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Effective potential in massless theories
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The effective potential V is a massless self-coupled scalar theory, and massless scalar electrodynamics is

considered. Both the MS and Coleman-Weinberg renormalization schemes are examined. The renorma-
lization scheme dependence of V is determined. Upon summing all of the logarithmic contributions to V/, it
is shown that the implicit and explicit dependence on the renormalization scale u cancels. In addition, if
there is spontaneous symmetry breaking, then the dependence on the background field @ cancels, leaving V
flat but with nonperturbative contributions. The quartic scalar coupling in the Coleman-Weinberg

renormalization scheme consequently vanishes.
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I. INTRODUCTION

The nontrivial ground state of the scalar Higgs field is
responsible for the mass of the weak vector Bosons as well
as the fermions (though the Stueckelberg mechanism for
mass generation could in principle be operative with any
U(1) vector Boson [1,2]). This was first noticed at the
classical level [3—5], but the possibility of the ground state
also being affected by quantum effects was later considered
[6-9].

There being inherent ambiguities in any perturbative
calculation of loop effects in quantum field theory, one is
led to the renormalization group (RG) equations [10-12].
These lead to the possibility of summing those parts of
higher loop effects involving logarithms of the renormali-
zation mass scale p [13-14]. Indeed, it has also proven
possible to sum all of these logarithmic contributions to the
effective potential V so that V is determined by the log-
independent contributions and the RG functions. When this
summation is combined with the condition that V has a
minimum at some nonvanishing value » of the scalar field
¢, it has been shown that V in fact must be independent of
¢; this occurs in a simple self-interacting scalar model,
scalar electrodynamics in Refs. [15,16], a massive self-
interacting model [17], and a massive model which
involves interactions between the scalar and other fields
[18]. This result is consistent with the general result that V
must be convex [19-21], a condition not satisfied by the
classical “Mexican hat” potential.

It has also been shown that, when computing loop
contributions to a variety of processes [22-24], the sum-
mation of all logarithmic contributions by use of the RG
equation leads to full cancellation of y dependence between
the implicit and explicit dependence on p. In addition, the
RG equations that follow from ambiguities arising when
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one uses a mass-independent renormalization scheme (RS)
make it possible to find a RS in which either the loop effects
are absorbed into the RG functions or the RG functions
themselves only receive a finite number of contributions.

In this paper, we first use the RG equation to sum all
logarithmic corrections to V when there is only a massless
scalar field with a quartic coupling. This leaves us with V
being expressed in terms of the log-independent contribu-
tions and free of any dependence on the renormalization
scale u. The RS dependence of V is then considered, so that
V can be expressed in terms of the coefficients of the RG
function (which characterize the RS [25,26]) and a set of
RS invariants. Upon requiring that V be at an extremum
when the scalar field has a value », we find that if v # 0
then V is independent of the scalar field (i.e., it is “flat”).
This is consistent with the theorem that V must be convex
[19-21]. A flat potential implies that the renormalized
quartic coupling, when it is defined using Coleman-
Weinberg (CW) renormalization [6], vanishes. We also
find that V contains nonperturbative contributions.

A similar analysis is applied to massless scalar
electrodynamics.

II. RENORMALIZATION GROUP SUMMATION IN
THE MASSLESS SCALAR MODEL

If one uses the MS RS in a model with the classical
action

L= 307~ 10" (n

N =

then the effective potential has the form

Vo) = 33 Tt L, (2)

n=0 m=0
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where L = In(A¢?/u?) with ¢ being a constant background
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field and u being the renormalization mass scale. Since y is 7= m . (8b)
unphysical, V satisfies the RG equation
o o If now
(15 PO g+ PrO) )V =0 ()
y(x) fx
A,(A)=exp-2 d —+ dx————|B,(4),
where - P [/ * p(x) [) xbxz(l +cx)] @
" )
B(A) :ﬂzﬁ: —b2*(1 4+ cAd+c 22 +-++)  (4a)
H then by Eq. (7),
2 742
u-deg
() =%5—=fA01+ g1+ ). 4b 1, .0
W= grage =AU rods @0 B,(1) = B B, (2. (10)
n 0
If we write Eq. (2) in the form ) . . o
(The second integral in Eq. (9) is an infinite constant
o) designed to ensure that the argument of the exponential is
V=> A,()L"¢*", (5)  finite [25]). If 5 satisfies
n=0
where dl B( ), (11)
A,(4) = Z Ty, (6)  then Eq. (10) becomes
k=0
L 1d
then Eq. (3) implies that B,(A(n)) = = a1 (A(n)), (12)
ndn
1[~, .0
A, (4) =~ :B (M) 5; BN +27(4) | A1 (A), (7) which upon iteration leads to
where 1 d"
B(0) = 1 Bo(al). (13)
5 p
p= (8a)
1=p/A—y We thus see that, together, Eqgs. (5), (9), and (13) lead to
|
— Aoyl o fx L d
V= 4 -2 dx dx—5———| ——By(4
20w [/ ot ey cx)] ka0
poor() / ®° fx }
=By(An+L))¢p*e —Z/d A A e et | 14
o+ ptexn=2| [Maxi e [T I (14)
|
Equations (8a) and (11) show that and as
i1 = _ 2
11+L:/dx ﬂ(xﬂ)(/x); 7o) | <¢>+K (15) 1 dg*  y(A) -
' g »dr pay

where K is a constant of integration chosen so that 7 is
finite.
We also know from Eqgs. (4a) and (4b) that [25]

2 A1) 1 o 1

H A2
Inl = | = dx—— dx————, (16
“<A2> /o xﬁ(xﬁl e O

we also have

- ) y(x) e fx
g{)z—(l)zexp[A dx'@—kl dxbxz(l—l—cx)]' (18)
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In Eqgs. (16) and (18), A2 and ®? are constants that arise in ~ In Eq. (20), all explicit dependence on u? has disappeared;

the course of integrating Egs. (4a) and (17). the RG summation of Eq. (14) has resulted in a cancellation

Together, Egs. (16) and (18) reduce Eq. (15) to between the explicit dependence of V on u (through L) and
its implicit dependence on u (through A and ¢?).

2 2 2

U (O]
n+L=In ( Az) +1n <;) =In (p) (19) III. RENORMALIZATION SCHEME
DEPENDENCE IN THE MASSLESS

SCALAR MODEL
up to an additive constant that can be absorbed into

®?/A?. Using Egs. (9), (18), and (19), we can reduce Under the finite renormalizations
Eq. (14) to A= 21+ x,2 + x4 ) (21a)
2 Al ‘D_z) H2 — 42 2 e
= wn(1(n ) oo [ 1) Pogewienpe, O
X
- 0 it follows that in Eqgs. (4a) and (4b) b, c, and f are unaltered
+ / dx#]. (20)  and that the RS can be characterized by c,(n >2) and
0 bx*(1 + cx) gn(n > 1) [27]. Furthermore, it can be shown that [24-26]
|
di
dc B;(A,¢) = —bp /1)/ dxﬂ2
/11+l _ 2Ne — 3 2 2 _ 32 3
<2 w a4 (i? - 3i + ).C-F(.l +3i)c, 2. (22a)
i—1 i (i+1)i
dA
—_ = 22b
a7, (22b)
Ldg* . 1) p / booxPy(x)
— 1) = +b [ dx
p e, T T BT AT
foil -1 ¢ 91
~L i 2 - At 22
o G- i ) Tarna-n)t T (22¢)
1 d¢? N M| c cy—
— =TY() = d A — A /12 .. 22d
#ag W fA O AT YA +z (224)

From Eq. (22), it follows that A% in Eq. (16) and ®? in Eq. (18) are RS invariants under the transformations of Eq. (21).
We now use Eq. (6) to write Eq. (20) as

V:<I>4<§Tn/l”“>exp2[£idngg+lwdxbﬁ({:cﬂ], (23)

where T,o =T, and 1 = A(In %) As V is RS independent, we then have

dv 0 0

de; <8c +B()8ﬂ>v 0
_ por) [ . "
_<I)4exp2[A dxm—l—A dx 1+CX}Z{80,1+1

)
QO e (CI YA) it 4 0
+2z% =y T, "'+ T,B; w(ﬂ(ﬂ)ﬂ +(n+1) )] (24)

Upon using the expansions of Eq. (22a) and (22c), Eq. (24) leads to
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T
gc? =0, (25a)
T
% =0, (25b)
oT .
80-2 + <—£ + 1) TS = 0, (25¢)
etc.
Similarly, we find that
av_ov
dg; B 9g; B
Aoor(x) 0 fx
= @t 2/d L+/ dﬂ—}
o [ o) o eI+ o)
i+1
XZ{a +2/ fx n]wl (26)
9;
from which follows
aT
a_g(.) =0, (27a)
T, 2
89? %TO(S’ =0, (27b)
orT . .
agé - % [Tob, + (2T, — cTy)5] =0,  (27¢)

etc.
If we integrate Egs. (25) and (27) we find that

T() =170, (283)
2
Ty =1+ 7]070917 (28b)
f
T2:1'2+ (E—l C2
2
+£ [Togz + (27) = c79) g1 + %Togﬂ . (28¢)

etc.

In Eq. (28), 7,, is a constant of integration and hence is a
RS invariant, found by computing T...T,, g;..-9,, C2-..C,,
in some RS and then solving Eq. (28) for z...7,. One could
now choose c;, g; so that either g; = ¢; = 0, or alterna-
tively, so that 7, = 0 (n > 1).

IV. USING THE COLEMAN-WEINBERG
RENORMALIZATION SCHEME

When computing V, it is often convenient to use the CW
RS [6]. For the model of Eq. (1), this means that the
renormalized coupling A is defined by

PHYSICAL REVIEW D 96, 125002 (2017)

a*v
A= — . 29
<d¢4) d=pcw ( )

This condition cannot be satisfied by starting with the MS
RS and making the transformation of Eq. (21).
In the CW scheme,

V )uCW Z Z Tn m’1n+1Lm¢4 (30)
n=0 m=
where now
¢2
- (31)
(6\

in place of Eq. (2). It was noted in Ref. [28] that, together,
Egs. (2) and (31) provide the relation

Hew = 1/, (32)
and hence if
di
Pew(A) = ﬂ%w —d/A% " (33a)
2 2
Hew Ao
Yew(d) = — , 33b
CW( ) ¢2 d/"%w ( )
we find that [28]
B
= 4
Pew 1= p/a (34a)
14
L - 4

where in the CW RS V now satisfies the RG equation

0 0
2 —— A)— 2 V=0. (35
<'ucw(9pt2cw+ﬂCW( )8/1+¢ Yew(4 )8¢2> (35)
Together, Eqs. (29) and (35) can be used to express V

entirely in terms of fcw and ycow [29].
Much like with Eq. (5), we can make the expansion

v=> 4,0l (36)
n=0
using the functions

A Pew
= 37a
o = oo (37)
Fow = o, (370)

—Ycw

we can show that
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= &)4A0(i)exp2[lidx’%+ Aw%}
(38)

where 1 = /Iln(%). In analogy with Egs. (16) and (18),
we have

2 2 1
m(Hv) = ["q4
n( A? ) /0 ¥ Bew (%) "

% 1
d.
A xbcwx2(1 + cowx)
(39a)

/ dx Sewx
0 bewx*(1+ cowx)

(39b)

vl g

with 1= A(Inp2y/A?). [Recall that by Eq. (34),

vew/Pew = v/PB]. In Eq. (38), as in Eq. (20), all depend-
ence on the unphysical renormalization scale parameter

&y has canceled.

V. EXTREMIZING V

Having found an expression for V in the MS and CW RS
that depends only on the log-independent contributions to
V and is independent of the unphysical renormalization
scale parameter, we now will impose the condition that
V(@) has an extremum. From Eq. (20), it follows that in the
MS scheme

02V~ 201+ 7 (W)Ao(h) + BDAYA)

4dd?
fx
XCXPZU dx—x+/0 dx m}
(40)

where 4 = A(In %) If this were to vanish at @ = @, then it
follows that either

@, =0, (41)

in which case there
breaking, or

is no spontaneous symmetry

1 +y(xA)

a0 + 2

)Aow —0 @)

when 4 = /l(ln ) This value of 4 is not fixed, and so Ay(4)

must satisfy the differential equation of Eq. (42), which
leads to
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1+y(x) 00 1+ fx
Aold)=exp- 2[/0 P +/0 Doy X

(43)

where K is a suitably chosen constant of integration.
Together, Egs. (20), (43), and (16) result in

(I)2
V = ®*exp {—21n (/\2)} e = Ate2K. (44)

We note that, if in Eq. (43) we use the RS in
which ¢;=0(i>2), ¢ =0(i>1), then Ay(4) =

exp(73)[(74 /1)2(/[ C)], indicating that there is a nonperturba-
tive contribution to V. Similarly, in the CW RS, it follows

from Eq. (38) that

V = Ate 2K, (45)

We find that V, if it is to have a nonvanishing extremum, is
independent of ¢—it is flat. This is consistent with the
requirement that V be convex [19-21] and with previously
derived results [15-18].

Together, Eqgs. (45) and (29) show that in the CW scheme
V being flat means that 1 vanishes; it is a “trivial” theory
[30]. However, the expectation value of @ is nonzero; but
this expectation value cannot be obtained by locating a
local minimum of V. This expectation value can be
responsible for mass generation of vector and spinor fields
if ¢ were to couple to them. It is also possible that nontrivial
contributions to the effective action involving the gradient
of ¢ can be radiatively generated.

VI. COUPLING ¢ TO A VECTOR FIELD

To illustrate how the above discussion can be extended to
models in which a scalar field is coupled to other fields, we
will examine scalar electrodynamics with the action

L= (D, + ieA,)p (0¥ + ieA,)d

1A —OAR PP (46)
Again, we will only consider the conformal limit in which
there is no bare mass term for the scalar field in the classical
Lagrangian. The nonconformal case has been considered in
Refs. [17,18].

There are now two couplings, A and a = e?/4x, and
these have dependence on the RG scale parameter ;4 when

working in the MS RS,

dj

e i =pi(4a) (47a)
d

o :‘ = Bu(2a) (47b)
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with ¢? satisfying

d¢?

= (48)

I’ $*r(2, ).

As V is independent of u, we have

0 )V(l, a, ¢, u?) = 0.

0 0 0
2_Y I - 2,
</’£ aﬂg"’ﬂlaﬂ"i_ﬁaaa_'—qﬁ 7/8452

(49)
When using MS, two types of logarithmic corrections to V

can arise, one being ln(%z) and the other being ln("”i;z),

where ¢ is taken to be real.
Following Ref. [31], we can write

2 p) 2
() 4(2) (%)
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so that V has explicit dependence on u> only through
L= ln(’%z). We then can write

[Se]

V=> A,(ka)L"¢*,

n=0

(51)

much like Eq. (5). (Other ways of treating these two
logarithms appear in Refs. [18,29]).

We now can treat the dependence of « on p as being an
implicit dependence through its dependence on A(u). From
Eqgs. (47a) and (47b) we know that a(4) is determined by

da(A(p)) _ Ba(A(u), a(A(w)))
di(w) 52)

so that

The RG equation of Eq. (47) hence can be written

d

(u2i+m<ﬂ<u>,a<a<u>>>—+

o’ da(p)
V(A(u), a(A(w)), ¢* (1), u*) =0

with the function a(4(x)) satisfying Eq. (52).
The deviation of Eq. (20) can be generalized so that
we find

V = ®*Ay(4, a(l)) eXPZ[ /1: dx%} >

with 2 = A(In %), where now

W\ A dx
n(f) = L ey G
and
s rexp [ g A
#=arep [T RO o)

In Egs. (55) and (56), K, and K4 are positive constants
that ensure convergence of the integrals in which they

) Ft).a(u) (53)
2 a 9
P00, i) o)
(54)

|
appear. A shift in their value can be absorbed into A and ®.
Integrals involving f, b, ¢ were used to this end in
Egs. (16), (18), and (20), but when there is more than
one coupling, only the one loop contributions to the RG
functions are RS invariant when using a mass-independent
RS [32,33], and so this approach cannot be generalized, and
we employ K, and K.

It is easy to see now from Eq. (55) that V has an
extremum if ® = @ if either

(I)O - 0, (57)

as in Eq. (41), or

1+ y(4, a(l))

(2, a(2)) )Ao(ﬂ’“(@)zo, (58)

%Ao(ﬂ,a(l)) + 2(

where 4 = A(In %ﬁ) It then again follows that V must be
proportional to the scale parameter A? as in Eq. (33).
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VII. DISCUSSION

In this paper, we have discussed the use of RG
summation of logarithmic contributions to the effective
potential V using RG summation and shown how this leads
to cancellation between the implicit and explicit depend-
ence on the renormalization scale parameter u. This was
done in a conformal model with just a quartic scalar
coupling and conformal scalar electrodynamics. In the
former model, RS dependence within mass-independent
RSs and the CW RS were also considered. In both models,
it was shown that V has an extremum if either there is no
spontaneous symmetry breaking or it is constant. This

PHYSICAL REVIEW D 96, 125002 (2017)

result follows from examining the RG summed form of V.
The cosmological consequences are worth examining [34].

We would like to extend the approach used here to
models which are nonconformal, involve the Stueckelberg
mechanism [1,2], or in which there are several scalar fields.
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