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The Atiyah-Patodi-Singer (APS) index theorem attracts attention for understanding physics on the
surface of materials in topological phases. The mathematical setup for this theorem is, however, not
directly related to the physical fermion system, as it imposes on the fermion fields a nonlocal
boundary condition known as the “APS boundary condition” by hand, which is unlikely to be realized
in the materials. In this work, we attempt to reformulate the APS index in a “physicist-friendly” way
for a simple setup with Uð1Þ or SUðNÞ gauge group on a flat four-dimensional Euclidean space. We
find that the same index as APS is obtained from the domain-wall fermion Dirac operator with a local
boundary condition, which is naturally given by the kink structure in the mass term. As the boundary
condition does not depend on the gauge fields, our new definition of the index is easy to compute with
the standard Fujikawa method.

DOI: 10.1103/PhysRevD.96.125004

I. INTRODUCTION

The Atiyah-Singer (AS) index theorem [1,2] on a four-
dimensional closed Euclidean manifold X with flat metric
is given by

nþ − n− ¼ 1

32π2

Z
X
d4xϵμνρσtrcFμνFρσ; ð1Þ

where n� denotes the number of� chiral zero modes of the
Dirac operator D, and Fμν is the field strength of SUðNÞ or
Uð1Þ gauge fields, for which the trace trc is taken. This
theorem is well known in physics [3] and can be easily
understood by the so-called Fujikawa method [4],

nþ − n− ¼ lim
t→0

Trγ5e−tD
†D

¼ lim
t→0

Z
d4xtrs;c

X
n

ϕ†
nðxÞγ5e−tD†DϕnðxÞ; ð2Þ

where the trace Tr is taken over space-time coordinates,
spinor and color indices, while trs;cmeans that for spinor and
color indices only. The exponential factor e−tD

†D regularizes
the trace (heat-kernel regularization). Taking the simple
plane waves for the complete set ϕnðxÞ, the right-hand side
of Eq. (1) is obtained as the leading contribution in the t
expansion, which survives the t → 0 limit. Note that the left-
hand side is unchanged even when t is finite, since every
nonzero D†D eigenmode makes a pair with its opposite
chirality, and does not contribute to the trace.
Next let us consider a manifold extending only in the

region x4 > 0, whose boundary at x4 ¼ 0 forms a flat three-
dimensional manifold Y. Atiyah, Patodi and Singer (APS)
[5] (see also [6,7]) showed that imposing a nontrivial
boundary condition (APS boundary condition) on the Dirac
operator, the index is given by

lim
t→0

Trγ5e−tD
†D ¼ 1

32π2

Z
x4>0

d4xϵμνρσtrcFμνFρσ −
ηðiD3DÞ

2
;

ð3Þ

where iD3D is the three-dimensional Dirac operator on
Y, and ηðHÞ is the so-called η-invariant which is the
(regularized) number of non-negative modes subtracted
by the number of negative modes of a Hermitian
operator H. An explicit definition is, for example, given
by the (generalized) ζ-function regularization as

ηðHÞ ¼ lim
s→0

X
λ≠0

λ

jλj1þs þ h; ð4Þ

where λ denotes the eigenvalue of H, and h is the
number of zero modes of H. Because of the regulari-
zation, ηðiD3DÞ is noninteger in general. In fact, it is
equivalent to the Chern-Simons (CS) term

ηðiD3DÞ
2

¼ CS
2π

mod integer; ð5Þ

CS≡ 1

4π

Z
Y
d3xtrc

�
ϵνρσ

�
Aν∂ρAσ þ 2i

3
AνAρAσ

��
; ð6Þ

which precisely cancels the surface contribution in the
first term of Eq. (3). Therefore, the total contribution is
guaranteed to be an integer.
The APS index theorem describes (a part of) the anomaly

descent equations [8–12]. The parity anomaly [13–15] or
Chern-Simons term in three dimensions appears as the
surface term of the axial Uð1Þ anomaly in the bulk four
dimensions. This (parity) anomaly inflow is important to
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understand the physics of topological insulators [16–25].1
The APS theorem indicates that massless edge modes,
having parity anomaly, must appear to cancel the parity
violation induced by the Uð1Þ anomaly of bulk fermions.
For this reason, the APS index theorem attracts attention for
understanding physics on the surface of materials in
topological phases.
However, the original setup by APS is not directly

related to the physics of topological insulators. APS
considered a Dirac operator for massless fermions with a
nonlocal boundary condition called the APS boundary
condition, which is introduced in a rather ad hoc way.
On the other hand, the fermion in a topological insulator is
massive in the bulk, and has a local boundary condition,
which keeps the SOð3Þ [or SOð2; 1Þ in Minkowski space-
time] rotational symmetry on the surface. This rotational
symmetry is essential for the edge-localized mode to act as
a relativistic Dirac fermion, but it is not compatible with the
helicity conservation, which is required by the APS
condition to keep the bulk fermion massless. In fact, as
we explicitly see below, the APS boundary condition
allows no edge-localized mode to exist in the system,
and the eta invariant appears in an entirely different way
from what we expect in the anomaly inflow between bulk
and edge modes. In this sense, the fact that the APS index
describes the anomaly inflow of topological materials is a
coincidence, since the original mathematical setup by APS
is nothing to do with the physical fermion system.
The goal of this work is to reformulate the APS index in

a physicist-friendly way, as was done by Fujikawa for the
AS index on closed manifolds. We propose a new index for
a fermion Dirac operator with a mass term having a kink
structure, which provides a good model to describe the
fermions in topological phases. We find that this index is
identical to the APS index, which explains why it appears
in the anomaly inflow for the topological insulators. Here,
we do not pursue a mathematically precise treatment but a
physically sensible way to do the computation. For this
purpose, we only consider a simple setup with the gauge
group of Uð1Þ or SUðNÞ and flat Euclidean metric both in
the four-dimensional bulk and at the three-dimensional
boundaries. Since the boundary condition does not depend
on the gauge fields, our new definition of the index is easy
to compute with the standard Fujikawa method.
The rest of this paper is organized as follows. We first

review the original APS index theorem in Sec. II, and
discuss the problems of the APS boundary condition when
we apply it to physics with boundary. Then we consider
what is required to realize a more physically natural setup
and show that the domain-wall fermion Dirac operator
[30–33] is the best candidate. We show that the same index

as APS is obtained through the domain-wall fermion Dirac
operator in Secs. III and IV. Finally we give a summary and
discussion in Sec. V.

II. MASSLESS FERMIONS WITH APS
BOUNDARY CONDITION

In this section we reproduce the results by Atiyah et al.
[5] for a much simpler setup than the original one. We
consider a massless Dirac operator in the fundamental
representation of SUðNÞ or Uð1Þ gauge group, taking the
A4 ¼ 0 gauge,

D ¼ γ4ð∂4 þ AÞ; ð7Þ

where A ¼ γ4
P

3
i¼1 γiDi with covariant derivative Di ¼∂i þ iAi being a Hermitian operator. We consider a four-

dimensional flat manifold X extending in the region x4 > 0,
with a three-dimensional boundary Y at x4 ¼ 0.
Then we require the fermion fields, on whichD operates,

to have a support only from negative eigenfunctions of A at
the boundary x4 ¼ 0, which is known as the APS boundary
condition. Namely, any positive eigenfunction component
must vanish,

Aþ jAj
2

ϕj
x4¼0

¼ 0: ð8Þ

We also consider the opposite case,

A − jAj
2

ϕj
x4¼0

¼ 0; ð9Þ

which we call the anti-APS condition. Since the spectrum
of A requires information of gauge fields in the entire Y, the
APS/anti-APS boundary conditions are nonlocal. With
these nontrivial boundary conditions, the anti-Hermiticity
of D is maintained since

ðϕ1; Dϕ2Þ≡
Z
X
d4xϕ†

1ðxÞDϕ2ðxÞ

¼
Z
Y
d3xϕ†

1ðxÞγ4ϕ2ðxÞj
x4¼0

− ðDϕ1;ϕ2Þ

¼ −ðDϕ1;ϕ2Þ; ð10Þ
where we have used the absence of the surface termZ

Y
d3xϕ†

1ðxÞγ4ϕ2ðxÞj
x4¼0

¼ 0; ð11Þ

which is a consequence of anticommutation relation
fγ4; Ag ¼ 0, so that γ4ϕ2 has a support only from eigen-
function of A with opposite sign of eigenvalues to that of
ϕ1. Therefore, their inner product vanishes.
The anti-Hermiticity of the Dirac operator is not enough

to formulate the index theorem since we need twice the

1This work is motivated by recent developments in regulari-
zation of chiral fermion using domain-wall fermion formalism,
where the gauge anomaly inflow is manifest [26–29].
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operations of D or D†D ¼ −D2 to regularize the trace of
γ5. Therefore, we impose the same APS/anti-APS boundary
condition also on Dϕ (then Dnϕ for any n automatically
satisfies the same boundary condition).
In this section, it is convenient to take the chiral

representation of the 4 × 4 gamma matrices or, equiva-
lently, tensor product of 2 × 2 matrices as

γi¼1;2;3¼
�

iσi
−iσi

�
¼−τ2⊗ σi;

γ4¼
�

12×2

12×2

�
¼ τ1⊗ 12×2;

γ5¼−γ1γ2γ3γ4¼
�
12×2

−12×2

�
¼ τ3 ⊗ 12×2; ð12Þ

where 12×2 denotes the 2 × 2 unit matrix, and σi and τi
denote the Pauli matrices. In this representation, A takes a
block-diagonal form

A ¼
�
iD3D

−iD3D

�
¼ τ3 ⊗ iD3D; ð13Þ

where D3D ¼ −σiDi denotes the three-dimensional mass-
less Dirac operator. Therefore, positive eigenfunctions of A
correspond to positive/negative eigenmodes of iD3D for
positive/negative chiral modes, respectively. Note that γ5
commutes with A. Therefore, these boundary conditions
preserve the helicity of the fermions.
There is a crucial difference between the APS and anti-

APS boundary conditions. For simplicity, let us take A as x4
independent. Then the anti-APS boundary condition allows
an edge-localized zero mode,

ϕ ¼ ϕλe−λx4 ; Dϕ ¼ 0; ð14Þ

where λ and ϕλ are a positive eigenvalue and eigenfunction
of A, respectively, while the APS boundary condition
does not allow such zero modes, since the sign flip of
the eigenvalue λ makes the eigenfunction in Eq. (14) un-
normalizable.

A. Computation on a x4-independent background

Following the original paper by APS [5], let us begin
with the case where A and therefore its gauge potentials Ai
(i ¼ 1, 2, 3) have no x4 dependence. We take X to be
infinitely large in the positive region of x4. Namely we
consider a flat background in the x4 > 0 region. In this setup,
F4i ¼ 0 so that the index theorem should be simply given as

lim
t→0

Trγ5e−tD
†D ¼ −

ηðiD3DÞ
2

: ð15Þ

The goal of this subsection is to reproduce this result in our
familiar language in physics.

When A has no x4 dependence, D†D can be written as

D†D ¼ −∂2
4 þ A2; ð16Þ

which commutes with both γ5 and A. It is, therefore,
convenient to consider the eigenvalue problem of D†D by
assuming the form of the solution as

ϕ�ðx4Þ ⊗ ϕ3D
λ ðx⃗Þ; ð−∂2

4 þ λ2Þϕ�ðx4Þ ¼ Λ2ϕ�ðx4Þ;
ð17Þ

where ϕ3D
λ ðx⃗Þ is the eigenfunction of iD3D with the

eigenvalue λ, and τ3ϕ�ðx4Þ ¼ �ϕ�ðx4Þ represent the �
chiral modes. The APS boundary condition is expressed by

ϕþðx4Þjx4¼0 ¼ 0; ð∂4 − λÞϕ−ðx4Þjx4¼0 ¼ 0; for λ ≥ 0;

ð18Þ

ϕ−ðx4Þjx4¼0 ¼ 0; ð∂4 þ λÞϕþðx4Þjx4¼0 ¼ 0; for λ < 0:

ð19Þ

Let us solve the equation Eq. (17) for the case λ ≥ 0. One
immediately obtains

ϕωþðx4Þ¼
uþffiffiffiffiffiffi
2π

p ðeiωx4 −e−iωx4Þ;

ϕω
−ðx4Þ¼

u−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðω2þλ2Þ

p ððiωþλÞeiωx4 þðiω−λÞe−iωx4Þ;

ð20Þ

where

uþ ¼
�
1

0

�
; u− ¼

�
0

1

�
; ð21Þ

and ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − λ2

p
. Both solutions satisfyZ

∞

0

dx4½ϕω0
� ðx4Þ�†ϕω

�ðx4Þ ¼ δðω − ω0Þ; ð22Þ

for positive ω and ω0. They also satisfy in a subspace where
iD3D takes the eigenvalue λ,

X
g¼�

Z
∞

0

dω½ϕω
g ðx4Þ�½ϕω

g ðx04Þ�† ¼ δðx4 − x04Þ12×2; ð23Þ

for x4, x04 > 0. Namely, ϕω
�ðx4Þ forms a complete set in the

x4 direction for each eigenmode of three-dimensional
operator iD3D. Note that Λ2 > λ2 is always required so
that no edge-localized zero mode is allowed to exist.
Next, let us compute the kernel of the operator γ5e−tD

†D

using the complete set ϕω
�ðx4Þ obtained above for each λ.

Theþþ component is a simple Gaussian integral leading to
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hx4;þjγ5e−tD†Djx04;þi

¼
Z

∞

0

dωe−tðω2þλ2Þ½ϕωþðx4Þ�þ½ϕωþðx04Þ��þ

¼ e−λ
2tffiffiffiffiffiffiffi

4πt
p ½e−

ðx4−x04Þ
2

4t − e−
ðx4þx0

4
Þ2

4t �; ð24Þ

where we have used the bracket notation ½ϕω
�ðx4Þ�g ¼

hx4; gjω;�i (note here that ½u��g has nonzero component
only for g ¼ �). The −− component needs a little trick to
evaluate,

hx4;−jγ5e−tD†Djx04;−i

¼
Z

∞

0

dωe−tðω2þλ2Þ½ϕω
−ðx4Þ�−½ϕω

−ðx04Þ��−

¼ e−λ
2tffiffiffiffiffiffiffi

4πt
p ½e−

ðx4−x04Þ
2

4t þ e−
ðx4þx0

4
Þ2

4t � þ Iðx4 þ x04Þ; ð25Þ

where

Iðx4 þ x04Þ

¼ e−tλ
2

Z
∞

0

dω
2π

e−tω
2

�
−2iλðω − iλÞ

ω2 þ λ2
eiωðx4þx0

4
Þ þ H:c:

�

¼ e−tλ
2

Z
∞

−∞

dω
2π

e−tω
2

�
−2iλ
ωþ iλ

eiωðx4þx0
4
Þ
�
: ð26Þ

Note here that the integrand has a pole at ω ¼ iλ. In fact,
this pole is the origin of the η invariant. Iðx4 þ x04Þ satisfies
a differential equation

� ∂
∂x4 − λ

�
Iðx4 þ x04Þ ¼

λffiffiffiffiffi
πt

p e−tλ
2

e−
ðx4þx0

4
Þ2

4t : ð27Þ

Here, the solution of Eq. (27) is given by

Iðx4 þ x04Þ ¼ −λeλðx4þx0
4
Þ
�
erfc

�
x4 þ x04
2

ffiffi
t

p þ λ
ffiffi
t

p �
þ c

�
;

ð28Þ

where the function erfc denotes the complementary error
function,

erfcðxÞ ¼ 2ffiffiffi
π

p
Z

∞

x
dξe−ξ

2

: ð29Þ

Since it takes erfcð−∞Þ ¼ 2, erfcð0Þ ¼ 1, and
erfcð∞Þ ¼ 0, the constant c must be 0 in order to satisfy
the t → 0 limit converging to Eq. (23).
For λ < 0, we obtain the same formula but with λ and ϕω

�
being replaced by −λ, and ϕω∓. Combining these results, the
kernel is evaluated as

X
g¼�

hx4; gjγ5e−tD†Djx04; gi ¼ signλ

�
−
e−λ

2tffiffiffiffiffi
πt

p e−
ðx4þx0

4
Þ2

4t þ jλjejλjðx4þx0
4
Þerfc

�
x4 þ x04
2

ffiffi
t

p þ jλj ffiffi
t

p ��
: ð30Þ

We can compute the index by taking a trace over x and λ,

Trγ5e−tD
†D ¼

X
λ

signλ
Z

dx4
∂
∂x4

�
1

2
e2jλjx4erfc

�
x4ffiffi
t

p þ jλj ffiffi
t

p ��Z
Y
d3yjϕ3D

λ ðy⃗Þj2 ¼ −
X
λ

signλ
2

erfcðjλj ffiffi
t

p Þ: ð31Þ

Taking the t ¼ 0 limit, we obtain the desired formula,

lim
t→0

Trγ5e−tD
†D ¼ −

X
λ

signλ
2

¼ −
ηðiD3DÞ

2
: ð32Þ

It is important to note again that the APS boundary
condition allows no edge-localized modes. The eta invari-
ant appears from a nontrivial ω integration over the bulk
modes, which looks very different from what we expect in
physics of topological insulators.

B. Anti-APS boundary condition

It is interesting to consider the anti-APS boundary
condition for the same setup, where A has no x4 depend-
ence. As mentioned before, the crucial difference from the

APS boundary condition is the existence of the edge-
localized modes. The condition

ϕ−ðx4Þjx4¼0¼ 0; ð∂4þλÞϕþðx4Þjx4¼0¼ 0; for λ≥ 0;

ð33Þ
ϕþðx4Þjx4¼0 ¼ 0; ð∂4−λÞϕ−ðx4Þjx4¼0¼ 0; for λ< 0;

ð34Þ
allows the edge-localized chiral zero modes,

ϕedge
þ ðx4Þ ¼ uþ

ffiffiffiffiffi
2λ

p
e−λx4 ; for λ ≥ 0; ð35Þ

ϕedge
− ðx4Þ ¼ u−

ffiffiffiffiffiffiffiffi
2jλj

p
eλx4 ; for λ < 0; ð36Þ

which satisfy D†Dϕedge
� ðx4Þ ¼ 0.
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As in the previous section, let us compute the case λ ≥ 0.
First, we note that the edge-localized zero mode is isolated
from the bulk nonzero modes,

ϕωþðx4Þ¼
uþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðω2þλ2Þ
p ððiω−λÞeiωx4 þðiωþλÞe−iωx4Þ;

ϕω
−ðx4Þ¼

u−ffiffiffiffiffiffi
2π

p ðeiωx4 −e−iωx4Þ; ð37Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − λ2

p
must be a real number. In fact, in

contrast to the − chirality sector, the completeness in the þ
chirality sector is not achieved by the bulk nonzero modes
ϕωþ alone,Z

∞

0

dω½ϕωþðx4Þ�þ½ϕωþðx04Þ��þ ¼ δðx4 − x04Þ − 2λe−λðx4þx0
4
Þ;

ð38Þ
whose second term is only canceled by adding
½ϕedge

þ ðx4Þ�þ½ϕedge
þ ðx04Þ��þ.

Next, let us compute the kernel of the operator γ5e−tD
†D,X

g¼�
hx4; gjγ5e−tD†Djx04; gi

¼
Z

∞

0

dωe−tðω2þλ2Þ½ϕωþðx4Þ�þ½ϕωþðx04Þ��þ
þ ½ϕedge

þ ðx4Þ�þ½ϕedge
þ ðx04Þ��þ

−
Z

∞

0

dωe−tðω2þλ2Þ½ϕω
−ðx4Þ�−½ϕω

−ðx04Þ��−: ð39Þ

The second and third terms are easily obtained,Z
∞

0

dωe−tðω2þλ2Þ½ϕω
−ðx4Þ�−½ϕω

−ðx04Þ��−

¼ e−λ
2tffiffiffiffiffiffiffi

4πt
p ½e−

ðx4−x04Þ
2

4t − e−
ðx4þx0

4
Þ2

4t �; ð40Þ

½ϕedge
þ ðx4Þ�þ½ϕedge

þ ðx04Þ��þ ¼ 2λe−λðx4þx0
4
Þ; ð41Þ

while the first term becomes

Z
∞

0

dωe−tðω2þλ2Þ½ϕωþðx4Þ�þ½ϕωþðx04Þ��þ

¼ e−λ
2tffiffiffiffiffiffiffi

4πt
p ½e−

ðx4−x04Þ
2

4t þ e−
ðx4þx0

4
Þ2

4t � þ I0ðx4 þ x04Þ; ð42Þ

where

I0ðx4 þ x04Þ ¼ −λe−λðx4þx0
4
Þerfc

�
−
x4 þ x04
2

ffiffi
t

p þ λ
ffiffi
t

p �
: ð43Þ

For λ < 0, we obtain the same formula but with λ and ϕω
�

being replaced by −λ and ϕω∓. Combining these results, we
obtain

X
g¼�

hx4; gjγ5e−tD†Djx04; gi

¼ signλ

�
e−λ

2tffiffiffiffiffi
πt

p e−
ðx4þx0

4
Þ2

4t

− jλje−jλjðx4þx0
4
Þ
�
erfc

�
−
x4 þ x04
2

ffiffi
t

p þ jλj ffiffi
t

p �
− 2

��
:

ð44Þ

Now we are ready to compute the index by taking trace
over x and λ,

Trγ5e−tD
†D¼

X
λ

signλ
Z

dx4

� ∂
∂x4

�
1

2
e−2jλjx4erfc

�
−
x4ffiffi
t

p þjλj ffiffi
t

p ��
þ2jλje−2jλjx4

�
¼−

X
λ

signλ
2

erfcðjλj ffiffi
t

p Þþ
X
λ

signλ:

ð45Þ

In the t→0 limit, the above formula apparently converges to

lim
t→0

Trγ5e−tD
†D ¼

X
λ

signλ
2

¼ ηðiD3DÞ
2

; ð46Þ

which has the opposite sign to the APS case in Eq. (32). We
should, however, note that the two terms in Eq. (45) have
different origins. The first term is a contribution from the
nonzero bulk modes, which is exactly the same as the APS
boundary case. But the second contribution is from the edge-

localized zero energy modes, which cannot be regularized
by the exponential factor e−tD

†D. For this reason, the anti-
APS boundary case is not appropriate for deriving the index
theorem, since the simple heat-kernel-type regularization is
not enough to regulate these edge-localized modes.

C. General gauge background

The APS index theorem applies only to a compact
manifold. Therefore, the infinite flat cylinder computation
in the previous sections is not complete, as clearly seen by
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the fact that ηðiD3DÞ=2 alone cannot be an integer in
general. On a compact manifold, the “flatness” in the x4
direction must be lost to make the system compactified;
otherwise, we need another boundary, which cancels (the
noninteger part of) the eta invariant. The original APS index
theorem [5] was completed by introducing “doubling” of a
nonflat compact manifold X to eliminate the boundary and
form a closed manifold, and then interpolating the solutions
of the flat cylinder and those on the doubledX. Here they still
assumed a flatness near the boundary, so that the flat cylinder
solutions well approximate the full ones.
Let us here review the derivation by Alvarez-Gaumé

et al. [15] who introduced two boundaries at t ¼ −∞ and
þ∞, so that the flat metric is allowed, and consider a
nontrivial x4 dependence of the gauge fields [here we take
Uð1Þ or SUðNÞ gauge group] between them to derive
the index.
First, the Dirac operator is expressed as

D ¼ τ1 ⊗ 12×2
∂
∂t − iτ2 ⊗ Ht; ð47Þ

where τi denote the Pauli matrices, andHt ¼ iD3Dðx4 ¼ tÞ.
In the adiabatic approximation, where Ht changes slowly
with t, the zero-mode solution of D is given by

Dψ ¼ 0; ψ ¼ fðtÞ ⊗ ψ t; ð48Þ

Htψ t ¼ λðtÞψ t; τ1ð∂t þ τ3λðtÞÞfðtÞ ¼ 0; ð49Þ

fðtÞ ¼ exp

�
−
Z

t
dt0τ3λðt0Þ

�
χ; ð50Þ

where χ is a constant. For the positive chiral mode (here
τ3 ¼ þ1) fðtÞ is normalizable only when λð−∞Þ < 0 and
λðþ∞Þ > 0, while the negative chiral mode has opposite
signs of the eigenvalue. In either case, λðtÞ changes its sign
somewhere in the t history. Namely, the APS index counts
the zero crossings of the eigenvalues of Ht, which can be
expressed by

I ¼ 1

2
½ηðHt¼þ∞Þ−ηðHt¼−∞Þ�−

1

2

Z
∞

−∞
dt0

d
dt0

ηðHt0 Þ; ð51Þ

where the second term is necessary to cancel the noninteger
part of the eta invariants.
The remaining task is to show that the second term is

equivalent to the four-dimensional integral of the conven-
tional instanton density. To this end, we first express the eta
invariant in integral form

ηðHtÞ ¼ lim
s→0

2

Γðsþ1
2
Þ
Z

∞

0

duusTrHte−u
2H2

t ; ð52Þ

and compute its t derivative,

−
1

2

d
dt

ηðHtÞ ¼ −lim
s→0

1

Γðsþ1
2
Þ
Z

∞

0

duus
∂
∂uTr

�
u
∂Ht

∂t e−u
2H2

t

�

¼ 1ffiffiffi
π

p lim
u→0

Tr

�
u
∂Ht

∂t e−u
2H2

t

�
; ð53Þ

wherewe have taken the s → 0 limit and the trace Tr is taken
over two-component spinor, color, and three-dimensional
coordinates. Then one can relate this quantity to the three-
dimensional integral of the instanton density at x4 ¼ t byZ

d3xϵμνρσtrcFμνFρσðx4 ¼ tÞ

¼ lim
u→0

Z
d3x trc;sγ5eu

2D2

¼ lim
u→0

Tr trs0τ3eu
2ð∂2t−H2

tþτ3
∂Ht∂t Þ

¼ lim
u→0

Z
∞

−∞

dω
2π

Tr trs0τ3eu
2ððiωþ∂tÞ2−H2

tþτ3
∂Ht∂t Þ

¼ lim
u→0

Z
∞

−∞

dω
2π

e−ω
2u2Tr trs0τ3

�
u2τ3

∂Ht

∂t
�
e−u

2H2
t

¼ 1ffiffiffi
π

p lim
u→0

Tr

�
u
∂Ht

∂t e−u
2H2

t

�
; ð54Þ

which agrees with Eq. (53). Identifying t ¼ x4 and
Ht ¼ −iD3Dðx4 ¼ tÞ, we obtain

I ¼
Z

d4xϵμνρσtrcFμνFρσ

−
1

2
½ηðiD3Dð−∞ÞÞ − ηðiD3Dðþ∞ÞÞ�: ð55Þ

It is important to note that the above result is obtained by
the standard Fujikawa method: inserting the conventional
plane wave solutions in the x4 direction. This is valid only
when t dependence is negligible at the boundaries t ¼ �∞.
Namely, this computation is done in a setup where the role
of edge modes is not relevant. The interactions between
edge and bulk modes are turned off. For the more general x4
dependent gauge background, the standard Fujikawa
method is difficult since the APS boundary condition
requires nonperturbative information of the eigenfunctions
of D3D. As is discussed later, the APS boundary condition
has more fundamental problems in application to the
physical fermion system with boundaries.

D. Difference between the η invariant
and the Chern-Simons term

So far, the η invariant has been defined by the eigen-
values of the Dirac operator on the surface, and it has not
been shown how it is perturbatively expressed. It is known
that ηðiD3DÞ formally appears in the phase of a “massive”
Dirac fermion determinant,
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det
D3D −M
D3D þ Λ

∝ exp ½iπηðiD3DÞ�; ð56Þ

where we have introduced the Pauli-Villars regulator,
assuming both M and Λ are positive (and large), and it
is perturbatively equivalent to

expðiCSÞ; ð57Þ

which can be obtained from an integral

CS ¼
Z

u

0

du
d
du

Im ln det
D3DðuÞ −M
D3DðuÞ þ Λ

; ð58Þ

up to 1=M and 1=Λ corrections. Here D3DðuÞ is the Dirac
operator with uAμ, which denotes a linear one-parameter
deformation of the original gauge field.
In the above massive fermion determinant, it is no

problem to identify the Chern-Simons action CS with
the η invariant. However, in the index theorem, they are
different, since CS is not gauge invariant under a large
gauge transformation with a winding number n,

CS → CSþ 2πn: ð59Þ

Since ηðiD3DÞ=2 should be obtained in a gauge invariant
regularization, it differs from CS=2π by an integer, which is
not gauge invariant.
In Appendix A, we exactly compute the η invariant in

one-dimensional QED with flat background field and
obtain

η

2
¼ CS

2π
−
�
CS
2π

�
ð60Þ

(up to an irrelevant constant) where [f] denotes the Gauss
symbol or the greatest integer less than or equal to f.
Although we have not found any proof in the literature, we
assume that this expression is generally valid in the
following discussions,2 even for the three-dimensional case
with non-Abelian gauge fields. In fact, Eq. (60) has good
properties listed below. It is (1) manifestly gauge invariant,
(2) reflects nonlocality of the APS boundary condition as
the Gauss symbol is highly nonlocal, (3) shows that the
total APS index is no longer a topological invariant, since
η=2 can discretely jump by an integer,3 and (4) shows
noncompatibility of the gauge invariance and the T (or
parity) invariance of the massless Dirac fermion determi-
nant. To confirm the last property, let us consider the
massless fermion determinant with Pauli-Villars regulator,

det
D3D

D3D þ Λ
∝ exp ½iπηðiD3DÞ=2�; ð61Þ

which is gauge invariant but breaks the T invariance. To
recover the T invariance, the only possible local counter-
term we can add is expð−iCS=2Þ; then the remaining phase
expð−iπ½CS=2π�Þ breaks the gauge invariance [13], by the
same mechanism as Witten’s global anomaly [34].

E. APS boundary condition unlikely to be
realized in physics

The APS boundary condition commutes with γ5, and,
therefore, preserves helicity.Namely this boundary condition
keeps the fermion, on which the Dirac operator operates,
massless [35]. This looks like a reasonable choice but when
we consider reflection of the fermions at the boundary, we
find that the APS boundary condition is very unnatural.4

Consider a flat surface of some material at x4 ¼ 0.
Unless the boundary fermion is somehow polarized, for
example, by an anisotropic crystal structure, it is natural to
assume that the system is rotationally symmetric along the
x4 axis perpendicular to the surface. This SOð3Þ [or
SOð2; 1Þ in Minkowski space-time] rotational symmetry
is essential for the edge-localized mode of topological
insulators to act as a relativistic Dirac fermion. However,
this SOð3Þ symmetry is not compatible with the helicity
conservation, which is respected by the APS boundary
condition, because it requires a spin flip whenever fermions
are reflected at the boundary [36].
In mathematics, we can impose any boundary condition

on the first order differential equations. However, this is not
true in quantum field theory, where we need to regularize
them by subtraction equations and take the continuum
limit. In the lattice gauge theory, it is known that any local
boundary condition except for the Dirichlet boundary
requires a fine-tuning or some additional symmetry on
the boundary to protect it in the continuum limit. As the
quantum field theory is formulated to somehow neglect
short-range structure, this requirement of fine-tuning
should be universal for any regularization. Since the
APS boundary condition is nonlocal, this argument cannot
be directly applied, but it is unlikely that the nonlocality
helps to make the boundary condition stable. Therefore, we
conclude that the APS boundary condition is unlikely to be
realized in the physical fermion system with boundary.
Treating a manifold with boundary as a closed system is

also unnatural in physics, as any boundary surface of
materials has “outside” of it. The surface of the topological
insulator is nontrivial because its outside is not empty but
surrounded by a normal insulator.

2Our argument cannot exclude a possibility of an additional
gauge invariant integer, which is nonlocally given.

3This jump is induced by the level crossing of the surface Dirac
operator.

4One may consider a possibility that fermions are never
reflected, which is another unnatural setup, where energy that
the fermion carries is accumulated at the boundary and never goes
back to the bulk.
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The above discussion suggests to us a need to consider a
more natural setup in physics. We should have a domain
wall, like the one between topological and normal insula-
tors, rather than a simple boundary without an outside. It is
more natural to have a massive fermion since it is not the
helicity but rotational symmetry that should be preserved. It
is better to have a boundary condition not imposed by hand
but automatically and locally given by dynamics of the
system.
Can we still define an index for such a massive Dirac

operator? As is shown in the next section, the answer is
“yes.” We introduce the so-called domain-wall Dirac
fermion operator, which is massive in the bulk and gapless
at the boundary. Its local boundary condition is not imposed
by hand but automatically satisfied by the kink structure of
the mass term. Therefore, no fine-tuning is needed. We
define an index by its eta invariant, to which the edge-
localized gapless modes play a crucial role. Moreover, the
new index coincides with the original APS index.

III. APS INDEX FROM DOMAIN-WALL
FERMION DIRAC OPERATOR

In this section, we consider a different setup from the
original work by APS [5]. So far we have considered a
manifold with boundary, as a closed system. But in real
physics, no boundary can exist without outside of the region.
For example, the boundary of the topological insulator is
always surrounded by the normal insulator.We cannot say on
which the edge-localized modes reside, since they require
both sides to support them, unless the gap is infinitely large.
In this respect, the so-called domain-wall fermion

[30,31] is a more appropriate setup for the physical system
with boundary. The domain-wall fermion Dirac operator is
defined by

DDW ¼ DþMϵðx4Þ; ϵðx4Þ ¼ sign x4; ð62Þ

where the mass term flips its sign across the domain wall
located at x4 ¼ 0. Here and in the following, we take M to
be positive. In lattice gauge theory, we often consider the
domain-wall fermion determinant together with a Pauli-
Villars field,

det
DþMϵðx4Þ

D −M
; ð63Þ

to cancel the bulk mode effects in the region x4 < 0. Note
here that fermion field is defined in thewhole−∞ < x4 < ∞
region and no boundary condition is imposed on it.5

Therefore, this determinant provides a good model to
describe fermions in a topological insulator located in the
x4 > 0 region, surrounded by a normal insulator sitting in the
x4 < 0 region. As we explicitly show, the edge-localized
modes appear at the boundary x4 ¼ 0, and play a crucial role
in the definition of the index.
The determinant Eq. (63) is real,6 due to the “γ5

Hermiticity,”

det ½ðDþMϵðx4ÞÞðD −MÞ−1�
¼ det ½γ25ðDþMϵðx4ÞÞγ25ðD −MÞ−1�
¼ det ½ðD† þMϵðx4ÞÞðD† −MÞ−1�
¼ j det ½ðD† þMϵðx4ÞÞðD† −MÞ−1�jð−1ÞI ; ð64Þ

where I is an integer determining the sign of the deter-
minant. In fact, we explicitly show that this integer I is
equivalent to the APS index. A similar statement is found in
[17], but neither the explicit bulk fermion determinant nor
its boundary condition is given. The outside of our target
domain is not mentioned, either. As is shown below, we
need neither the massless Dirac operator nor nonlocal APS
boundary condition for the new index.
Our new index I is formally defined by a regularized eta

invariant of the Hermitian operatorHDW¼ γ5ðDþMϵðx4ÞÞ,

I ≡ ηðHreg
DWÞ
2

¼ 1

2
ηðHDWÞ −

1

2
ηðHPVÞ; ð65Þ

where we employ the Pauli-Villars regularization with
another Hermitian operator HPV ¼ γ5ðD −MÞ. This defi-
nition coincides with the exponent appearing in Eq. (64) as

det
DþMϵðx4Þ

D −M
¼ det

iHDW

iHPV
¼

Y
λDW

iλDW=
Y
λPV

iλPV

∝ exp

�
iπ
2

�X
λDW

signλDW −
X
λPV

signλPV

��

¼ ð−1Þ12ηðHDWÞ−1
2
ηðHPVÞ: ð66Þ

In the following, we compute the two eta invariants ηðHDWÞ
and ηðHPVÞ separately, by introducing another regularization
using the (generalized) ζ function (we simply call it the ζ-
function regularization). This double regularization is not
theoretically needed but simplifies the computation and
clarifies the role of the Pauli-Villars fields. In fact, we see
that ηðHDWÞ=2 alone gives only a “half” of the (bulk
contribution of) total APS index, to which another half is
provided by ηðHPVÞ=2.
Let us compute ηðHPVÞ first. Interestingly, it coincides

with the AS index,
5Strictly speaking, we should give an IR cutoff by compactify-

ing the manifold with some appropriate boundary condition, such
as the periodic boundary condition. Then we need another
domain wall at some point of x4. We discuss this antidomain-
wall fermion contribution at the end of this section.

6This is true even with a naive lattice regularization using the
Wilson-Dirac operator.
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ηðHPVÞ¼ lim
s→0

Tr
HPV

ð
ffiffiffiffiffiffiffiffiffi
H2

PV

p
Þ1þs

¼ lim
s→0

1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2 TrHPVe−tH

2
PV

¼−
1ffiffiffi
π

p
Z

∞

0

dt0t0−1
2Trγ5

�
1−

D
M

�
e−t

0D†D=M2

e−t
0
;

¼−
1

32π2

Z
d4xϵμνρσtrcFμνFρσþOð1=M2Þ: ð67Þ

Here we have changed the valuable t ¼ t0=M2, and the
conventional Fujikawa method has been applied to evaluate
Trγ5e−t

0D†D=M2

. Moreover, we can show that ηðHPVÞ is
independent of M as follows. Since fHPV; Dg ¼ 0, every
eigenmode ϕλPV with eigenvalue λPV makes a pair withDϕλ

whose eigenvalue has the opposite sign −λPV, unless
Dϕλ ¼ 0. The zero modes of D, which commute with
γ5, are simultaneously the eigenmodes of HPV, whose
eigenvalues are�M with γ5 ¼ ∓1. Therefore, the left-hand
side of Eq. (67) becomes

ηðHPVÞ ¼ −Trzeros
γ5M
M

¼ −ðnþ − n−Þ; ð68Þ

which is independent ofM. Here Trzeros is the trace over the
zero modes of D only.
It is also interesting to note that the structure of the eta

invariant is naturally embedded in the index theorem of the
massless lattice Dirac operator. The Neuberger’s lattice
overlap Dirac operator [37,38] with the lattice spacing a is
defined by

Dov ¼ 1

a

�
1þ γ5

HWffiffiffiffiffiffiffiffi
H2

W

p �
; ð69Þ

where HW ¼ γ5ðDW − 1=aÞ is the Hermitian Wilson Dirac
operator with the cutoff scale massM ¼ −1=a. Actually, its
index is given by

Trγ5

�
1 −

Dova
2

�
¼ −

1

2
Tr

HWffiffiffiffiffiffiffiffi
H2

W

p ¼ −
1

2
ηðHWÞ; ð70Þ

where we have used Trγ5 ¼ 0 with the finite cutoff. The
sign is not important here: it is just a convention of the sign
for the mass compared to the Wilson term, but the factor
1=2 has a crucial role to cancel the contribution from the
doublers, which plays the same role of (another) Pauli-
Villars field in the continuum. This computation clearly
shows that there is no need to introduce massless Dirac
operator to define the index, at least on a closed manifold.
As we show below, this is true even with boundary.
Now our goal in this section is to compute the remaining

contribution ηðHDWÞ and show

ηðHDWÞ ¼
1

32π2

Z
d4xϵðx4ÞϵμνρσtrcFμνFρσ − ηðiD3DÞ:

ð71Þ

For this massive case, we switch to the Dirac representation
for the gamma matrices,

γi¼1;2;3 ¼
�

σi

σi

�
¼ τ1 ⊗ σi;

γ4 ¼
�
12×2

−12×2

�
¼ τ3 ⊗ 12×2;

γ5 ¼ −γ1γ2γ3γ4 ¼
�

i12×2
−i12×2

�
¼ −τ2 ⊗ 12×2:

ð72Þ

Our Hermitian Dirac operator is then expressed by

HDW ¼ γ5γ4ð∂4 þ γ4Mϵðx4ÞÞ þ B

¼
� −ið∂4 −Mϵðx4ÞÞ
−ið∂4 þMϵðx4ÞÞ

�

þ
�
−iD3D

iD3D

�
; ð73Þ

where B ¼ γ5
P

3
i¼1 γiD

i, and D3D ¼ −σiDi.

A. x4-independent background

As we have demonstrated in the case of the APS
boundary, let us begin with the flat background with no
x4 dependence of the gauge fields. Our cylinder is now
extended to the x4 < 0 region. Since F4k ¼ 0 for any k, our
goal here is to show

ηðHDWÞ ¼ −ηðiD3DÞ: ð74Þ

With the A4 ¼ 0 gauge, H2
DW can be written as

H2
DW ¼ −∂2

4 þ B2 þM2 − 2Mγ4δðx4Þ; ð75Þ

which commutes with γ4, and B. It is, therefore, convenient
to consider the eigenvalue problem of H2

DW by assuming
the form of the solution as φ�ðx4Þ ⊗ ϕ3D

λ ðx⃗Þ where φ�ðx4Þ
satisfies

ð−∂2
4 þ λ2 þM2 ∓ 2Mδðx4ÞÞφ�ðx4Þ ¼ Λ2φ�ðx4Þ; ð76Þ

ϕ3D
λ ðx⃗Þ is the eigenfunction of iD3D with the eigenvalue λ,

and τ3φ�ðx4Þ ¼ �φ�ðx4Þ. Note that the eigenvalue of τ3
corresponds to that of γ4.
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The solutions to Eq. (76) are obtained as

φω
�;oðx4Þ ¼

u�ffiffiffiffiffiffi
4π

p ðeiωx4 − e−iωx4Þ;

φω
�;eðx4Þ ¼

u�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πðω2 þM2Þ

p
× fðiω ∓ MÞeiωjx4j þ ðiω�MÞe−iωjx4jg;

φedge
þ;e ðx4Þ ¼ uþ

ffiffiffiffiffi
M

p
e−Mjx4j; ð77Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − λ2 −M2

p
, and the subscripts e, o denote

even and odd components under the time reversal
T∶x4 ↔ −x4.
We emphasize here that we have not imposed any

boundary condition by hand, but the delta-function poten-
tial automatically chooses nontrivial boundary conditions
on the fermion fields,� ∂

∂x4 �Mϵðx4Þ
�
φω;edge
�;e ðx4Þ

				
x4¼0

¼ 0;

φω
�;oðx4 ¼ 0Þ ¼ 0: ð78Þ

More importantly, these boundary conditions respect the
SOð3Þ rotational symmetry on the x4 ¼ 0 surface, rather
than helicity.

The above solutions satisfy

Z
∞

−∞
dx4½φω0

�;e=oðx4Þ�†φω
�;e=oðx4Þ ¼ δðω − ω0Þ; ð79Þ

Z
∞

−∞
dx4½φedge

þ;e ðx4Þ�†φedge
þ;e ðx4Þ ¼ 1; ð80Þ

for positive ω and ω0. They also satisfy the com-
pleteness condition in a subspace where iD3D takes the
eigenvalue λ, for which B takes the eigenvalue ∓λ for
γ4 ¼ �1 eigenmodes,

X
a¼e;o

Z
∞

0

dω½φωþ;aðx4Þ�½φωþ;aðx04Þ�† þ ½φedge
þ;e ðx4Þ�½φedge

þ;e ðx04Þ�†

¼ δðx4 − x04Þ12×2;Z
∞

0

dω½φω
−;aðx4Þ�½φω

−;aðx04Þ�† ¼ δðx4 − x04Þ12×2; ð81Þ

for any x4, x04.
Next, let us compute the kernel of the operator

HDWe−tH
2
DW using the complete set obtained above for

each λ. For the þþ component, we have

hx4;þjHDWe−tH
2
DW jx04;þi¼−λ

�X
a¼e;o

Z
∞

0

dωe−tðω2þλ2þM2Þ½φωþ;aðx4Þ�þ½φωþ;aðx04Þ��þþe−λ
2t½φedge

þ;e ðx4Þ�þ½φedge
þ;e ðx04Þ��þ

�

¼−λ
e−ðλ2þM2Þtffiffiffiffiffiffiffi

4πt
p e−

ðx4−x04Þ
2

4t þλM
2

e−λ
2te−Mðjx4jþjx0

4
jÞerfc

�
−
jx4jþ jx04j

2
ffiffi
t

p þM
ffiffi
t

p �
−λMe−λ

2te−Mðjx4jþjx0
4
jÞ;

ð82Þ

where we have used fððjx4j þ jx04jÞ2Þ þ fððjx4j − jx04jÞ2Þ ¼ fððx4 þ x04Þ2Þ þ fððx4 − x04Þ2Þ for any function fðxÞ. Note that
the third term is the contribution from the edge mode. The −− component is similarly obtained as

hx4;−jHDWe−tH
2
DW jx04;−i ¼ λ

e−ðλ2þM2Þtffiffiffiffiffiffiffi
4πt

p e−
ðx4−x04Þ

2

4t −
λM
2

e−λ
2teMðjx4jþjx0

4
jÞerfc

�jx4j þ jx04j
2

ffiffi
t

p þM
ffiffi
t

p �
: ð83Þ

The trace is given by

TrHDWe−tH
2
DW ¼ 1

2

X
λ

λe−λ
2t

Z
∞

−∞
dx4

�
Me−2Mjx4j

�
erfc

�
−
jx4jffiffi
t

p þM
ffiffi
t

p �
− 2

��

−
1

2

X
λ

λe−λ
2t

Z
∞

−∞
dx4

�
Me2Mjx4jerfc

�jx4jffiffi
t

p þM
ffiffi
t

p ��

¼ 1

2

X
λ

λe−λ
2t½2erfcðM ffiffi

t
p Þ − 2�: ð84Þ

The first term in the parenthesis with the complementary error function is from the bulk mode, while the second term is from
the edge mode.
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In the M → ∞ limit, erfcðM ffiffi
t

p Þ vanishes and we obtain
the desired result,

ηðHDWÞ ¼ −
X
λ

λffiffiffi
π

p
Z

∞

0

dtt−1=2e−λ
2t

¼ −
X
λ

λ

jλj ¼ −ηðiD3DÞ: ð85Þ

It is clear that the ηðiD3DÞ comes entirely from the edge-
localized modes.

B. Fujikawa method for general background

Let us consider the general gauge field background and
complete theAPS index theoremusing theFujikawamethod.
Here we can keep the A4 ¼ 0 gauge, and therefore, the

wave functions in the x4 direction in the previous sub-
section φω

�;e=o and φ
edge
þ;e are still useful. Thus, we only need

to replace the three-dimensional part of the wave function,
which was given by the eigenfunction ϕ3D

λ of iD3D, by that
of the plane wave,

ϕ3D
p;↑↓ðxÞ ¼

v↑↓
ð2πÞ3=2 e

ip·x; ð86Þ

where p ¼ ðp1; p2; p3Þ and x ¼ ðx1; x2; x3Þ are the spatial
components of momentum and position, respectively.7 The
spin degrees of freedom are described by

v↑ ¼
�
1

0

�
; v↓ ¼

�
0

1

�
: ð87Þ

Let us here summarize what we compute in this sub-
section. Our goal is to obtain the index for general gauge
background, defined by the eta invariant,

ηðHDWÞ ¼ lim
s→0

�
TrðMγ5ϵðx4ÞÞ

� ffiffiffiffiffiffiffiffiffiffi
H2

DW

q �
−1−s

þ Trðγ5DÞ
� ffiffiffiffiffiffiffiffiffiffi

H2
DW

q �
−1−s

�
: ð88Þ

Since the second term includes contribution from massless
edge-localized modes, it is nonlocal in general. Following
the general strategy to compute the local part of the phase of
the odd-dimensional massless fermion determinant [15],
we consider a one-parameter family of gauge fields uAμ,
and take a u-derivative and integrate it again,

Z
1

0

du
d
du

�
TrðHDWðuÞ −Mγ5ϵðx4ÞÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HDWðuÞ2

q �
−1−s

�

¼
Z

1

0

duTr

�
−s

d
du

HDWðuÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HDWðuÞ2
q �

−1−s
−

d
du

�
γ5Mϵðx4Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HDWðuÞ2

q �
−1−s

��
; ð89Þ

where HDWðuÞ is the corresponding domain-wall fermion Dirac operator at u. This procedure allows us to compute the eta
invariant up to an integer, which may depend on a winding number of gauge transformation on the surface. Using the
formula

1

ð
ffiffiffiffiffiffi
O2

p
Þ1þs

¼ 1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2 e−tO

2

; ð90Þ

for a Hermitian operator O, our goal is to compute

ηðHDWÞ ¼ lim
s→0

1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2 lim
M→∞

Tr

�
γ5ϵðx4Þe−t

H2
DW
M2

�
þ
Z

1

0

du lim
s→0

1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2 lim
M→∞

Tr

"
−s

dHDWðuÞ
du

e−t
HDWðuÞ2

M2

M

#

−
Z

1

0

du
d
du

�
lim
s→0

1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2 lim
M→∞

Tr½γ5ϵðx4Þe−t
HDWðuÞ2

M2 �
�
; ð91Þ

inserting our complete set fϕ3D
p;↑↓ðxÞ ⊗ φω

�;e=oðx4Þg, and fϕ3D
p;↑↓ðxÞ ⊗ φedge

þ;e ðx4Þg to the trace. To make t dimensionless, we
have rescaled HDW to HDW=M. The third term can be easily evaluated once the first term is obtained.

1. The first term of Eq. (91)

Let us evaluate the first term in Eq. (91), using a general formula

7Here we assume that the spatial directions are infinitely large for simplicity.

ATIYAH-PATODI-SINGER INDEX FROM THE DOMAIN- … PHYSICAL REVIEW D 96, 125004 (2017)

125004-11



Trf

�
H2

DW

M2

�
¼

Z
d4x

X
g¼�

X
a¼e;o

Z
∞

0

dω
X
σ¼↑↓

Z
d3ptrc½ϕ3D

p;σðxÞφω
g;aðx4Þ�† × f

�
H2

DW

M2

�
½ϕ3D

p;σðxÞφω
g;aðx4Þ�

þ
Z

d4x
X
σ¼↑↓

Z
d3ptrc

�
½ϕ3D

p;σðxÞφedge
þ;e ðx4Þ�†f

�
H2

DW

M2

�
½ϕ3D

p;σðxÞφedge
þ;e ðx4Þ�

�

¼
Z

d4x
X
g¼�

X
a¼e;o

Z
∞

0

dω
X
σ¼↑↓

Z
d3p
ð2πÞ3 trc

�
½vσφω

g;aðx4Þ�† × f

�
1 −

ðipiγi þDÞ2 þ 2Mγ4δðx4Þ
M2

�
½vσφω

g;aðx4Þ�
�

þ
Z

d4x
X
σ¼↑↓

Z
d3p
ð2πÞ3 trc

�
½vσφedge

þ;e ðx4Þ�† × f

�
1 −

ðipiγi þDÞ2 þ 2Mγ4δðx4Þ
M2

�
½vσφedge

þ;e ðx4Þ�
�

ð92Þ

for any (finite) function f. We can see that in the expansion of e−t
H2
DW
M2 in 1=M2, only the term proportional to t2 and having

four different gamma matrices can contribute to the trace. Namely, we only need to evaluate

φω
g;aðx4Þ†ϵðx4Þ½γ5e−tð1−

ðipiγiþDÞ2þ2Mγ4δðx4Þ
M2 Þ�φω

g;aðx4Þ

¼ ϵðx4Þφω
g;aðx4Þ†e−

t
M2ðω2þp2Þ−t ×

�
−

t2

8M4
γ5f½γi; γj�γ4γkFijF4k þ γ4γk½γi; γj�F4kFijg

�
φω
g;aðx4Þ

¼ −12×2ϵðx4Þφω
g;aðx4Þ†φω

g;aðx4Þe−
t

M2ðω2þp2Þ−t t2

4M4
ϵijkðFijF4k þ F4kFijÞ; ð93Þ

and similarly,

φedge
þ;e ðx4Þ†ϵðx4Þ½γ5e−tð1−

ðipiγiþDÞ2þ2Mγ4δðx4Þ
M2 Þ�φedge

þ;e ðx4Þ¼−12×2ϵðx4Þφedge
þ;e ðx4Þ†φedge

þ;e ðx4Þe−
t

M2ðp2Þ t2

4M4
ϵijkðFijF4kþF4kFijÞ: ð94Þ

Then we have

Tr½ϵðx4Þγ5e−t
H2
DW
M2 � ¼ −

Z
d4xϵðx4Þ

ffiffiffiffiffi
πt

p
8π2

�
e−tffiffiffiffiffi
πt

p − hðt; x4;MÞ
�
ϵijktrcFijF4k: ð95Þ

Here

hðt; x4;MÞ ¼ 1

2
e2Mjx4jerfc

�
Mjx4jffiffi

t
p þ ffiffi

t
p �

þ 1

2
e−2Mjx4j

�
erfc

�
−
Mjx4jffiffi

t
p þ ffiffi

t
p �

− 2

�
; ð96Þ

and we have used

X
σ¼↑↓

v†σvσ ¼ 2; ð97Þ

Z
d3p
ð2πÞ3 e

−tp2=M2 ¼ M3
ffiffiffi
π

p
8π2t

ffiffi
t

p ; ð98Þ

and

X
a¼e;o

X
g¼�

Z
∞

0

dωφω
g;aðx4Þ†φω

g;aðx4Þe−
t

M2ðω2þM2Þ þ φedge
þ;e ðx4Þ†φedge

þ;e ðx4Þ

¼ M

�
e−tffiffiffiffiffi
πt

p −
1

2
e2Mjx4jerfc

�
Mjx4jffiffi

t
p þ ffiffi

t
p �

−
1

2
e−2Mjx4jerfc

�
−
Mjx4jffiffi

t
p þ ffiffi

t
p �

þ 1

�
: ð99Þ
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With the t integrals

lim
s→0

1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2 e−t ¼ 1; ð100Þ

lim
s→0

1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2

ffiffiffiffiffi
πt

p
e2Mjx4jerfc

�
Mjx4jffiffi

t
p þ ffiffi

t
p �

¼ e−2Mjx4j

2
; ð101Þ

lim
s→0

ffiffiffi
π

p
Γð1þs

2
Þ
Z

∞

0

dtt
s
2½e−2Mjx4j� ¼ lim

T→∞
Te−2Mjx4j; ð102Þ

and

lim
s→0

ffiffiffi
π

p
Γð1þs

2
Þ
Z

∞

0

dtt
s
2

�
−e−2Mjx4jerfc

�
−Mjx4jffiffi

t
p þ ffiffi

t
p ��

¼ −e−2Mjx4j 1þ 4Mjx4j
2

; ð103Þ

we have

gðx4;MÞ ¼ lim
s→0

1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2

ffiffiffiffiffi
πt

p
hðt; x4;MÞ

¼ e−2Mjx4j

2
ð1þ 2Mjx4j − 2 lim

T→∞
TÞ; ð104Þ

with which any finite function fðx4Þ gives

lim
M→∞

Z
∞

0

dx4gðx4;MÞfðx4Þ< lim
M→∞

Z
∞

0

dx4gðx4;MÞjfmaxj

¼ lim
T→∞

lim
M→∞

jfmaxjðT−1Þ
2M

→ 0; ð105Þ

where jfmaxj denotes the maximum of fðx4Þ, and the same
is true in the x4 < 0 region. Therefore, we obtain the first
term in Eq. (91) as

lim
s→0

1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2 lim
M→∞

Tr½γ5ϵðx4Þe−t
H2
DW
M2 �

¼ −
Z

d4xϵðx4Þ
1

8π2
ϵijktrcFijF4k

¼ 1

32π2

Z
d4xϵðx4ÞϵμνρσtrcFμνFρσ: ð106Þ

2. The third term of Eq. (91)

Noticing

1

32π2

Z
x4>0

d4xϵμνρσtrcFμνFρσ ¼ 1

2π
CSjx4¼0 þ integer;

ð107Þ

1

32π2

Z
x4<0

d4xϵμνρσtrcFμνFρσ ¼ −
1

2π
CSjx4¼0 þ integer;

ð108Þ

we can compute the third term in Eq. (91) as

−
Z

1

0

du
d
du

�
1

π
CSujx4¼0

�
¼ −

1

π
CSjx4¼0; ð109Þ

where CSu means the Chern-Simons term with the gauge
field uAμ.

3. The second term of Eq. (91)

For the second term in Eq. (91), only the linear term in t

in the exponential e−t
H2
DW
M2 with two different gamma

matrices in spatial directions can contribute. Therefore,
we need

φω
g;aðx4Þ†½−siγ5γkAke

−tð1−ðipiγiþDuÞ2þ2Mγ4δðx4Þ
M2 Þ�φω

g;aðx4Þ
¼ φω

g;aðx4Þ†e−
t

M2ðω2þp2Þ−t

×

�
−siγ5γkAk

t
M2

�
i
4
½γi; γj�Fij

u

��
φω
g;aðx4Þ

¼ −12×2fφω
g;aðx4Þ†½τ3�φω

g;aðx4Þge−
t

M2ðω2þp2Þ−t

×
st

2M2
ϵijkAkFij

u ; ð110Þ

and similarly

φedge
þ;e ðx4Þ†½−siγ5γkAke

−tð1−ðipiγiþDuÞ2þ2Mγ4δðx4Þ
M2 Þ�φedge

þ;e ðx4Þ
¼ −12×2φ

edge
þ;e ðx4Þ†φedge

þ;e ðx4Þe−
t

M2p
2 st
2M2

ϵijkAkFij
u ;

ð111Þ

where Du and Fij
u are the Dirac operator and field strength

for the gauge field uA, respectively. Then we have

Tr

�
−s

dHDWðuÞ
du

e−t
HDWðuÞ2

M2

M

�
¼

Z
d4x

−s
8π2

∂
∂jx4j

� ffiffiffi
π

p
4

ffiffi
t

p e−2Mjx4j
�
erfc

�
−Mjx4jffiffi

t
p þ ffiffi

t
p �

− 2

�

þ
ffiffiffi
π

p
4

ffiffi
t

p e2Mjx4jerfc
�
Mjx4jffiffi

t
p þ ffiffi

t
p ��

ϵijktrcAkFij
u ; ð112Þ
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where we have used Eq. (97), Eq. (98), and

X
a¼e;o

X
g¼�

Z
∞

0

dωφω
g;aðx4Þ†½τ3�φω

g0;aðx4Þe−
t

M2ðω2þM2Þ þ φedge
þ ðx4Þ†φedge

þ ðx4Þ

¼ 12×2
1

4

∂
∂jx4j

�
e−2Mjx4j

�
erfc

�
−Mjx4jffiffi

t
p þ ffiffi

t
p �

− 2

�
þ e2Mjx4jerfc

�
Mjx4jffiffi

t
p þ ffiffi

t
p ��

: ð113Þ

Here let us compute

g1ðx4;MÞ ¼ 1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2

� ffiffiffi
π

p
2

ffiffi
t

p e2Mjx4jerfc
�
Mjx4jffiffi

t
p þ ffiffi

t
p ��

¼ −
e2Mjx4j

sΓð1þs
2
Þ
Z

∞

0

dtt
s
2

��
Mjx4j
t3=2

−
1

t1=2

�
e−ðMjx4j=

ffiffi
t

p þ ffiffi
t

p Þ2
�

¼ −
2ðMjx4jÞðsþ1Þ=2

sΓð1þs
2
Þ ðKðs−1Þ=2ð2Mjx4jÞ − Kðsþ1Þ=2ð2Mjx4jÞÞ; ð114Þ

where KνðzÞ are modified Bessel functions. g1ðx4;MÞ has
the following properties,

g1ð0;MÞ ¼ 1

s
; g1ðx4 ≠ 0;MÞ ¼ Oð1Þ; ð115Þ

where we have used the expansion

KνðxÞ¼x−νð2ν−1ΓðνÞþOðx2ÞÞþxνð2−ν−1Γð−νÞþOðx2ÞÞ;
ð116Þ

for small x, and

Z
∞

−∞
dx4

∂
∂jx4j g1ðx4;MÞ ¼ −

2

s
: ð117Þ

Therefore, we can regard that

lim
s→0

s
∂

∂jx4j g1ðx4;MÞ ¼ −2δðx4Þ: ð118Þ

Similarly

g2ðx4;MÞ ¼ 1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2

� ffiffiffi
π

p
2

ffiffi
t

p e−2Mjx4j
�
erfc

�
−Mjx4jffiffi

t
p þ ffiffi

t
p �

− 2

��

¼ −
2e−2Mjx4j ffiffiffi

π
p

sΓð1þs
2
Þ lim

T→∞
Ts=2 þ 2ðMjx4jÞsþ1

2

sΓð1þs
2
Þ ðKsþ1

2
ð2Mjx4jÞ þ Ks−1

2
ð2Mjx4jÞÞ ð119Þ

has the following properties,

g2ð0;MÞ ¼ −
1

s
; g2ðx4 ≠ 0;MÞ ¼ Oð1Þ; ð120Þ

and Z
∞

−∞
dx4

∂
∂jx4j g2ðx4;MÞ ¼ 2

s
þOð1Þ: ð121Þ

Therefore, we have

lim
s→0

s
∂

∂jx4j g2ðx4;MÞ ¼ 2δðx4Þ: ð122Þ

Interestingly, the contribution from g1ðx4;MÞ and
g2ðx4;MÞ cancels,

lim
s→0

s
2

Z
∞

−∞
dx4

∂
∂jx4j ðg2ðx4;MÞ þ g1ðx4;MÞÞfðx4Þ ¼ 0;

ð123Þ

so does the integrand of the second term in Eq. (91),

lim
s→0

1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2 Tr

�
−s

dHDWðuÞ
du

e−t
HDWðuÞ2

M2

M

�
¼ 0;

ð124Þ

at finite M.
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4. Final result of ηðHDWÞ
Summing up all the contributions, we obtain

ηðHDWÞ ¼
1

32π2

Z
d4xϵðx4ÞϵμνρσtrcFμνFρσ − ηðiD3DÞ;

ð125Þ

where we have added 2½CSjx4¼0=2π� according to the
prescription in Eq. (60). The first term of Eq. (125) contains
contribution only from the bulk modes; the edge-localized
modes contribute to gðx4;MÞ, which disappears in the large
M limit, whereas the second term of Eq. (125) entirely
comes from the edge-localized modes, as explicitly com-
puted in the previous subsection. In the above derivation,
Eq. (124) is particularly important since it is equivalent to
showing

∂ηðHDWðuÞÞ
∂u ¼ 0: ð126Þ

Moreover, we can also show

∂ηðHDWÞ
∂M ¼ −lim

s→0

s
M

1

32π2

Z
d4xϵðx4ÞϵμνρσtrcFμνFρσ ¼ 0:

ð127Þ

Namely, our definition of the index is stable against any
variational changes inM and gauge field Aμ. It only allows
discrete jumps by an even integer in the boundary con-
tribution ηðiD3DÞ.

C. APS index and physical interpretation

We have shown that the index is equivalent to that of
APS, i.e.

Ix4>0 ¼
1

2
ηðHDWÞ −

1

2
ηðHPVÞ

¼ 1

32π2

Z
x4>0

d4xϵμνρσtrcFμνFρσ −
ηðiD3DÞ

2
: ð128Þ

If we flip the sign of the Pauli-Villars mass, we obtain the
same index in the x4 < 0 region,

−Ix4<0¼
1

2
ηðHDWÞ−

1

2
ηðHPVjM→−MÞ

¼−
1

32π2

Z
x4<0

d4xϵμνρσtrcFμνFρσ−
ηðiD3DÞ

2
: ð129Þ

In fact, the eta invariant of the domain-wall fermion Dirac
operator can be written as the difference between the APS
indices in the two regions,

ηðHDWÞ ¼ Ix4>0 − Ix4<0: ð130Þ

Then the sign of the Pauli-Villars mass determines which
are topological and which are normal insulators. In our
computations, we do not need the massless Dirac operator
or global boundary conditions on the fermion fields.
Moreover, we have seen that the eta-invariant ηðiD3DÞ
comes entirely from the edge-localized modes, while these
edge modes do not contribute to the first term of Eq. (128)
at all.
As a final remark of this section, let us consider the

second domain wall or antidomain wall, which is needed to
compactify our setup with flat metric. To define the index,
we formally need to consider the domain-wall Dirac
fermion operator in a finite region of −L < x4 < L, and,
for example, identify the fermion field at x4 ¼ L and −L
(periodic boundary condition),

HDW ¼ γ5fDþMϵðx4ÞϵðL − x4Þg; ð131Þ

where the spatial directions are also required to be com-
pactified. Even in this case, our computation above is valid,
at least, in the large volume limit in the near region of x4 ¼ 0
and it should be naturally and smoothly continuated to the
other domain wall at x4 ¼ L. Finally we obtain

I ¼ 1

2
ηðHDWÞ −

1

2
ηðHPVÞ

¼ 1

32π2

Z
0<x4<L

d4xϵμνρσtrcFμνFρσ

−
ηðiD3DÞ

2

				
x4¼0

þ ηðiD3DÞ
2

				
x4¼L

: ð132Þ

IV. ASYMMETRIC DOMAIN WALL

In the previous section, we have considered the domain-
wall fermion Dirac operator from which the APS index has
been reproduced. Although the domain-wall fermion is a
good model to describe the topological insulator with
boundary, the size of the fermion gap jMj is the same
both in the normal and topological phases, which is not
generally true in the actual materials. In this section, we
consider a more general case where the two regions x4 < 0
and x4 > 0 have different mass gaps.

A. Effect of asymmetric mass

Let us consider a modified model with an additional
mass M2 without the kink structure,

HDW ¼ γ5ðDþM1ϵðx4Þ −M2Þ; ð133Þ

where both M1 and M2 are positive. This introduces
the asymmetric mass to the fermion in normal and topo-
logical phases, and a step-functionlike term in H2

DW (when
∂x4B ¼ 0),
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H2
DW ¼ −∂2

4 þ B2 þM2
1 þM2

2 − 2M1γ4δðx4Þ
− 2M1M2ϵðx4Þ: ð134Þ

Because of the step function, there are three types
of eigensolutions of H2

W [using the same decomposition
φ�ðx4Þ⊗ ϕ3D

λ ðx⃗Þ, where iD3Dϕ3D
λ ðx⃗Þ ¼ λϕ3D

λ ðx⃗Þ and
τ3φ�ðx4Þ ¼�φ�ðx4Þ as in the previous section]: (1)
localized bound state (edge state),

φedge
þ ðx4Þ ¼

8><
>:

uþ
ffiffiffiffiffiffiffiffiffiffiffiffi
M2

1
−M2

2

M1

q
e−ðM1−M2Þx4 ðx4 ≥ 0Þ

uþ
ffiffiffiffiffiffiffiffiffiffiffiffi
M2

1
−M2

2

M1

q
eðM1þM2Þx4 ðx4 < 0Þ

; ð135Þ

where the eigenvalue of H2
W is Λ2 ¼ λ2, (2) plane waves

extended only in the x4 > 0 region,

φω
�ðx4Þ ¼

8<
:

u�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðω2þμ2�Þ

p fðiωþ μ�Þeiωx4 þ ðiω − μ�Þe−iωx4g; ðx4 ≥ 0Þ

u� 2iωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðω2þμ2�Þ

p eΩx4 ðx4 < 0Þ ; ð136Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − λ2 − ðM1 − M2Þ2

p
, Ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Λ2 þ λ2 þ ðM1 þ M2Þ2
p

, and μ� ¼ Ω ∓ 2M1, and
(3) plane waves extended in the whole region.

φω
�ðx4Þ ¼

�
u�ðAeiω1x4 þ Be−iω1x4Þ ðx4 ≥ 0Þ
u�ðCeiω2x4 þDe−iω2x4Þ ðx4 < 0Þ ; ð137Þ

where ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − λ2 − ðM1 − M2Þ2

p
, ω2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 − λ2 − ðM1 þ M2Þ2
p

, and the coefficients
satisfy AþB¼CþD, and −iω1ðA−BÞþ iω2ðC−DÞ∓
2M1ðAþBÞ¼ 0. The orthonormality of the above
eigenfunctions can be confirmed using the relation
[39]8

Z
∞

0

dx4eiωx4 ¼ πδðωÞ þ iP
1

ω
; ð138Þ

where P denotes the principal value.
It is important to note that the above solutions all satisfy

the nontrivial boundary condition

− lim
ϵ→0

ð∂x4φ
ω=edge
� ðþϵÞ − ∂x4φ

ω=edge
� ð−ϵÞÞ

∓ 2M1φ
ω=edge
� ð0Þ ¼ 0; ð139Þ

which respects the SOð3Þ rotational symmetry on the
surface. It is also important to note that the edge mode
exists only whenM1 > M2; otherwise the above solution is
not normalizable.
An appropriate Pauli-Villars operator in the case of

M1 > M2 is given by

HPV ¼ γ5ðD −M1 þM2ϵðx4ÞÞ; ð140Þ

whose total mass −M1 þM2ϵðx4Þ does not change its
sign at x4 and hence does not develop any edge-
localized modes.
Since the additional mass M2 does not break the γ5

Hermiticity of the domain-wall and Pauli-Villars Dirac
operators, we can define the index

I ¼ 1

2
ηðHDWÞ −

1

2
ηðHPVÞ: ð141Þ

Furthermore, we can show

dI
dM2

¼ lim
s→0

s × ðfinite termsÞ ¼ 0; ð142Þ

for M1 > M2, from which there is no doubt that I is
equivalent to the APS index. It is still instructive to directly
compute the index in an extreme case, where the mass gap
in the x4 < 0 region is infinitely large, and all the wave
functions are constrained to the x4 ≥ 0 region. This is
equivalent to considering the original system of manifold
with boundary as a closed system (similar studies were
done in Refs. [40,41]).

B. Shamir-type domain wall

In the following, let us take an extreme limit where
M1 þM2 ¼ ∞, while M1 −M2 ¼ M is fixed. In this case,
we can safely neglect the type (3) plane wave solutions in
Eq. (137) and the other two types of eigenfunctions
become

φedge
þ ðx4Þ ¼

(
uþ

ffiffiffiffiffiffiffi
2M

p
e−Mx4 ðx4 ≥ 0Þ

0 ðx4 < 0Þ ; ð143Þ

where Λ2 ¼ λ2 is unchanged, and
8We thank H. Nakazato and M. Ochiai for useful information

about the system in a step potential.
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φωþðx4Þ ¼
� uþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðω2þM2Þ
p fðiω −MÞeiωx4 þ ðiωþMÞe−iωx4g ðx4 ≥ 0Þ
0 ðx4 < 0Þ

; ð144Þ

φω
−ðx4Þ ¼

� u−ffiffiffiffi
2π

p ðeiωx4 − e−iωx4Þ ðx4 ≥ 0Þ
0 ðx4 < 0Þ

; ð145Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − λ2 −M2

p
. The above wave functions are

equivalent to the complete set of the massive Dirac
operator,

Hþ ¼ γ5ðDþMÞ; ð146Þ

extending only in the x4 ≥ 0 region, whose boundary
condition is locally given by

φ−jx4¼0 ¼ 0; ð∂x4 þMÞφþjx4¼0 ¼ 0: ð147Þ

In fact, this system corresponds to the so-called Shamir-
type domain-wall fermion [32,33].
In the same way, the complete set of the Pauli-Villars

operator converges to that of

H− ¼ γ5ðD −MÞ; ð148Þ

which are given by

φω
PVþðx4Þ¼

uþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðω2þM2Þ

p
×fðiωþMÞeiωx4 þðiω−MÞe−iωx4g ðx4 ≥ 0Þ;

ð149Þ

φω
PV−ðx4Þ ¼

u−ffiffiffiffiffiffi
2π

p ðeiωx4 − e−iωx4Þ ðx4 ≥ 0Þ; ð150Þ

satisfying another local boundary condition

φPV−jx4¼0 ¼ 0; ð∂x4 −MÞφPVþjx4¼0 ¼ 0: ð151Þ

Now we can explicitly compute with these complete sets
the index

I ¼ 1

2
ηðHþÞ −

1

2
ηðH−Þ: ð152Þ

In fact, except that the variation of the eta invariants does
not vanish separately,

Z
1

0

du
d
du

ηðH�Þ ¼
Z

1

0

dulim
s→0

1

Γð1þs
2
Þ
Z

∞

0

dtt
s−1
2 Tr

�
∓ s

dH�ðuÞ
du

e−t
H�ðuÞ2

M2

M

�

¼∓ lim
s→0

Z
1

0

du
Z
x4>0

d4x
s

8π2
∂
∂x4 g�ðx4;MÞϵijktrcAkFij

u

¼∓ lim
s→0

Z
1

0

dulim
ϵ→0

Z
x4>0

d4x
s
8π2

�
� δðx4 − ϵÞ

s

�
ϵijktrcAkFij

u

¼ −
CS
2π

				
x4¼0

; ð153Þ

where gþðx4;MÞ¼ g1ðx4;MÞ, and g−ðx4;MÞ ¼ g2ðx4;MÞ,
already appeared in Eqs. (114) and (119), respectively, the
computation is very similar to the one obtained in the
previous section. The results are summarized as

ηðHþÞ ¼
1

32π2

Z
x4>0

d4xϵμνρσtrcFμνFρσ −
1

π
CSjx4¼0

þ 2

�
1

2π
CSjx4¼0

�
; ð154Þ

ηðH−Þ ¼ −
1

32π2

Z
x4>0

d4xϵμνρσtrcFμνFρσ; ð155Þ

where we have again put the Gauss symbol term
2½CSjx4¼0=2π� to maintain the gauge invariance. Thus, I
turns out to be the same index as the original APS in
Eq. (152).

V. SUMMARY AND DISCUSSION

In this work, we have tried to describe the APS index
theorem in a physicist-friendly way in a simple setup with a
flat metric, for the Dirac fermion operator with Uð1Þ or
SUðNÞ gauge field background. Our method corresponds
to a generalization of the Fujikawa method on closed
manifolds to that on manifolds with boundaries.
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First, we have revisited the original setup by APS and
reproduced the index theorem in an adiabatic expansion.
Contrary to the intuition that the eta invariant is a
contribution of the edge-localized modes, we have found
that the APS boundary condition allows no such edge
modes to exist. Instead, a nontrivial pole structure of the
coefficients of the bulk extended modes produces it. We
have also discussed that the APS boundary is unnatural and
unlikely to be realized in actual materials with boundary.
Then we have discussed what is required in more

physical setups. In physics, what we call boundary is
actually a domain wall on which some physical parameter
becomes discontinuous. Every topological insulator is
nontrivial only when it is surrounded by normal insulators.
It is more natural to consider a massive fermion since it is
not the helicity but rotational symmetry that should be
preserved on a surface. Any boundary condition should not
be imposed by hand but should be given by the local
dynamics of the system. We have concluded that the
domain-wall Dirac fermion operator is a good candidate
to reformulate the index theorem in physics.
Next, we have defined a new index by the eta invariant of

the four-dimensional domain-wall fermion Dirac operator
with its Pauli-Villars regulator. The kink structure in the
mass term automatically forces the fermion fields to satisfy
a boundary condition, which is locally given and respects
the SOð3Þ rotational symmetry on the surface. As a
consequence, the edge-localized modes appear in the
complete set of the free Dirac operator. We have applied
the Fujikawa method to this complete set satisfying the
nontrivial boundary condition. Since the boundary con-
dition is no longer dependent of gauge fields, we do not
need the adiabatic approximation. We have obtained an
index, which is stable against the changes of mass and
gauge field. This new index coincides with the APS index.
Moreover, in our setup, the physical origin of the eta
invariant is clearer. It comes entirely from the edge-
localized modes.
Finally, we have considered the case with asymmetric

masses and computed the index in the limit where one of
the masses goes to infinity. This case is closer to the
original setup by APS, where we do not need to consider
the x4 < 0 region. In lattice gauge theory, this extremal case
is known as the Shamir-type domain-wall fermion. We
have confirmed by the direct computation that the index
remains the same as the original APS index.
In this work, we have employed the Pauli-Villars

regularization. It is interesting to give a nonperturbative
definition of the APS index based on the lattice regulari-
zation as was done for the AS index [42]. As the Wilson
fermion Dirac operator has the γ5 Hermiticity and its
determinant is real, we would be able to define an index
by ηðγ5ðDW þMϵðx4ÞÞÞ=2 (assuming that the Wilson term
has the opposite sign to the massM), which coincides with
the APS index, at least, in the continuum limit. In the lattice

regularization, one would be able to increase the effective
number of flavors Nf, by tuning the mass and Wilson term,
so that some of the doubler modes become physical [43].
Even in that case, the APS index would be unchanged
except for the overall multiplication of Nf.
The APS index theorem describes a part of the anomaly

descent equations [8–12], in which the parity anomaly or
the CS term in 2nþ 1 dimensions appears as the surface
term of the axial Uð1Þ anomaly in 2nþ 2 dimensions. Our
work describing the same index in terms of the domain-
wall Dirac operator corresponds to its fermionic expression.
It is interesting to extend our work to the 2n-dimensional
Weyl fermion system, which appears as the edge-localized
state of the 2nþ 1-dimensional gapped bulk fermions. As
already investigated in the literature [44–46], the gauge
anomaly should be canceled by the surface contribution
from the bulk η invariant.
A further interesting question is whether we can incor-

porate the full set of anomaly descent equations in the 2nþ
2 → 2nþ 1 → 2n dimensions, in one Dirac fermion oper-
ator. In the conventional approach with the manifold with
boundary, this is impossible since the boundary of the
boundary must be trivial as a consequence of the homology.
Combining two domain walls having different quantum
numbers, however, we have already proposed such an
interesting “doubly gapped” fermion system [27], where
the edge-of-edge state [47] appears only at the junction of
the domain walls. Our one-loop level computation shows
that the structure of the full set of anomaly descent
equations is embedded in the fermion determinant. The
current work would provide a mathematical basis for
investigating such nontrivial domain-wall systems.
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APPENDIX: EXAMPLE IN TWO DIMENSIONS

In this appendix, we consider an example of Uð1Þ gauge
theory in two dimensions with boundary. Under a constant
background magnetic field, we nonperturbatively confirm
the APS index theorem, discussed in Sec. II.
Let us consider a two-dimensional cylinder parametrized

by ðx1; x2Þ as depicted in Fig. 1. Here x1, ðx1 ∼ x1 þ 2πRÞ
parametrizes the circle of radius R, while x2, ð0 ≤ x2 ≤ LÞ
parametrizes a segment of length L. This cylinder has two
disconnected circular boundaries at x2 ¼ 0 and x2 ¼ L.
We introduce a constant magnetic field F12 ¼ B on this

cylinder. We choose the Landau gauge and the vector
potential is written as
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A1 ¼ −Bx2 þ
a0
R
; A2 ¼ 0; ðA1Þ

where a0 is a constant. This constant a0 is the holonomy
around the circle at x2 ¼ 0 boundary, which corresponds to
the Chern-Simons term in one dimension,

1

2π

Z
dx1A1ðx1; x2 ¼ 0Þ ¼ a0

�
¼ CS

2π

�
: ðA2Þ

Similarly we define the holonomy aL at x2 ¼ L by

1

2π

Z
dx1A1ðx1; x2 ¼ LÞ ≕ aL: ðA3Þ

A useful relation obtained from Eq. (A1) using the Stoke’s
theorem is

aL ¼ −
1

2π

Z
d2xF12 þ a0: ðA4Þ

We consider the Dirac operator on this cylinder given by

D2D ¼ γ1D1 þ γ2D2; ðA5Þ

where γi, ði ¼ 1; 2Þ are 2 × 2 gamma matrices of two
dimensions which satisfy fγi; γjg ¼ 2δij, and Di ¼ ∂i þ
iAi; ði ¼ 1; 2Þ are covariant derivatives. We also introduce
the chirality matrix γ3 by γ3 ¼ iγ1γ2.

1. APS index theorem in the two-dimensional example

We count the index

indðD2DÞ≔ nþ−n−;

n�≔ ðnumber of zero-modes withγ3 ¼�1Þ; ðA6Þ

by explicitly constructing the zero-mode wave functions
under the APS boundary condition and confirm that the
APS index theorem holds.
Since we have translation symmetry in the x1 direction

we can write the zero-mode wave functions as

ψn�ðx1; x2Þ ¼ ei
n
Rx1ϕn�ðx2Þ; n ∈ Z; ðA7Þ

where � stands for the chirality, i.e. γ3ψn�¼�ψn� and
γ3ϕn�¼�ϕn�. Then the zero-mode equation D2Dψn� ¼ 0
implies

ϕn�ðx2Þ ¼ exp

�
� 1

2B

�
Bx2 −

nþ a0
R

�
2
�
χn�; ðA8Þ

where χn� is a constant spinor which satisfies γ3χn� ¼
�χn�. Thus once n and the chirality � is given, the zero-
mode wave function, if it ever exists, is fixed up to overall
constant.
Let us next consider the boundary condition at x2 ¼ 0.

This boundary condition is ψðx2 ¼ 0Þ ¼ 0 if eigenvalue of
iγ3D1jx2¼0 is positive. Notice that if a zero-mode eigen-
function ψn�ðxÞ satisfies ψn�ðx2¼ 0Þ¼ 0 then ψn�ðxÞ ¼ 0
for all x2 as seen from Eq. (A8). Therefore the zero modes
which survive after imposing the APS boundary condition
at x2 ¼ 0 are

ψnþ; ðnþa0> 0Þ; ψn−; ðnþa0< 0Þ: ðA9Þ

Let us turn to the APS boundary condition at x2 ¼ L.
Since the orientation is opposite, the APS boundary con-
dition is ψðx2 ¼ LÞ ¼ 0 if the eigenvalue of −iγ3D1jx2¼L is
positive. The surviving zero modes are

ψnþ; ðnþaL < 0Þ; ψn−; ðnþaL > 0Þ: ðA10Þ

Finally let us combine both conditions Eqs. (A9) and
(A10). The surviving zero modes are

ψnþ; ð−a0<n<−aLÞ; ψn−; ð−aL <n<−a0Þ:
ðA11Þ

As a result the number of zero modes n� is given by

nþ ¼ ðnumber of integersn;−a0 < n < −aLÞ;
n− ¼ ðnumber of integersn;−aL < n < −a0Þ: ðA12Þ

When B > 0 the inequality −a0 < −aL holds from
Eq. (A4) and the numbers of zero modes n� given in
Eq. (A12) read

nþ ¼ ½a0� − ½aL�; n− ¼ 0; ðA13Þ

where ½·� is the Gauss symbol. The index is rewritten by
making use of Eq. (A4) as

indðD2DÞ¼ nþ−n− ¼ ½a0�− ½aL�

¼−a0þaLþ
1

2π

Z
d2xF12þ½a0�− ½aL�: ðA14Þ

As we see in Eqs. (A26) and (A34), the one-dimensional
eta invariants are written in terms of a0, aL as

ηðiD1jx2¼0; 0Þ ¼ −1þ 2ða0 − ½a0�Þ;
ηðiD1jx2¼L; 0Þ ¼ −1þ 2ðaL − ½aL�Þ: ðA15Þ

FIG. 1. Two-dimensional cylinder.
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Substituting Eq. (A15) into Eq. (A14), we obtain

indðD2DÞ ¼ 1

2π

Z
d2xF12 −

1

2
ðηðiD1jx2¼0; 0Þ

− ηðiD1jx2¼L; 0ÞÞ: ðA16Þ

This is nothing but the APS index theorem. Note that the
result is unchanged even for B < 0.
Let us mention an interesting observation about the zero-

mode wave function. The condition (A11) derived from the
APS boundary condition is equivalent to requiring that the
wave function (A8) is Gaussian and the peak of this
Gaussian wave function sits between two boundaries.
This observation may be a hint to find a physical inter-
pretation of the APS boundary condition.

2. Eta invariant in one dimension

We consider a one-dimensional circle parametrized by
x1 ∼ x1 þ 2πR and the Uð1Þ gauge field on it. The one-
dimensional Dirac operator is a simple covariant derivative,
which is written as

D1D ¼ ∂1 þ iA1: ðA17Þ

We choose the gauge in which A1 is a constant, whose
integral gives a nontrivial Chern-Simons term in one
dimension,

A1 ¼
a
R
⇒

I
A1dy ¼ 2πRA1 ¼ 2πað¼ CSÞ: ðA18Þ

The eigenvalues of −iD1D are

λn ¼
nþ a
R

; n ∈ Z; ðA19Þ

where the nth eigenfunction is given by einx1. The eta
invariant (with finite s) is defined as

ηð−iD1D; sÞ ¼
X
n∈Z

signðλnÞ
1

jλnjs
; ðA20Þ

and we take the s → 0 limit.

a. Evaluation by the Hurwitz zeta function

If a is not an integer, then by a large gauge trans-
formation a can be chosen such that

0 < a < 1: ðA21Þ

In this gauge choice the eta invariant (A20) becomes

ηð−iD1D; sÞ ¼
X∞
n¼0

1

ðnþ aÞs −
X−∞
n¼−1

1

ð−ðnþ aÞÞs

¼ ζðs; aÞ − ζðs; 1 − aÞ; ðA22Þ

where ζðs; aÞ is the Hurwitz zeta function given for
Res > 1 by

ζðs; aÞ ¼
X∞
n¼0

1

ðnþ aÞs : ðA23Þ

ζðs; aÞ for Res ≤ 1 is defined by the analytic continuation
from Res > 1.
It is known that for a > 0 (see for example, Chapter 12

of [48])

ζð0; aÞ ¼ 1

2
− a: ðA24Þ

Since we choose the gauge in which a > 0; 1 − a > 0 we
can apply this equation to (A22) and obtain

ηð−iD1D; 0Þ ¼ 1 − 2a: ðA25Þ
For a generic gauge, the eta invariant is written as

ηð−iD1D; 0Þ ¼ 1 − 2ða − ½a�Þ; a ¼ 1

2π

I
A; ðA26Þ

where ½·� is the Gauss symbol. Notice that ηð−iD1D; 0Þ
is gauge invariant as we expected, although a is not
gauge invariant. In the prescription by APS, the zero
eigenvalue is considered to be positive. Therefore, the
a → 0 limit should be taken from the positive side, leading
to ηð−iD1D; 0Þja→0 → 1.

b. Manifestly gauge invariant calculation

Here we show a more explicit and manifestly gauge
invariant calculation of the eta invariant. We may rewrite
ηð−iD1D; sÞ in the following way:

ηð−iD1D;sÞ¼
X
n∈Z

λn
jλnj1þs

¼ 1

Γðsþ1
2
Þ
Z

∞

0

dtt
s−1
2

X
n∈Z

λne−tλ
2
n

¼ 1

Γðsþ1
2
Þ
Z

∞

0

dtt
s−1
2

X
n∈Z

ðnþaÞ
R

e−tð
nþa
R Þ2 : ðA27Þ

Let ~gðkÞ be

~gðkÞ ≔ ðkþ aÞ
R

e−tð
kþa
R Þ2 ; ðA28Þ

and apply the Poisson resummation formulaX
n∈Z

~gðnÞ ¼
X
n∈Z

2πgð2πnÞ: ðA29Þ
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Here gðxÞ is the Fourier transformation of ~gðkÞ. This gðxÞ is
calculated as

2πgðxÞ ¼
Z

dkeikx ~gðkÞ ¼ R2
ffiffiffi
π

p
2t3=2

ixe−iaxe−
R2x2
4t : ðA30Þ

ThusX
n∈Z

~gðnÞ ¼
X
n∈Z

2πgð2πnÞ

¼
X
n∈Z

R2
ffiffiffi
π

p
2t3=2

2πine−2πinae−
4π2R2n2

4t : ðA31Þ

Substituting this relation to Eq. (A27), we obtain

ηð−iD1D;sÞ¼ 1

Γðsþ1
2
Þ
Z

∞

0

dtt
s−1
2

X
n∈Z

R2
ffiffiffi
π

p
2t3=2

2πine−2πinae−
π2R2n2

t

¼R22π
ffiffiffi
π

p
Γðsþ1

2
Þ
X∞
n¼1

nsinð2πanÞAn; ðA32Þ

where An is defined and calculated as

An ¼
Z

∞

0

dtt
s
2
−2e−

π2R2n2
t ¼ Γ

�
−
s
2
þ 1

�
ðπ2R2n2Þs2−1:

ðA33Þ

Then ηð−iD1D; 0Þ is calculated as

ηð−iD1D; 0Þ ¼ 2

π

X∞
n¼1

sinð2πanÞ
n

¼ 1 − 2ða − ½a�Þ;

ðA34Þ

where the last equality is obtained from the Fourier trans-
formation of the linear function in a range 0 < a < 1 and is
extended to the whole region, using the periodicity in a →
aþ integers. The limit where a goes to an integer should be
taken from the positive side. This result is the same as
Eq. (A26) as expected.
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