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We propose a method inspired by discrete light cone quantization to determine the heat kernel for a
Schrödinger field theory (Galilean boost invariant with z ¼ 2 anisotropic scaling symmetry) living in dþ 1

dimensions, coupled to a curved Newton-Cartan background, starting from a heat kernel of a relativistic
conformal field theory (z ¼ 1) living in dþ 2 dimensions. We use this method to show that the Schrödinger
field theory of a complex scalar field cannot have any Weyl anomalies. To be precise, we show that the
Weyl anomaly AG

dþ1 for Schrödinger theory is related to the Weyl anomaly of a free relativistic scalar CFT

AR
dþ2 via A

G
dþ1 ¼ 2πδðmÞAR

dþ2, where m is the charge of the scalar field under particle number symmetry.
We provide further evidence of the vanishing anomaly by evaluating Feynman diagrams in all orders of
perturbation theory. We present an explicit calculation of the anomaly using a regulated Schrödinger
operator, without using the null cone reduction technique. We generalize our method to show that a similar
result holds for theories with a single time-derivative and with even z > 2.
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I. INTRODUCTION

The Weyl anomaly in relativistic conformal field theory
(CFT) has a rich history [1–8]. In 1þ 1 dimensions,
irreversibility of RG flows has been established by
Zamoldchikov [9] who showed monotonicity of a quantity
C that equals the Weyl anomaly c at fixed points.
Remarkably, the anomaly c equals the central charge
of the CFT. In 3þ 1 dimensions, there is a corresponding
“a-theorem” [10–13] where a again appears in the Weyl
anomaly, and there is strong evidence for a similar
a-theorem in higher, even dimensions [14–17]. In contrast,
much less is known in the case of nonrelativistic field
theories admitting anisotropic scale invariance under the
following transformation:

x → λx; t → λzt: ð1Þ

Nonetheless, nonrelativistic conformal symmetry does
emerge in various scenarios. For example, fermions at
unitarity, in which the S-wave scattering length diverges,
jaj → ∞, exhibit nonrelativistic conformal symmetry. In
ultracold atom gas experiments, the S-wave scattering
length can be tuned freely along an RG flow and this has
renewed interest in the study of the RG flow of such theories
[18,19]. In fact, at a−1 ¼ −∞ the system behaves as a BCS
superfluid while at a−1 ¼ ∞ it becomes a BEC superfluid.
The BCS-BEC crossover, at a−1 ¼ 0, is precisely the
unitarity limit, exhibiting nonrelativistic conformal sym-
metry [20,21]. In this regime, we expect universality,
with features independent of any microscopic details of
the atomic interactions. Other examples of nonrelativistic

systems exhibiting scaling symmetry come with acciden-
tally large scattering cross section. Examples includevarious
atomic systems, like 85Rb [22], 138Cs [23], and a few nucleon
systems like the deuteron [24,25].
Galilean CFT, which enjoys z ¼ 2 scaling symmetry is

special among nonrelativistic conformal field theories
(NRCFTs). On group theoretic grounds, there is a special
conformal generator for z ¼ 2 that is not present for z ≠ 2
theories [26,27]. The coupling of such theories to the
Newton-Cartan (NC) structure is well understood [27–30].
The generic discussion of anomalies in such theories
has been initiated by Jensen in [31]. Moreover, there have
been recent works classifying and evaluating Weyl anoma-
lies at fixed points [32–36] and even away from the fixed
points; the latter have resulted in proposed C-theorem
candidates [37,38].
It has been proposed in [31], using the fact that discrete

light cone quantization (DLCQ) of a relativistic CFT living
in dþ 2 dimensions yields a nonrelativistic Galilean CFT
in dþ 1 dimensions with z ¼ 2, that the Weyl anomaly of
the relativistic CFT survives in the nonrelativistic theory.
The conjecture states that the Weyl anomaly AG for a
Schrödinger field theory (Galilean boost invariant with
z ¼ 2 scale symmetry and special conformal symmetry) is
given by

AG
dþ1 ¼ aEdþ2 þ

X
n

cnWn; ð2Þ

where Edþ2 is the dþ 2-dimensional Euler density of the
parent spacetime and Wn are Weyl covariant scalars with
weight (dþ 2). The right-hand side is computed on a
geometry given in terms of the dþ 2-dimensional metric;
this will be explained below; see Eq. (19). A specific
example of particular interest is
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AG
2þ1 ¼ aE4 − cW2; ð3Þ

where W2 stands for the square of the Weyl tensor.
The purpose of this work is twofold. First, we show that

these proposed relations must be corrected to include a
factor of δðmÞ, when the Schrödinger invariant theory
involves a single complex scalar field having charge m
under the Uð1Þ symmetry. To be precise, we show that

AG
dþ1 ¼ 2πδðmÞAR

dþ2; ð4Þ

where AR
dþ2 is the Weyl anomaly of the corresponding

relativistic CFT in dþ 2 dimensions. This is derived
explicitly for the case of a bosonic (commuting) scalar
field, but the derivation applies equally to the case of a
fermionic (anticommuting) scalar field. The second pur-
pose is to develop a framework inspired by DLCQ to
evaluate the heat kernel of a theory with one time derivative
kinetic term in a nontrivial curved background. This
framework enables us to calculate not only the heat kernel
but also the anomaly coefficients. In fact, using this method
and its appropriately modified form enables us to general-
ize Eq. (4) to one time derivative theories with arbitrary
even z, where the parent dþ 2 dimensional theory enjoys
SOð1; 1Þ × SOðdÞ symmetry with scaling symmetry acting
as t → λz=2t; xdþ2 → λz=2xdþ2; xi → λxi, (i ¼ 1;…; dþ 1).
The paper is organized as follows. We will briefly review

coupling of a Schrödinger field theory to the Newton-
Cartan structure in Sec. II. In Sec. III, we sketch how
DLCQ can be used to obtain Schrödinger field theories
following the procedure of [31] and propose its modified
cousin, which we call lightcone reduction (LCR), to obtain
a Schrödinger field theory. In Sec. IV, we determine the
heat kernel for free Galilean CFT coupled to a flat NC
structure in two different ways, on the one hand using LCR
and on the other without the use of DLCQ, providing a
check on our proposed method for determining the heat
kernel for Galilean field theory coupled to a curved NC
geometry. We then proceed to evaluate the heat kernel on
curved spacetime according to the proposal and sub-
sequently derive the Weyl anomaly for Schrödinger field
theory of a single complex scalar. In Sec. V, we reconsider
the computation using perturbation theory; we find that for
a wide class of models on a curved background all vacuum
diagrams vanish. In fact, we show that an anomaly is not
induced in the more general case that Uð1Þ invariant
dimensionless couplings are included, regardless of
whether we are at a fixed point or away from it, in all
orders of a perturbative expansion in the dimensionless
coupling and metric. In Sec. VI, we give a formal proof of
our prescription and generalize the framework to calculate
the heat kernel and anomaly for theories with one time
derivative and arbitrary even z. We conclude with a brief
summary of the results obtained and discuss future direc-
tions of investigation. Technical aspects of defining heat

kernel for one time derivative theory in flat spacetime are
explored in Appendix A, and on a curved background in
Appendix B. Finally, in Appendix C, we present an explicit
calculation of the anomaly using a regulated Schrödinger
operator, without using the null cone reduction technique.

II. NEWTON-CARTAN STRUCTURE
& WEYL ANOMALY

The study of the Weyl anomaly necessitates coupling of
nonrelativistic theory to a background geometry, which can
potentially be curved. Generically, the prescription for
coupling to a background can depend on the global
symmetries of the theory on a flat background. Of interest
to us are Galilean and Schrodinger field theories. The
algebra of the Galilean generators is given by [26]

½Mij; N� ¼ 0; ½Mij; Pk� ¼ {ðδikPj − δjkPiÞ;
½Mij; Kk� ¼ {ðδikKj − δjkKiÞ;
½Mij;Mkl� ¼ {ðδikMjl − δjkMil þ δilMkj − δjlMkiÞ;

½Pi; Pj� ¼ ½Ki; Kj� ¼ 0; ½Ki; Pj� ¼ {δijN;

½H;N� ¼ ½H;Pi� ¼ ½H;Mij� ¼ 0; ½H;Ki� ¼ −{Pi;

ð5Þ

and the commutators of the dilatation generator aloong with
the Galilean ones are given by

½D;Pi� ¼ {Pi; ½D;Ki� ¼ ð1− zÞ{Ki;

½D;H� ¼ z{H; ½D;N� ¼ {ð2− zÞN; ½Mij;D� ¼ 0 ð6Þ

where i; j ¼ 1; 2;…; d label the spatial dimensions, z is the
anisotropic exponent, Pi, H, and Mij are generators of
spatial translations, time translation spatial rotations,
respectively, Ki generates Galilean boosts along the xi

direction, N is the particle number (or rest mass) symmetry
generator, and D is the generator of dilatations. The
generators of Schrödinger invariance include, in addition,
a generator of special conformal transformations, C. The
Schrödinger algebra consists of the z ¼ 2 version of (5), (6)
plus the commutators of C,

½Mij; C� ¼ 0; ½Ki; C� ¼ 0;

½D;C� ¼ −2{C; ½H;C� ¼ −{D: ð7Þ

In what follows, by Schrödinger invariant theory, we mean
a z ¼ 2 Galilean, conformally invariant theory. For z ≠ 2,
we only discuss anisotropic scale invariant theories invari-
ant under a group generated by Pi, Mij, H, D, and N such
that the kinetic term involves one time derivative only. The
most natural way to couple Galilean (boost) invariant field
theories to geometry is to use the Newton-Cartan (NC)
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structure [27–29]. In what follows, we briefly review NC
geometry, following Ref. [31].
The NC structure defined on a dþ 1 dimensional

manifold Mdþ1 consists of a one form nμ, a symmetric
positive semi-definite rank d tensor hμν and an Uð1Þ
connection Aμ, such that the metric tensor

gμν ¼ nμnν þ hμν ð8Þ

is positive definite. The upper index data vμ and hμν is
defined by

vμnμ ¼ 1; vνhμν ¼ 0;

hμνnν ¼ 0; hμρhρν ¼ δμν − vμnν ð9Þ

Physically, vμ defines a local time direction while hμν
defines a metric on spatial slice of Md.
As prescribed in [27], while coupling a Galilean invari-

ant field theory to a NC structure, we demand
(1) Symmetry under reparametrization of coordinates.

Technically, this requirement boils down to writing
the theory in a diffeomorphism invariant way.

(2) Uð1Þ gauge invariance. The fields belonging to some
representation of Galilean algebra carry some charge
under particle number symmetry, which is an Uð1Þ
group. Promoting this to a local symmetry requires a
gauge field Aμ that is sourced by the Uð1Þ current.

(3) Invariance under Milne boosts, under which
ðnμ; hμνÞ remains invariant, while

vμ → vμ þ ψμ;

hμν → hμν − ðnμψν þ nνψμÞ þ nμnνψ2;

Aμ → Aμ þ ψμ −
1

2
nμψ2 ð10Þ

where ψ2 ¼ hμνψμψν and vνψν ¼ 0.
The action of a free Galilean scalar ϕm with charge m,

coupled to this NC structure satisfying all the symmetry
conditions listed above, is given by

Z
ddþ1x

ffiffiffi
g

p ½{mvμðϕ†
mDμϕm−ϕmDμϕ

†
mÞ−hμνDμϕ

†
mDνϕm�;

ð11Þ

where Dμ ¼ ∂μ − {mAμ is the appropriate gauge invariant
derivative.
From a group theory perspective, a Galilean group can be

a subgroup of a larger group that includes dilatations. That
is, besides the symmetries mentioned earlier, a Galilean
invariant field theory coupled to the flat NC structure can
also be scale invariant, i.e., invariant under the following
transformations

x → λx; t → λzt; ð12Þ

where z is the dynamical critical exponent of the theory. As
mentioned earlier, for z ¼ 2, the symmetry algebra may
further be enlarged to contain a special conformal generator,
resulting in the Schrödinger group. On coupling a Galilean
CFTwith arbitrary z to a nontrivial curved NC structure, the
scale invariance can be thought of as invariance under
following scaling of NC data (also known as anisotropic
Weyl scaling; henceforth, we omit the word “anisotropic,”
and byWeyl transformation it should be understood that we
mean the transformation with appropriate z):

nμ → ezσnμ; hμν→ e2σhμν; Aμ → eð2−zÞσAμ; ð13Þ

where σ is a function of space and time.
Even though classically a Galilean CFT may be scale

invariant, it is not necessarily true that it remains invariant
quantum mechanically. Renormalization may lead to
anomalous breaking of scale symmetry much like in the
Weyl anomaly in relativistic CFTs (where z ¼ 1). The
anomalyA is defined from the infinitesimal Weyl variation
(13) of the connected generating functional W:

δσW ¼
Z

ddþ1x
ffiffiffi
g

p
δσA; : ð14Þ

We mention in passing that away from the fixed point
the coupling is scale dependent, that is, the running of the
coupling under the RG must be accounted for, hence the
variation δσ on the couplings needs to be incorporated.
The generic scenario has been elucidated in Ref. [38].
In this work, we are interested in anomalies at a fixed

point. Even in the absence of running of the coupling, the
background metric can act as an external operator insertion
on vacuum bubble diagrams leading to new UV divergen-
ces that are absent in flat spacetime. Removing these new
divergences can potentially lead to anomalies. The anoma-
lous ward identity for anisotropic Weyl transformation is
given by [31]

znμEμ − hμνTμν ¼ A; ð15Þ

where nμEμ and hμνTμν are respectively diffeomorphic
invariant measure of energy density and trace of spatial
stress-energy tensor.
In what follows, we will be interested in evaluating the

quantity appearing on the right hand side of Eq. (15). A
standard method is through the evaluation of the heat kernel
in a curved background. Hence, our first task is to figure out
a way to obtain the heat kernel for theories with kinetic term
involving only one time derivative. In the next few sections
we will introduce methods for computing heat kernels and
arrive at the same result from different approaches.
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III. DISCRETE LIGHT CONE QUANTIZATION
(DLCQ) & ITS COUSIN LIGHTCONE

REDUCTION (LCR)

One elegant way to obtain the heat kernel is to use
discrete light cone quantization (DLCQ). This exploits
the well-known fact that a dþ 1 Galilean invariant field
theory can be constructed by starting from a relativistic
theory in dþ 2 dimensional Minkowski space in light cone
coordinates

ds2 ¼ 2dxþdx− þ dxidxi ð16Þ

where i ¼ 2; 3;…; dþ 1 and x� ¼ x1�tffiffi
2

p define light cone

coordinates, followed by a compactification in the null
coordinatex− on a circle. Fromhere on, by“reduced" theory
we will mean the theory in dþ 1 dimensions while by
“parent” theory we will mean the dþ 2 dimensional theory
on which this DLCQ trick is applied. We first present a brief
review of DLCQ.
The generators of SOðdþ 1; 1Þ which commute with

P−, the generator of translation in the x− direction, generate
the Galilean algebra. P− is interpreted as the generator of
particle number of the reduced theory. In light cone
coordinates, the mass-shell condition for a massive particle
becomes.1

pþ ¼ jpj2
2ð−p−Þ

þ M2

4ð−p−Þ
ð17Þ

Eq. (17) can be interpreted as the nonrelativistic energy of a
particle, pþ, with mass m ¼ −p− in a constant potential.
The reduced mass-shell condition (17) is Galilean invariant,
that is, invariant under boosts (v) and rotations (R):

p → Rp − vp−; pþ → pþ þ v · ðRpÞ − 1

2
jvj2p−

Setting M ¼ 0, the dispersion relation is of the form

ω ¼ k2

2m
ð18Þ

and enjoys z ¼ 2 scaling symmetry. To rephrase, setting
M ¼ 0 will allow one to append a dilatation generator,
which acts as follows:

pþ → λ2pþ; p− → p−; p → λp

Had we not compactified in the x− direction, p− would be a
continuous variable. The parameter p− can be changed
using a boost in the þ− direction, but compactification in
the x− direction spoils relativistic boost symmetry and the

eigenvalues of p− become discretized, p− ¼ n
R, where R is

the compactification radius. We note that Lorentz invari-
ance is recovered in the R → ∞ limit. For convenience, by
appropriately rescaling the generators of spatial translations
and of special conformal transformations, as well as P−, we
can set R ¼ 1.
One can technically perform DLCQ even in a curved

spacetime as long as the metric admits a null isometry. This
guarantees that we can adopt a coordinate system with a
null coordinate x− such that all the metric components are
independent of x−. To be specific, we will consider the
following metric:

ds2 ¼ GMNdxMdxN; Gμ− ¼ nμ;

Gμν ¼ hμν þ nμAν þ nνAμ; G−− ¼ 0 ð19Þ

where M;N ¼ þ;−; 1; 2;…; d run over all the indices in
dþ 2 dimensions, the index μ ¼ þ; 1; 2;…; d runs over
dþ 1 dimensions and hμν is a rank d tensor. Ultimately,
hμν; nμ; Aμ are to be identified with the NC structure, and
just as above we can construct hμν and vμ such that Eq. (9)
holds. Moreover, these quantities transform under Milne
boost symmetry as per Eq. (10). Hence, the boost invariant
inverse metric is given by

G−μ ¼ vμ − hμνAν; Gμν ¼ hμν;

G−− ¼ −2vμAμ þ hμνAμAν: ð20Þ

Reduction on x− yields a Galilean invariant theory coupled
to an NC structure given by ðnμ; hμν; AμÞ, with metric given
by (8). Moreover, all the symmetry requirements listed
above Eq. (10) are satisfied by construction.
This prescription allows us to construct Galilean QFT

coupled to a nontrivial NC structure starting from a
relativistic QFT placed in a curved background with one
extra dimension. For example, we can consider DLCQ of a
conformally coupled scalar field in dþ 2 dimensions,

SR ¼
Z

ddþ2x
ffiffiffiffiffiffiffi
−G

p
½−GMN∂MΦ†∂NΦ − ξRΦ†Φ�;

ξ ¼ d
4ðd − 1Þ ð21Þ

where R stands for the Ricci scalar corresponding to the
GMN metric. We compactify x− with periodicity 2π and
expand Φ in Fourier modes as

Φ¼ 1ffiffiffiffiffiffi
2π

p
X
m

ϕmðxμÞe{mx− ; ϕm ¼ 1ffiffiffiffiffiffi
2π

p
Z

2π

0

dx−Φe−{mx− :

ð22Þ

In terms of ϕm, we recast the action, Eq. (21), in the
following form using Eq. (20),

1The unusual sign convention in our definition of x− results in
the peculiar sign in Eq. (17).
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SR ¼
X
m

Z
ddþ1x

ffiffiffi
g

p ½{mvμðϕ†
mDμϕm − ϕmDμϕ

†
mÞ

− hμνDμϕ
†
mDνϕm − ξRϕ†

mϕm�; ð23Þ

where Dμ ¼ ∂μ − {mAμ and where each of the ϕm carry
charge m under the particle number symmetry and sit in
distinct representations of the Schrödinger group. The
theory described by Eq. (23) is not Lorentz invariant
because we have a discrete sum over m, breaking the
boost invariance along the null direction.
The point of DLCQ is to break Lorentz invariance to

Galilean invariance. As explained above, one can work in
the uncompactified limit, and still break the Lorentz
invariance by dimensional reduction. In the uncompactified
limit, the sum over eigenvalues of P− becomes integration
over the continuous variable p−. Nonetheless, one can
focus on any particular Fourier mode. Technically, we can
implement this by performing a Fourier transformation
with respect to x− of quantities of interest. This procedure
also yields a Galilean invariant field theory where the
elementary field is the particular Fourier mode under
consideration. Henceforth, we will refer to this modified
version of DLCQ as lightcone reduction (LCR).
Taking a cue from the relation between the actions given

by Eqs. (21) and (23), we propose the following prescrip-
tion to extract the heat kernel in the reduced theory: The
heat kernel operator KG in dþ 1-dimensional Galilean
theory is related to the heat kernel operator KR of the parent
dþ 2-dimensional relativistic theory via

hðx2; t2ÞjKGjðx1; t1Þi

¼
Z

∞

−∞
dx−hx2; x−2 ; xþ2 jKRjx1; x−1 ; xþ1 ie−{mx−

12 ð24Þ

where x−12 ¼ x−2 − x−1 and the time t in the reduced theory is
to be equated with xþ in the parent theory.
Wewill postpone the proof of our prescription to Sec. VI.

In the next section, we will lend support to our prescription
by verifying our claim using two different methods of
calculating the heat kernel. We emphasize that the reduc-
tion prescription, described above, is applicable to the z ¼
2 case of Galilean and scale invariant theories. The generic
reduction procedure for arbitrary z (though not Galilean
boost invariant) is discussed later in sec. VI B.

IV. HEAT KERNEL FOR A GALILEAN
CFT WITH z= 2

A. Preliminaries: Heat kernel, zeta regularization

We start by briefly reviewing the heat kernel and zeta
function regularization method [11,16,39,40]. A pedagogi-
cal discussion can be found in [41,42]. Let us consider a
theory with partition function Z, formally given by

Z ¼
Z

½Dϕ�½Dϕ†�e−
R

ddxϕ†Mϕ; ð25Þ

where the eigenvalues of the operator M have positive
real part.2 The path integral over the field variable ϕ suffers
from ultraviolet (UV) divergences and requires proper
regularization and renormalization to be rendered as a
meaningful finite quantity. Similarly, the quantum effective
actionW ¼ − lnZ corresponding to this theory, given by a
formal expression

W ¼ lnðdetðMÞÞ

requires regularization and renormalization.3

The method of zeta-function regularization introduces
several quantities; the heat kernel operator

G ¼ e−sM; ð26Þ

its trace K over the space L2 of square integrable functions

Kðs; f;MÞ ¼ TrL2ðfGÞ ¼ TrL2ðfe−sMÞ; ð27Þ

where f ∈ L2, and the zeta-function, defined as

ζðϵ; f;MÞ ¼ TrL2ðfM−ϵÞ: ð28Þ
K and ζ are related via Mellin transform,

Kðs; f;MÞ ¼ 1

2π{

Z
cþ{∞

c−{∞
dϵs−ϵΓðϵÞζðϵ; f;MÞ and

ζðϵ; f;MÞ ¼ 1

ΓðϵÞ
Z

∞

0

dssϵ−1Kðs; f;MÞ: ð29Þ

As is customary, below we use f ¼ 1. However this should
be understood as taking the limit f → 1 at the end of the
computation to ensure all expressions in intermediate steps
are well defined.
Formally W is given by the divergent expression

W ¼ −
Z

∞

0

ds
1

s
Kðs; 1;MÞ

The regulated version,Wϵ, is defined by shifting the power
of s

Wϵ ¼ −~μ2ϵ
Z

∞

0

ds
1

s1−ϵ
Kðs; 1;MÞ ¼ − ~μ2ϵΓðϵÞζðϵ; 1;MÞ;

ð30Þ
where the parameter ~μ with length dimension −1 is
introduced so thatWϵ remains adimensional. In this context,

2Positivity is required for convergence of the Gaussian integral.
3For anticommuting fieldsW ¼ − lnðdetðMÞÞ; the minus sign

is the only difference between commuting and anticommuting
cases, so that in what follows we restrict our attention to the case
of commuting fields.
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the parameter ϵ behaves like a regulator, the divergences
reappearing as ϵ → 0. In this limit,

Wϵ¼−
�
1

ϵ
− γEþ lnð ~μ2Þ

�
ζð0;1;MÞ−ζ0ð0;1;MÞþOðϵÞ;

so that subtracting the 1
ϵ termgives the renormalized effective

action

Wren ¼ −ζ0ð0; 1;MÞ − lnðμ2Þζð0; 1;MÞ: ð31Þ

where μ2 ¼ ~μ2e−γE and γE is the Euler constant. On a
compact manifold ζðϵ; 1;MÞ is finite as ϵ → 0 and the
renormalized effective action given by (31) is finite, as
it should. For noncompact manifolds the standard
procedure for computing a renormalized effective action
is to subtract a reference action that does not modify the
physics. One may, for example, define W ¼ lnðdetðMÞ=
detðM0ÞÞ, where the operator M0 is defined on a trivial
(flat) background. This amounts to replacingKðs; 1;MÞ →
Kðs; 1;MÞ − Kðs; 1;M0Þ in Eq. (30) and correspondingly
ζðϵ; 1;MÞ → ζðϵ; 1;MÞ − ζðϵ; 1;M0Þ. The expression
for Wren in (31) remains valid if it is understood that this
subtraction is made before the ϵ → 0 limit is taken.
Classical symmetry under Weyl variations (both in the

relativistic case and the anisotropic one) guarantees M
transforms homogeneously, i.e., δσM ¼ −ΔσM under
δσgμν ¼ 2σgμν where Δ is the scaling dimension of M.
Hence, we have

δσζðϵ;1;MÞ¼−ϵTrL2ðδMM−ϵ−1Þ¼Δϵζðϵ;σ;MÞ: ð32Þ

Consequently, the anomalous variation of W is given by

δσWren ¼ −Δζð0; σ;MÞ: ð33Þ

In the relativistic case, using the fact that

δσW ¼ 1

2

Z
ddþ1x

ffiffiffi
g

p
Tμνδgμν ¼ −

Z
ddþ1x

ffiffiffi
g

p
Tμ

μδσ;

ð34Þ

one has the trace anomaly equation

A ¼ −Tμ
μ ¼ −

1ffiffiffi
g

p Δ
�
δζð0; σ;MÞ

δσ

�
σ¼0

: ð35Þ

In the nonrelativistic case, the Weyl anisotropic scaling is
given by hμν → e2σhμν and nμ → ezσnμ. We have

δσW ¼
Z

ddþ1x
ffiffiffi
g

p �
1

2
Tμνδhμν − Eμδnμ

�

¼
Z

ddþ1x
ffiffiffi
g

p ðhμνTμν − znμEμÞδσ ð36Þ

leading to

A ¼ znμEμ − hμνTμν ¼ −
1ffiffiffi
g

p Δ
�
δζð0; σ;MÞ

δσ

�
σ¼0

: ð37Þ

One can evaluate δζð0; σ;MÞ=δσjσ¼0 using the asymp-
totic form (s → 0) of the heat kernel, K. The asymptotic
expansion depends on the operator M and its scaling
dimension. Schematically, one has

Kðs; 1;MÞ ¼ 1

sdM

X∞
n¼0

sκðnÞ
ffiffiffi
g

p
an;

where κðnÞ is a linear function of n. The singular pre-factor,
1

sdM
, is determined by the heat kernel in the background-

free, flat spacetime limit while the expansion accounts for
corrections from background fields or geometry. The
asymptotic expansion is guaranteed to exist if the heat
kernel is well behaved for s > 0 in the flat spacetime limit,
that is, if

P
ie

−sλi , with λi, the eigenvalues of the operator
M, is convergent. The convergence requires that λi have, at
worst, a power law growth and positive real part [43].
We are interested in operators M of generic form

M ¼ 2{m∂t0 − ð−1Þz=2ð∂i∂iÞz=2;

for which the heat kernel has a small s expansion of the
following form

Kðs; 1;MÞ ¼ 1

s1þd=z

X∞
n¼0

s2n=z
Z

ddþ1x
ffiffiffi
g

p
an; ð38Þ

where d is number of spatial dimension and z is dynamical
exponent.4 Then the zeta function is given by

ζð0; f;MÞ ¼
Z

ddþ1x
ffiffiffi
g

p
faðdþzÞ=2; ð39Þ

so that we arrive at an expression for the Weyl anomaly

A ¼ −ΔaðdþzÞ=2: ð40Þ

Hence, in order to determine the Weyl anomaly, one has
to calculate the coefficient aðdþzÞ=2 of the heat kernel
expansion (38).5 In subsequent sections, we will find out
a way to evaluate the heat kernel in flat spacetime and then
in curved spacetime for a Schrödinger invariant field
theory. We will be doing this first without using DLCQ/
LCR, and then again with LCR (modified cousin of DLCQ)
using the prescription introduced above.

4In next few sections, we explicitly find this asymptotic form
for z ¼ 2 while the arbitrary z case is handled separately in VI B.

5Incidentally, this shows that the anomaly is absent when dþ z
is odd.
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B. Heat kernel in flat spacetime

1. Direct calculation (without use of DLCQ)

The action for a free Galilean CFT on a flat spacetime
(which is in fact invariant under the Schrödinger group) is
given by

S ¼
Z

dtddxϕ†½2m{∂t þ∇2�ϕ ð41Þ

In order to improve convergence of the functional integral
defining the partition function we perform a continuation to
imaginary time:

e{
R

dtddxϕ†½2m{∂tþ∇2�ϕ ↦
t¼−{τ

e−
R

dτddxϕ†½2m∂τ−∇2�ϕ ð42Þ

Hence, the Euclidean version of M ¼ 2m{∂t þ∇2 is
given by

ME ¼ 2m∂τ −∇2; ð43Þ

and it is this operator for which we will compute the heat
kernel. The prescription t ¼ −{τ is equivalent to adding
þ{ϵ to the propagator in Minkowskian flat space. In fact,
the same þ{ϵ prescription is obtained by deriving the
nonrelativistic propagator as the nonrelativistic limit of the
relativistic propagator.
The heat kernel for ME is a solution to the equation6

ð∂s þMEÞG ¼ 0; ð44Þ

that is

ð∂s þ 2m∂τ2 −∇2
x2ÞGðs; ðx2; τ2Þ; ðx1; τ1ÞÞ ¼ 0; ð45Þ

with boundary condition Gð0;ðx2;τ2Þ;ðx1;τ1ÞÞ ¼
δðτ2−τ1Þδdðx2−x1Þ. Equation (45) is solved by

Gðs; ðx2; τ2Þ; ðx1; τ1ÞÞ ¼ δð2ms − ðτ2 − τ1ÞÞ
e−

jx2−x1 j2
4s

ð4πsÞd2 ð46Þ

Consequently, the Eulcidean two point correlator is
given by

Gððx2; τ2Þ; ðx1; τ1ÞÞ ¼
Z

∞

0

dsGðsÞ ¼ θðτÞ
2m

e−
mjxj2
2τ

ð2π τ
mÞ

d
2

ð47Þ

where τ ¼ τ2 − τ1 and x ¼ x2 − x1. The same two point
correlator can be obtained by Fourier transform from the

Minkowski momentum space propagator GM, or its imagi-
nary time version,

GMðp;ωÞ ¼
{

2mω − jpj2 þ i0þ
↦

t¼−{τ
ω¼{ωE

G ¼ 1

2mωE þ {jpj2

ð48Þ

In the coincidence limit the heat kernel of (46) contains a
Dirac-delta factor, δðmsÞ. Since this nonanalytic behavior
is unfamiliar, it is useful to rederive this result by directly
computing the trace K, Eq. (26). One can conveniently
choose the test function f ¼ e−jηωj. Hence

Kðs; f;ME;gÞ ¼ Trðfe−sME;gÞ

¼
Z �

ddk
ð2πÞd e

−sk2
��Z

dω
2π

e−2m{sω−jηωj
�

The integral over k gives the factor of 1=sd=2, while the
integral over ω gives

1

π

η

4m2s2 þ η2

that tends to δð2msÞ as η → 0. Before taking the limit, this
factor gives a well-behaved function for which the Mellin
transform that defines ζ, Eq. (29), is well defined for
d=2 < ReðϵÞ < d=2þ 2 and can be analytically continued
to ϵ ¼ 0.
One may be concerned that the derivation above is only

formal as it does not involve an elliptic operator. This is
easily remedied by considering the elliptic operator7 M0¼
{η

ffiffiffiffiffiffiffiffi
−∂2

t

p
þ{ð2mÞ∂tþ∇2. Its spectrum, ð2mω − k2 þ {ηjωjÞ,

tends to that of theMinkowskian Schrödinger operatorM as
η → 0. Consequently, the spectrum for the Euclidean avatar8

(M0
E;g) of M

0 becomes ðk2 þ 2m{ωþ jηωjÞ and the heat
kernel for that operator is given by

Kðs; 1;M0
E;gÞ ¼ Trðe−sM0

E;gÞ

¼
Z �

ddk
ð2πÞd e

−sk2
��Z

dω
2π

e−2m{sω−sjηωj
�

The integral over k gives the factor of 1=sd=2 as before, while
the integral over ω gives

6Even though ME is not a hermitian operator, the heat kernel
is well defined for any operator as long as ReðλkÞ > 0 where λk
are its eigenvalues. We explore this technical aspect in Appen-
dix A.

7The choice of regulator is suggested naturally, as it can
ultimately be linked to the Minkowski form of the propagator
G ¼ {

2mω−k2þ{jηωj → {
2mω−k2þ{0þ.

8Alternatively, one can think of introducing the regulator,
only after going over to the Euclidean version. The unregulated
Euclidean operator, ME;g ¼ 2m∂τ −∇2 is regulated to M0

E;g ¼
2m∂τ −∇2 þ η

ffiffiffiffiffiffiffiffi
−∂2

τ

p
.
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1

πs

�
η

4m2 þ η2

�

that tends to 1
s δð2mÞ as η → 0. As we will see later, the light

cone reduction technique indeed reproduces this factor
of δð2mÞ.

2. Derivation using LCR

In Euclidean, flat dþ 2-dimensional spacetime, the heat
kernel GR;E of a relativistic scalar field at free fixed point is
given by [44]

GR;Eðs; xM2 ; xM1 Þ ¼
1

ð4πsÞd=2þ1
e−

ðx1−x2Þ2
4s ð49Þ

where the superscript reminds us that this is the relativistic
case and ðx1 − x2Þ2 ¼ ðxM1 − xM2 ÞðxN1 − xN2 ÞδMN .
In preparation for using LCR, we rewrite the expression

(49) by first reverting to Minkowski space, t ¼ −{x0, and
then switching to light-cone coordinates.9 Using x� ¼
x�2 − x�1 we have:

GR;Mðs; ðxþ2 ; x−2 ; x2Þ; ðxþ1 ; x−1 ; x1ÞÞ

¼ 1

ð4πsÞd=2þ1
e−

xþx−
2s −jxj2

4s ð50Þ

where GR;M is the heat kernel in Minkowski space. Now, in
the reduced theory, the co-ordinate xþ becomes the time
coordinate t. Going to imaginary time, t → τ ¼ {t, and
Fourier transforming we obtain the heat kernel Gg;E for the
Galilean invariant theory in Euclidean space:

Gg;Eðs; ðx2; τ2Þ; ðx1; τ1ÞÞÞ

¼
Z

∞

−∞

1

ð4πsÞd=2þ1
e
{τx−
2s −

jxj2
4s e−{mx−dx−

¼ 2πδ

�
τ

2s
−m

�
1

ð4πsÞd=2þ1
e−

jxj2
4s ð51Þ

where τ ¼ τ2 − τ1, in detailed agreement with Eq. (46). For
later use we note that in the coincidence limit we have

Gg;Eððx; τÞ; ðx; τÞÞÞ ¼
2πδðmÞ

ð4πsÞd=2þ1
: ð52Þ

It is interesting to note that LCRdirectly gives∼δðmÞ=sd=2þ1

while the direct computations gives∼δðmsÞ=sd=2. Our main
result, below, follows from the coincidence limit of the heat
kernel expansion in Eq. (57), which is useful only for s ≠ 0,
since it is used to extract the coefficients of powers of s in the
expansion. The limiting behavior as s → 0 of the function

Gg;E is a delta function enforcing coincidence of the points,
by construction (and this is why a0 ¼ 1 at coincidence), and
therefore the behavior as s → 0 is correct but of no
significance.
The spectral dimension of the operator ME is given by

dM ¼ −
d lnðKÞ
d lnðsÞ ¼ d

2
þ 1 ð53Þ

which explains why there can not be any trace anomaly
when the spatial dimension d is odd. This has to be
contrasted with the relativistic case where the spectral
dimension of the laplacian operator is given by dþ1

2
, so

that in the relativistic case the anomaly is only present when
the spatial dimension d is odd.

C. Heat kernel in curved spacetime

Now that we know that LCR works in flat spacetime, we
can go ahead and implement it in curved spacetime
exploiting the known fact that for relativistic field theories
coupled to a curved geometry, the heat kernel can be
obtained as an asymptotic series. The method is explained
in, e.g., Refs. [16,39,44].
The method, first worked out by DeWitt [45], starts with

an ansatz for the form of the heat kernel taking a cue from
the form of the solution in flat spacetime for the heat
equation. For small enough s, the ansatz for the heat kernel,
corresponding to a relativistic theory in dþ 2 dimensions,
reads

GR;Eðx2; x1; sÞ ¼
Δ1=2

VMðx2; x1Þ
ð4πsÞd=2þ1

e−σðx2;x1Þ=2s
X∞
n¼0

anðx2; x1Þsn;

a0ðx1; x2Þ ¼ 1 ð54Þ

with anðx2; x1Þ the so-called Seeley-DeWitt coefficients
and where σðx2; x1Þ is the biscalar distance-squared mea-
sure (also known as the geodetic interval, as named by
DeWitt), defined by

σðx2; x1Þ ¼
1

2

�Z
1

0

dλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMN

dyM

dλ
dyN

dλ

r �2

;

yð0Þ ¼ x1; yð1Þ ¼ x2; ð55Þ

with yðλÞ a geodesic. The bifunction ΔVMðx2; x1Þ is called
the van Vleck-Morette determinant; this biscalar describes
the spreading of geodesics from a point and is defined by

ΔVMðx2;x1Þ

¼Gðx2Þ−1=2Gðx1Þ−1=2det
�
−

∂2

∂xM2 ∂xN0
1

σðx2;x1Þ
�
; ð56Þ

where G is the negative of determinant of metric GMN .
9Recall, in the parent theory x� ¼ 1ffiffi

2
p ðx1 � tÞ. Note that we are

using a nonstandard sign convention in the definition of x−.
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Now, to implement LCR, recall that a Schrödinger
invariant theory coupled to a generic curved NC structure
is obtained by reducing from the dþ 2-dimensional metric
GMN in Eq. (19). In taking the coincident limit we
must keep x−1 and x−2 arbitrary in order to Fourier transform
with respect to x− per the prescription (24). Therefore,
we work in the coincident limit where xμ1 ¼ xμ2, with
μ ¼ þ; 1; 2;…; d. Now, since x− is a null direction, in
this limit we have σððx−1 ; xμÞ; ðx−2 ; xμÞÞ ¼ 0 or ½σ� ¼ 0 for
brevity. Furthermore, null isometry guarantees that metric
components are independent of x− and so are ½an� and
½ΔVM�. Thus the coincident limit is equivalent to the
coincident limit of the parent theory, hence ½ΔVM� ¼ 1.
We refer to Appendix B for details.
Thus, in the coincidence limit, we have the following

expression for the heat kernel corresponding to the reduced
theory:

Gg;Eðs; ðτ; xÞ; ðτ; xÞÞ ¼
2πδðmÞ

ð4πsÞd=2þ1

X∞
n¼0

anððτ; xÞ; ðτ; xÞÞsn;

a0ððτ1; x1Þ; ðτ2; x2ÞÞ ¼ 1; ð57Þ
where to define τ, we have proceeded just as in flat space:
first revert to a Minkowski metric, then switch to light cone
coordinates, and finally go over to imaginary xþ time, τ.
Subsequently, using Eq. (40) the anomaly is given by

AG
dþ1 ¼ −4πδðmÞ ad=2þ1

ð4πÞd=2þ1
: ð58Þ

From Eq. (57) it is clear that only the zero mode of P− can
contribute to the anomaly; the anomaly vanishes for fields
with nonzero Uð1Þ charge. We already know that the
anomaly for the relativistic complex scalar case is given by

AR
dþ2 ¼ −

2ad=2þ1

ð4πÞd=2þ1
: ð59Þ

Thereby we establish the result advertised in the introduc-
tion, giving the Weyl anomaly of a dþ 1-dimensional
Schrödinger invariant field theory of a single complex
scalar field carrying charge m under Uð1Þ symmetry),
AG

dþ1, in terms of the anomaly in the relativistic theory in
dþ 2 dimensions, AR

dþ2:

AG
dþ1 ¼ 2πδðmÞAR

dþ2; ð60Þ

computed on the class of metrics given in Eq. (19).
At this point, we pause to remark on the interpretation of

the δðmÞ factor. While it trivially shows that the anomaly is
absent for m ≠ 0, the interpretation becomes subtle when
m ¼ 0. The apparent divergence in the anomaly is just an
artifact of the usual zero mode problem associated with null
reduction. A similar issue has been pointed out in [27] in
reference to [46,47]. The reduced theory in them → 0 limit

becomes infrared divergent; the fields become nondynam-
ical in that limit. The infrared divergence is also evident
from Eq. (24). One may further understand the presence of
δðmÞ by letting m be a continuous parameter and consid-
ering a continuous set of fields ϕm, of charge m. The
anomaly arising from the continuous set of fields is given
by summing over their contributions:

1

2π

Z
dmAG

dþ1 ¼ AR
dþ2

Z
dmδðmÞ ¼ AR

dþ2.

The right hand side is exactly what we expect since
allowing the parameter m to continuously vary restores
the Lorentz invariance: consulting Eq. (23), we see that this
continuous sum corresponds to restoring the relativistic
theory of Eq. (21).
That the constant of proportionality relating AR

dþ2 to
AG

dþ1 vanishes for m ≠ 0 can be verified by an all-orders
computation of AG

dþ1, to which we now turn our attention.

V. PERTURBATIVE PROOF OF
VANISHING ANOMALY

The fact that the anomaly vanishes for nonvanishing m
can be shown perturbatively taking the background to be
slightly curved. In flat spacetime, wave-function renormal-
ization and coupling constant renormalization are sufficient
to render a quantum field theory finite. Defining composite
operators requires further renormalization. Therefore, when
the model is placed on a curved background additional short
distance divergences appear since the background metric
can act as a source of operator insertions. To cure these
divergences, new counter-terms are required that may break
scaling symmetry even at a fixed point of the renormaliza-
tion group flow. In this section, wewill treat the background
metric as a small perturbation of a flat metric so that we
compute in a field theory in flat spacetime with the effect of
curvature appearing as operator insertions of the perturba-
tion hμν ¼ gμν − ημν. To be specific, we will look at the
vacuum bubble diagrams with external metric insertions. It
turns out that all of these Feynman diagrams vanish at all
orders of perturbation theory, leading to a vanishing
anomaly. In fact, we will show that these anomalies vanish
even away from the fixed point as long as the theory satisfies
some nice properties.
Suppose we have a rotationally invariant field theory

such that
(1) The theory includes only rotationally invariant

(“scalar”) fields.
(2) At free fixed point, the theory admits an Uð1Þ

symmetry under which the scalar fields are charged.
(3) The free propagator is of the form {

2mω−fðjkjÞþ{ϵ,
where, generically, fðjkjÞ ¼ jkjz.

(4) The interactions are perturbations about the free
fixed point by operators of the form gðϕ;ϕ�Þjϕj2,
where g is a polynomial of the scalar field ϕ.

HEAT KERNEL AND WEYL ANOMALY OF SCHRÖDINGER … PHYSICAL REVIEW D 96, 125001 (2017)

125001-9



An elementary argument presented below shows that,
under these conditions, all the vacuum bubble diagrams
vanish to all orders in perturbation theory.
Before showing this, a few comments are in order. First,

the argument is valid in any number of spatial dimensions.
Second, assumption 4 precludes terms like ϕ4 þ ðϕ�Þ4 or
Kϕ2 in the Lagrangian. To be precise, FðϕÞ þ H:c: can
evade this theorem for any holomorphic function F of ϕ.
This is because assumption 4 implies that each vertex of the
Feynman diagrams of the theory has at least one incoming
scalar field into it and one outgoing scalar field line from it;
having both incoming and outgoing lines at each vertex is
at the heart of this result. Thirdly, it should be understood
that all interactions that can be generated via renormaliza-
tion, that is, not symmetry protected, are to be included.
For example, were we to consider a single scalar field with
only the interaction ϕ3ϕ�þH:c:, the interactions ϕ4þðϕ�Þ4
and ðϕϕ�Þ2 will be generated along the RG flow.
Nonetheless, Uð1Þ symmetry will always prohibit a hol-
omorphic interaction FðϕÞ þ H:c: Lastly, assumption 3 can
be relaxed to include a large class of functions fðjkj2Þ; this
means one can recast this result in terms of perturbation
theory along the RG-flow rather than about fixed points.
To prove this claim, notice first that a vacuum diagram is

a connected graph without external legs (hanging edges).
Moreover, since we are considering a complex scalar field,
the vertices are connected by directed line segments. These
directed segments form directed closed paths. To see this,
recall that by assumption each vertex has at least one
ingoing and one outgoing path. Starting from any vertex,
we have at least one outgoing path. Any one of these paths
must have a second vertex at its opposite end, since by
assumption there are not hanging edges. Take any one
outgoing path and follow it to the next vertex. Now, at this
second vertex repeat this argument: follow the outward path
to a third vertex. And so on. Since a finite graph has a finite
number of vertices, at some point in the process we have to
come back to a vertex we have already visited. For
example, assume that we first revisit the ith vertex. This
means that starting from the vertex iwe have a directed path
which loops back to the ith vertex itself. The simplest
example is that of a path starting and ending on the first
vertex, corresponding to a self-contraction of the elemen-
tary field in the operator insertion.
Let us call this directed loop Γ. We use the freedom in the

choice of loop energy and momentum in the evaluation of
the Feynman diagram to assign a loop energy ω in a way
such that ω loops around Γ. In performing the integral over
ω it suffices to consider the Γ subdiagram only. The
resulting integration is of the form:

Z
dωPðω;k;fωn;kngÞ

Y
n∈Γ

1

ðωþωn−fðjkþknjÞ=2mþ iϵÞ
ð61Þ

where the product is over all vertices in Γ and correspond-
ingly over all line segments in Γ out of these vertices.
Energy ωn and momentum kn enter Γ at the vertex n. The
factor Pðω; k; fωn; kngÞ is polynomial in momentum and
energy and may arise if there are derivative interactions.
Note that every propagator factor has the same sign iϵ
prescription, that is, all poles in complex-ω lie in the lower
half plane (have negative imaginary part). The integral over
the real ω axis can be turned into an integral over a closed
contour in the complex plane, by closing the contour on an
infinite radius semicircle on the upper half plane, using the
fact that for two or more propagators the integral over the
semicircle at infinity vanishes. Then Cauchy’s theorem
gives that the integral over the closed contour vanishes as
there are no poles inside the contour.
This proves the claim, except for the singular case of a

self-contraction, that is, a propagator from one vertex to
itself. Self-contractions can be removed by normal ordering,
again giving a vanishing result. For an alternative way of
seeing this note that this integral is independent of external
momentum and energy, and is formally divergent in the
ultraviolet (as jωj → ∞). The integral results in a constant
(independent of external momentum and energy) that must
be subtracted to render it finite, and can be chosen to be
subtracted completely, to give a vanishing result.
The computation in the case of anticommuting fields

differs only in that a factor of −1 is introduced for each
closed fermionic loop. Hence the claim applies equally to
the case of anticommuting scalar fields.
We now return to the derivation of our main result,

Eq. (4). The conditions above are satisfied for the theories
considered in Sec. IV C, namely, free theories of complex
scalars, with the free propagator given by {

2mω−jkj2þ{0þ.
Recall that we are to put the theory on a curved background
which is assumed to be a small perturbation from flat
background. The perturbations act as insertions on vacuum
bubble diagrams, but since they preserve the Uð1Þ sym-
metry the model still satisfies the assumptions above.
Hence all the bubble diagrams vanish, and we conclude
there are no divergences coming from metric insertion on
bubble diagrams. Consequently, there is no scale anomaly.
We emphasize that the absence of the Weyl anomaly is
valid in all orders of perturbation in both the coupling and
the metric. The result holds true even if we make the
couplings to be spacetime dependent so that every coupling
insertion injects additional momentum and energy to the
bubble diagram. Physically, the anomaly vanishes because
the absence of antiparticles in nonrelativistic field theories
and the conservation of Uð1Þ charge forbid pair creation,
necessary for vacuum fluctuations that may give rise to the
anomaly.
This perturbative proof holds for theories which need not

be Galilean invariant, and the question arises as to whether
one may use LCR to make statements about anomalies for
theories with kinetic term involving one time derivative and
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z ≠ 2. We will take up this task in following section,
starting by giving the promised proof of our prescription
in Eq. (24).
We remark that perturbative proof works for m ≠ 0. For

m ¼ 0, the integrand becomes independent of ω, and one
can not perform the contour integral to argue the diagrams
vanish. In fact, the integral over ω is divergent, as expected
from our earlier expectation that atm ¼ 0 one encounters IR
divergences. One way to see the presence of δðmÞ, as
explained earlier, is to take a continuous set of fields ϕm,
labelled by continuous parameter m. If we exchange the
sum over (1-loop) bubble diagrams and the integral
over m, then each of the propagator can be thought of as
a relativistic propagator withm, playing the role ofp−. Thus
the whole calculation formally becomes that of the relativ-
istic anomaly.
One can verify our results by explicit calculation in

specific cases. In a slightly curved spacetime, one can treat
the deviation from flatness as background field sources.
This also serves the purpose of checking that the η-
regularization is appropriate, obtaining the anomaly as a
function of η. Since, as η → 0, form ≠ 0, the flat space heat
kernel vanishes, one expects the anomaly to be vanishing.
In fact, one can check that a δðmÞ is recovered as η → 0. We
refer to the App. C for an explicit calculation; it verifies our
results in detail, and shows the vanishing anomaly regard-
less of the order of limits η → 0 and m → 0.

VI. MODIFIED LCR AND GENERALIZATION

A. Proving the heat kernel prescription

In this subsection we will explain why our proposed
method to determine the heat kernel for Schrödinger field
theory (z ¼ 2) worked in a perfect manner, as evidenced by
the agreement between Eqs. (46) and (51). We will see that
one can use LCR to relate the heat kernel of a theory living
in dþ 1 dimensions with that of a parent theory living in
dþ 2 dimensions, as long as the parent theory has SOð1; 1Þ
invariance.10 Furthermore, if the parent theory has a
dynamical scaling exponent given by z, then the theory
living in dþ 1 dimension has 2z as its dynamical exponent.
We will make these statements precise in what follows.
Suppose the operator D defined in dþ 2-dimensional

spacetime is diagonal in the eigenbasis of P−, the conjugate
momenta to x−:

hxþ2 ;xi2;m2jDjxþ1 ;xi1;m1i¼ hxþ2 ;xi2jDm2
jxþ1 ;xi1iδðm2−m1Þ;

ð62Þ

where m1;2 label the eigenvalues of P−. The example
worked out in Sec. IV B had D ¼ M, and it does satisfy
this requirement. It follows that

hxþ2 ;xi2;x−2 je−sDjxþ1 ;xi1;x−1 i

¼ 1

2π

Z
dm1dm2e−{m1x−1þ{m2x−2 hxþ2 ;xi2;m2je−sDjxþ1 ;xi1;m1i

¼ 1

2π

Z
dm1e{m1x−12hxþ2 ;xi2je−sDm1 jxþ1 ;xi1i; ð63Þ

from which we obtain

hxþ2 ; xi2je−sDm jxþ1 ; xi1i

¼
Z

dx−e−{mx−
12hxþ2 ; xi2; x−2 je−sDjxþ1 ; xi1; x−1 i: ð64Þ

This is precisely the prescription we gave in Eq. (24).

B. Generalization

Since the LCR (or DLCQ) trick requires null cone
reduction, it may seem necessary that the parent theory
have SOðdþ 1; 1Þ symmetry, and that this will result
necessarily in a Galilean invariant reduced theory, that is,
with z ¼ 2. This is not quite right: one may relax the
condition of SOðdþ 1; 1Þ symmetry and obtain reduced
theories with z ≠ 2. The key observation is that for null cone
reduction only two null coordinates are needed, with the rest
of the coordinates playing no role. Hence, we consider null
cone reduction of a dþ 2-dimensional theory which enjoys
SOð1; 1Þ × SOðdÞ symmetry. The reduced theory will be a
dþ 1-dimensional theory with SOðdÞ rotational symmetry
and a residual Uð1Þ symmetry that arises from the null
reduction. The point is that the theory can enjoy anisotropic
scaling symmetry. Consider, for example, the following
class of operators,

Mrc;dþ2 ¼ ð−∂2
t þ ∂2

xÞ − ð−1Þz=2ð∂i∂iÞz=2; ð65Þ

where t ¼ x0 and x ¼ xdþ1 and for the reminder of this
section there is an implicit sum over repeated latin indices,
over the range i ¼ 1;…; d. These operators transform
homogeneously under

xi → λxi; t → λz=2t and x → λz=2x: ð66Þ

Introducing null coordinates as before, x� ¼ 1ffiffi
2

p ðx� tÞ, null
reduction of this operator yields

Mgc;dþ1 ¼ 2{m∂t0 − ð−1Þz=2ð∂i∂iÞz=2; ð67Þ

where t0 ¼ xþ is the time coordinate of the reduced theory.
From the dispersion relation of the reduced theory,
2mω ¼ jkjz, we read off that the dynamical exponent is
z. Here we are interested in even z to insure that the operator
Mgc;dþ1 is local. For z ¼ 2, we recover the case discussed in
earlier sections with the parent theory being Lorentz

10One may as well assume that both parent and reduced
theories have, in addition, SOðdÞ rotational symmetry.
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invariant and the reduced theory being Schrödinger
invariant.
Following the prescription (64), we can relate the matrix

element of the heat kernel operator for Mr;dþ2 to that of
Mg;dþ1, via

11

GMgc;dþ1
¼

Z
∞

−∞
dx−e−{mx−hx−0 þ x−jGMrc;dþ2

jx−0 i: ð68Þ

This should be viewed as an operator relation: thinking of
the basis on which the operator GMr;dþ2

acts as given by the
tensor product of jxþi, jx−i and jxii for i ¼ 1; 2;…; d, then
hx−0 þ x−jGMr;dþ2

jx−0 i is an operator acting on the comple-
ment of the space spanned by jx−i. Taking the trace on both
sides of Eq. (68), we obtain the heat kernel of the reduced
theory:

KMgc;dþ1
¼
Z

∞

−∞
dx−e−{mx−Trxþ;xihx−0 þx−jGMrc;dþ2

jx−0 i ð69Þ

Equations (68) or (69) are useful in practice only when
we know either left or right hand sides by some other
means. Hence, the next meaningful question to be asked is
whether we can calculate GMr

explicitly for a curved
spacetime for any z. The case for z ¼ 2, that in which
the parent theory is relativistic and the reduced theory is
Schrödinger invariant, is well known and was presented in
Sec. IV B. For generic z, the answer is yes to some extent.
We will find a closed form expression when the slice of
constant ðt; xÞ in spacetime is described by a metric that
does not depend on t or x:

ds2 ¼ −dt2 þ ðdxÞ2 þ hijðxiÞdxidxj ð70Þ
With this choice, the heat kernel equation for the curved
background version of the operator Mrc;dþ2 of Eq. (65)
admits a solution by separation of variables, into the
product of the relativistic heat kernel in 1þ 1 dimensions
and the heat kernel for an operator acting only on the d-
dimensional slice [32]. Specifically, we consider operators

Mrc;dþ2 ¼ ∇2
t;x −Dz=2 ð71Þ

where ∇2
t;x ¼ ð−∂2

t þ ∂2
xÞ and D is a second order scalar

differential operator on the slice of constant ðt; xÞ, e.g.,
D ¼ −∇2 ¼ −1=

ffiffiffi
h

p ∂i

ffiffiffi
h

p
hij∂j. With these choices,

GMrc;dþ2
¼ G∇2

t;x
GDz=2 : ð72Þ

Gilkey has shown that the heat kernel expansion forDk can
be computed from that for D [43] for k > 0. The argument
is based on the observation that the ζ-functions for the two
operators are related:

ζðϵ;f;DkÞ¼TrL2ðfðDkÞ−ϵÞ¼TrL2ðfD−kϵÞ¼ ζðkϵ;f;DÞ:

Gilkey’s result is as follows: IfD has heat kernel expansion

KD ¼
�

1ffiffiffiffiffiffi
4π

p
�

dX
n≥0

sn−
d
2aðdÞn ð73Þ

then the heat kernel expansion of Dk is

KDk ¼
�

1ffiffiffiffiffiffi
4π

p
�

dX
n≥0

s
2n−d
2k

Γðd−2n
2k Þ

kΓðd
2
− nÞ a

ðdÞ
n

¼
�

1ffiffiffiffiffiffi
4π

p
�

d X
n≥0

2n≠dðmod 2kÞ

s
2n−d
2k

Γðd−2n
2k Þ

kΓðd
2
− nÞ a

ðdÞ
n

þ
�

1ffiffiffiffiffiffi
4π

p
�

d X
n≥0

2n¼dðmod 2kÞ

s
2n−d
2k ð−1Þð2n−dÞð1−kÞ2k aðdÞn ð74Þ

Hence, Mrc;dþ2 ¼ ð−∂2
t þ ∂2

xÞ − ð−∇2Þz=2 has heat kernel
expansion

hxþ2 ; x−2 ; xijGMrc;dþ2
jxþ1 ; x−1 ; xii

¼ e
−xþ

12
x−
12

2s

4πs

�
1ffiffiffiffiffiffi
4π

p
�

dX
n≥0

s
2n−d
z

Γðd−2nz Þ
z
2
Γðd

2
− nÞ a

ðdÞ
n ð75Þ

where x�12 ¼ x�2 − x�1 and aðdÞn are the well-known coef-
ficients of the heat kernel expansion of −∇2.
Now, the reduced theory lives on dþ 1-dimensional

spacetime with curved spatial slice; i.e., the background
metric is given by

ds2 ¼ −dt2 þ hijdxidxj; ð76Þ
where i runs from 1 to d. In order to extract the heat kernel
ofMgc;dþ1 ¼ 2{m∂t þ ð−∇2Þz=2, we need partial tracing of
heat kernel of Mrc;dþ2,

hx−0 þ x−jTrxþ;xiGMrc;dþ2
jx−0 i

¼
�

1ffiffiffiffiffiffi
4π

p
�

d 1

4πs

X
n≥0

s
2n−d
z

Γðd−2nz Þ
z
2
Γðd

2
− nÞ a

ðdÞ
n ; ð77Þ

leading to

KMgc;dþ1
¼ 2πδðmÞ 1

4πs

�
1ffiffiffiffiffiffi
4π

p
�

dX
n≥0

s
2n−d
z

Γðd−2nz Þ
z
2
Γðd

2
− nÞ a

ðdÞ
n :

ð78Þ

Adding conformal coupling modifies aðdÞn but the prefactor
stays 2πδðmÞ 1

4πs ð 1ffiffiffiffi
4π

p Þd. Hence, we have the generalized

result,

Ag
dþ1 ¼ 2πδðmÞAr

dþ2; ð79Þ
11Provided these heat kernels are well defined. We save this

technical aspect for Appendix A.

SRIDIP PAL and BENJAMÍN GRINSTEIN PHYSICAL REVIEW D 96, 125001 (2017)

125001-12



where Ag
dþ1 is the Weyl anomaly of a theory of a single

complex scalar field of charge m under a Uð1Þ symmetry
living in dþ 1 dimensions with dynamical exponent z and
Ar

dþ2 is the Weyl anomaly of a field theory living in dþ 2

dimension such that it admits a symmetry under t → λz=2t,
xdþ2 → λz=2xdþ2 and xi → λxi for i ¼ 1;…; dþ 1. Thus we
have shown that theories with one time derivative on a time
independent curved background do not have any Weyl
anomalies. This is consistent with the perturbative result
obtained previously.
It deserves mention that the operatorMrc;dþ2 of Eq. (71)

does not transform homogeneously under Weyl transfor-
mations. In order to construct a Weyl covariant operator
consider generalizing the metric (70) to the following form

ds2 ¼ Ndxþdx− þ hijdxidxj: ð80Þ

If N is independent of x− the metric for the reduced
theory will include a general lapse function N. Then we
replace ð∇2Þz2 byOðdþ2z−4ÞOðdþ2z−8Þ���Oðdþ4ÞOðdÞ withOðpÞ
defined as

OðpÞ ≡∇2 −
p

4ðd − 1ÞRþ 2þ p − d
z

∂iN
N

hij∂j

þ d
4z2

ð2þ p − dÞ ∂iN
N

hij
∂jN

N
ð81Þ

Under hij → e2σhij, N → ezσN and ψ → e−
p
2
σψ , this oper-

ator transforms covariantly, in the sense that

OðpÞψ → e−ð
p
2
þ2ÞσOðpÞψ : ð82Þ

Therefore, under the Weyl rescaling hij → e2σhij, N →

ezσN and ϕ → e−
d
2
σϕ we have that

N
ffiffiffi
h

p
ϕ�Oðdþ2z−4ÞOðdþ2z−8Þ � � �Oðdþ4ÞOðdÞϕ ð83Þ

is invariant under Weyl transformations.
Adding the conformal coupling will modify the expres-

sions for aðdÞn , but scaling with respect to s will remain
unmodified. Hence we can enquire about existence or
absence of potential Weyl anomalies. To have a nonvanish-
ingWeyl anomaly, we need to have an s independent term in
the heat kernel expansion. This is possible only when
2n−d
z ¼ 1, i.e., when dþ z is even; see Eqs. (75) and (78).

Since for a local Lagrangian z must be even, this condition
corresponds to even d12 This is expected because of the

following reason: the scalars we can construct out of
geometrical data (that can potentially appear as a trace
anomaly) have even dimensions and the volume element
scales like λdþz, so that in order to form a scale invariant
quantitydþ z has to be even.Nowwhend is even,we have s
independence for n ¼ ðdþ zÞ=2 and the coefficient of s0 is
given by ð 1ffiffiffiffi

4π
p Þdð−1Þ1−z

2addþz
2

. Hence, the result relating

anomalies in the parent and reduced theory, Eq. (79),
still holds.

VII. SUMMARY, DISCUSSION AND
FUTURE DIRECTIONS

We have shown that for a dþ 1-dimensional Schrödinger
invariant field theory of a single complex scalar field
carrying chargem underUð1Þ symmetry, theWeyl anomaly,
AG

dþ1, is given in terms of that of a relativistic free scalar field
living in dþ 2 dimensions, AR

dþ2, via

AG
dþ1 ¼ 2πδðmÞAR

dþ2: ð84Þ
Here the parent dþ 2 theory lives in a spacetime with null
isometry generated by the Killing vector ∂− so that the
metric can be given in terms of a dþ 1-dimensional
Newton-Cartan structure. The result is shown to be gener-
alized to

Ag
dþ1 ¼ 2πδðmÞAr

dþ2; ð85Þ
where Ag

dþ1 is the Weyl anomaly of a theory of a single
complex scalar field of charge m under an Uð1Þ symmetry
living in dþ 1 dimensions with dynamical exponent z,
while Ar

dþ2 is the Weyl anomaly of an SOð1; 1Þ × SOðdÞ
invariant theory living in dþ 2 dimensions such that it
admits symmetry under t → λz=2t, xdþ2 → λz=2xdþ2 and
xi → λxi for i ¼ 1;…; dþ 1.
To obtain information regarding the anomaly, we intro-

duced a method to systematically handle the heat kernel for
a theory with kinetic term involving one time derivative
only. We provided crosschecks and consistency checks on
our heat kernel prescription. One may worry that to
properly define a heat kernel the square of the derivative
operator must be considered. This would also be the case
for, say, the Dirac operator. In fact, one can properly define
it this way; see, for example, Ref. [48].
The result obtained regarding the anomaly of

Schrödinger field theory is consistent with the one by
Jensen [27]. Auzzi et al, [49] have studied the anomaly for
a Euclidean operator given by

M0
E;g ¼ 2m

ffiffiffiffiffiffiffiffi
−∂2

t

q
−∇2; ð86Þ

with eigenspectra given by jkj2 þ 2mjωj ≥ 0. One can
define the heat kernel for this operator as well, but the
eigenspectra of this operator is not analytically related to

12Giving up on the requirement of locality allows z to be any
positive real number. In this case, the anomaly is expected to be
present whenever dþ z is even. It might be of potential interest to
look at these cases carefully and make sure that nonlocality does
not provide any obstruction in the anomaly calculation and that the
renormalization process can be done in a consistent manner.
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that of MM;g ¼ 2{m∂t þ∇2, which is −k2 þ 2mω. As a
result the propagator in ω-k space has a cut on the complex
ω plane with branch point at the origin, making the analytic
continuation to Minkowski space problematic. It is known
that the two point correlator of Schrödinger field theory is
constrained and has a particular form as elucidated in
Ref. [20,50]. While our prescription and the resulting
Euclidean correlator conforms to that form, it is not clear
how the Euclidean Schrödinger operator defined in
Ref. [49] does, if at all. Finally, we note that the operatorffiffiffiffiffiffiffiffi
−∂2

t

p
is nonlocal (in the sense that the kernel, defined byffiffiffiffiffiffiffiffi

−∂2
t

p
fðtÞ ¼ R

dt0Kðt − t0Þfðt0Þ, has nonlocal support,
KðtÞ ¼ 2∂tP 1

t).
There are several avenues of investigation suggested by

this work:
(1) What happens in the case of several scalar fields with

different charge interacting with each other while
preserving Schrödinger invariance in flat spacetime?
How is the pre-factor δðmÞ modified?

(2) It is not obvious how null reduction of a theory of a
Dirac spinor in dþ 2 dimensions can result in a
Lagrangian in dþ 1 dimensions of the form
L ¼ 2{mψ†∂tψ þ ψ†∇2ψ , let alone one with L ¼
2{mψ†∂tψ − ψ†ð−∇2Þz=2ψ for z ≠ 2. On the other
hand, as we have seen, the functional integral over
nonrelativistic anticommuting fields yields the same
determinant as that of commuting fields (only a
positive power). Hence, the anomaly of the anti-
commuting field is the negative of that of the
commuting field.

(3) Calculations using the same Euclidean operator as in
Ref. [49] give a nonvanishing entanglement entropy
in the ground state [51]. By contrast, for the operator
MM;g ¼ 2{m∂t þ∇2, the entanglement entropy in
the ground state vanishes, since for this local non-
relativistic field theory ϕðxÞj0i ¼ 0 and hence the
ground state is a product state. It would be of interest
to verify this result by direct computation using a
method based on our prescription.

(4) The method described in Sec. VI B to compute Weyl
anomalies in theories with z ≠ 2 is not sufficiently
general in that, by assuming the metric is time
independent and has constant lapse, it neglects
anomalies involving extrinsic curvature or gradients
of the lapse function. A future challenge is to
develop a more general computational method.

We hope to come back to these questions in the future.
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APPENDIX A: TECHNICAL ASPECTS OF
HEAT KERNEL FOR ONE TIME

DERIVATIVE THEORY

Here is one more perspective on why δðmÞ appears in the
heat kernel for one-time derivative theory using the
eigenspectra of the operator Mg with one time derivative.
The Minkowski MM;g operator is given by

MM;g ¼ 2{m∂t − ð−∇2Þz=2 ðA1Þ

and the eigenspectra is given by 2mω − kz. Now, we can not
directly define the heat kernel since the eigenvalues range
from−∞ to∞, and therefore it blows up. A similar situation
also arises in relativistic theory where the eigenspectra is
given by −ω2 þ k2. There we define the heat kernel by
Euclideanizing the time coordinate so that the eigenvalues
become ω2 þ k2 ≥ 0 and this positive definiteness allows
for convergence. Technically, we can always define heat
kernel for an operator M as long as the eigenvalues of M
have positive real part. Building up on our experience to deal
with the relativistic case, we use analytic continuation here
as well. We define the Euclidean operator as

ME;g ¼ 2m∂τ þ ð−∇2Þz=2 ðA2Þ

with eigenspectra given by λk;ω ¼ −2{mωþ kz. Evidently,
Reðλk;ωÞ ≥ 0; hence, we have a well-defined heat kernel,
given by

KME;g
¼ Tre−sME;g ¼

Z
ddk
ð2πÞd e

−skz
Z

dω
2π

e−2m{sω

¼ δðmÞ
2s

2

Γðd
2
Þ

Γðdz þ 1Þ
dð

ffiffiffiffiffiffiffiffiffi
4πs

2
z

p
Þd

ðA3Þ

Similarly, the Euclidean heat kernel is well defined for
the operator Mrc;dþ2¼∇2

t;x−ð−∇2
xiÞz=2, where i¼ 1;2;…d

and x≡ xdþ2. If we Wick rotate to Euclidean time τ,
the eigenvalues of the operator Mrc;dþ2 are given by
ω2 þ ðkdþ2Þ2 þ ðjkj2Þz=2 ≥ 0. The presence of δðmÞ can
more formally be treated with an extra regulizer η, as
discussed in the last few paragraphs of IV B 1 for z ¼ 2; a
similar argument, using the regulator η, applies to any z.

APPENDIX B: RIEMANN NORMAL
COORDINATE AND COINCIDENT LIMIT

In this appendix, we show x− independence of quantities
relevant to the computation of the coincidence limit of the
heat kernel when the light cone reduction technique is used.
We assume that the daughter theory is coupled to a Newton
Cartan structure, satisfying the Frobenius condition; i.e.,
n ∧ dn ¼ 0 is satisfied. This condition allows a foliation of
the manifold globally. Thus, without loss of generality, the
metric is given by
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gμν ¼ nμnν þ hμν

nμ ¼ ðn; 0; 0;…; 0Þ; hτν ¼ 0: ðB1Þ

Using (9) and the fact hij is a positive definite matrix, we
thus have

hτν ¼ 0; vμ ¼
�
1

n
; 0; 0;…; 0

�
: ðB2Þ

The form of the metric, to which the reduced theory is
coupled, corresponds to a parent spacetime metric GMN ,
with nonvanishing components given by

G−þ ¼ n; Gij ¼ hij: ðB3Þ
In addition, we assume that the parent spacetime admits a
null isometry so that hij and n are independent of x−.
In what follows, we will work with this particular choice

of metric GMN (B3). Without loss of generality, we choose
x1 ¼ ð0; 0;…; 0Þ (we call it point P) and construct the
Riemann normal coordinate with the origin as the base
point. The Riemann normal coordinate yM, is given in
terms of the original co-ordinate xM as follows [52]:

yM ¼ xM þ fMABx
AxB þ fMABCx

AxBxC þ � � � ; ðB4Þ

where the index M runs over þ;−; 1; 2; 3;…; d. In the
coincident limit of the reduced theory, i.e., xμ2 → 0, for
μ ¼ þ; 1; 2;…; d (with x−2 possibly different from 0), we
claim that

½yμ2� ¼ 0; ½y−2 � ¼ x−2 ; ðB5Þ

where, henceforth, the square bracket is used to denote the
coincident limit in the reduced theory.
We note that ½fMABC…xAxBxC � � �� ¼ 0 whenever any of

the indices is not −: Recall that fMABC��� are constructed out
of derivatives acting on metric. Thus, fM− − � � �−|fflfflfflfflffl{zfflfflfflfflffl}

N indices

can be

nonzero only if it contains N factors of the metric tensor
G−Ki

, whereKi is a running index with i ¼ 1; 2;…; N. This
is because G−− ¼ 0 and derivatives can not carry the “−”
index as the metric components are x−-independent.
Moreover, by dimensional analysis fM− − � � �−|fflfflfflfflffl{zfflfflfflfflffl}

N

has N − 1

derivatives fM− − � � �−|fflfflfflfflffl{zfflfflfflfflffl}
N

. Schematically, this assumes one of

the following forms

∂A1
� � �∂AN−1

G−K1
� � �G−KN

GMAiGAi1
Kj1GAi2

Aj2 � � �GKi3
Kj3 � � � ;
ðB6Þ

∂A1
� ��∂AN−1

G−K1
�� �G−KN

GMKiGAi1
Kj1GAi2

Aj2 � ��GKi3
Kj3 � � � :
ðB7Þ

Here the derivatives are assumed to act on all possible
combinations, resulting in different possible terms. For
example, for N ¼ 2, one can have the following terms:

GMA1GK1K2G−K2
∂A1

G−K1
;

GMK2GA1K1G−K1
∂A1

G−K2
;

GMK2GA1K1G−K2
∂A1

G−K1
: ðB8Þ

There can not be any x− derivative for a term to be
nonvanishing. This implies the indices Ai are contracted
among themselves, except possibly for one contracted with
GMAi , and the indices Ki are contracted among themselves.
But sinceG−K ¼ 0 except forG−þ, andGþþ ¼ 0, any term
for which two factors of the metric tensor,G−Ki1

andG−Ki2
,

are contracted via GKi1
Ki2 vanish.

Next, we show that ½ΔVM� ¼ 1. The expression for ΔVM,
Eq, (56), involves bi-derivatives of the geodetic interval,
Eq. (55), and the determinant of the metric. To begin with,
we turn our attention to the determinant of the metric and
note that

½G0ðy2Þ� ¼ J2ð0; x−2 ; 0;…; 0ÞGð0; x−2 ; 0;…; 0Þ; ðB9Þ

where a prime indicates quantities in Riemann normal
coordinate and J is the Jacobian associated with the
coordinate transformation (B4). The x− independence in
the original coordinate guarantees that Gð0; x−2 ; 0;…; 0Þ ¼
Gð0; 0; 0;…; 0Þ, hence we have

½G0ðy2Þ� ¼
�
Jð0; x−2 ; 0;…; 0Þ
Jð0; 0; 0;…; 0Þ

�
2

G0ð0Þ: ðB10Þ

Next consider the geodetic interval from point P to pointQ.
In Riemann normal coordinates [52]

yM2 ¼ yMðQÞ ¼ yM1 þ sQ
dxM

ds

����
s¼0

; ðB11Þ

where sQ is the value of the affine parameter atQ and s ¼ 0

at P, with yM1 ¼ yMðPÞ. Using Eq. (55), hence we have

2σðy2; y1Þ ¼ GMNð0ÞðyM2 − yM1 ÞðyN2 − yN1 Þ
¼ G0

MNð0ÞðyM2 − yM1 ÞðyN2 − yN1 Þ ðB12Þ

where we have used G0
MNð0Þ ¼ GMNð0Þ. It follows that

ΔVM ¼
�
G0ðy2Þ
G0ð0Þ

�
−1=2

: ðB13Þ

We have continued back to Minkowskian signature (the
definition in Eq. (56) is for metric with Euclidean signa-
ture). Since ΔVM is a biscalar, use of Eqs. (B10) and (B13)
and of Jð0; 0; 0;…; 0Þ ¼ 1 gives
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½ΔVM� ¼
�
Jð0;x−2 ;0;…;0Þ
Jð0;0;0;…;0Þ

�
−1

¼ J−1ð0;x−2 ;0;…;0Þ

ðB14Þ

in the original coordinate system, xM. Equation (B14) is
consistent with the result that ΔVM ¼ 1 when all the
coordinates, including x−, coincide, i.e., when x−2 ¼ 0.
We aim to show that

�
det

�∂yM
∂xN

��
¼ det

��∂yM
∂xN

��
¼ 1 ðB15Þ

From Eq. (B4) we have

�∂yM
∂xN

�
¼ δMN þ ðfMN− þ fM−NÞx−

þ ðfMN−− þ fM−N− þ fM−−NÞx−x− þ � � � ðB16Þ

Consider first the lowest two terms in the expansion.
Explicitly, we have [52]

2fMN− ¼ 2fM−N ¼ ΓM
N−

¼ −
1

2
GMi∂iGN− −

1

2
GMþ∂þGN− þ 1

2
GMþ∂NGþ−:

ðB17Þ

It follows that fMN− ≠ 0 only forM¼− orN¼þ: Similarly,
fMðN−−Þ ≠ 0 provided M ¼ − or N ¼ þ, since [52]

6fMNIJ ¼ ΓM
NEΓE

IJ þ ∂NΓM
IJ ðB18Þ

By an argument analogous to that below Eqs. (B8) one can
show that ½fMN−−���−� ¼ 0 (at least three − subscripts).
Schematically

��∂yM
∂xN

��
¼

0
BBBBBBBB@

1 � � … … �
0 1 0 … … 0

0 0 1 0 … 0

..

. ..
. . .

. . .
.

0 � 0 0 1 0

1
CCCCCCCCA

where a “�” means a nonzero entry. Thus, the matrix has
unit determinant and we have, using Eq. (B14),

½ΔVM� ¼ 1: ðB19Þ

Lastly, we turn to the heat kernel expansion coefficients,
an. They are determined by the recursive relation [44],

nan þ ∂Mσ∂Man ¼ −Δ−1=2
VM MðΔ1=2

VMan−1Þ; ðB20Þ

and a0 ¼ 1, where M is the relativistic operator in the
parent theory. The condition of x− independence of ½an�,
½∂ian� and ½∂i∂jan� can be imposed on the recursion self-
consistently. To show this one uses x− independence of
½ΔVM�, ½∂iΔVM� and ½∂i∂jΔVM�, which follows from an
argument similar to the one used to establish Eq. (B19).

APPENDIX C: EXPLICIT PERTURBATIVE
CALCULATION OF THE η-REGULATED

HEAT KERNEL

In this appendix, we give an explicit perturbative
computation that shows the vanishing of the anomaly for
a class of curved backgrounds. This serves to verify the
general arguments presented in the body of the manuscript
in a specific, simple example, and allows us to study
explicitly the η regulated heat kernel asking in particular
whether the η → 0 limit is a well defined limit asm ≠ 0. To
be specific, we compute the heat kernel on a curved
background, characterized by

nμ ¼
�

1

1−nðxÞ ;0;0
�
; vμ ¼ð1−nðxÞ;0;0Þ ðC1Þ

hij¼ δij;
ffiffiffi
g

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðnνnνþhμhνÞ

q
¼ 1

1−nðxÞ : ðC2Þ

where nðxÞ is a function of space only and hi0 ¼ 0.
The special choice is inspired by [49] and additionally
serves the purpose of affording a direct comparison
with that work. We will perform a perturbative calculation
as an expansion in nðxÞ. We will specialize to a 2þ 1-
dimensional Schrödinger field theory coupled to this
background. The action is given by

S ¼
Z

dtd2xN
�
2mϕ†{

1

N
∂tϕ − hij∂iϕ

†∂jϕ − ξRϕ†ϕ

�
;

ðC3Þ

where NðxÞ ¼ 1
1−nðxÞ and R is the Ricci scalar of the 3þ 1-

dimensional geometry, on which the parent theory lives.
As we will see, the result of this calculation is that the

Weyl anomaly, corresponding to the theory described by
Eq. (C3) is given by

AG ¼ 2πδðmÞð−aE4 þ cW2 þ bR2 þ dDMDMRÞ ðC4Þ

where the coefficients a, b, c, d are given by
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a ¼ 1

8π2
1

360
; b ¼ 1

8π2
1

2

�
ξ −

1

6

�
2

;

c ¼ 1

8π2
1

120
; d ¼ 1

8π2

�
1 − 5ξ

30

�
: ðC5Þ

These are exactly the same as in the expression for the
Weyl Anomaly of a relativistic complex scalar field
theory13 living in one higher dimension [2–8]:

AR ¼ ð−aE4 þ cW2 þ bR2 þ dDMDMRÞ: ðC6Þ
To arrive at this result, we proceed by considering the

heat kernel of the following Euclidean operator, corre-
sponding to the action in Eq. (C3), namely

ME;c ¼ 2m
1

N
∂τ −D2 þ ξR; ðC7Þ

where we have

D2 ¼ 1ffiffiffi
g

p ∂ið
ffiffiffi
g

p
hij∂jÞ ¼ ∂2 þ ð1þ nÞð∂inÞ∂i; ðC8Þ

R ¼ −2∂2n − 2n∂2n −
7

2
∂in∂inþ � � � ; ðC9Þ

− g1=4D2ðg−1=4δðxÞÞ

¼ −∂2δðxÞ þ δðxÞ
�
1

2
∂2nþ 1

2
n∂2nþ 3

4
∂in∂in

�
:

ðC10Þ

The Euclidean operator can be expressed as the one in
flat spacetime, perturbed by the background field nðxÞ:

hx; τjME;cjx0; τ0i ¼ hx; τjME;fjx0; τ0i
þmP1ðxÞ∂τδðx − x0Þδðτ − τ0Þ
þ P2ðxÞδðx − x0Þδðτ − τ0Þ; ðC11Þ

where the subscript c and f denote the curved and flat
spacetime, respectively, while E denote the Euclidean
nature of the operator. Here we have introduced

P1ðxÞ ¼ 2nðxÞ;

P2ðxÞ ¼
�
1

2
∂2nþ 1

2
n∂2nþ 3

4
∂in∂in

�

− ξ

�
2∂2nþ 2n∂2nþ 7

2
∂in∂in

�
: ðC12Þ

The heat kernel can be obtained as a perturbative
expansion of the background fields as follows:

KðsÞ ¼ exp ½−sðME;f þ PÞ� ¼
X∞
N¼0

ð−1ÞNKNðsÞ: ðC13Þ

The KNðsÞ is defined as follows:

KNðsÞ ¼
Z

s

0

dsN

Z
sN

0

dsN−1 � � �

×
Z

s2

0

ds1Gðs − sNÞPGðsN − sN−1ÞP � � �

×Gðs2 − s1ÞPGðs1Þ: ðC14Þ

where GðsÞ ¼ e−sME;f and P is the perturbation (C11),
explicitly given by

hx; τjPjx0; τ0i ¼ mP1ðxÞ∂τδðx − x0Þδðτ − τ0Þ
þ P2ðxÞδðx − x0Þδðτ − τ0Þ: ðC15Þ

One can now complete the calculation by using the matrix
element of GðsÞ as given by

Gg;Eðs; ðx2; τ2Þ; ðx1; τ1ÞÞ
≡ hx2; τ2jGðsÞjx1; τ1i

¼ 1

π

�
1

4πs

�
d=2

�
sη

ð2ms − τ2 þ τ1Þ2 þ s2η2

�
e−

ðx2−x1Þ2
4s ;

ðC16Þ

which corresponds to the heat kernel expression for the η-
regulatedEuclidean operator:M0

E;g¼2m∂τ−∇2þη
ffiffiffiffiffiffiffiffi
−∂2

τ

p
,

as discussed in the last few paragraphs of IV B 1.14 This
reproduces Eq. (46) as η → 0.
The evaluation of Eq. (C14) follows the procedure

sketched out in the appendix of [49]. We separate the
contributions from P1 and P2 to K1 as follows:

K1P1
ðsÞ ¼

� η
2

m2 þ η2

4

��
−1

4m2 þ η2

�
8m2

ð4πsÞ2

×

�
P1 þ

s
6
∂2P1 þ

s2

60
∂2∂2P1 þ � � �

�
; ðC17Þ

K1P2
ðsÞ ¼

� η
2

m2 þ η2

4

�
2

ð4πsÞ2
�
sP2 þ

s2

6
∂2P2 þ � � �

�
;

ðC18Þ

13The Weyl anomaly of a complex scalar field is twice of that
of a real scalar field.

14In curved spacetime, M0
E;g includes a perturbation

nðxÞη
ffiffiffiffiffiffiffiffi
−∂2

τ

p
, that, however, does not contribute to the anomaly

in the η → 0 limit. This term’s contribution to K1 is proportional
to ηðη2−4m2Þ

ðη2þ4m2Þ2 that vanishes as η → 0, without giving a δðmÞ (or any
derivative of δðmÞ). This term’s contributions to K2 also vanish as
η → 0. We omit these terms for simplicity for rest of the
appendix.
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and for K2, which gets contributions quadratic in P1 and P2, as follows:

K2P1P1
ðsÞ ¼ ð24m2 − 2η2Þ

ðη2 þ 4m2Þ2
�

2m2η

4m2 þ η2

�
1

ð4πsÞ2
�
P2
1 þ

s
3
P1∂2P1 þ

s
6
∂iP1∂iP1

þ s2

180
ð6P1∂2∂2P1 þ 5∂2P1∂2P1 þ 12∂i∂2P1∂iP1 þ 4ð∂i∂jP1Þð∂i∂jP1ÞÞ

�
ðC19Þ

K2P1P2
ðsÞ ¼

� η
2

m2 þ η2

4

��
−1

4m2 þ η2

�
8m2

ð4πsÞ2
�
s
2
P1P2 þ

s2

12
ðP2∂2P1 þ P1∂2P2 þ ∂iP1∂iP2Þ þ � � �

�
ðC20Þ

K2P2P1
ðsÞ ¼ K2P1P2

ðsÞ ðC21Þ

K2P2P2
ðsÞ ¼

� η
2

m2 þ η2

4

�
2

ð4πsÞ2
�
s2

2
P2
2 þ � � �

�
ðC22Þ

The anomaly is determined by the s-independent terms in KN . In η → 0 limit, factors of δðmÞ arise, after use of the
following easily verifiable limits

lim
η→0

� η
2

m2 þ η2

4

��
8m2

4m2 þ η2

�
¼ πδðmÞ;

lim
η→0

� η
2

m2 þ η2

4

�
¼ πδðmÞ;

lim
η→0

24m2 − 2η2

ðη2 þ 4m2Þ2
�

2ηm2

m2 þ η2

4

�
¼ 2πδðmÞ:

In η → 0 limit, the s independent terms are given by

K1P1
ðsÞ ∋ δðmÞ

16π

�
−

1

30
∂2∂2n

�
;

K1P2
ðsÞ ∋ δðmÞ

16π

�
1

3
∂2P2

�

¼ δðmÞ
16π

�
1

3

��
1

2
− 2ξ

�
∂2∂2nþ

�
1

2
− 2ξ

�
∂2n∂2nþ

�
1

2
− 2ξ

�
n∂2∂2n

þ
�
5

2
− 11ξ

�
∂in∂i∂2nþ

�
3

2
− 7ξ

�
ð∂i∂jnÞð∂i∂jnÞ

��
;

K2P1P1
∋
δðmÞ
16π

�
1

90
ð6n∂2∂2nþ 5∂2n∂2nþ 12∂i∂2n∂inþ 4ð∂i∂jnÞð∂i∂jnÞÞ

�
;

K2P1P2
þ K2P1P2

∋
δðmÞ
16π

�
−1
3

ðP2∂2nþ n∂2P2 þ ∂in∂iP2Þ
�
¼ δðmÞ

16π

�
−1
3

�
1

2
− 2ξ

�
ð∂2n∂2nþ n∂2∂2nþ ∂in∂i∂2nÞ

�
;

K2P2P2
∋
δðmÞ
16π

½P2
2 þ � � �� ¼ δðmÞ

16π

��
1

2
− 2ξ

�
2∂2n∂2nþ � � �

�
:

Using

R ¼ −2∂2n − 2n∂2n −
7

2
∂in∂inþ � � � ; ðC23Þ

R2 ¼ 4ð∂2nÞ2 þ � � � ; W2 ¼ 1

3
ð∂2nÞ2 þ � � � ; ðC24Þ

E4 ¼ 2ð∂2nÞ2 − 2ð∂i∂jnÞð∂i∂jnÞ þ � � � ; ðC25Þ

DMDMR ¼ −2∂4n − 2ð∂2nÞ2 − 2n∂4n − 13ð∂jnÞð∂j∂2nÞ
− 7ð∂i∂jnÞð∂i∂jnÞ þ � � � : ðC26Þ
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one verifies the anomaly expression in Eqs. (C4) and (C5).
Since our calculation only fixes the value of 12bþ c, in
order to break the degeneracy we use the fact that for ξ ¼ 1

6

the Wess-Zumino consistency condition precludes an R2

anomaly [49] and assume c is ξ-independent.

We emphasize that the calculation carried out here
does not rely on any null cone reduction technique,
hence, this lends further credence to the LCR prescrip-
tion, which has correctly produced the δðmÞ factor, as
elucidated before.
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