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The effective potential V is a massless self-coupled scalar theory, and massless scalar electrodynamics is
considered. Both the MS and Coleman-Weinberg renormalization schemes are examined. The renorma-
lization scheme dependence of V is determined. Upon summing all of the logarithmic contributions to V, it
is shown that the implicit and explicit dependence on the renormalization scale μ cancels. In addition, if
there is spontaneous symmetry breaking, then the dependence on the background fieldΦ cancels, leaving V
flat but with nonperturbative contributions. The quartic scalar coupling in the Coleman-Weinberg
renormalization scheme consequently vanishes.
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I. INTRODUCTION

The nontrivial ground state of the scalar Higgs field is
responsible for the mass of the weak vector Bosons as well
as the fermions (though the Stueckelberg mechanism for
mass generation could in principle be operative with any
Uð1Þ vector Boson [1,2]). This was first noticed at the
classical level [3–5], but the possibility of the ground state
also being affected by quantum effects was later considered
[6–9].
There being inherent ambiguities in any perturbative

calculation of loop effects in quantum field theory, one is
led to the renormalization group (RG) equations [10–12].
These lead to the possibility of summing those parts of
higher loop effects involving logarithms of the renormali-
zation mass scale μ [13–14]. Indeed, it has also proven
possible to sum all of these logarithmic contributions to the
effective potential V so that V is determined by the log-
independent contributions and the RG functions. When this
summation is combined with the condition that V has a
minimum at some nonvanishing value v of the scalar field
ϕ, it has been shown that V in fact must be independent of
ϕ; this occurs in a simple self-interacting scalar model,
scalar electrodynamics in Refs. [15,16], a massive self-
interacting model [17], and a massive model which
involves interactions between the scalar and other fields
[18]. This result is consistent with the general result that V
must be convex [19–21], a condition not satisfied by the
classical “Mexican hat” potential.
It has also been shown that, when computing loop

contributions to a variety of processes [22–24], the sum-
mation of all logarithmic contributions by use of the RG
equation leads to full cancellation of μ dependence between
the implicit and explicit dependence on μ. In addition, the
RG equations that follow from ambiguities arising when

one uses a mass-independent renormalization scheme (RS)
make it possible to find a RS in which either the loop effects
are absorbed into the RG functions or the RG functions
themselves only receive a finite number of contributions.
In this paper, we first use the RG equation to sum all

logarithmic corrections to V when there is only a massless
scalar field with a quartic coupling. This leaves us with V
being expressed in terms of the log-independent contribu-
tions and free of any dependence on the renormalization
scale μ. The RS dependence of V is then considered, so that
V can be expressed in terms of the coefficients of the RG
function (which characterize the RS [25,26]) and a set of
RS invariants. Upon requiring that V be at an extremum
when the scalar field has a value v, we find that if v ≠ 0
then V is independent of the scalar field (i.e., it is “flat”).
This is consistent with the theorem that V must be convex
[19–21]. A flat potential implies that the renormalized
quartic coupling, when it is defined using Coleman-
Weinberg (CW) renormalization [6], vanishes. We also
find that V contains nonperturbative contributions.
A similar analysis is applied to massless scalar

electrodynamics.

II. RENORMALIZATION GROUP SUMMATION IN
THE MASSLESS SCALAR MODEL

If one uses the MS RS in a model with the classical
action

L ¼ 1

2
ð∂μϕÞ2 −

λ

4!
ϕ4; ð1Þ

then the effective potential has the form

Vðλ;ϕ; μÞ ¼
X∞
n¼0

Xn
m¼0

Tn;mλ
nþ1Lmϕ4; ð2Þ
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where L ¼ lnðλϕ2=μ2Þwith ϕ being a constant background
field and μ being the renormalization mass scale. Since μ is
unphysical, V satisfies the RG equation

�
μ2

∂
∂μ2 þ βðλÞ ∂

∂λþ ϕ2γðλÞ ∂
∂ϕ2

�
V ¼ 0; ð3Þ

where

βðλÞ ¼ μ2
dλ
dμ2

¼ −bλ2ð1þ cλþ c2λ2 þ � � �Þ ð4aÞ

γðλÞ ¼ μ2

ϕ2

dϕ2

dμ2
¼ fλð1þ g1λþ � � �Þ: ð4bÞ

If we write Eq. (2) in the form

V ¼
X∞
n¼0

AnðλÞLnϕ4; ð5Þ

where

AnðλÞ ¼
X∞
k¼0

Tnþk;nλ
nþkþ1; ð6Þ

then Eq. (3) implies that

AnðλÞ ¼
1

n

�
β̂ðλÞ ∂

∂λþ 2γ̂ðλÞ
�
An−1ðλÞ; ð7Þ

where

β̂ ¼ β

1 − β=λ − γ
ð8aÞ

γ̂ ¼ γ

1 − β=λ − γ
: ð8bÞ

If now

AnðλÞ≡ exp−2
�Z

λ

0

dx
γðxÞ
βðxÞþ

Z
∞

0

dx
fx

bx2ð1þ cxÞ
�
BnðλÞ;

ð9Þ

then by Eq. (7),

BnðλÞ ¼
1

n
β̂ðλÞ ∂

∂λBn−1ðλÞ: ð10Þ

(The second integral in Eq. (9) is an infinite constant
designed to ensure that the argument of the exponential is
finite [25]). If η satisfies

dλ
dη

¼ β̂ðλÞ; ð11Þ

then Eq. (10) becomes

BnðλðηÞÞ ¼
1

n
d
dη

Bn−1ðλðηÞÞ; ð12Þ

which upon iteration leads to

BnðλðηÞÞ ¼
1

n!
dn

dηn
B0ðλðηÞÞ: ð13Þ

We thus see that, together, Eqs. (5), (9), and (13) lead to

V ¼
X∞
n¼0

ϕ4 exp−2
�Z

λ

0

dx
γðxÞ
βðxÞ þ

Z
∞

0

dx
fx

bx2ð1þ cxÞ
�
Ln

n!
dn

dηn
B0ðλðηÞÞ

¼ B0ðλðηþ LÞÞϕ4 exp−2
�Z

λ

0

dx
γðxÞ
βðxÞ þ

Z
∞

0

dx
fx

bx2ð1þ cxÞ
�
: ð14Þ

Equations (8a) and (11) show that

ηþ L ¼
Z

λ

0

dx
1 − βðxÞ=x − γðxÞ

βðxÞ þ ln

�
λϕ2

μ2

�
þ K; ð15Þ

where K is a constant of integration chosen so that η is
finite.
We also know from Eqs. (4a) and (4b) that [25]

ln

�
μ2

Λ2

�
¼

Z
λðlnμ2

Λ2
Þ

0

dx
1

βðxÞ þ
Z

∞

0

dx
1

bx2ð1þ cxÞ ; ð16Þ

and as

1

ϕ2

dϕ2

dλ
¼ γðλÞ

βðλÞ ; ð17Þ

we also have

ϕ2¼Φ2exp

�Z
λðlnμ2

Λ2
Þ

0

dx
γðxÞ
βðxÞþ

Z
∞

0

dx
fx

bx2ð1þcxÞ
�
: ð18Þ
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In Eqs. (16) and (18), Λ2 and Φ2 are constants that arise in
the course of integrating Eqs. (4a) and (17).
Together, Eqs. (16) and (18) reduce Eq. (15) to

ηþ L ¼ ln

�
μ2

Λ2

�
þ ln

�
Φ2

μ2

�
¼ ln

�
Φ2

Λ2

�
ð19Þ

up to an additive constant that can be absorbed into
Φ2=Λ2. Using Eqs. (9), (18), and (19), we can reduce
Eq. (14) to

V ¼ Φ4A0

�
λ

�
ln
Φ2

Λ2

��
exp 2

�Z
λðlnΦ2

Λ2
Þ

0

dx
γðxÞ
βðxÞ

þ
Z

∞

0

dx
fx

bx2ð1þ cxÞ
�
: ð20Þ

In Eq. (20), all explicit dependence on μ2 has disappeared;
the RG summation of Eq. (14) has resulted in a cancellation
between the explicit dependence of V on μ (through L) and
its implicit dependence on μ (through λ and ϕ2).

III. RENORMALIZATION SCHEME
DEPENDENCE IN THE MASSLESS

SCALAR MODEL

Under the finite renormalizations

λ̄ ¼ λð1þ x1λþ x2λ2 þ � � �Þ ð21aÞ
ϕ̄2 ¼ ϕ2ð1þ y1λþ y2λ2 þ � � �Þ; ð21bÞ

it follows that in Eqs. (4a) and (4b) b, c, and f are unaltered
and that the RS can be characterized by cnðn ≥ 2Þ and
gnðn ≥ 1Þ [27]. Furthermore, it can be shown that [24–26]

dλ
dci

¼ Biðλ; ckÞ ¼ −bβðλÞ
Z

λ

0

dx
xiþ2

β2ðxÞ

≈
λiþ1

i − 1

�
1þ

�ð−iþ 2Þc
i

�
λþ

�ði2 − 3iþ 2Þc2 þ ð−i2 þ 3iÞc2
ðiþ 1Þi

�
λ2 þ � � �

�
ð22aÞ

dλ
dgi

¼ 0 ð22bÞ

1

ϕ2

dϕ2

dci
¼ Γc

i ðλÞ ¼
γðλÞ
βðλÞBiðλÞ þ b

Z
λ

0

dx
xiþ2γðxÞ
β2ðxÞ

≈
f
b
λi
�

−1
iði − 1Þ þ 2

�
c

iðiþ 1Þ −
g1

ðiþ 1Þði − 1Þ
�
λþ � � �

�
ð22cÞ

1

ϕ2

dϕ2

dgi
¼ Γg

i ðλÞ ¼ f
Z

λ

0

dx
xiþ1

βðxÞ ≈
f
b
λi
�
−1
i
þ
�

c
iþ 1

�
λþ

�
c2 − c2

iþ 2

�
λ2 þ � � �

�
: ð22dÞ

From Eq. (22), it follows that Λ2 in Eq. (16) and Φ2 in Eq. (18) are RS invariants under the transformations of Eq. (21).
We now use Eq. (6) to write Eq. (20) as

V ¼ Φ4

�X∞
n¼0

Tnλ
nþ1

�
exp 2

�Z
λ

0

dx
γðxÞ
βðxÞ þ

Z
∞

0

dx
fx

bx2ð1þ cxÞ
�
; ð23Þ

where Tn;0 ≡ Tn and λ ¼ λðln Φ2

Λ2Þ. As V is RS independent, we then have

dV
dci

¼
� ∂
∂ci þ BiðλÞ

∂
∂λ

�
V ¼ 0

¼ Φ4 exp 2

�Z
λ

0

dx
γðxÞ
βðxÞ þ

Z
∞

0

dx
fx

bx2ð1þ cxÞ
�X∞

n¼0

�∂Tn

∂ci λ
nþ1

þ 2b
Z

λ

0

dx
xiþ2γðxÞ
β2ðxÞ Tnλ

nþ1 þ TnBiðλÞ
�
2γðλÞ
βðλÞ λnþ1 þ ðnþ 1Þλn

��
: ð24Þ

Upon using the expansions of Eq. (22a) and (22c), Eq. (24) leads to
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∂T0

∂ci ¼ 0; ð25aÞ

∂T1

∂ci ¼ 0; ð25bÞ

∂T2

∂ci þ
�
−
f
b
þ 1

�
T0δ

i
2 ¼ 0; ð25cÞ

etc.
Similarly, we find that

dV
dgi

¼ ∂V
∂gi ¼ 0

¼ Φ4 exp 2

�Z
λ

0

dx
γðxÞ
βðxÞ þ

Z
∞

0

dλ
fx

bx2ð1þ cxÞ
�

×
X∞
n¼0

�∂Tn

∂gi þ 2

Z
λ

0

dx
fxiþ1

βðxÞ Tn

�
λnþ1; ð26Þ

from which follows

∂T0

∂gi ¼ 0; ð27aÞ

∂T1

∂gi −
2f
b
T0δ

i
1 ¼ 0; ð27bÞ

∂T2

∂gi −
f
b
½T0δ

i
2 þ ð2T1 − cT0Þδi1� ¼ 0; ð27cÞ

etc.
If we integrate Eqs. (25) and (27) we find that

T0 ¼ τ0; ð28aÞ

T1 ¼ τ1 þ
2f
b
τ0g1; ð28bÞ

T2 ¼ τ2 þ
�
f
b
− 1

�
c2

þ f
b

�
τ0g2 þ ð2τ1 − cτ0Þg1 þ

2f
b
τ0g21

�
; ð28cÞ

etc.
In Eq. (28), τn is a constant of integration and hence is a

RS invariant, found by computing T0…Tn, g1…gn, c2…cn
in some RS and then solving Eq. (28) for τ0…τn. One could
now choose ci, gi so that either gi ¼ ci ¼ 0, or alterna-
tively, so that Tn ¼ 0 ðn ≥ 1Þ.

IV. USING THE COLEMAN-WEINBERG
RENORMALIZATION SCHEME

When computing V, it is often convenient to use the CW
RS [6]. For the model of Eq. (1), this means that the
renormalized coupling λ is defined by

λ ¼
�
d4V
dϕ4

�
ϕ¼μCW

: ð29Þ

This condition cannot be satisfied by starting with the MS
RS and making the transformation of Eq. (21).
In the CW scheme,

Vðλ;ϕ2; μ2CWÞ ¼
X∞
n¼0

Xn
m¼0

T̄n;mλ
nþ1L̄mϕ4; ð30Þ

where now

L̄ ¼ ln

�
ϕ2

μ2CW

�
ð31Þ

in place of Eq. (2). It was noted in Ref. [28] that, together,
Eqs. (2) and (31) provide the relation

μ2CW ¼ μ2=λ; ð32Þ
and hence if

βCWðλÞ ¼ μ2CW
dλ

dμ2CW
ð33aÞ

γCWðλÞ ¼
μ2CW
ϕ2

dϕ2

dμ2CW
; ð33bÞ

we find that [28]

βCW ¼ β

1 − β=λ
ð34aÞ

γCW ¼ γ

1 − β=λ
; ð34bÞ

where in the CW RS V now satisfies the RG equation

�
μ2CW

∂
∂μ2CW þ βCWðλÞ

∂
∂λþ ϕ2γCWðλÞ

∂
∂ϕ2

�
V ¼ 0: ð35Þ

Together, Eqs. (29) and (35) can be used to express V
entirely in terms of βCW and γCW [29].
Much like with Eq. (5), we can make the expansion

V ¼
X∞
n¼0

ĀnðλÞL̄nϕ4; ð36Þ

using the functions

β̂CW ¼ βCW
1 − γCW

ð37aÞ

γ̂CW ¼ γCW
1 − γCW

; ð37bÞ

we can show that
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V ¼ Φ̄4Ā0ðλÞ exp 2
�Z

λ

0

dx
γðxÞ
βðxÞ þ

Z
∞

0

dxfx
bx2ð1þ cxÞ

�
;

ð38Þ

where λ ¼ λ lnðΦ̄2

Λ̄2Þ. In analogy with Eqs. (16) and (18),
we have

ln

�
μ2CW
Λ̄2

�
¼

Z
λ

0

dx
1

βCWðxÞ
þ
Z

∞

0

dx
1

bCWx2ð1þ cCWxÞ
ð39aÞ

ϕ2 ¼ Φ̄2 exp

�Z
λ

0

dx
γðxÞ
βðxÞ þ

Z
∞

0

dx
fCWx

bCWx2ð1þ cCWxÞ
�

ð39bÞ

with λ ¼ λðln μ2CW=Λ̄2Þ. [Recall that by Eq. (34),
γCW=βCW ¼ γ=β]. In Eq. (38), as in Eq. (20), all depend-
ence on the unphysical renormalization scale parameter
μ2CW has canceled.

V. EXTREMIZING V

Having found an expression for V in the MS and CW RS
that depends only on the log-independent contributions to
V and is independent of the unphysical renormalization
scale parameter, we now will impose the condition that
VðΦÞ has an extremum. From Eq. (20), it follows that in the
MS scheme

Φ2
dV
dΦ2

¼ Φ4½2½1þ γðλÞ�A0ðλÞ þ βðλÞA0
0ðλÞ�

× exp 2

�Z
λ

0

dx
γðxÞ
βðxÞ þ

Z
∞

0

dx
fx

bx2ð1þ cxÞ
�
;

ð40Þ

where λ ¼ λðln Φ2

Λ2Þ. If this were to vanish atΦ ¼ Φ0, then it
follows that either

Φ0 ¼ 0; ð41Þ

in which case there is no spontaneous symmetry
breaking, or

A0
0ðλÞ þ 2

�
1þ γðxλÞ

βðλÞ
�
A0ðλÞ ¼ 0 ð42Þ

when λ ¼ λðln Φ2
0

Λ2Þ. This value of λ is not fixed, and so A0ðλÞ
must satisfy the differential equation of Eq. (42), which
leads to

A0ðλÞ¼exp−2
�Z

λ

0

dx
1þγðxÞ
βðxÞ þ

Z
∞

0

dx
1þfx

bx2ð1þcxÞþK

�
;

ð43Þ

where K is a suitably chosen constant of integration.
Together, Eqs. (20), (43), and (16) result in

V ¼ Φ4 exp

�
−2 ln

�
Φ2

Λ2

��
e−2K ¼ Λ4e−2K: ð44Þ

We note that, if in Eq. (43) we use the RS in
which ci ¼ 0ði ≥ 2Þ, gi ¼ 0ði ≥ 1Þ, then A0ðλÞ ¼
expð−2bλÞ½ð cλ

1þcλÞ
2ðf−cÞ

b �, indicating that there is a nonperturba-
tive contribution to V. Similarly, in the CW RS, it follows
from Eq. (38) that

V ¼ Λ̄4e−2K̄: ð45Þ
We find that V, if it is to have a nonvanishing extremum, is
independent of ϕ—it is flat. This is consistent with the
requirement that V be convex [19–21] and with previously
derived results [15–18].
Together, Eqs. (45) and (29) show that in the CW scheme

V being flat means that λ vanishes; it is a “trivial” theory
[30]. However, the expectation value of Φ is nonzero; but
this expectation value cannot be obtained by locating a
local minimum of V. This expectation value can be
responsible for mass generation of vector and spinor fields
if ϕwere to couple to them. It is also possible that nontrivial
contributions to the effective action involving the gradient
of ϕ can be radiatively generated.

VI. COUPLING ϕ TO A VECTOR FIELD

To illustrate how the above discussion can be extended to
models in which a scalar field is coupled to other fields, we
will examine scalar electrodynamics with the action

L ¼ ð∂μ þ ieAμÞϕ�ð∂μ þ ieAμÞϕ

−
1

4
ð∂μAν − ∂νAμÞ2 − λðϕ�ϕÞ2: ð46Þ

Again, we will only consider the conformal limit in which
there is no bare mass term for the scalar field in the classical
Lagrangian. The nonconformal case has been considered in
Refs. [17,18].
There are now two couplings, λ and α ¼ e2=4π, and

these have dependence on the RG scale parameter μ when
working in the MS RS,

μ2
dλ
dμ2

¼ βλðλ; αÞ ð47aÞ

μ2
dα
dμ2

¼ βαðλ; αÞ ð47bÞ
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with ϕ2 satisfying

μ2
dϕ2

dμ2
¼ ϕ2γðλ; αÞ: ð48Þ

As V is independent of μ, we have

�
μ2

∂
∂μ2 þ βλ

∂
∂λþ βα

∂
∂αþ ϕ2γ

∂
∂ϕ2

�
Vðλ; α;ϕ2; μ2Þ ¼ 0:

ð49Þ

When using MS, two types of logarithmic corrections to V

can arise, one being lnðλϕ2

μ2
Þ and the other being lnðαϕ2

μ2
Þ,

where ϕ is taken to be real.
Following Ref. [31], we can write

ln

�
αϕ2

μ2

�
¼ ln

�
α

λ

�
þ ln

�
λϕ2

μ2

�
ð50Þ

so that V has explicit dependence on μ2 only through

L ¼ lnðλϕ2

μ2
Þ. We then can write

V ¼
X∞
n¼0

Anðλ; αÞLnϕ4; ð51Þ

much like Eq. (5). (Other ways of treating these two
logarithms appear in Refs. [18,29]).
We now can treat the dependence of α on μ as being an

implicit dependence through its dependence on λðμÞ. From
Eqs. (47a) and (47b) we know that αðλÞ is determined by

dαðλðμÞÞ
dλðμÞ ¼ βαðλðμÞ; αðλðμÞÞÞ

βλðλðμÞ; αðλðμÞÞÞ
ð52Þ

so that

βλðλðμÞ; αðμÞÞ
d

dλðμÞFðλðμÞ; αðλðμÞÞÞ

¼ βλðλðμÞ; αðμÞÞ
� ∂
∂λðμÞ þ

dαðλðμÞÞ
dλðμÞ

∂
∂αðλðμÞÞ

�
FðλðμÞ; αðλðμÞÞÞ

¼
�
βλðλðμÞ;αðμÞÞ

∂
∂λðμÞ þ βαðλðμÞ; αðμÞÞ

∂
∂αðμÞ

�
FðλðμÞ; αðμÞÞ: ð53Þ

The RG equation of Eq. (47) hence can be written

�
μ2

∂
∂μ2 þ βλðλðμÞ; αðλðμÞÞÞ

d
dλðμÞ þ ϕ2ðμÞγðλðμÞ; αðλðμÞÞÞ ∂

∂ϕ2ðμÞ
�

VðλðμÞ; αðλðμÞÞ;ϕ2ðμÞ; μ2Þ ¼ 0 ð54Þ

with the function αðλðμÞÞ satisfying Eq. (52).
The deviation of Eq. (20) can be generalized so that

we find

V ¼ Φ4A0ðλ; αðλÞÞ exp 2
�Z

λ

KΦ

dx
γðx; αðxÞÞ
βλðx; αðxÞÞ

�
ð55Þ

with λ ¼ λðln Φ2

Λ2Þ, where now

ln

�
μ2

Λ2

�
¼

Z
λðlnμ2

Λ2
Þ

KΛ

dx
βλðx; αðxÞÞ

ð56aÞ

and

ϕ2 ¼ Φ2 exp
Z

λðlnμ2
Λ2
Þ

KΦ

dx
γðx; αðxÞÞ
βλðx; αðxÞÞ

: ð56bÞ

In Eqs. (55) and (56), KΛ and KΦ are positive constants
that ensure convergence of the integrals in which they

appear. A shift in their value can be absorbed into Λ andΦ.
Integrals involving f, b, c were used to this end in
Eqs. (16), (18), and (20), but when there is more than
one coupling, only the one loop contributions to the RG
functions are RS invariant when using a mass-independent
RS [32,33], and so this approach cannot be generalized, and
we employ KΛ and KΦ.
It is easy to see now from Eq. (55) that V has an

extremum if Φ ¼ Φ0 if either

Φ0 ¼ 0; ð57Þ
as in Eq. (41), or

d
dλ

A0ðλ; αðλÞÞ þ 2

�
1þ γðλ; αðλÞÞ
βλðλ; αðλÞÞ

�
A0ðλ; αðλÞÞ ¼ 0; ð58Þ

where λ ¼ λðln Φ2

Λ2Þ. It then again follows that V must be
proportional to the scale parameter Λ2 as in Eq. (33).
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VII. DISCUSSION

In this paper, we have discussed the use of RG
summation of logarithmic contributions to the effective
potential V using RG summation and shown how this leads
to cancellation between the implicit and explicit depend-
ence on the renormalization scale parameter μ. This was
done in a conformal model with just a quartic scalar
coupling and conformal scalar electrodynamics. In the
former model, RS dependence within mass-independent
RSs and the CW RS were also considered. In both models,
it was shown that V has an extremum if either there is no
spontaneous symmetry breaking or it is constant. This

result follows from examining the RG summed form of V.
The cosmological consequences are worth examining [34].
We would like to extend the approach used here to

models which are nonconformal, involve the Stueckelberg
mechanism [1,2], or in which there are several scalar fields.
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