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We construct the first analytic examples of topologically nontrivial solutions of the (3þ 1)-dimensional
Uð1Þ gauged Skyrme model within a finite box in (3þ 1)-dimensional flat space-time. There are two types
of gauged solitons. The first type corresponds to gauged Skyrmions living within a finite volume. The
second corresponds to gauged time crystals (smooth solutions of the Uð1Þ gauged Skyrme model whose
periodic time dependence is protected by a winding number). The notion of electromagnetic duality can be
extended for these two types of configurations in the sense that the electric and one of the magnetic
components can be interchanged. These analytic solutions show very explicitly the Callan-Witten
mechanism (according to which magnetic monopoles may “swallow” part of the topological charge of
the Skyrmion) since the electromagnetic field contributes directly to the conserved topological charge
of the gauged Skyrmions. As it happens in superconductors, the magnetic field is suppressed in the
core of the gauged Skyrmions. On the other hand, the electric field is strongly suppresed in the core of
gauged time crystals.
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I. INTRODUCTION

It is impossible to underestimate the relevance of
the Skyrme theory [1] in high energy physics (for
instance see [2–7]). Not only does such a model
correspond to the low energy QCD [8], but it also
discloses beautifully the very important role of topology
in theoretical physics. In particular, the solitons
(Skyrmions) of this theory (made of bosonic degrees
of freedom) describe baryons, with the baryon charge
being expressed as a topological invariant (see [8–15]
and references therein).
Such tools are, nowadays, very important also in many

other areas of physics such as semiconductors (see [16] and
references therein), Bose-Einstein condensates (see [17]
and references therein), magnetic materials (see [18] and
references therein), gravitational physics (see [19–26] and
references therein) and so on.
It is possible to consider the original Skyrme model as a

prototype of nonintegrable systems. Until very recently,
basically no analytic solution with nontrivial topological
properties was known. In particular, the lack of explicit
solutions with topological charge on flat space-times made
the analysis of the corresponding phase diagram very
difficult. Early important results (based on the original

spherical Skyrmion1) analyzing finite density effects as
well as the role of the isospin chemical potential can be
found in [27–31].
Due to the importance of the Skyrme model as a low

energy limit of QCD, it is a mandatory task to analyze the
effects of the coupling of a Uð1Þ gauge field with the
Skyrme theory. The so-called gauged Skyrme model is able
to describe the decay of nuclei due to the coupling with
weak interactions. Such a model also describes electric and
magnetic properties of baryons as well as allowing us to
study the decay of nuclei in the vicinity of a monopole
(classic references are [8,32–36]). The gauged Skyrme
model is expected to have very interesting applications in
nuclear and particle physics, as well as in astrophysics,
when the coupling of baryons with strong electromagnetic
fields cannot be neglected.
On the other hand, the field equations of the Uð1Þ

gauged Skyrme model are even more complicated than
the field equations of the original Skyrme model. There
are no analytic topologically nontrivial solutions. At a
first glance, one could guess that the task to construct
analytic and topologically nontrivial configurations
of the gauged Skyrme model is hopeless. This is quite
unfortunate as, until now, it has been impossible to
construct analytic solutions of the gauged Skyrme model
disclosing explicitly the Callan-Witten mechanism [32]
(according to which the baryon charge of the gauge*aviles@cecs.cl
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1It is worth emphasizing that both finite volume effects and
isospin chemical potential are expected to break spherical symmetry.
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Skyrme model can be “swallowed” by the magnetic
field). Another interesting issue is whether or not
Skyrmions tend to suppress the magnetic field within
their cores. More generally, very little is known about the
effects of the interactions between Uð1Þ gauge fields and
Skyrmions. Nice numerical studies of topological con-
figurations in the gauged Skyrme model can be found in
[37,38] and references therein.
In fact, recently, in ([39–46] and references therein) an

approach has been introduced in order to build a more
general hedgehog ansatz allowing a departure from spheri-
cal symmetry both in Skyrme and Yang-Mills theories (see
[47–49] and references therein). Such an approach gave rise
to the first (3þ 1)-dimensional analytic and topologically
nontrivial solutions of the Skyrme-Einstein system in [44]
as well as of the Skyrme model without spherical symmetry
living within a finite box in flat space-times in [50]. In the
last reference, it has been possible to derive also the critical
isospin chemical potential beyond which the Skyrmion
living in the box ceases to exist. Due to the similarity of the
minimal Uð1Þ gauge coupling with the introduction of the
isospin chemical potential, it is natural to wonder whether
the results of [40,44,50] can be extended to the Uð1Þ
gauged Skyrme model.
Remarkably, using the above approach, it is possible to

construct the first analytic and topologically nontrivial
solutions of the Uð1Þ gauged Skyrme model. There are
two types of gauged solitons. Firstly, gauged Skyrmions
living within a finite volume appear as the natural gener-
alization of the usual Skyrmions living within a finite
volume. Secondly, there are smooth solutions of the Uð1Þ
gauged Skyrme model whose periodic time dependence is
protected by a topological conservation law. These solitons
manifest very interesting similarities with superconductors
as well as with dual superconductors.
This paper is organized as follows: In Sec. II, the model

and notations are introduced. In Sec. III, a short review of
the properties of the (3þ 1)-dimensional Skyrme model
at finite volume both without and with isospin chemical
potential is presented (such a review is very useful to
understand the novel results in the following sections). In
Sec. IV, the gauged solitons are constructed and their
main physical properties are discussed. In Sec. V, it is
discussed how electromagnetic duality can be extended to
include these gauged solitons. In Sec. VI, a physically
interesting approximation is discussed in which the
Skyrme field is considered as fixed and the electromag-
netic field is slowly turned on. In Sec. VII, we draw some
concluding ideas.

II. THE Uð1Þ GAUGED SKYRME MODEL

We consider the Uð1Þ gauged Skyrme model in four
dimensions with global SUð2Þ isospin internal symmetry.
The action of the system is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
K
2

�
1

2
TrðRμRμÞ þ

λ

16
TrðGμνGμνÞ

�

−
1

4
FμνFμν

�
; ð1Þ

Rμ ¼U−1DμU; Gμν ¼ ½Rμ;Rν�; Dμ ¼∇μþAμ½t3; :�;
ð2Þ

U ∈ SUð2Þ; Rμ ¼ Rj
μtj; tj ¼ iσj; ð3Þ

where
ffiffiffiffiffiffi−gp

is the (square root of minus) the determinant of
the metric, Fμν ¼ ∂νAμ − ∂μAν is the electromagnetic field
strength,∇μ is the partial derivative, the positive parameters
K and λ are fixed experimentally and σj are the Pauli
matrices. In our conventions c ¼ ℏ ¼ μ0 ¼ 1, the space-
time signature is ð−;þ;þ;þÞ and Greek indices run over
space-time. The stress-energy tensor is

Tμν ¼ −
K
2
Tr

�
RμRν −

1

2
gμνRαRα

þ λ

4

�
gαβGμαGνβ −

gμν
4

GσρGσρ

��
þ T̄μν;

with

T̄μν ¼ FμαFν
α −

1

4
FαβFαβgμν ð4Þ

being the part emanating from the electromagnetic action.
The matter field equations are

Dμ

�
Rμ þ

λ

4
½Rν; Gμν�

�
¼ 0; ð5Þ

∇μFμν ¼ Jν; ð6Þ

where Jν is the variation of the Skyrme action [the first two
terms in Eq. (1)] with respect to Aν. A direct computation
shows that

Jμ ¼ K
2
Tr

�
ÔRμ þ λ

4
Ô½Rν; Gμν�

�
; ð7Þ

where

Ô ¼ U−1t3U − t3:

It is worth to note that when the gauge potential reduces to a
constant along the time-like direction, the field equations (5)
describe the Skyrme model at a finite isospin chemical
potential.
Hence, the term gauged Skyrmions [or, more generically,

gauged topological configurations of the Uð1Þ gauged
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Skyrme model in (3þ 1) dimensions] refers to smooth
regular solutions of the coupled system in Eqs. (5) and (6)
possessing a nonvanishing winding number [defined here
below in Eq. (12)]. The aim of the present work is to
construct the first (to the best of the authors’ knowledge)
analytic configurations of this type and to disclose their
intriguing physical properties.

A. Topological charge

If we adopt the standard parametrization of the SUð2Þ-
valued scalar UðxμÞ

U�1ðxμÞ¼Y0ðxμÞI�YiðxμÞti; ðY0Þ2þYiYi¼ 1; ð8Þ

where I is the 2 × 2 identity and

Y0 ¼ cosC; Yi ¼ ni · sinC; ð9Þ

n1¼ sinFcosG; n2¼ sinF sinG; n3 ¼ cosF: ð10Þ

In the original Skyrme model, without coupling with the
Uð1Þ gauge field, the Skyrme field possesses a nontrivial
conserved topological charge. Such a charge can be
expressed as an integral over a suitable three-dimensional
hypersurface Σ

W ¼ 1

24π2

Z
Σ
ϵijkTrðU−1∂iUÞðU−1∂jUÞðU−1∂kUÞ

¼ 1

24π2

Z
Σ
ρB: ð11Þ

A direct computation shows that the charge density is
ρB ¼ 12 sin2 C sinFdC ∧ dF ∧ dG. Obviously, in order
for the topological charge density to be nonvanishing, one
has to require dC ∧ dF ∧ dG ≠ 0.
The usual situation considered in the literature corre-

sponds to a spacelike Σ, in which case W is the baryon
charge. On the other hand, recently [50] it has been
proposed to also consider cases in which Σ is timelike
or lightlike. If W ≠ 0 (whether Σ is spacelike, timelike
or lightlike), then one cannot deform continuously the
corresponding ansatz into the trivial vacuum U ¼ I.
Consequently [50], when Σ is timelike and W ≠ 0, one
gets a Skyrmionic configuration whose time dependence is
topologically protected as it cannot decay in static sol-
utions. This kind of solitons has been named topologically
protected time crystals in [50].

1. Gauged topological charge

Obviously, when the coupling to a Uð1Þ gauge field is
considered, the expression in Eq. (11) cannot be correct
since it is not gauge invariant. The simplest solution to
replace in Eq. (11) all the derivatives with covariant
derivatives is wrong as well (since it leads to a gauge

invariant expression which is, however, not conserved).
The correct solution has been constructed in [32] (see also
the pedagogical analysis in [37]): the expression for the
gauge invariant and conserved topological charge reads

W ¼ 1

24π2

Z
Σ
ϵijkTrfðU−1∂iUÞðU−1∂jUÞðU−1∂kUÞ

− ∂i½3Ajt3ðU−1∂kU þ ∂kUU−1Þ�g: ð12Þ

Hence, the topological charge gets one extra contribution
which, at the end, is responsible for the Callan-Witten effect
[32]. The computations below show that such an effect
(according to which, roughly speaking, a magnetic monop-
ole may “swallow” part of the topological charge) is more
general and, in principle, strong magnetic fields may be
able to support it even without magnetic monopoles.

III. REVIEW OF THE SKYRMIONS
AT FINITE VOLUME

In [50] an extension of the method introduced in [44]
which also works in situations in which the Skyrme model
is analyzed within a finite volume in a flat metric has been
constructed. It is based on the following ansatz:

G¼ γþϕ

2
; tanF¼ tanH

cosA
; tanC¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2F

p

tanA
; ð13Þ

where

A ¼ γ − ϕ

2
; H ¼ Hðr; zÞ: ð14Þ

It can be verified directly that the topological density ρB
is nonvanishing. From the standard parametrization of
SUð2Þ [51] it follows that

0 ≤ γ ≤ 4π; 0 ≤ ϕ ≤ 2π; ð15Þ

while the boundary condition forH will be discussed below.

A. Sine-Gordon and Skyrmions

A quite efficient way to put the Skyrme model within a
flat region of finite volume is to introduce the following
metric:

ds2 ¼ −dz2 þ l2ðdr2 þ dγ2 þ dϕ2Þ ð16Þ

(here z is the time variable). The size of the volume of
this region is of order l3 (the parameter l has dimension
of length). On the other hand, r, γ and ϕ are angular
coordinates (so that they are adimensional); the domain of γ
and ϕ is given by (15), while for r we choose the finite
interval 0 ≤ r ≤ 2π.
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In the case in which Aμ ¼ 0, the gauged Skyrme model
reduces to the original Skyrme configuration and the
corresponding field equations (5) can be simplified (with-
out loosing the topological charge) using the ansatz in
Eqs. (9), (10), (13) and (14) as has been shown in [50].
Indeed, one gets just one scalar differential equation for the
profile H

□H −
λ

8l2ðλþ 2l2Þ sin ð4HÞ ¼ 0; ð17Þ

where □ is the two-dimensional d’Alambert operator.
When Aμ ¼ 0, the topological baryon charge B and

charge density ρB become, respectively,

B ¼ 1

24π2

Z
t¼const

ρB; ρB ¼ 3 sinð2HÞdHdγdϕ: ð18Þ

If we replace the topologically nontrivial ansatz in
Eqs. (9), (10), (13) and (14) in the original action (1),
we obtain an effective action given by

LðHÞ ¼ 16l2ðλþ 2l2Þ∇μH∇μH − λ cosð4HÞ; ð19Þ

which reproduces equation of motion (17). The boundary
conditions for the function H are

Hð0Þ ¼ 0; Hð2πÞ ¼ � π

2
; ð20Þ

which corresponds to B ¼ �1 and

Hð0Þ −Hð2πÞ ¼ 0; ð21Þ

which leads to B ¼ 0. The sector B ¼ 0 is relevant in the
construction of Skyrmion–anti-Skyrmion bound states.
Hence, the original (3þ 1)-dimensional Skyrme field

equations, energy density and effective action in a topo-
logically nontrivial sector (as ρB ≠ 0) can be reduced to the
corresponding quantities of the (1þ 1)-dimensional sine-
Gordon model (a well-known example of integrable mod-
els; see [52]). Following [50], this allows us to construct
Skyrmions as well as Skyrmion–anti-Skyrmion bound
states.2 The effective coupling sine-Gordon action and
coupling constants (following [53]) read

LðΦÞ ¼ −
1

2
∇μΦ∇μΦþ α

β2
ðcos ðβΦÞ − 1Þ; ð22Þ

α ¼ λ

2l2ðλþ 2l2Þ ; β ¼ 4lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2l2

p : ð23Þ

Therefore, the Skyrme model within the finite volume
defined above always satisfies the Coleman bound β2 < 8π.
It is worth emphasizing that Skyrme and Perring [54]

used sine-Gordon in (1þ 1)-dimensions as a “toy model”
for the (3þ 1)-dimensional Skyrme model. The analogies
between (a simplified version of) the Skyrme model and the
sine-Gordon model have also been emphasized in [55] and
references therein. The very surprising feature of the results
in [50] is that there is a nontrivial topological sector of the
full (3þ 1)-dimensional Skyrme model in which it is
exactly equivalent to the sine-Gordon model in (1þ 1)-
dimensions.3

1. An interesting function

As is well known, in the usual case the energy of the
spherical Skyrmion (found numerically by Skyrme him-
self) exceeds the bound in terms of the baryon charge by
23%. One can ask a similar question of the Skyrmions
living at finite volume constructed in [50]. Only in this
subsection, we will adopt the convention that K ¼ 2 and
λ ¼ 1 (see page 25 of [11]), according to which lengths are
measured in fm and energy in GeV. Let us consider the
function

Δ ¼ E − 12π2jBj ¼ E − 12π2; ð24Þ

where E is the energy of the (anti-)Skyrmion constructed in
[50] and B is its baryon charge. The nice pedagogical
review [57] clarifies that Eq. (24) corresponds to the right
hand side of the Skyrme Bogomol’nyi-Prasad-Sommerfield
(BPS) bound in terms of the baryon charge. The function Δ
(once K and λ have been fixed) is a function of the size of
the box l in which these configurations live. We have to
note that in the relevant equation in [50] there appears a

ffiffiffi
2

p
multiplying the term that is substracted from the energy,
which is a typo. One can see that for high densities (when l
is around 10 fm or less) the Skyrmions constructed exceed
the topological bound by ∼53% and when the size is large,
their energy increases very rapidly.

2. Inclusion of chemical potential
and infinite volume limit

As is well known, the presence of the isospin chemical
potential is encoded in the following covariant derivative
(see [28–31]):

Dμ ¼ ∇μ þ μ̄½t3; �δμ0: ð25Þ
2Indeed, a quite remarkable prediction of the Skyrme model at

finite volume (as discussed in [50]) is that the model possesses
around 8π=β2 − 1 Skyrmion–anti-Skyrmion bound states where
β is in Eq. (23). When the size of the box is large compared with
fm, one gets that the number of these bound states is between 5
and 6 (in good agreement with the number of baryon antibaryon
resonances appearing in particle physics).

3The semiclassical quantization in the present sector of the
Skyrme model can be analyzed following [13,14,56] since
principle of symmetric criticality applies (see [50]).
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This has a correspondence to a special case of a coupling
with an electromagnetic field with a potential of the form
Aμ ¼ μ̄δμ0. As has been shown in [50], for static configu-
rations HðrÞ the full Skyrme field equations with isospin
chemical potential reduce to the following ordinary differ-
ential equation (ODE) for

ðλþ2l2−8λl2μ̄2 sin2ðHðrÞÞÞH00ðrÞ−4λl2μ̄2 sinð2HðrÞÞH02

þλ

�
μ̄2l2−

1

8

�
sinð4HðrÞÞþ4μ̄2l4 sinð2HðrÞÞ¼ 0; ð26Þ

which can be further reduced to

YðHÞ ðH
0Þ2
2

þ VðHÞ ¼ E0; ð27Þ
where

YðHÞ ¼ λþ 2l2 − 8λl2μ̄2 sin2ðHÞ;

VðHÞ ¼ −
λ

4

�
μ̄2l2 −

1

8

�
cosð4HÞ − 2μ̄2l4 cosð2HÞ:

In order to determine the integration constant E0, one has to
require the relation here below,

Z
π=2

0

½YðHÞ�1=2
½E0 − VðHÞ�1=2 dH ¼

ffiffiffi
2

p
2π: ð28Þ

Consequently, the critical isospin chemical potential μ̄c can
be defined as the value of μ beyond which Eq. (28) cannot
be satisfied anymore,

ðμ̄cÞ2 ¼
λþ 2l2

8λl2
: ð29Þ

It is also easy to see that, before reaching the critical value
defined above, the presence of the chemical potential
suppresses the energy peak of the Skyrmion, making it
flatter. This comment will be useful to provide us with a
simple interpretation of the physical effects of the Uð1Þ
gauge coupling.
It is worth emphasizing that if one considers the infinite

volume limit of the above expression for the critical isospin
chemical potential, one gets a value which is consistent
with the value computed in the literature (see Refs. [30,31])
in the standard infinite volume case. We hope to come back
to the relations between our finite-volume results and the
infinite volume limit in a future publication.

B. Time crystals

In [58–60], Wilczek and Shapere made the following
deep observation: One can construct simple models in
which it is possible to break spontaneously time translation
symmetry.
Although it is well known that no-go theorems [61,62]

ruled out the original proposals, new research fields started
trying to realize in a concrete system the ideas presented in

[58–60] (a nice review is [63]). Many examples have been
found since then in condensed matter physics [64–69]. The
first example in nuclear and particles physics has been
found in [50] in the Skyrme model at finite volume.
Namely, the (3þ 1)-dimensional Skyrme model sup-

ports exact time-periodic configurations which cannot be
deformed continuously to the trivial vacuum as they
possess a nontrivial winding number. Consequently, these
time crystals are only allowed to decay into other time-
periodic configurations, hence the name topologically
protected time crystals.
Needless to say, there are many time-periodic solutions

of the Skyrme model which cannot be considered time
crystals.4

Following [50], a good choice to describe the finite box
is the line element

ds2 ¼ −dγ2 þ l2ðdz2 þ dr2 þ dϕ2Þ; ð30Þ
where γ plays the role of time. We have to make the
following modification to ansatz (13), (14):

A ¼ ωγ − ϕ

2
; G ¼ ωγ þ ϕ

2
; ð31Þ

where 0 ≤ ωγ ≤ 4π and the frequency ω is necessary to
keep A and G dimensionless. Note that, with the above
ansatz, the Skyrme configuration U is periodic in time.
The profile H depends on two spacelike coordinates. In

the case in which the coupling with the Uð1Þ gauge field is
neglected, the Skyrme configurationsU defined in Eqs. (9),
(10), (13), (14) and (31) are necessarily time-periodic. The
full Skyrme field equations (5) reduce in this case to

△H −
λω2

4ðl2ðλω2 − 4Þ − λÞ sinð4HÞ ¼ 0; ð32Þ

ω2 ≠ ω2
c ¼

λþ 4l2

l2λ
; ð33Þ

where △ is the two-dimensional Laplacian in z and r.
Equation (32) is the Euclidean sine-Gordon equation. Exact
solutions of Eq. (32)5 can easily be constructed taking, for
instance, H ¼ HðrÞ.
Time crystal configuration can be constructed explicitly

considering H ¼ HðrÞ. These configurations have a non-
trivial winding number. The topological density is given by

4As an example, consider the Skyrmion–anti-Skyrmion bound
state at finite volume which corresponds to breather (so that they
are time-periodic). In fact, they are not topologically protected
since, if one “pays” the corresponding binding energies, they
decay into the trivial vacuum.

5Previous literature on the analogies between sine-Gordon and
Skyrme models can be found in [70–72] and references therein.
As has been emphasized previously, sine-Gordon theory was
believed to be just a “toy model” for the (3þ 1)-dimensional
Skyrme model. In fact, we proved that in a nontrivial topological
sector they exactly coincide.
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ρB ¼ 3 sinð2HÞdH ∧ dðωγÞ ∧ dϕ, and thus the winding
number can be evaluated to

W ¼ ω

8π2

Z
z¼const

sinð2HÞdHdγdϕ ¼ �1: ð34Þ

Hence, there are smooth time-periodic regular configurations
of the Skyrme model living at finite volume possessing a
nontrivial winding number along a three-dimensional time-
like surface. Consequently, these configurations can only
decay into other configurations which are also time-periodic
(as for static configurations the above winding number
vanishes). Thus, the time periodicity of these configurations
is topologically protected by their winding number.
It is worth stressing the following fact: In the well-known

case of non-Abelian gauge theories admitting BPS monop-
oles, the ground state in the sector with unit non-Abelian
magnetic charge is the BPS monopole. Such a configuration
cannot be deformed continuously to the trivial vacuum: in
particular, it is not invariant under spatial rotations (unless
they are compensated by internal rotations). The famous
“spin from isospin effect” disclosed in the 1970s is a
consequence of this lack of invariance. In the topologically
protected time crystals constructed in [50], the ground state is
time-periodic, and consequently the theorems in [61,62]
(which assume that the ground state is static) do not apply, in
complete analogy with what happens for BPS monopoles.

1. The chemical potential

One can introduce the isospin chemical potential also for
these time crystals. The analysis in [50] shows that critical
chemical potential μ̄� can be determined by requiring

λþ l2½4 − λω2 þ 8λμ̄�ðω − 2μ̄�Þ� ≤ 0: ð35Þ

The latter condition implies

μ̄� ≤
ω

4
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2
λ þ 1

q
4l

or μ̄� ≥
ω

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2
λ þ 1

q
4l

; ð36Þ

which leads us to consider as critical values

μ̄�cr ¼
ω

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2
λ þ 1

q
4l

: ð37Þ

IV. GAUGED SKYRMIONS AND TIME CRYSTALS

In this section, we extend the Skyrmions and the time
crystals constructed above to the cases in which the
minimal coupling with the Uð1Þ gauge field cannot be
neglected: namely, we will construct analytic examples of
gauged Skyrmions as well as gauged time crystals. Then, in
the following sections we analyze the most interesting
physical properties of these gauged configurations.

For what follows we start by considering the following
parametrization of the SUð2Þ-valued scalar U:

U ¼ et3αet2βet3ρ; ð38Þ

where α, β and ρ are the Euler angles which in a single
covering of space take the values α ∈ ½0; 2π�, β ∈ ½0; π

2
�

and ρ ∈ ½0; π�.

A. Gauged Skyrmions

Like in the case without an electromagnetic field, we
start by considering metric (16), where the ordering of the
coordinates that we assume is

xμ ¼ ðz; r; γ;ϕÞ;

and where again we fix the dimension of the spatial box by
requiring

0 ≤ r ≤ 2π; 0 ≤ γ ≤ 4π; 0 ≤ ϕ ≤ 2π: ð39Þ

As before, l represents the size of the box while r, γ and ϕ
are adimensional angular coordinates and z represents the
time coordinate. It is possible to choose the ansatz for the
Skyrme configuration in the following manner:

α¼p
γ

2
; β¼HðrÞ; ρ¼ q

ϕ

2
; p; q∈N; ð40Þ

where p and q must be integer in order to cover SUð2Þ an
integer number of times. We restrict ourselves to the study
of a static profile H ¼ HðrÞ. In this context we assume an
electromagnetic potential of the form

Aμ ¼ ðb1ðrÞ; 0; b2ðrÞ; b3ðrÞÞ: ð41Þ

Under the previous setting, the ensuing Maxwell equa-
tions (6) become

b00I ðrÞ ¼
K
2
ðMIJbJðrÞ þ NIÞ; I; J ¼ 1; 2; 3 ð42Þ

where

M11 ¼ 4 sin2ðHÞ
�
2λH02 þ λðp2 þ q2Þ

2
cos2ðHÞ þ 2l2

�
;

ð43aÞ

M23 ¼ M32 ¼ −
pq
2
λ sin2ð2HÞ; ð43bÞ

M22 ¼ M11 þ
p
q
M23; ð43cÞ

M33 ¼ M11 þ
q
p
M23; ð43dÞ
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the rest of MIJ ’s zero and

N ¼
�
0;
p
4
M11 −

q2 − p2

4q
M23;−

q
4
M11 −

q2 − p2

4p
M23

�
:

ð44Þ

Quite remarkably, the hedgehog property is not
destroyed by the coupling to the above Uð1Þ gauge field
since the Skyrme equations lead to a single equation for the
profile HðrÞ (see the appendix for more details)

4

�
X1 sin2ðHÞ þ λðp2 þ q2Þ

2
þ 2l2

�
H00 þ 2X1 sinð2HÞH02

þ 4 sin2ðHÞX0
1H

0 þ
�
2λðpb2 þ qb3Þ

�
pb2 þ qb3

þ p2 − q2

2

�
−
λp2q2

2
−
p2 þ q2

2
X1

�

× sinð4HÞ − 2l2X1

λ
sinð2HÞ ¼ 0; ð45Þ

where

X1ðrÞ ¼ 4λð−2l2b21 þ b2ð2b2 þ pÞ þ b3ð2b3 − qÞÞ: ð46Þ

Still, at a first glance, it is a quite hopeless task to find
analytic solutions to the coupled system corresponding to
Eqs. (42) and (45).
In fact, a closer look at the simpler situation (described in

the previous section) in which one wants to describe the
effects of the isospin chemical potential offers a surprising
solution.
Firstly, one has to observe that the Skyrme field

equations (26) and (27) are integrable (as they are reduced
to quadratures).
Secondly, one can ask the following question: under

which circumstances does Eq. (45) for the Skyrme profile
interacting with the Uð1Þ gauge field become as similar as
possible to (the much easier) Eq. (26)?
The answer is that this happens in the special cases

where

X1 ¼ −
λðp2 þ q2Þ

2
¼ const; ð47Þ

and

b2ðrÞ ¼ −
q
p
b3ðrÞ −

p2 − q2

4p
: ð48Þ

Thus, when Eqs. (47) and (48) are satisfied, Eq. (45) for the
Skyrme profile interacting with the Uð1Þ gauge field
becomes integrable [as it can be reduced to a quadrature
using the same step to go from Eq. (26) to Eq. (27)].

However, we are not done yet since Eqs. (47) and (48)
could be incompatible with Maxwell equations Eq. (42). In
other words, it could happen that there is no solution of
Eq. (42) in which Eqs. (47) and (48) are satisfied.
In fact, a direct computation shows that if one places

Eqs. (47) and (48) into Maxwell equations Eq. (42), then
the full system reduces to the following single scalar
equation for b3ðrÞ:

b003 þ
K
4
ðq − 4b3Þ sin2ðHÞð4l2 þ 4λH02 þ λðp2 þ q2Þ

× cos2ðHÞÞ ¼ 0 ð49Þ

and the corresponding equation for the profile H reads

�
8l2

p2 þ q2
þ 2λ cos2ðHÞ

�
H00 þ sinð2HÞðl2 − λH02Þ ¼ 0:

ð50Þ

Interestingly enough, the above equation for the profile
interacting with a Uð1Þ gauge field is equivalent to the
Skyrme field equation with a chemical potential possessing

a value μ̄20 ¼ p2q2

4l2ðp2þq2Þ.
This is a quite remarkable result since the full coupled

Skyrme Maxwell system made by Eqs. (5) and (6) in a
topologically nontrivial sector (as it will be shown below)
in the finite box defined in Eq. (16) can be reduced
consistently to a solvable system of two ODEs [namely,
Eqs. (49) and (50)]. Hence, gauged Skyrmions can be
constructed explicitly. In the appendix there can be found
the details of the derivation of this result.
The recipe is to use the static ansatz in Eq. (40) for the

Skyrme configuration and the ansatz in Eqs. (41), (47) and
(48) for the Uð1Þ gauge field. Thus, one can determine the
Skyrme profileHðrÞ from Eq. (50) and then Eq. (49) for the
gauge potential b3ðrÞ becomes a simple linear nonhomo-
geneous equation in which there is an effective potential
which depends onHðrÞ. The other components of the gauge
potential are determined by solving the simple algebraic
conditions (47) and (48). The above system allows us to
clearly disclose many features of the Uð1Þ gauged Skyrme
model which are close to superconductivity.
In comparison with the chemical potential (26), where

p ¼ q ¼ 1, the corresponding value μ̄20 ¼ 1
8l2 is lower than

the upper critical bound set as μ̄2c ¼ 1
8l2 þ 1

4λ by (29). It can be
shown that the same thing happenswith the introduction ofp
and q since now—by following the same procedure—the
critical value ends up being μ̄2c ¼ 1

16l2 ðp2 þ q2Þ þ 1
4λ and

again μ̄0 ≤ μ̄c for λ > 0 and any value of p, q. Thus, the first
physical conclusion can be drawn. Since the equation for the
Skyrme profile coupled with theUð1Þ gauge field looks like
the Skyrme field equations with isospin chemical potential
and we know that a nonvanishing isospin chemical potential
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suppresses the Skyrmion (until it reaches the critical value
when the Skyrmion completely disappears),we can conclude
that the coupling with the Maxwell field suppresses (but
without destroying) the Skyrmion.
As a consistency check, if one considers bi → 0 ⇒

X1 → 0, then (45) reduces to

H00ðrÞ − λp2q2 sinð4HðrÞÞ
4ð4l2 þ λðp2 þ q2ÞÞ ¼ 0; ð51Þ

with a conserved quantity of

H02 þ λp2q2 cosð4HðrÞÞ
8ð4l2 þ λðp2 þ q2ÞÞ ¼ I0 ¼ const: ð52Þ

The general solution of (51) is given in terms of the Jacobi
amplitude function.

1. Topological charge

Here we calculate the temporal component of the baryon
density as it is modified by the Maxwell field following the
steps of [32]. Due to Aμ and the introduction of a covariant
derivative, there exists an additional term in the form of a
total divergence and the full density reads

B0¼
ϵ0ijk
24π2

½TrðRiRjRkÞ
−3∂iðAjTrðτ3ðU−1∂kUþ∂kUU−1ÞÞÞ�

¼−
pq
8π2

sinð2HÞH0 þ pq
4π2

∂rðcos2ðHÞðb2−b3ÞÞ: ð53Þ

The baryon number that we get with the help of B0 is

B ¼
Z

B0drdγdϕ

¼ −pq
Z

sinð2HÞdH

þ 2½cos2ðHðrÞÞðqb2ðrÞ − pb3ðrÞÞ�2π0 ; ð54Þ
and it leads to

B ¼ −pq − 2ðqb2ð0Þ − pb3ð0ÞÞ; ð55aÞ
B ¼ pqþ 2ðqb2ð2πÞ − pb3ð2πÞÞ; ð55bÞ

depending on the boundary values that we assume:
Hð2πÞ ¼ π=2, Hð0Þ ¼ 0 or Hð2πÞ ¼ 0, Hð0Þ ¼ π=2,
respectively. Clearly, B depends now on the size of the
system throughp andq, aswell as on the boundary values set
for b2 and b3 which are related to the magnetic components
of Fμν. The solutions we have found with p ¼ q ¼ 1 for b3
(and the corresponding values of b2) of Eq. (49) have
b2ð0Þ ¼ b3ð0Þ so that the topological charge reduces to
the usual integer value. However, it is clear that there are
many more general possibilities, and one could try to
construct configurations in which the topological charge is

“shared” by the Skyrmion and the electromagnetic field. We
hope to come back to this interesting issue in a future
publication.
It is worth noting that by combining tools developed in

the present paper with the techniques introduced in [45] one
can construct multilayered configurations of the gauged
Skyrme model such that each layer corresponds to the
present gauged-Skyrmion configuration with baryon
charge the product pq, while the number of layers is
related to the number of peaks of the (energy-density
associated with the) profileHðrÞ. This observation suggests
that the present formalism could be used to describe
analytically the regular patterns which are known to appear
in the Skyrme model when fine-density effects are taken
into account. We hope to come back to this very interesting
issue in a future publication.

B. Gauged time crystal

As in [50], a very efficient choice to describe the finite
box is the line element in Eq. (30) where γ plays the role of
time. The Skyrme configuration reads

α ¼ ϕ

2
; β ¼ HðrÞ; ρ ¼ ωγ

2
; ð56Þ

where ω again is a frequency so that ρ is dimensionless (as
it should be). Once more we assume an electromagnetic
potential of the form (41), but now we have to consider that
the coordinate ordering is

xμ ¼ ðγ; r; z;ϕÞ: ð57Þ
The Maxwell equations have the same form as (42). The
entries of matrix M read

M11 ¼ 2 sin2ðHðrÞÞð4λH02 þ λ cos2ðHÞ þ 4l2Þ; ð58aÞ

M13 ¼ −
λω

2
sin2ð2HÞ; ð58bÞ

M22 ¼ M11 þ
l2ω2 þ 1

ω
M13; ð58cÞ

M33 ¼ M11 þ l2ωM13; ð58dÞ
M31 ¼ −l2M13; ð58eÞ
while

N ¼
�
1

4
ðM13 − ωM11Þ; 0;

1

4

�ð2l2ω2 þ 1Þ
ω

M13 þM11

��
:

ð59Þ
Interestingly enough, also in this case the hedgehog

property is not lost. Namely, the full Skyrme field equations
for the time crystal ansatz defined above coupled to the
Uð1Þ gauge field in Eq. (41) [taking into account that the
coordinates are as in Eq. (57)] reduce to a single ODE for
the profile HðrÞ (for more details see the appendix),
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4ðl2ð4 − λω2Þ þ X2sin2ðHÞ þ λÞH00 þ 2X2 sinð2HÞH02

þ 4sin2ðHÞX0
2H

0 þ
�
1

4
ðl2ω2 − 1ÞX2 þ λð2l2ωb1

− 2b3 − 1Þð2l2ωb1 − 2b3 − l2ω2Þ
�
sinð4HÞ

−
2l2X2

λ
sinð2HÞ ¼ 0; ð60Þ

where

X2ðrÞ ¼ 8λðl2b1ðω − 2b1Þ þ 2b22 þ b3ð1þ 2b3ÞÞ: ð61Þ
The closeness with the situation in which one has

(instead of the dynamical Maxwell field) a nonvanishing
chemical potential is useful in this case as well. Indeed, by
requiring

X2 ¼ λðl2ω2 − 1Þ ¼ const: ð62Þ
and

b3ðrÞ ¼ l2ωb1ðrÞ −
l2ω2

4
−
1

4
; ð63Þ

not only does the equation for the time crystal profile
become solvable (as it is reduced to a quadrature) but also
the full Maxwell equations reduce consistently to a scalar
ODE for b1ðrÞ.
All in all, using the ansatz in Eqs. (41), (31), (62) and

(63) [in the line element in Eq. (30) with coordinates (57)]
the full coupled Skyrme Maxwell system made by Eqs. (5)
and (6) in a topologically nontrivial sector (as will be
shown below) can be reduced consistently to the following
solvable system of two coupled ODEs forHðrÞ and b1ðrÞ (a
detailed derivation of this result can be encountered in the
appendix),

b001 −
K
8
ðω − 4b1Þsin2ðHÞðl2ðλω2 − 8Þ − λ

þ λðl2ω2 − 1Þ cosð2HÞ − 8λH02Þ ¼ 0; ð64Þ
2ðλðl2ω2 − 1Þ cos2ðHÞ − 4l2ÞH00 þ ðl2ω2 − 1Þ

× sinð2HÞðl2 − λH02Þ ¼ 0: ð65Þ
Hence, also in this case the recipe is to determine the profile
HðrÞ (as the corresponding equation is solvable) and then
to replace the result into the equation for b1ðrÞ which
becomes a simple linear nonhomogeneous equation in
which there is an effective potential which depends on
HðrÞ. The other components of the gauge potential are
determined solving the simple algebraic conditions in
Eqs. (62) and (63). The above system allows to clearly
disclose many features of the gauged time crystals (and,
more in general, of the Uð1Þ gauged Skyrme model) which
are close to a “dual superconductivity.”

The first integral of (65) which allows us to reduce it to
quadratures is

ð4l2 þ λð1 − l2ω2Þ cos2ðHÞÞH02

−
1

2
l2ð1 − l2ω2Þ cosð2HÞ ¼ I0; ð66Þ

where I0 is determined by the boundary conditions. Once
HðrÞ is known, Eq. (64) can be analyzed with the standard
tools of the theory of linear ordinary differential equations.
As we did in the previous section for the Skyrmion, we

also calculate here for the time crystal, the nonvanishing
winding number that is produced by

B2¼
ϵ2ijk
24π2

½TrðRiRjRkÞ
−3∂iðAjTrðτ3ðU−1∂kUþ∂kUU−1ÞÞÞ�

¼ ω

8π2
sinð2HÞH0 þ 1

4π2
∂rðcos2ðHÞðb1−ωb3ÞÞ; ð67Þ

where the latin indices of the previous relation assume the
values 0,1,3 and the resulting integral is

W ¼
Z

B2drdðωγÞdϕ

¼ 1þ 2

�
cos2ðHðrÞÞ

�
b1ðrÞ
ω

− b3ðrÞ
��

2π

0

¼ 1 − 2

�
b1ð0Þ
ω

− b3ð0Þ
�
; ð68Þ

if we consider r ∈ ½0; 2π�, ωγ ∈ ½0; 4π�, ϕ ∈ ½0; 2π� and
Hð2πÞ ¼ π=2, Hð0Þ ¼ 0.
However, a “normal” topological charge is also present

here due to the correction from the electromagnetic
potential. By taking B0 as defined in (53) as an integral
over spatial slices, we obtain

B ¼
Z

B0drdzdϕ ¼ −2½cos2ðHðrÞÞb2ðrÞ�2π0 ¼ 2b2ð0Þ;

with the same boundary values used as in (68) with the
difference now that we have z in place of γ, for which we
consider z ∈ ½0; 2π�. The charge B is nonzero as long
as b2ð0Þ ≠ 0.

V. EXTENDED DUALITY

In this section we show that an extended electromagnetic
duality exists between the gauged Skyrmion and the
gauged time crystal constructed above. This means that,
in order to disclose such duality, one not only needs to
interchange electric and magnetic components in a suitable
way, but also to transform certain parameters of the gauged
solitons.
In other words, the question we want to answer in this

section is: how do the usual duality transformations of the
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electromagnetic field have to be generalized so as to act on
the Skyrmions and time crystals considered here in such a
way that the field equations Eqs. (49) and (50) (correspond-
ing to the gauged Skyrmion) are mapped into the field
equations Eqs. (64) and (65) (corresponding to the gauged
time crystal)?
Let us take6 the simplest nontrivial cases of gauged

configurations we examined above. For the Skyrmion we
have the profile equation (50), which for p ¼ q ¼ 1
reduces to

2ð2l2 þ λ cos2ðHÞÞH00 þ sinð2HÞðl2 − λH02Þ ¼ 0; ð69Þ

while the for the electromagnetic potential components we
get—from relations (47) and (48)—

b1 ¼ � 1 − 4b3
2

ffiffiffi
2

p
l
; b2 ¼ −b3; ð70Þ

with b3 being given by the differential equation

b003þ
K
2
ð1−4b3Þsin2ðHÞð2l2þ2λH02þλcos2ðHÞÞ¼ 0:

ð71Þ

Let us now consider the corresponding time crystal
equations, where—in order to avoid confusion—we denote
the potential as Aμ ¼ ða1ðrÞ; 0; a2ðrÞ; a3ðrÞÞ (namely, we
label differently the components). The profile equation is,
of course, given by (65) with the potential components
related as

a2 ¼ � 1

4
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2ω2

p
ðω − 4a1Þ;

a3 ¼ l2ωa1 −
l2ω2

4
−
1

4
; ð72Þ

FIG. 1. The solutions for Eqs. (49) and (50) correspond to the values: λ ¼ 0.04, l ¼ 0.47, K ¼ 1.0, p ¼ 1.0, and q ¼ 1.0. Solving for
b≡ −b2 ¼ b3. The above plots clearly show the suppression of the magnetic field (which is nonvanishing only in the γ and ϕ directions)
in the core of the Skyrmion.

6We will analyze here only how to extend electromagnetic
duality in the integrable sectors considered above. However, we
hope to come back to the intriguing issue of how to extend duality
to more general configurations of theUð1Þ gauged Skyrme model
in a future publication.
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and with a1 determined by the following equation:

a001 −
K
8
ðω − 4a1Þ sin2ðHÞðl2ðλω2 − 8Þ

− λþ λðl2ω2 − 1Þ cosð2HÞ − 8λH02Þ ¼ 0: ð73Þ
These are just equations (62), (63) and (64) with the new
labeling of the components.
An immediate observation is that profile equations (65)

and (69) become identical if we set ω ¼ − i
l. Then, it is an

easy task to see that (73) and (72) are mapped to (71) and
(70) under the linear transformation

a1 ¼
i
l
b2; a2 ¼ ilb1; a3 ¼ −b3: ð74Þ

The appearance of the imaginary units is not alarming,
since one also needs a suitable imaginary scaling in the
relevant coordinates to map one space-time metric to the
other. Notice that the imaginary part of the transformation
involves only the γ and z components of Aμ. Hence, the end
result after performing such a transformation is a real
electromagnetic tensor of the Skyrmion case.
We have to note, however, that transformation (74) is not

unique. There are other linear transformations that map the

two sets of equations to each other by mixing the electric
and magnetic components. However, (74) belongs to a
smaller class of transformations that associates the electric
component of the time crystal potential a1 with the purely
magnetic components of the Skyrmion, namely b2 and b3.
In particular, this property is respected by any linear
transformation of the form ai ¼ Lijbj as long as the
following set conditions hold:

L13¼L12−
i
l
; L21¼ il; L23¼L22;

L11¼L31¼ 0; L33¼L32−1:

Of course, the free parameters appearing in the above
transformation must be chosen each time in such a way so
that the end result is strictly real. In Table I, we can see how
the gauged Skyrmion and the time crystal (T.C.) compo-
nents of the electromagnetic field are mapped into each
other as well as H, A and G [in relations (13) and (14)] that
are involved in the generalized hedgehog ansatz. Thus, we
can see that the two configurations correspond to an
interchange between the electric and one of the magnetic
components that looks like a duality relation as seen in the

FIG. 2. The solutions for the Eqs. (64) and (65) correspond to the values: λ ¼ 0.04, l ¼ 0.47, ω ¼ 0.95, K ¼ 1.00, p ¼ 1.00 and
q ¼ 1.00. Solving for bTC ≡ b1. The above plots show clearly the suppression of the electric field in the core of the time crystal.
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plane formed by the x1 and x3 components. One can call
this transformation an extended or generalized duality.
It is a very surprising result that a sort of a duality

symmetry exists, whichmaps the gauged Skyrmion into the
gauged time crystal. Thus, if such extended duality trans-
formations discussed here would have been known in
advance, one could have found that time crystals exist just
by applying such transformations to the gauged Skyrmion.
Moreover, the plots in Fig. 1 and Fig. 2 clearly show that as
the magnetic field is suppressed in the gauged Skyrmion
core, the electric field is suppressed in the gauged time
crystal core. Thus, as gauged Skyrmions have some
features in common with superconductors, gauged time
crystals have some features in common with dual super-
conductors. We hope to come back to this very interesting
issue and to its possible relevance in Yang-Mills theories in
a future publication.

VI. EXTERNAL PERIODIC FIELDS

In this section, we will discuss an approximation which
can be of practical importance in many applications from
nuclear physics to astrophysics.
We have been able to construct analytically two different

types of topologically nontrivial configurations of the full
(3þ 1)-dimensional Uð1Þ gauged Skyrme model (which
are dual to each other in the electromagnetic sense). Thus, it
is natural to ask why we should analyze approximated
solutions when we have the exact ones.
The obvious reason is that, in this way, we will be able to

discuss electromagnetic fields more general than the ones
leading to the exact solutions discussed in the previous

sections. In particular, it is interesting to discuss the physical
effects of time-periodic electromagnetic fields (which do not
belong to the class leading to the above exact solutions).
Here we will consider the case in which the Skyrme

configuration is fixed and not affected by the electromagnetic
field (as in [50]) which is slowly turned on to get a tiny time-
periodic electromagnetic field in these Skyrme background
solutions. In this case, the Skyrme background plays the role
of an effective medium for the Maxwell equations. Very
interesting is the situation in which the background is a time
crystal, as the reaction of the time-dependent Maxwell
perturbation to the presence of the time crystal critically
depends on the ratio between the frequency of the perturba-
tion and the frequency of the time crystal.

A. Tiny time-periodic fields in Skyrme background

Let us consider the approximate situation where we
introduce a small enough electromagnetic field so as not to
consider its effect on the profile equations. Additionally, we
demand that it be periodic in time in one of its components,

Aμ ¼ ðb1ðrÞ; 0; b2ðrÞ cosðΩγÞ; b3ðrÞÞ: ð75Þ
The charge is conserved ∂μJμ ¼ 0, while the Maxwell
equations constitute a compatible system of differential
equations. The one that corresponds to b2 is

b002
b2

¼ K
2
½λð8H02 þ 2ð1 − l2ω2Þ cos2ðHÞÞ þ 8l2�

× sin2ðHÞ − l2Ω2; ð76Þ
and by considering the approximation b2 ≪ 1 we are led to
the single profile equation

H00 ¼ l2λω2 sinð4HÞ
4ðl2ðλω2 − 4Þ − λÞ ; ð77Þ

with the corresponding constant of motion

l2λω2 cosð4HÞ
16ðl2ðλω2 − 4Þ − λÞ þ

1

2
H02 ¼ I0: ð78Þ

With the help of the latter, we can express (76) as

b002
b2

¼ K
2
ðx2 − 1Þ

�
2l4ðλω2 − 4Þðλx2ω2 − 4Þ þ l2λðλð8x4 − 10x2 þ 1Þω2 þ 8Þ

l2ðλω2 − 4Þ − λ
− 2λð8I0 þ x2Þ

�
− l2Ω2; ð79Þ

where x ¼ cosðHÞ. From the form of (79) we can deduce that the nature of the solution strongly depends on the sign of the
right-hand side. If the sign is negative, one expects a periodic type of behavior. On the other hand, if it is positive, we rather
expect an exponential kind of behavior.
Clearly, the appearance of these two possibilities has to do with the value of the frequencyΩ of the field and its relation to

the rest of the parameters of the model.
In general, one can consider the function

fðxÞ ¼ ðx2 − 1Þ
�
2l4ðλω2 − 4Þðλx2ω2 − 4Þ þ l2λðλð8x4 − 10x2 þ 1Þω2 þ 8Þ

l2ðλω2 − 4Þ − λ
− 2λð8I0 þ x2Þ

�
; ð80Þ

TABLE I. In this table we demonstrate how the components of
the electromagnetic fields are interchanged under the mapping
(74), while the profile and Euler angles remain the same.

Gauged Skyrmion and gauged time crystal correspondence

E1 −B3

B2 −B2

B3 E1

ðH;A;GÞ ðH;A;GÞ
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which at most possesses five extrema. The value x ¼ 0 is
always a global extremum; for the rest of the values of x in
½−1; 1� one may have from none up to four extrema
depending on the parameters λ, l, ω and I0.
For example, when l ¼ ω ¼ λ ¼ 1, I0 ¼ −1=2, one gets

five extrema in the region x ∈ ½−1; 1�, of which x ¼ 0 is a
global maximum; on the other hand, when l ¼ ω ¼ λ ¼ 1,
I0 ¼ −1, one gets only one extremum, x ¼ 0, which now is
a minimum.
In any case, it is possible to arrange the external field

frequency Ω so that the right-hand side of (79) has a clearly
positive or negative sign. The critical value for this is
Ωcr ¼ K

2l2 fð0Þ, where

fð0Þ ¼ λð4l2 þ λÞ
l2ð4 − λω2Þ þ λ

þ 8l2 þ λð16I0 − 1Þ: ð81Þ

If fð0Þ is a maximum, we need to have Ω > Ωcr in order to
obtain a periodic type of behavior. Alternatively if fð0Þ is a
minimum, the condition Ω < Ωcr leads to an exponential
type behavior.
This simple analysis shows that the reaction of a time-

periodic Maxwell perturbation to the presence of a time
crystal strongly depends on the relations between the
frequency of the Maxwell perturbation and the parameters
characterizing the time crystal.

VII. CONCLUSIONS AND PERSPECTIVES

Using the generalized hedgehog approach, we have
constructed the first analytic and topologically nontrivial
solutions of the Uð1Þ gauged Skyrme model in (3þ 1)-
dimensional flat space-times at finite volume. There are two
types of gauged solitons. Firstly, gauged Skyrmions living
within a finite volume appear as the natural generalization
of the usual Skyrmions living within a finite volume. The
second type of gauged solitons corresponds to gauged time
crystals. These are smooth solutions of the Uð1Þ gauged
Skyrme model whose periodic time dependence is pro-
tected by a topological conservation law. Interestingly
enough, electromagnetic duality can be extended to include

these two types of solitons. Gauged Skyrmions manifest
very interesting similarities with superconductors, while
gauged time crystals do so with dual superconductors.
Due to the relations of the Skyrme model with the low

energy limit of QCD, the present results can be useful in
many situations in which the backreaction of baryons on a
Maxwell field (and vice versa) cannot be neglected (this is
especially true in plasma physics and astrophysics).
It is a very interesting issue (which we hope to come back

to in a future publication) to understand the relevance of the
present results inYang-Mills theory. From the technical point
of view, the tools which allowed the construction of the
present gauged configurations have been extended to the
Yang-Mills case aswell (see [47–49] and references therein).
Thus, it is natural to wonder whether time crystals can be
defined in the Yang-Mills case as well. The present analysis
suggests that this construction could shed some light on the
dual superconductor picture.
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APPENDIX: DERIVATION OF THE REDUCED
SYSTEM OF EQUATIONS (42), (45) AND (60)

In this section we demonstrate how equations (42), (45)
and (60) are obtained from the general field equations (5)
and (6) thanks to the generalized hedgehog ansatz [40–43],
which remarkably enough still holds when the Skyrme field
is coupled to Maxwell theory.
It can be easily seen that, under the choice (40) for the

Euler angles and (41) for the electromagnetic potential, the
three components of Rμ ¼ Ri

μti, i ¼ 1, 2, 3 in Eq. (3) read
[the order of the space-time coordinates in the gauged
Skyrmion case is xμ ¼ ðz; r; γ;ϕÞ]

R1
μ ¼

�
b1 cosðqϕÞ sinð2HÞ;− sinðqϕÞH0;

�
p
2
þ b2

�
cosðqϕÞ sinð2HÞ; b3 cosðqϕÞ sinð2HÞ

�
; ðA1aÞ

R2
μ ¼

�
b1 sinðqϕÞ sinð2HÞ; cosðqϕÞH0;

�
p
2
þ b2

�
sinðqϕÞ sinð2HÞ; b3 sinðqϕÞ sinð2HÞ

�
; ðA1bÞ

R3
μ ¼

�
−2b1 sin2ðHÞ; 0; p

2
cosð2HÞ − 2b2 sin2ðHÞ; q

2
− 2b3 sin2ðHÞ

�
: ðA1cÞ

With the help of the latter, the electromagnetic current vector can be computed through (7) to be

Jμ ¼ K
2l2

ðM1IbI þ N1; 0;M2IbJ þ N2;M3IbJ þ N3Þ; I ¼ 1; 2; 3 ðA2Þ
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with the expressions MIJ and NJ being given by (43) and
(44), respectively. It can be easily verified that ∇μJμ ¼ 0

holds as an identity for the previous expression.
By using (A1), in the three gauged Skyrme equations

Dμ

�
Ri
μti þ

λ

4
½Rν; Gμν�iti

�
≕ Eiti ¼ 0; ðA3Þ

the latter become

E1 ¼ −
sinðqϕÞ
16l4

AðrÞ ¼ 0; ðA4aÞ

E2 ¼ cosðqϕÞ
16l4

AðrÞ ¼ 0; ðA4bÞ
E3 ≡ 0; ðA4cÞ

where

AðrÞ¼ 4ð8λsin2ðHÞð−2l2b21þb2ð2b2þpÞ−b3ðq−2b3ÞÞ
þ4l2þλðp2þq2ÞÞH00−16λsinð2HÞð2l2b21
−b2ð2b2þpÞþb3ðq−2b3ÞÞðH0Þ2
−32λsin2ðHÞð4l2b1b01− ð4b2þpÞb02
þðq−4b3Þb03ÞH0 þλð4l2b21ðp2þq2Þ
− ð2qb2þpðq−2b3ÞÞ2Þsinð4HÞ
þ16l2ð2l2b21−b2ð2b2þpÞþb3ðq−2b3ÞÞsinð2HÞ:

ðA5Þ

We can see that the t3 component becomes identically zero,
while the other two are proportional after the substitution of
all the involved quantities. The remaining ϕ variable is
decoupled from r and the system is reduced to the single
equation, A ¼ 0, for HðrÞ, which we have expressed in a
more compact form in (45). At the same time, the current
Jμ, as given by (A2), is only r-dependent and leads to the
Maxwell set of equations (42).
The exact same thing can be repeated for the profile

equation of the gauged time crystal (60). This time we have
to consider (56) for the Euler angles, with the help of which
the three Rμ components are written as [remember that now
xμ ¼ ðγ; r; z;ϕÞ]

R1
μ ¼

�
b1 cosðωγÞ sinð2HÞ;− sinðωγÞH0;

b2 cosðωγÞ sinð2HÞ;
�
1

2
þ b3

�
cosðωγÞ sinð2HÞ

�
;

ðA6aÞ

R2
μ ¼

�
b1 sinðωγÞ sinð2HÞ; cosðωγÞH0;

b2 sinðωγÞ sinð2HÞ;
�
1

2
þ b3

�
sinðωγÞ sinð2HÞ

�
;

ðA6bÞ

R3
μ ¼

�
ω

2
− 2b1 sin2ðHÞ; 0;−2b2 sin2ðHÞ;

1

2
cosð2HÞ − 2b3 sin2ðHÞ

�
: ðA6cÞ

In the same manner the variables are decoupled in the three
profile equations (A3) and the system once more reduces to
the single equation. The t3 component is identically zero,
while the other two are proportional to each other leading to
a single equation for HðrÞ, which is given by (60). In
particular, we obtain

E1 ¼ −
sinðωγÞ
16l4

BðrÞ ¼ 0; ðA7aÞ

E2 ¼ cosðωγÞ
16l4

BðrÞ ¼ 0; ðA7bÞ

E3 ≡ 0; ðA7cÞ

with

B¼4ð8λsin2ðHÞðl2b1ðω−2b1Þþ2b22þb3ð1þ2b3ÞÞ
þ l2ð4−λω2ÞþλÞH00 þ16λsinð2HÞðl2b1ðω−2b1Þ
þ2b22þb3ð1þ2b3ÞÞðH0Þ2þ32λsin2ðHÞðl2ðω−4b1Þb01
þ4b2b02þð4b3þ1Þb03ÞH0 þλðl2ω2þ4l2b1ðb1−ωÞ
þ4b22ðl2ω2−1Þþ4l2ωb3ð−2b1þωb3þωÞÞsinð4HÞ
−16l2ðl2b1ðω−2b1Þþ2b22þ2b23þb3Þsinð2HÞ:

ðA8Þ

It is easy to verify that B ¼ 0 is equivalent to (60). Of
course, the same considerations are also true for the
Maxwell equations and relation (A2) still holds for the
current, where now the MIJ and NI are given by expres-
sions (58) and (59), respectively.
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