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Quantizing the Palatini action using a transverse traceless propagator
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We consider the first order form of the Einstein-Hilbert action and quantize it using the path
integral. Two gauge fixing conditions are imposed so that the graviton propagator is both traceless
and transverse. It is shown that these two gauge conditions result in two complex fermionic vector
ghost fields and one real bosonic vector ghost field. All Feynman diagrams to any order in perturbation
theory can be constructed from two real bosonic fields, two fermionic ghost fields and one real
bosonic ghost field that propagate. These five fields interact through just five three point vertices and

one four point vertex.
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I. INTRODUCTION

It has been shown with both Yang-Mills (YM) action and
the Einstein-Hilbert (EH) action for gravity, that by using
the first order form of the action, there is only a single
vertex arising from the classical action and this is inde-
pendent of momentum [1-5]. This simplifies the compu-
tation of loop diagrams, even though the number of
propagating fields is increased.

It has also been shown that imposing both the conditions
of tracelessness and transversality on the spin two propa-
gator associated with the EH action requires use of a
nonquadratic gauge fixing Lagrangian [6—10]. Such gauge
fixing results in the need to consider the contributions
of two complex fermionic ghosts and one real bosonic
ghost analogous to the usual complex “Faddeev-Popov”
ghosts.

In this paper we consider how the full first order
Einstein-Hilbert (1EH) action can be used in conjunction
with the transverse-traceless (TT) gauge. We will show that
the spin two propagator is TT only if the gauge fixing
parameter « is allowed to vanish. This limit for a results in a
well-defined set of Feynman rules with two propagating
bosonic fields, two complex fermionic ghost fields, one real
bosonic ghost, three three-point vertices for the bosonic
fields, and four ghost vertices.
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II. THE TT GAUGE FOR THE 1EH ACTION

The Einstein-Hilbert action in first order (Palatini) form

S= /ddx\/—_gg"”R,,,,(F) (2.1)
when written in terms of the variables
h = \/—gg"” (2.2a)
and
Glu =Tl =3 (OJT%, +8T5)  (220)
becomes

S = / d/xhrv (ij’ I ﬁGﬁ”Ggy - GﬁgG;’l). (2.3)
This “Palatini” form of the action facilitates a canonical
analysis of S [11]. It is equivalent to the second order form
of the EH action at both the classical and quantum levels
[5]. The diffeomorphism invariance of S in Eq. (2.1) leads
to the local gauge transformations

Sh = W 9,0¢ + W 0,00 — 0, (W) (2:42)
|
8Gyy = =05,0" + 5 (8,0, + 8,0,)0,6" = 6°0,Gy,
+ GO0 — (GhD, + GLD,)0 (2.4b)
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The term bilinear in 4 and G in Eq. (2.3) does not lead to a
well defined propagator, irrespective of the choice of gauge
fixing. However, upon making an expansion of #** about a
flat background

WY =g+ (x) (" = diag(+ - -—...)) (2.5
the term bilinear in ¢ and G arising from Eq. (2.3) does
have a well-defined propagator once an appropriate gauge
fixing is chosen. These bilinear terms are the first order
form of the action for a spin two field [11].

In order to have a TT propagator for the spin two field we
must consider a general gauge fixing Lagrangian that is not
quadratic [6]. If the classical Lagrange density appearing in
Eq. (2.3) is L(h*, G},), then this entails inserting into the
generating functional

Zju. I = /qu””DGﬁ,, expi

x / AL+ $.G) + ™ + IGL)
(2.6)

two factors of “1”
|

PHYSICAL REVIEW D 96, 125009 (2017)
L= [ DOSE @ +40) ~pi) de(Fd): (= 1.2)

(2.7)

where ¢ = (¢**,G},). The gauge transformations of
Eq. (2.4) are of the form

5.0 = A6, (2.8)

and the gauge fixing conditions are

Fip=0. (2.9)

Insertion of a third factor of “1” that is of the form

1 —i
1 :W/Dpﬂ)pz exp;/ddx(PTsz)det(N)

(2.10)

into Eq. (2.6) leads to

201 = [ Db det(r14) de() dex(/ma) [ D0,29,

X expi/ddx{ﬁ(dz) _é[E1<¢ + A0))]"N[F,(¢p + A0,)] 7 - (b}; G = U I5))-

(2.11)

Since the gauge transformation of Eq. (2.8) leaves L(¢), D¢p and det(F A) invariant [12,13], we can make the shift

$—>P—A0, +eb_)

in Eq. 2.11) (04 = (0, +6,)/2) leaving us with

zjj = / DGDO_ det(F,A) det(F,A) det(N)

X expi / ddx{aqb) —ém (¢ + A1 - )8_)["N[Fa(¢p — A(1 + €)8_)] +j .¢}.

(2.12)

(2.13)

A factor 1/(rma)/? | DO, has been absorbed into the normalization of Z. We now choose the gauge fixing to be

Fip = g0, + 0,y

and

N =n"/2.

(2.14a)

(2.14b)
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The gauge fixing contribution of Eq. (2.13) becomes

[F\( +AQ —)0_)] NI — A(1 +)0_)]
— (FN(Ex) + (€ = )] 074 50701+ OFINE: + (1= IV A
< (ATFINEAY /(€ = )| 4T ETY

04 SATFINEA)Y /(€ = )AT(=(1 + OFINE, + (1= ETN ) |
1

4l -1)

< (~(1 + FINE, + (1~ )FINEL) 2.15)

@' (=(1+ €)FINF, + (1 - €)F;NF,)A(ATFINF,A)" AT

In Eq. (2.15) we use the convention 0T = —0.]
Provided € # +1, the shift in 6_

0~ 0_~ S(ATFINF,A) /(€ = D)AT(~(1 + JFINF, + (1~ )FINF ) (2.16)

can be made to diagonalize Eq. (2.15) in @_ and ¢. In Refs. [6-8] ¢ = +1 and a shift in ¢p was used to diagonalize the gauge
fixing, but as such a shift is not a gauge transformation, £(¢) is not invariant under this transformation and new vertices
involving ¢ and @_ must be introduced. We take ¢ # £1 in order to be able to make a shift in @_ that eliminates mixed
propagators for these fields without introducing extra vertices.

Together Egs. (2.15) and (2.16) result in

2§ = [ DD der(F 1) dex(F3A) det()

xepi [ atx{ £p) =L (F0)N () 6 (ATFINF,A)9.

b
da(e? - 1)

Ca(e - 1)

+ @' (—(1 +e)FINF, + (1 — e)F;NF)A(ATFINFA)™!

X AT(=(1 + FINF, + (1 )FINF )b+ -¢}. (2.17)

The integral over @_ can now be evaluated in Eq. (2.17); it results in a contribution

det™!/2(F,A)det™'2(N)det™"2(F,A). (2.18)

We now treat the last term in Eq. (2.17) as an interaction term. Due to its structure, the two fields ¢ that occur explicitly [A

also is ¢ dependent on account of Eq. (2.4a)] are contracted with a propagator for ¢,, and a factor of X where

Xm/,/lﬁ = (_(1 +€)F;NF1 + (] _€)FF{NF2)

uv, o

[a—

=5 (91 = 92)(0, 0,135 = 1,,0,0,5)
g+
2

+e€ 919277/41/77/1682 + (a;taur]/w + ’7/41/8/186)
1
+ Z (8ﬂ8ﬂ7ua + avaﬂr]ﬂa + 8;!8(:7111& + 8vaa77ﬂﬂ) (219)

by Eq. (2.14).
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We know from Refs. [6-8] that as a — 0, the propagator
for the field ¢, that comes from L(¢p) — 1 (F¢p)"N(F»¢)

is transverse and traceless in the limit @ — 0 provided
g1 # g»- Only terms of order a are not transverse and
traceless. Thus, on account of the structure of Eq. (2.19),
the contribution of the vertex coming from the last term in
Eq. (2.17) vanishes as @ — 0, even though this vertex is
proportional to 1/a. There is on exception to this; when a
sequence of these vertices lies in a ring, then a finite

|
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contribution arises in the limit &« — 0. To see this in more
detail, write this last term in Eq. (2.17) as

(ATFINF,A)™!

Wéﬁ)ﬂﬁ

1 1
STV = 4T(XA) (2:20)

A ring in which a sequence of these vertices occurs results
in a contribution proportional to

1 1
Tr{ {— XTA(ATFTN&A)"ATX} D [—XTA(ATFTN&A)"ATX D
a a

a

1
{—XTé(ATFITNFzA)‘IATX

}, (2.21)

where D is the propagator of ¢p. From Eq. (2.19) it is apparent that since when @ — 0 D is transverse and traceless, then X D
is of order a; since we have a factor of 1/« for each factor of X D on account of these vertices occurring in a ring, we can let

1
lim—X D = XD,

a—>0a ~

(2.22)

Furthermore, a contribution of a closed loop of these vertices can be written as

det™!2[XTA(ATFINF,A)~'ATXD")]

= det'/?(F,A)det'/?(N)det'/?(F,A)det”"/>(ATXDXTA).

Together Egs. (2.18) and (2.23) reduce Eq. (2.17) to

(2.23)

2§ = timy [ Dpdex(F1) der() de(F2)der (ATXDOXTA)

cewpi [ ate{ @)=L (E@TNED) 174

(2.24)

provided g; # ¢,. The functional determinants in Eq. (2.24) can be exponentiated using “ghost” fields; det(F,A) (i = 1, 2)

using complex fermionic “Faddeev-Popov” ghosts ¢; [14-17], det(N) by a complex fermionic Nielsen-Kalosh ghost

[18,19] and det™'/2(ATXD®A) by a real bosonic ghost . By Eq. (2.4a), it follows that

(40);41/ = [8/47711/) + 81/’7;4;) - 8/)’7;41/ + (d’ygaa’/lup + ¢1/68¢777ﬂp + (9/)(]5”1,)]9‘0.

(2.25)

Using Eqs. (2.19) and (2.25) and the propagator for ¢b given in Ref. [6] we find that the contribution that is bilinear in the

ghost ¢ is given by

4p2 e + (9192(d = 2)* = (91 + 92)(d = 2))(e* = 1) = 1] p*p*}¢,

which becomes

ap*er e,

when

(2.26)

(2.27)
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1
e PR N ot (2.28)
Similarly, the vertex for ¢,,(p)—C,(q)—C¢4(r) comes from
SH@=2g1(e =17+ (d=2gal(e + 17 ~ g q"(pPat + rigt 24P
+e g q" 2rn ™ — pPn™ + rp™]
+ @72 g’ — pPan — P q ) gi(e + 1)° + gale — 1)* = 2g192(d = 1) (e +1)7]
+e@n2rq’ - pPe = @)+ (n o v) + (a < fig < 7). (2.29)

Finally, a vertex for ¢, ,, (P)—,,., (q)—C(r)—Ls(s) can
also be worked out. The vertices ¢—p—C—C and
¢p—C—¢ are both quartic in the external momenta.

The two complex “Faddeev-Popov” ghosts ¢; and ¢, and
the real bosonic ghost { reduce to a single complex
fermionic Faddeev-Popov ghost ¢ = ¢; + ic, if we deal
with a quadratic gauge fixing Lagrangian when F| = F,.

If we now define M%"**(h) by the equation

1 |- o
(o 646 = GG, ) = M 5 ()G G

1 VA g— o T 1 Vot o
£(¢> = _EMM lfwn’r(n)q&.a +§GﬁyMl,; o (n)Gn’r

! oy
5 (Gl + M 0 ()

X MY () (G + M7 5 55(n)¢Y) (2.32)
so that off diagonal propagators ¢ — G are eliminated.
However, two new momentum dependent vertices now
arise. They are ¢ —¢ — ¢ and ¢ — ¢ — G.

With the gauge fixing of Eq. (2.14) we find from Ref. [6]

d-1 2 that the propagator for the field Gﬁ,, is
2.30
230 P o= ln”’(n Mom + TnTlor = s Ty >
4 uT v HT YT d—2 pviTT
then the shift 5 + 535 m + 25+ 5250m,7)
Gl = Gl + M7, (0 (2.31) (2.332)
in L(¢) in Eq. (2.22) leads to The propagator for ¢, is [6]
|
1 —g2)> +2(g1 + 1)(g2 + 1)
BV o~~~ Ao = {77/0\7%0 + Mo Nor — 2(91 92) (il )(92 ) Mo
1
+ (a— 1)ﬁ kukanue + (p < v) + (X < 0)]
2
)2+ A+ V(g2 +1) —g2—g1 —2a 1
y ol o Dl 2 1) g2 = = 2o = Wkt + ko] (2.33b)
1 2 2
+ 5 [ (g1 +02)(d = 4) + (20192 + 1)(d = 3) = (g7 +65) (d — 1)]
1
+2d=2) (o - 92" - @*(alan + Dlaa + 1) = 1] gk |

where A = (d —1)(g; — ¢2)* +2(d —2)(g; + 1)(g, + 1)a. When a — 0 (g; # ¢,) this becomes the transverse-traceless

propagator.
For the real fields c¢; we have

== v _ pW
= D)

(d B z)gikuku
k?[(d —2)gi — 1]

ng

(2.33¢)

k.2
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The vertices are given by

b 45 a
pmm/ -~ [=pPq 0" = rPq" 0" — gip®q ™
Hs \\ 4 v (234&)
I T oB
— 9’0" + 290 4 (q,0) & (rB)] +p v
af
A
1 [ [( 80655557
_ - pTVIATo B sasy
s = 8{[( -1 00,050, tpeov|+ae |l +yed (2.34b)
Yo
+ ()\’a7/8)<—>(0-7776)
q pv
pAl) = iro L(5"’(552)9” —0Dl S tuev)fao Bl Fyed
B 1 d_ 1 nl"aprp =~ uapre (2.34¢)
T apB
+ (¢, 8) «— (r,p,v)
q ap
qxTo K T 0 o 1 K O 0
3 = D - D “ < 0
pv P ) {|:< afuoc = ~yévm d—1 afpo 'yﬁwr—’_:u’ V) + o ﬁ:| +7 } (234(1)
T8

+ six permutations of (p,u,v) (¢,a, ) (r,7,9)

If g = g, we cannot recover the TT propagator from Eq. (2.33b) even if a — 0 [6].

For the bosonic ghost {# we have a propagator and vertices that follow from Eqs. (2.27) and (2.28).

The arguments used in Refs. [12,13] can be used to show that when using a nonquadratic gauge fixing Lagrangian,
physical results are independent of the gauge choice.

Beginning with the insertion of Eq. (2.7) into Eq. (2.6), we have

Zjj] = /D¢/D01D02expi/d"x[£(¢) +j-P]
X 8(F (¢ + Ab,) —p,)5(F2(¢ + A0,) —p,)
x det(F1A) det(FLA). (2.35)

We can now insert into this equation a further factor of “1”

125009-6
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= / Das(Fy(h + Aw) — ) det(F3A)  (2.36)

and then by interchanging @ and @, and p; and q we see
that F, and F; are interchanged without altering Z|j],

demonstrating that Z is independent of the gauge fixing
condition.

PHYSICAL REVIEW D 96, 125009 (2017)

It would be interesting to derive a set of Becchi, Rouet,
Stora and Tyutin and Ward, Takahashi, Slavnov and Taylor
identities associated with the gauge transformation of
Eq. (2.4) and the gauge choices of Eq. (2.14).

ACKNOWLEDGMENTS

We would like to thank CNPq (Brazil) for a grant and
Roger Macleod for encouragement.

[1] S. Okubo and Y. Tosa, Phys. Rev. D 20, 462 (1979); 23,
1468(E) (1981).

[2] 1. 1. Buchbinder and I. 1. Shapiro, Yad. Fiz. 37, 248 (1983);
Acta Phys. Pol. B 16, 103 (1985).

[3] D.G.C. McKeon, Can. J. Phys. 72, 601 (1994).

[4] M. Yu. Kalmykov, P.I. Pronin, and K. V. Stepanyantz,
Classical Quantum Gravity 11, 2645 (1994).

[5] E. T. Brandt and D. G. C. McKeon, Phys. Rev. D 91, 105006
(2015); 93, 105037 (2016).

[6] F. T. Brandt, J. Frenkel, and D. G. C. McKeon, Phys. Rev. D
76, 105029 (2007).

[7] E. T. Brandt and D. G. C. McKeon, Phys. Rev. D 79, 087702
(2009).

[8] F.T. Brandt, J. Frenkel, D.G.C. McKeon, and J.B.
Siqueira, Phys. Rev. D 80, 025024 (2009).

[9] E.T. Brandt and D. McKeon, Phys. Rev. D 84, 087705

(2011).

[10] D.G. C. McKeon, Can. J. Phys. 93, 1164 (2015).

[11] D.G. C. McKeon, Int. J. Mod. Phys. A 25, 3453 (2010).

[12] L. D. Faddeev and A. A. Slavnov, Gauge Fields. Introduction
to Quantum Theory (Benjamin Cummings, New York, 1980).

[13] S. Weinberg, Quantum Theory of Fields II (Benjamin
Cummings, New York, 1995).

[14] R. P. Feynman, Acta Phys. Pol. 24, 697 (1963).

[15] B.S. DeWitt, Phys. Rev. 160, 1113 (1967); 162, 1195
(1967); 162, 1239 (1967).

[16] L. D. Faddeev and V. N. Popov, Phys. Lett. 25B, 29 (1967).

[17] S. Mandelstam, Phys. Rev. 175, 1580 (1968).

[18] N. K. Nielsen, Nucl. Phys. B140, 499 (1978).

[19] R. E. Kallosh, Nucl. Phys. B141, 141 (1978).

125009-7


https://doi.org/10.1103/PhysRevD.20.462
https://doi.org/10.1103/PhysRevD.23.1468
https://doi.org/10.1103/PhysRevD.23.1468
https://doi.org/10.1139/p94-077
https://doi.org/10.1088/0264-9381/11/11/007
https://doi.org/10.1103/PhysRevD.91.105006
https://doi.org/10.1103/PhysRevD.91.105006
https://doi.org/10.1103/PhysRevD.93.105037
https://doi.org/10.1103/PhysRevD.76.105029
https://doi.org/10.1103/PhysRevD.76.105029
https://doi.org/10.1103/PhysRevD.79.087702
https://doi.org/10.1103/PhysRevD.79.087702
https://doi.org/10.1103/PhysRevD.80.025024
https://doi.org/10.1103/PhysRevD.84.087705
https://doi.org/10.1103/PhysRevD.84.087705
https://doi.org/10.1139/cjp-2014-0637
https://doi.org/10.1142/S0217751X10050093
https://doi.org/10.1103/PhysRev.160.1113
https://doi.org/10.1103/PhysRev.162.1195
https://doi.org/10.1103/PhysRev.162.1195
https://doi.org/10.1103/PhysRev.162.1239
https://doi.org/10.1016/0370-2693(67)90067-6
https://doi.org/10.1103/PhysRev.175.1580
https://doi.org/10.1016/0550-3213(78)90009-3
https://doi.org/10.1016/0550-3213(78)90340-1

