ¼ 1, fxa1 ;…; xa5g ¼ ϵa1a2���a6xa6 .
The constant rM5 is determined as

rM5 ¼
�

μpþ

6π3TM5

�
1=4

: ð5Þ

Thus, we find that the zero-energy configuration is a
spherical M5-brane with the radius given by (5).

III. PLANE WAVE MATRIX MODEL

The action of PWMM is obtained by the matrix
regularization of a single M2-brane action on the pp-wave
background [5], which is given by the 1þ 2-dimensional
analog of (2). The bosonic part of the action of the PWMM
is given by

S ¼ 1

g2

Z
dtTr

�
1

2

�
d
dt

YA

�
2

− 2Y2
i −

1

2
Y2
a

þ 1

4
½YA; YB�2 − iϵijkYi½Yj; Yk�

�
: ð6Þ

In obtaining this action, we first apply the matrix regulari-
zation, where the embedding functions XAðσÞ of the
M2-brane are mapped to N × N Hermitian matrices YA as

XAðσ0; σ1; σ2Þ → μpþ

12πNTM2

YAðtÞ: ð7Þ

Here, TM2 ¼ 1
ð2πÞ2l3p is the tension of the M2-brane. Poisson

brackets and integrals on the spatial world volume are
mapped to commutators and traces of matrices, respectively
[10]. The complicated factor in (7) is chosen so that the
action (6) takes the simple form. In Eq. (7), the time
coordinate t is related to σ0 by the same rescaling factor.
The coupling constant g2 in (6) is related to the original
parameters in the M-theory by

g2 ¼ T2
M2

2π

�
12πN
μpþ

�
3

: ð8Þ

Noticing that the potential for Yi in (6) forms a perfect
square, one can easily find the vacuum configuration of the
PWMM as

Yi ¼ 2Li; Ya ¼ 0: ð9Þ

Here, Li are N-dimensional representation matrices of the
SUð2Þ generators. The representation can be reducible, and
one can make an irreducible decomposition,

Li ¼ ⨁
Λ

s¼1

L½ns�
i ; ð10Þ

where L½n�
i stand for the generators in the n-dimensional

irreducible representation and
PΛ

s¼1 ns ¼ N. Thus, the
vacua are labeled by the partition of N, fnsjns ≥ nsþ1;P

sns ¼ Ng.
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IV. CONJECTURE ON THE SPHERICAL
M5-BRANE

The vacuum of the form (9) is the fuzzy sphere
configuration, and hence it has a clear interpretation as a
set of spherical M2-branes. Indeed, the M-theory on the pp-
wave background allows zero-energy spherical M2-branes
as well. The commutative limit of the fuzzy sphere (9),
where ns become large, can naturally be identified with
those M2-branes in M-theory.
On the other hand, the correspondence between (10) and

the spherical M5-brane can be understood by introducing a
dual way of looking at the Young tableau of the vacuum.
For the vacuum (10), let us consider the Young tableau
corresponding to the partition fnsg such that the length of
the sth column is given by ns. Let us denote by mk the
length of the kth row, where k runs from 1 to maxfnsg. It
was conjectured in Ref. [6] that when mk are large the
vacuum corresponds to multiple M5-branes, where the
number of M5-branes is given by N5 ≔ maxfnsg and each
M5-brane carries the light-cone momentum proportional
to mkðk ¼ 1; 2;…; N5Þ.
In what follows, we test this conjecture, focusing on the

vacua such that the partition is of the form

Li ¼ L½N5�
i ⊗ 1N2

: ð11Þ

N2 and N5 satisfy N2N5 ¼ N and correspond to the
number of M2- and M5-branes, respectively. To describe
the M5-brane, we consider the limit

N2 → ∞; N5∶ fixed: ð12Þ

With the above interpretation, this limit corresponds to N5

M5-branes, each of which carries the light-cone momentum
with an equal amount.
To isolate the degrees of freedom of the M5-branes in the

PWMM, the ’t Hooft coupling of the PWMM should also
be sent to infinity in taking the limit (12) [6]. This can be
understood as follows. We first rewrite the metric (1) so that
the compactified direction x− is orthogonal to the other
directions as

ds2 ¼ −
μ2r2

36
d~xþd~xþ þ 36

μ2r2
d~x−d~x− þ r2dΩ5

2 þ � � � ;

ð13Þ

where r2 ¼ ffiffiffiffiffiffiffiffiffi
xaxa

p
is the radius of the 5-sphere and

~xþ ¼ xþ − 36
μ2r2 x

−, ~x− ¼ x−. The physical compactification

radius is then given by ~R ∼ R=ðμrÞ, where R is the original
compactification radius of M-theory. Upon compactifica-
tion, transverse M5-branes in the M-theory become NS5-
branes in the type IIA superstring theory. The world volume
theory of the NS5-branes is known as the little string
theory, which has a characteristic scale given by the string

tension ∼l−2s . For the spherical NS5-brane with the
radius (5), the theory is controlled by the dimensionless
combination r2M5=l

2
s . We keep this ratio finite to obtain an

interacting theory on the NS5-branes, while we send rM5 to
infinity to make the bulk gravity decouple. By using (5) and
the well-known relation ls ∼ ðl3p= ~RÞ1=2, we find that the
decoupling limit of the NS5-brane is given by pþ → ∞
with R4pþ fixed [11]. The M5-brane in 11 dimensions is
recovered by further taking R4pþ to be large. Finally, by
combining this observation with (8) and (12), we find that
the decoupling limit of the M5-brane is written in terms of
the parameters of the PWMM as

N2 →∞; N5∶ fixed; λ→∞;
λ

N2

→ 0; ð14Þ

where λ ¼ g2N2 is the ’t Hooft coupling of the PWMM.
Thus, the decoupling limit of the M5-brane corresponds to
the strong coupling limit in the ’t Hooft limit.

V. SPHERICAL M5-BRANES FROM PWMM

Let us analyze the PWMM in the decoupling limit of the
M5-brane by using the localization method. We consider
the following scalar field:

ϕðtÞ ¼ Y3ðtÞ þ iðY8ðtÞ sinðtÞ þ Y9ðtÞ cosðtÞÞ: ð15Þ

This field preserves one-fourth of the whole supersymme-
tries in the PWMM, and any expectation values made of
only ϕ can be computed by the localization method [8]. The
computation is done in the Euclidean theory, which is
obtained by performing the Wick rotaton t → −iτ. Since
we are interested in the PWMM around a specific vacuum
(11), we impose the boundary conditions such that all the
fields take the vacuum configurations at τ → �∞. With this
boundary condition, the localization computation leads to
the equality [12–14]

�Y
I

TrfIðϕðtIÞÞ
�

¼
�Y

I

TrfIð2L3 þ iMÞ
�

MM
; ð16Þ

where fI are arbitrary smooth functions of ϕ, 2L3 is the
vacuum configuration for Y3, andM is an N × N Hermitian
matrix which commutes with all Laða ¼ 1; 2; 3Þ. For the
vacuum given by (11), M takes the form M ¼ 1N5

⊗ ~M,

where ~M is an N2 × N2 Hermitian matrix. The expectation
value h� � �i in the left-hand side of (16) is taken with respect
to the original partition function of the PWMM around
(11), while that in the right-hand side, h� � �iMM, is taken
with respect to the matrix integral,
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Z ¼
Z Y

i

dqie
−2N5

g2

P
i
q2i

YN5−1

J¼0

YN2−1

j¼1

YN2

i¼jþ1

×
fð2J þ 2Þ2 þ ðqi − qjÞ2gfð2JÞ2 þ ðqi − qjÞ2g

fð2J þ 1Þ2 þ ðqi − qjÞ2g2
:

ð17Þ

Here, qi ði ¼ 1; 2;…; N2Þ are the eigenvalues of ~M [15].
In the decoupling limit (14), the saddle-point approxi-

mation becomes exact in evaluating the matrix integral. We
first introduce the eigenvalue density for qi by ρðqÞ¼
1
N2

PN2

i¼1 δðq−qiÞ, which is normalized as
R
qm
−qm dqρðqÞ ¼ 1.

Here, we assume that ρðqÞ has a finite support ½−qm; qm�. In
the large-λ limit, the saddle-point equation of the partition
function (17) is reduced to

β ¼ πρðqÞ þ 2N5

λ
q2 −

Z
qm

−qm
dq0

2N5

ð2N5Þ2 þ ðq − q0Þ2 ρðq
0Þ;

ð18Þ

where β is the Lagrange multiplier for the normalization of
ρ and we used the fact that qm=N5 ≫ 1 in this limit. The
solution of (18) is given by

ρðqÞ ¼ 8
3
4

3πλ
1
4

�
1 −

q2

q2m

�3
2

; qm ¼ ð8λÞ14; β ¼ 8
1
2N5

λ
1
2

:

ð19Þ

By using (16) and the solution for the eigenvalue
density (19), we can compute any operator made of ϕ.
In particular, let us consider the resolvent of ϕ defined by
Trðz − ϕÞ−1. According to the result of the localization
(16), the expectation value of this operator is equal to that of
Trðz − 2L3 − iMÞ−1 in the matrix integral (17). Note that
the support of the eigenvalue density of M is much larger
than that of L3 in the decoupling limit. Thus, this shows
that, with the suitable normalization as in (7), the spectrum
of ϕ lies on the imaginary axis and is given by ρðqÞ in (19)
in the decoupling limit.
One might expect that the density ρðqÞ can be identified

with the eigenvalue density of one of the SOð6Þ scalars.
However, such identification would lead to a contradiction
with the result in Ref. [16]. Here, the typical scale of the
distribution of the scalar fields is shown to be of the order of
λ1=3 [17], which is much larger than the scale of ρðqÞ. This
large radius is formed by the noncommuting high-energy
modes, which are frozen and irrelevant in the low-energy
physics.
A consistent identification for ρðqÞ can be made by

considering the low-energy region in the discussion in
Ref. [16] as follows. Note that the correlators in (16) are
time independent [13] and hence are invariant under
taking the time averages of operators. This implies that

the high-energy modes are not contained in the result of the
localization (16) [for example, one can see that by taking
the average over a very short time interval with length 1=C,
where C is a constant much smaller than the typical scale
λ1=3 but much larger than the relevant energy scale for (19),
the above-mentioned noncommuting high-energy modes
are absent]. Hence, the spectrum of ϕ can be identified with
the spectrum of the low-energy field.
Note also that the typical length scale of the eigenvalue

distribution of ϕ is given by λ1=4 in the decoupling limit of
M5-branes. Taking the rescaling (7) into account, this
corresponds to the scale of the M5-brane radius (5).
Suppose that the theory on M5-branes has noncommuta-
tivity and also a typical length scale for the noncommu-
tativity. In the large-radius limit, this noncommutative
length scale must be much smaller than the radius of
M5-branes, since otherwise the M5-brane cannot be local-
ized in the radial direction due to the nonlocality caused by
the noncommutativity. Thus, the length scale of ϕ is much
larger than the scale of noncommutativity in the decoupling
limit. Therefore, as far as we consider the spectrum of ϕ in
the decoupling limit, the noncommutativity does not
matter, and we can consistently identify the spectrum of
ϕ with that of mutually commuting moduli matrices. [Note
that this identification is consistent with our result of the
localization (16) in which M and L3 are indeed mutually
commuting variables.] In particular, ρðqÞ can be identified
with the low-energy moduli distribution of one of the
SOð6Þ scalars.
With this identification as well as the SOð6Þ symmetry in

the PWMM, we then define the joint moduli distribution ~ρ
of all the SOð6Þ scalar fields. We define ~ρ as the SOð6Þ
symmetric uplift of ρ [18],

Z
d6xa ~ρðrÞx2n9 ¼

�
μpþ

12πNTM2

�
2n
Z

qm

−qm
dqρðqÞq2n; ð20Þ

for any n. Here, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

ax
2
a

p
, and ~ρ is normalized asR

d6xa ~ρðrÞ ¼ 1. Note that ~ρ depends only on r because of
the SOð6Þ symmetry. The first factor on the right-hand side
of (20) just reflects the rescaling (7), so that ~ρðrÞ can be
thought of as a density function in the original target space.
The unique solution to (20) is given by a spherical shell

in R6 as

~ρðrÞ ¼ 1

V5r50
δðr − r0Þ; r0 ¼

�
μpþ

6π3N5TM5

�
1=4

: ð21Þ

For N5 ¼ 1, the shape of the density function (21) exactly
agrees with the shape of the spherical M5-brane on the
pp-wave background. In particular, the radius r0 agrees
with (5). Thus, under the above identification, this shows
that the transverse M5-brane is formed by the eigenvalue
density of the low-energy modes of the SOð6Þ scalars.
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For N5 > 1, r0 in (21) is interpreted as the radius of the
multiple spherical M5-branes. The N5-dependence of r0
coincides with the conjectured form in Ref. [6] based on an
observation on perturbative expansions in the PWMM.

VI. SUMMARY

In this paper, we considered the matrix theoretical
description of the spherical transverse M5-branes with
vanishing light-cone energy in M-theory on the maximally
supersymmetric pp-wave background. Following the pro-
posal in Ref. [6], we considered the PWMM expanded
around the vacuum associated with the M5-branes. We
applied the localization to this theory and obtained an
eigenvalue integral. We then analyzed and solved the
eigenvalue integral in the decoupling limit of the
M5-branes, which corresponds to the strong coupling
limit of the PWMM. Finally, under the assumption that
the low-energy modes of the scalar fields become mutually

commuting in the strong coupling limit, we found that
the eigenvalue density of the low-energy modes of SOð6Þ
scalar fields forms a five-dimensional spherical shell and
the radius of the spherical shell exactly agrees with that
of the M5-brane in M-theory. Thus, we concluded that
the M5-brane in M-theory is formed by the eigenvalue
density of the SOð6Þ scalar fields in the low-energy
region. We also computed the radius of the multiple
M5-branes.
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