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For static, spherically symmetric space-times in general relativity (GR), a no-go theorem is proved: it
excludes the existence of wormholes with flat and/or anti–de Sitter asymptotic regions on both sides of the
throat if the source matter is isotropic, i.e., the radial and tangential pressures coincide. It explains why in all
previous attempts to build such solutions it was necessary to introduce boundaries with thin shells that
manifestly violate the isotropy of matter. Under a simple assumption on the behavior of the spherical radius
rðxÞ, we obtain a number of examples of wormholes with isotropic matter and one or both de Sitter
asymptotic regions, allowed by the no-go theorem. We also obtain twice asymptotically flat wormholes
with anisotropic matter, both symmetric and asymmetric with respect to the throat, under the assumption
that the scalar curvature is zero. These solutions may be on equal grounds interpreted as those of GR with a
traceless stress-energy tensor and as vacuum solutions in a brane world. For such wormholes, the
traversability conditions and gravitational lensing properties are briefly discussed. As a byproduct, we
obtain twice asymptotically flat regular black hole solutions with up to four Killing horizons. As another
byproduct, we point out intersection points in families of integral curves for the function AðxÞ ¼ gtt,
parametrized by its values on the throat.
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I. INTRODUCTION

Wormholes as two-way tunnels or shortcuts between
different universes or different, otherwise distant regions of
the same universe are at present a well-known and widely
discussed subject; see, e.g., [1–8].Wormholes are of interest
not only as a perspective “means of transportation” but also
as possible timemachines or accelerators [5,7]. The simplest
wormhole geometry is static, spherically symmetric, where
the narrowest part, the throat, is simply a minimum of the
spherical radius r. A majority of known exact wormhole
solutions both in general relativity (GR) and alternative
theories of gravity (e.g., [9–13]) are spherically symmetric.
In studies of macroscopic phenomena or possible arti-

ficial constructions, if our interest is in describing (poten-
tially) realistic and manageable wormholes, there is a good
reason to adhere to GR since it is this theory that is well
verified by experiment at the macroscopic level and even
serves as a tool in a number of engineering applications
such as, for instance, global positioning systems. Then, the

existence of traversable Lorentzian wormholes as solutions
to the Einstein equations requires some kind of “exotic
matter,” i.e., matter that violates the null energy condition
(NEC) [5,14], which is in turn a part of the weak energy
condition whose physical meaning is that the energy
density is non-negative in any reference frame.
Many spherically symmetric wormhole solutions in GR

were first obtained with scalar field sources, beginning with
a massless phantom scalar field [15,16], and were later
extended to include scalar field potentials as well as
electromagnetic and other fields; see, e.g., [15,17–22]
and references therein. Meanwhile, there appeared quite
numerous examples of wormhole solutions with fluid
sources with various equations of state or with unspecified
matter whose stress-energy tensor (SET) components are
formally called the density ρ and pressure p, and the
latter may be different in different directions—see, e.g.,
[13,23–29]. An evident difficulty in this interpretation is
that in such fluids in many cases (such as, for instance,
p ¼ wρ with w < −1) the velocity of sound calculated as
ðdp=dρÞ1=2 turns out to be imaginary, which leads to a
hydrodynamic instability with exponentially growing
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perturbations. A way out is to suppose that what we call a
“fluid” actually consists of some fields with quite different
perturbation dynamics.
These difficulties are absent (though others may appear)

if, instead of standard GR, we adhere to the brane world
concept. Let us recall that in brane world theories (see, e.g.,
the reviews [30–32] and references therein) the observable
four-dimensional world is a kind of domain wall in five
or more dimensions of large or even infinite size. The
standard-model fields are confined on the brane while
gravity propagates in the surrounding bulk. The gravita-
tional field on the brane itself can be described, at least in a
large class of models related to Randall and Sundrum’s
second model (RS2) [33], by modified four-dimensional
Einstein equations [32,34], where, in addition to Tμν—the
SET of the four-dimensional matter and a cosmological
term Λ4gμν, there is also a tensor quadratic in Tμν, a
contribution from bulk matter (if any), and a geometric term
Eμν representing a projection of the “electric” part of the
five-dimensional Weyl tensor onto the brane. In vacuum,
when both four-dimensional and five-dimensional matter is
absent, these equations take the formGμν þ Λ4gμν ¼ −Eμν,
where Gμν is the four-dimensional Einstein tensor. The
tensor Eμν, connecting gravity on the brane with the bulk
geometry, sometimes called the tidal SET, is traceless by
construction. Due to its geometric origin, it is not subject to
requirements like energy conditions or hydrodynamic
stability. The form of Eμν, apart from its zero trace, is
virtually arbitrary (as guaranteed by the known embedding
theorems), so, if Λ4 ¼ 0 (a reasonable assumption for
describing local objects), R ¼ 0 is the only unambiguous
consequence of the equations Gμν ¼ −Eμν.
A class of asymptotically flat wormhole solutions to

the equation R ¼ 0 was obtained in [13], and it may be
on equal grounds interpreted as describing vacuum
gravitational fields in a brane world, existing due to a
“tidal” influence from the fifth dimension, or GR worm-
holes supported by anisotropic fluids with a traceless
SET. Other examples of solutions with R ¼ 0 appeared
in [35,36], their nonvacuum extensions in [37–39], in
particular, with Λ4 ≠ 0 in [39].
A common feature of these and many other wormhole

solutions is that they were obtained using the spherical
radius r that has a minimum on the throat, as the radial
coordinate, and, as a result, the solutions cover only one half
of the wormhole space-time, the other half being its copy.
Thus such wormholes are by construction Z2 symmetric
with respect to their throats. Obtaining asymmetric worm-
holes using this coordinate is possible but technically rather
inconvenient, see details in [13], and there are very few
examples of such wormhole solutions [13,22,35,36].
Another common feature of solutions with fluid sources

is that the fluid is either anisotropic or, if isotropic, occupies
a finite volume bounded by a junction surface, with a
vacuum metric outside it. In most of the cases the junction

surface is a thin shell with its own surface density and
pressure. While such inclusions are often convenient for
model construction, they look rather artificial, and it is
worthwhile to consider matter distributions either directly
adjoint to vacuum through a usual boundary, like a stellar
surface, or gradually decaying and approaching vacuum at
infinity.
In all cases, a vacuum geometry at infinity may be either

flat, which is reasonable for describing a wormhole in the
modern Universe, or (anti-) de Sitter [(A)dS], which is
more suitable for possible wormholes in an inflationary
universe or those related to vacuum bubbles (see, e.g., the
recent paper [40] and references therein). One might claim
that a static configuration with a dS asymptotic cannot be a
wormhole because of inevitable existence of horizons; such
horizons, however, are of cosmological rather than black
hole nature, so it makes sense to widen the wormhole
notion by admitting them. In an inflationary universe, such
wormholes, connecting otherwise distant and causally
disconnected regions of dS space, may in principle con-
tribute to solving the horizon problem in cosmology,
diminishing the necessary number of e-folds. Another
application can be the modern accelerated Universe (or
two such universes as possible locations of wormhole
mouths) [19,22,41–45].
In this paper we show that static, spherically symmetric,

asymptotically flat or AdS wormhole geometries do not
exist in GR with any kind of matter with isotropic pressure
as a source (Sec. II). On the contrary, asymptotically dS
configurations are allowed, and we construct examples of
such wormhole solutions using the so-called quasiglobal
coordinate x [7,46] such that gttgxx ¼ −1. The examples
include both Z2-symmetric and asymmetric wormholes
(Sec. III). In Sec. IV we present examples of symmetric
and asymmetric asymptotically flat wormholes under the
assumption R ¼ 0. We note that although the curvature
coordinate r is often favorable for obtaining analytic
solutions (in [13,37] different wormhole and black hole
solutions were obtained in an algorithmic form), the
coordinate x is more natural and transparent when dealing
with black hole and wormhole geometries, even though our
solutions in terms of x are only numerical. As a byproduct,
in our study there emerge a number of regular, twice
asymptotically flat black hole solutions with up to four
Killing horizons. In Sec. V we consider the traversability
properties of the twice asymptotically flat wormholes and
calculate the light deflection angles in their geometries,
leading to gravitational lensing. Section VI contains some
concluding remarks. Finally, in the appendix we discuss an
interesting property of the integral curves of our equations
for the redshift function AðxÞ ¼ gtt: all curves beginning at
the throat x ¼ 0 with the same slope A0 but different values
of Að0Þ, intersect at certain values of x. It turns out to be a
manifestation of a general property of linear differential
equations.
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II. BASIC EQUATIONS. NO-GO THEOREM

A. General relations. The necessity of NEC violation

Let us begin with the general static, spherically sym-
metric metric which can be written in the form1

ds2 ¼ e2γðuÞdt2 − e2αðuÞdu2 − e2βðuÞdΩ2; ð1Þ

where u is an arbitrary radial coordinate and dΩ2 ¼ dθ2 þ
sin2 θdφ2 is the linear element on a unit sphere.2

Then the Ricci tensor has the following nonzero com-
ponents:

Rt
t ¼ −e−2α½γ00 þ γ0ðγ0 − α0 þ 2β0Þ�; ð2Þ

Ru
u ¼ −e−2α½γ00 þ 2β00 þ γ02 þ 2β02 − α0ðγ0 þ 2β0Þ�; ð3Þ

Rθ
θ ¼ Rφ

φ ¼ e−2β − e−2α½β00 þ β0ðγ0 − α0 þ 2β0Þ�; ð4Þ

where the prime stands for d=du. The Einstein equations
can be written in two equivalent forms,

Gν
μ ≡ Rν

μ −
1

2
δνμR ¼ −Tν

μ; or

Rν
μ ¼ −

�
Tν
μ −

1

2
δνμTα

α

�
; ð5Þ

where Tν
μ is the SET of matter. The most general SET

compatible with the geometry (1) has the form

Tν
μ ¼ diagðρ;−pr;−pT;−pTÞ; ð6Þ

where ρ is the energy density, pr is the radial pressure, and
pT is the tangential pressure. These SET components may
contain contributions of one or several physical fields of
different spins and masses but can also be considered as
hydrodynamic quantities, characterizing the density and
pressures of one or several fluids. In this paper we consider
Tν
μ as the SET either in a general form or as that of a single

fluid, which is in general anisotropic (pr ≢ pT).
Let us illustrate the necessity of exotic matter for

wormhole existence in space-times with the metric (1)
taken as an example [5,7]. Choosing the so-called quasi-
global coordinate u ¼ x under the condition αþ γ ¼ 0

and denoting e2γ ¼ e−2α ¼ AðxÞ, eβ ¼ rðxÞ, we rewrite the
metric as

ds2 ¼ AðxÞdt2 − dx2

AðxÞ − r2ðxÞdΩ2: ð7Þ

A (traversable) wormhole geometry implies, by definition,
that the function rðxÞ has a regular minimum (say, at
x ¼ x0), called a throat, and reaches values much larger
than rðx0Þ on both sides of the throat. It is also usually
required that AðxÞ > 0 in the whole range of x, which
excludes horizons that characterize black hole rather than
wormhole geometries. It may happen, however, that there is
a horizon far away from the throat, for example, if the
space-time is asymptotically de Sitter. If a wormhole
connects two de Sitter universes or regions of a single
de Sitter universe, it will have horizons on each side of the
throat, but the latter lies in the region where AðxÞ > 0.
The difference of the ðttÞ and ðxxÞ components of the

Einstein equations reads

2Ar00=r ¼ −ðTt
t − Tx

xÞ≡ −ðρþ prÞ: ð8Þ

On the other hand, at a throat as a minimum of rðxÞwe have

r > 0; r0 ¼ 0; r00 > 0: ð9Þ

(In special cases where r00 ¼ 0 at the minimum, it always
holds r00 > 0 in its neighborhood.) Then from (8) it
immediately follows ρþ pr < 0. This inequality does
indeed look exotic, but to see an exact result, let us recall
that the NEC requires Tν

μkμkν ≥ 0, where kμ is any null

vector, kμkμ ¼ 0. Choosing kμ ¼ ð1= ffiffiffiffi
A

p
;

ffiffiffiffi
A

p
; 0; 0Þ, we see

that Tν
μkμkν ¼ ρþ pr. Thus the inequality ρþ pr < 0 does

indeed violate the NEC.

B. No-go theorem

There are three different nontrivial components in the
Einstein equations for the metric (7), written using the
quasiglobal gauge αþ γ ¼ 0,

Gt
t ¼

1

r2
½−1þ Að2rr00 þ r02Þ þ A0rr0� ¼ −Tt

t; ð10Þ

Gx
x ¼

1

r2
½−1þ A0rr0 þ Ar02� ¼ −Tx

x; ð11Þ

Gθ
θ ¼ Gϕ

ϕ ¼ 1

2r
½2Ar00 þ rA00 þ 2A0r0� ¼ pT; ð12Þ

where the prime again denotes d=dx, and (11) is the
constraint equation, free from second-order derivatives.
Note that Tt

t is the energy density ρ and Tx
x ¼ −pr in a static

(R-) region, where A > 0, while beyond a horizon (if any),
in a T-region where AðxÞ < 0, where the metric describes
a Kantowski-Sachs cosmology, Tx

x is the energy density,
and −Tt

t is the pressure in the (spatial) t direction.

1Our conventions are the metric signature ðþ − −−Þ, the
curvature tensor Rσ

μρν ¼ ∂νΓσ
μρ −…; Rμν ¼ Rσ

μσν, so that the
Ricci scalar R > 0 for de Sitter space-time and the matter-
dominated cosmological epoch; the sign of Tν

μ such that T0
0 is

the energy density, and the system of units 8πG ¼ c ¼ 1.
2We use different letters for different radial coordinates: u is a

general notation, without a specific “gauge” condition, x is a
quasiglobal coordinate, such that α ¼ −γ in (1), and l is the
Gaussian, or proper radial distance coordinate, such that α≡ 0
in (1).
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It is of interest whether or not wormhole solutions can be
obtained with a source in the form of an isotropic (Pascal)
fluid, such that pr ¼ pT . Let us show that the answer is
negative if we require A > 0 in the whole space.
If pr ¼ pT , it follows Gx

x ¼ Gθ
θ, and the difference of

Eqs. (11) and (12) gives

r2A00 þ 2Arr00 − 2Ar02 þ 2 ¼ 0: ð13Þ

The substitution AðxÞ ¼ DðxÞ=r2ðxÞ converts it to

D00 −
4D0r0

r
þ 4Dr02

r2
þ 2 ¼ 0: ð14Þ

A possible minimum of DðxÞ at some x ¼ x0 requires
D0 ¼ 0 and D00 ≥ 0. Meanwhile, if D0 ¼ 0, Eq. (14) gives
D00 ≤ −2, so that it is necessarily a maximum.
However, an asymptotically flat traversable wormhole

requires r → ∞ and A → 1 as x → �∞; in an asymptoti-
cally anti–de Sitter wormhole it must be A ∼ r2 at large r
etc. In all such cases DðxÞ → ∞ on both sides far from the
throat; hence it should have a minimum, which, as we have
seen, is impossible. We thus have the following theorem:
A static, spherically symmetric traversable wormhole

with r → ∞ and AðxÞr2ðxÞ → ∞ on both sides of the throat
cannot be supported by any isotropic matter source with
pr ¼ pT .
This excludes, in particular, twice asymptotically flat and

twice asymptotically AdS wormholes as well as those
asymptotically flat on one end and AdS on the other. What
is not excluded is that one or both asymptotic regions are de
Sitter: in this case, r → ∞ but A ∼ −r2 at large r, and it is
not necessary to have a minimum of DðxÞ.
The theorem has been proved using a specific coordinate

condition but has an invariant meaning since the quantities
A ¼ gtt and r2 ¼ gθθ are insensitive to the choice of the
radial coordinate. The existing wormhole solutions where
an isotropic fluid occupies a finite region of space also do
not contradict the theorem since they inevitably require
“heavy” thin shells on the boundary between the fluid
and vacuum regions [23,24], and these shells are highly
anisotropic in the sense that a tangential pressure is nonzero
while the radial one is not defined (the radial direction is
orthogonal to the shell).

III. WORMHOLES SUPPORTED
BY ISOTROPIC MATTER

A. Symmetric dS-dS wormholes

The opportunity of obtaining wormholes with two de
Sitter asymptotics (dS-dS wormholes for short) supported
by isotropic matter, allowed by the above no-go theorem, is
of interest, in particular, because such wormholes may exist
in an inflationary universe and provide causal connections

between otherwise distant regions. We construct examples
of such solutions in this subsection.
Another opportunity of interest is a wormhole connect-

ing de Sitter regions with different values of the cosmo-
logical constant, which may be interpreted as bubbles of
true and false vacua. In such cases a wormhole can either
play the role of a thick domain wall, or, on the contrary,
directly connect regions separated by a domain wall. Such
examples are discussed in the next subsection.
Since there is no clear reason to assume any particular

equation of state, we instead specify the metric function
rðxÞ having a regular minimum at x ¼ 0 (the throat) and
compatible with a de Sitter behavior of the metric at
large jxj,

rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2

p
; a ¼ const > 0: ð15Þ

For a numerical study, we put a ¼ 1; remaining arbitrary,
the parameter a then plays the role of a length unit.
Furthermore, assuming that the matter source is isotropic,
pr ¼ pT , we can use Eq. (13) for finding AðxÞ; after
solving it, the metric is known completely.
With (15) and a ¼ 1, Eq. (13) takes the form

ð1þ x2Þ2A00 þ 2ð1 − x2ÞAþ 2ð1þ x2Þ ¼ 0: ð16Þ

It is hard to solve this equation analytically, but its
asymptotic form at large jxj, that is, x2A00 − 2Aþ 2 ¼ 0,
is easily integrated giving AðxÞ ¼ 1þ c1x2 þ c2=x with
c1;2 ¼ const. Solutions with c1 ≥ 0, corresponding to flat
or AdS asymptotics, are excluded by the above no-go
theorem, so the only possible asymptotic form of the metric
is de Sitter, with c1 < 0.
Examples of numerical solutions to Eq. (16) under the

initial conditions Að0Þ ¼ A0, A0ð0Þ ¼ 0 are shown in Fig. 1

–2 –1 1 2

–10

–5

5

10

15

FIG. 1. Solutions AðxÞ of Eq. (16) for a symmetric dS-dS
wormhole, corresponding to Að0Þ ¼ 1, 3, 6, 10, 15 (bottom up
along the ordinate axis) and A0ð0Þ ¼ 0.
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for A0 ¼ 1, 3, 6, 10, 15. It is of interest that all curves
intersect at two symmetric points: x ≈�1.4109,
AðxÞ ≈ −1.4953. The behavior of SET components in
the wormhole model with Að0Þ ¼ 1 and A0ð0Þ ¼ 0, found
from Eqs. (10) and (11), is shown in Fig. 2. The wormhole
is Z2 symmetric relative to its throat (x ¼ 0), so all these
functions are even. The values of the effective cosmological
constant Λ at large jxj correspond to AðxÞ ≈ −Λx2=3; thus
it is clear from Fig. 1 that Λ is the same at the two infinities
but different for different values of Að0Þ. Its precise value is
in each case determined as the common limit of Tt

t and Tx
x,

as exemplified by Fig. 2.
Note that the usual relations Tt

t ¼ ρ and Tx
x ¼ −p hold

only in the static region, where AðxÞ > 0. In a region where
AðxÞ < 0 (T-region), the coordinate t is spatial; hence
−Tt

t ¼ pt is the pressure along the t direction, while the
density is ρ ¼ Tx

x since x is now a temporal coordinate;
however, the condition r00 > 0 in Eq. (8) (which is the same
for any sign of A) leads to ρþ pt < 0, again violating the
NEC. That Tt

t and Tx
x tend to the same constant value

at large x agrees with the de Sitter asymptotic behavior of
the metric since the SET structure approaches that of a
cosmological term, Tν

μ ¼ Λδνμ. One can also notice that this
structure takes place on the horizon. Furthermore, in the

whole space-time we have Tx
x ¼ Tθ

θ ¼ −pT , but the fluid is
anisotropic in the T-region since pt ¼ −Tt

t ≠ pT .
Figure 3 shows the Carter-Penrose diagram of dS-dS

wormholes, the same as presented in [41,45], and poten-
tially infinite both to the left and to the right: however,
mutually isometric surfaces may be identified, such as,
e.g., those depicted by lines AA’ and BB’ in Fig. 3, which
means that the wormhole connects regions of the same de
Sitter universe.

B. Asymmetric configurations: dS-dS wormholes
and black universes

Solutions to the same equation (16) with A0ð0Þ ≠ 0 can
also be obtained numerically. Some examples of such
solutions are shown in Fig. 4 for Að0Þ ¼ 0 and A0ð0Þ ¼
0, 1, 2, 3, 4, 5. These plots show that at small values of
A0ð0Þ we obtain dS-dS wormholes with different values of
Λ at large positive and negative x. Such wormholes might
connect space-time regions with different vacuum energy
densities, for instance, a bubble of false vacuum with a
region of true vacuum. The global structure diagram for
all such space-times is the same as for symmetric dS-dS
wormholes.
Larger values of A0ð0Þ lead to configurations with a

single horizon and an AdS asymptotic behavior as x → ∞.
There is an intermediate case with asymptotic flatness at
large positive x, as is proved by the existence of solutions
to Eq. (16) under the condition, e.g., Aðþ∞Þ ¼ 1. All
such configurations have the structure of black universes
[17,20,47,48], i.e., black holes in which beyond the horizon
there is, instead of a singularity, an expanding universe
tending to a de Sitter behavior at late times.
Figure 5 shows how the behavior of AðxÞ changes if one

keeps invariable the derivative A0ð0Þ and changes Að0Þ.
Again there are different asymptotic behaviors as x → þ∞
depending on the value of Að0Þ. But again, just as in Fig. 1,
all plots of AðxÞ intersect at two points. More than
that, these intersections occur at the same values of x ≈
�1.4109 as it happened for symmetric models, though the

FIG. 2. The metric function AðxÞ and the SET components for a
symmetric dS-dS wormhole described by the solution of Eq. (16)
with Að0Þ ¼ 1 and A0ð0Þ ¼ 0.

FIG. 3. Carter-Penrose diagram showing the global structure of
dS-dS wormholes. The regions labeled T1 correspond to the
range x < x−, those labeled T2 to the range x > xþ, where x− <
xþ are the horizons (and x− ¼ −xþ in a symmetric solution only).

FIG. 4. The function AðxÞ for Að0Þ ¼ 1 and A0ð0Þ ¼ 0, 1, 2, 3,
4, 5 (the latter values are written on the corresponding curves).
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corresponding values of AðxÞ are certainly different. All
this cannot happen by chance, and indeed, one can prove
that it is a manifestation of a general property of second-
order linear differential equations; see the appendix.

The SET components behave accordingly. Figures 6
and 7 show their properties for two different cases, one for a
dS-dS wormhole with different dS curvatures at two ends
(Fig. 6), and the other where the right end is AdS. The
corresponding values of the effective cosmological con-
stant are the same as those of the SET components since at
large jxj all of them coincide (recall that we are here dealing
with isotropic matter; hence Tx

x ¼ Tθ
θ ¼ Tφ

φ).

IV. ASYMPTOTICALLY FLAT (M-M)
WORMHOLES AND REGULAR BLACK HOLES

Now let us abandon the source isotropy assumption and
try to obtain some new models of twice asymptotically flat
wormhole geometries. Since, as before, there is no clear
reason to assume a particular form of the equations of state
(which are now different for pr and pT), let us, instead,
again choose the function rðxÞ in the form (15). In addition,
let us assume a zero scalar curvature R throughout the
space. In this way we not only replace postulating another
equation of state of the source matter, but also make it
possible to interpret the results as vacuum solutions in an
RS2-like brane world, somewhat similar to those found in
[13], where some examples of Z2-symmetric wormhole
solutions were obtained in an analytic form using the
spherical radius r as a coordinate. Now we use the
coordinate x which is better for finding Z2-asymmetric
solutions, although these solutions are only numerical.
For the metric (7) we have

R ¼ 2

r2
− A00 − 4A0 r

0

r
− 4A

r00

r
− 2A

r02

r2
: ð17Þ

Therefore, under the assumption (15) for rðxÞ, with, as
before a ¼ 1, the equation R ¼ 0 takes the form

A00 þ 4x
1þ x2

A0 þ 2ð2þ x2Þ
ð1þ x2Þ2 A ¼ 2

1þ x2
: ð18Þ

At large jxj the asymptotic form of this equation has the
general solution A ¼ 1þ C1=xþ C2=x2, C1;2 ¼ const,
which evidently corresponds to asymptotic flatness with
a Schwarzschild-like metric. So, let us solve Eq. (18) under
the initial conditions specified at x ¼ 0: Að0Þ and A0ð0Þ, so
that A0ð0Þ ¼ 0 should lead to an even function AðxÞ, hence
a symmetric solution, and A0ð0Þ ≠ 0 to an asymmetric one.
Examples of symmetric solutions to Eq. (18) with

different Að0Þ and A0ð0Þ ¼ 0 are plotted in Fig. 8. It is
observed that at 0 < Að0Þ ¼ 0.5 we have wormholes with a
minimum of AðxÞ at the throat x ¼ 0, which is thus
attracting for test particles. At larger Að0Þ there appear
two minima of AðxÞ around the throat, acting as potential
wells for test particles. A further increase of Að0Þ makes
these minima first equal to 0 [at Að0Þ ≈ 4.205] and then
negative at still larger Að0Þ. We thus obtain regular black
holes with either two double horizons or four simple
horizons. A phenomenon of interest, as in Sec. III, is that

FIG. 5. The function AðxÞ for the same slope at the throat,
A0ð0Þ ¼ 6 and Að0Þ ¼ 1, 3, 5, 8, 12 (bottom up along the ordinate
axis and conversely at large jxj).

FIG. 6. The function AðxÞ and the SET components for the
solution with Að0Þ ¼ 8 and A0ð0Þ ¼ 6, having two de Sitter
asymptotics with different curvature values.

FIG. 7. The same as in Fig. 6 but Að0Þ ¼ 3 and A0ð0Þ ¼ 6, with
AdS behavior at large positive x.
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Að�1.278172Þ ≈ 0.551892 independently of Að0Þ, which
is observed as the existence of two intersection points of
all plots in Fig. 8. On the other hand, the initial values
Að0Þ ¼ 0 and Að0Þ < 0 lead to solutions with one double
or two simple horizons, respectively, similar to those found
in [37]. Thus we are again dealing with regular black holes
instead of wormholes.
The effective matter density and pressures for an example

of a symmetric wormhole model with Að0Þ ¼ 0.5 and
A0ð0Þ ¼ 0 are shown in Fig. 9. The NEC violation at all
x is evident since ρþ pr < 0.
The above pictures are weakly or strongly deformed if

we specify A0ð0Þ ≠ 0. Let us consider some examples.
The behavior of AðxÞ in the case Að0Þ ¼ 1 is depicted in

Fig. 10. One sees that small nonzero values of A0ð0Þ make
the wormhole asymmetric without changing its global
structure, but at A0ð0Þ ≈ 1.5 emerges a double horizon
which turns into a pair of simple horizons at larger A0ð0Þ.
A similar behavior of the solutions is observed for all
Að0Þ≲ 4.2, at which the corresponding symmetric solu-
tions have no zeros and describe wormholes. At larger
values of Að0Þ, at which even functions AðxÞ have zeros

FIG. 8. Symmetric solutions to Eq. (18) with A0ð0Þ ¼ 0 and Að0Þ ¼ −0.3, 0, 0.3, 0.5, 0.75, 1, 2, 4.205, 6 (bottom up along the ordinate
axis, and conversely at large jxj). Left, a general picture; middle, its part of interest enlarged; right, a neighborhood of the plots’
intersection point “under a microscope.”

FIG. 9. The density ρðxÞ and the pressures prðxÞ and pTðxÞ for
a symmetric wormhole with Að0Þ ¼ 0.5 and A0ð0Þ ¼ 0.

FIG. 10. Solutions to Eq. (18) with Að0Þ ¼ 1 and A0ð0Þ ¼ 0, 1,
1.5, 2, 3 (upside down for x < 0 and bottom up for x > 0).

FIG. 11. Solutions to Eq. (18) with Að0Þ ¼ 5 and A0ð0Þ ¼ 0,
0.8, 2 (upside down for x < 0 and bottom up for x > 0). The
peaks near x ¼ 0 are similar to those in Fig. 8.
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shown in Fig. 8 (they describe symmetric regular black
holes), the corresponding asymmetric space-times are also
regular black holes, with the number of horizons from 2 to
4, as is evident from Fig. 11, showing AðxÞ with Að0Þ ¼ 5
and different A0ð0Þ.
Figure 12 presents an example of the behavior of the

effective density and pressures in an asymmetric worm-
hole model.

V. WORMHOLE TRAVERSABILITY
AND LENSING

In this section we briefly discuss some important proper-
ties of asymptotically flat wormholes taking as examples
some of the Z2-symmetric solutions for which the redshift
function AðxÞ is plotted in Fig. 8. The corresponding
numerical estimates will evidently be true by order of
magnitude for other typical solutions.

A. Traversability

Not all wormholes traversable by definition may really be
used by a human being, or are “traversable in practice” [4]. A
natural criterion for such traversability is that tidal acceler-
ations due to inhomogeneity of the gravitational field should
not exceed the Earth’s surface gravity, g⊕ ≈ 9.8 m=s2. For a
body moving in the radial direction, the tidal accelerations
in a static, spherically symmetric metric can be described by
Eqs. (13.4) and (13.6) from [4], which can be rewritten as
follows in the notations of the metric (7):

Δa∥ ¼ Rtx
txΔξ∥ ¼

1

2
A00Δξ∥; ð19Þ

Δa⊥ ¼ γ̄2ðRtθ
tθ − β̄2Rxθ

xθΔξ⊥Þ

¼ γ̄2
�
−
1

2

A0r0

r
þ β̄2

�
Ar00

r
þ 1

2

A0r0

r

��
Δξ⊥; ð20Þ

where Δa are the tidal accelerations in the radial ( ∥) and
transversal (⊥) directions, and Δξ are small displacements in
the same directions.3 Furthermore, β̄ ¼ v=c is the velocity
(in units of the speed of light) relative to the static reference
frame, and γ̄ ¼ ð1 − β̄2Þ−1=2 is the corresponding Lorentz
factor. The expression (20) is especially simple for the throat
x ¼ 0: since r0ð0Þ ¼ 0, it follows that

Δa⊥ ¼ β̄2γ̄2
Ar00

r
Δξ⊥: ð21Þ

In numerical estimates, the dimensionless quantities involved
(A; A00; r; r00; β̄; γ̄) are of the order of unity provided that
a ¼ 1. Indeed, by (15), at the throat x ¼ 0we have r ¼ 1 and
r00 ¼ 1, and by (18) A00ð0Þ ¼ 2–4Að0Þ, the initial data for A
andA0 are taken to be of the order of unity, and the values of all
relevant quantities at x ≠ 0 are of the same order as at x ¼ 0 or
smaller.
However, our unit length is the arbitrary length a equal to

the throat radius; hence to obtain estimates in meters, each
d=dx should be divided by a expressed in meters. We
should also take into account that in the units where c ¼ 1 a
second equals 3 × 108 m; therefore g⊕ ¼ 9.8 m=s2 ≈ 1.1×
10−16 m−1. So, assuming Δξ∥;⊥ ¼ 2 m in Eqs. (19)–(21),
from the requirement jΔa∥;⊥j ≲ g⊕ we obtain

a≳ 108 m ¼ 105 km; ð22Þ

that is, the throat radius must be larger than roughly
eight Earth’s diameters. One can notice that the estimated
tidal accelerations at a wormhole throat are of the same
order of magnitude as tidal accelerations at a Schwarzschild
horizon of the same radius [see, e.g., Eqs. (13.17) and
(13.18) in [4]].
Another requirement is that a traveler should not expe-

rience too large center-of-mass accelerations. However, if the
spacecraft moves along a geodesic, such an acceleration is
zero (the usual free-fall weightlessness), and if not, every-
thing depends on the engine activity.

B. Gravitational lensing

To calculate gravitational lensing as one of the most
important potentially observable effects of wormholes, one
can use the general formulas for asymptotically flat static,
spherically symmetric space-times [49] (see, e.g., [50] for
more recent references with calculations of light bending in
various wormhole models). In our notations, the deflection

FIG. 12. The density ρðxÞ and the pressures prðxÞ and pTðxÞ
for an asymmetric wormhole with Að0Þ ¼ 1 and A0ð0Þ ¼ 1.

3We have replaced the tetrad components of the Riemann
tensor used in Visser’s book [4] with the mixed components Rμν

μν

(no summing). A direct calculation shows that this replacement is
equivalent due to diagonality of the metric (7) and diagonality of
the Riemann tensor with respect to pairs of indices in the same
metric; one should only take into account the sign changes when
raising the indices and the Riemann tensor definition in [4].
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angle α, found by considering null geodesics in the
metric (7), is given by

α ¼ αðx0Þ ¼ Iðx0Þ − π;

Iðx0Þ ¼ 2

Z
∞

x0

dx

rðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðxÞ=b2 − AðxÞ

p ; ð23Þ

where b ¼ L=E is the so-called impact parameter charac-
terizing a particular null geodesic with the conserved
energy parameter E ¼ AðxÞdt=dσ and the conserved angu-
lar momentum L ¼ dφ=dσ, σ being an affine parameter
along the geodesic. The coordinate value x0 corresponds to
the nearest approach of the photon path to the throat and is
found from the condition dr=dσ ¼ 0 which leads to

Aðx0Þb2 ¼ r2ðx0Þ: ð24Þ

It is clear that if R ≔ rðx0Þ > 1, then the photon is
scattered against the wormhole, while the equality R¼1
tells us that the photon reaches the throat and then passes
through the wormhole. We restrict our calculations to
photon paths with R > 1, mentioning that paths traversing
a wormhole and images of another universe thus observed
were considered in [51,52]. Let us select for consideration
three particular Z2-symmetric models from those depicted
in Fig. 8, namely, one with Að0Þ ¼ 1=3 [in which AðxÞ
has a minimum on the throat], another with Að0Þ ¼ 1 [in
which AðxÞ is slightly peaked at the throat such that
Að0Þ ¼ Að∞Þ], and the third one with Að0Þ ¼ 3 with a
larger peak of Að0Þ at the throat. A numerical calculation
leads to the results shown in Fig. 13, covering a range of x
from a close vicinity of the throat to those where the
deflection angles actually begin to follow the asymptotic
law according to Einstein’s formula

αðRÞ ≈ 4m=R; ð25Þ

where m is the Schwarzschild mass that characterizes the
almost Newtonian gravitational field at large x. As before,
the scale along the horizontal axis corresponds to a ¼ 1,
that is, the radius rðxÞ is shown in units of the throat radius.
Thus we compare light deflection near different wormholes
with the same throat radius. These wormholes have differ-
ent Schwarzschild masses mðAð0ÞÞ,

mð0.3Þ ≈ 0.89; mð1Þ ≈ 1.17; mð3Þ ≈ 2.09 ð26Þ

(recall that these are “geometrized” masses with the
dimension of length, m ¼ GM, G being the Newtonian
gravitational constant and M the conventional mass). For
comparison, we also show the deflection angles for an Ellis
wormhole [15,16] with the same throat radius, described by
the metric (7) with r2 ¼ 1þ x2 and AðxÞ≡ 1 (its lensing
properties were analyzed in detail in, e.g., [53,54]), and for
a Schwarzschild black hole with the same horizon radius,
2m ¼ 1 (see detailed descriptions of Schwarzschild black
hole lensing in, e.g., [55–57]).
As is clear from the figure, the wormhole lensing

properties substantially depend on the profile of AðxÞ:
curve 1, corresponding to Að0Þ ¼ 0.3 such that AðxÞ has a
minimum at the throat, is rather similar to curve 5
describing Schwarzschild black hole lensing, the main
difference being that in the Schwarzschild case α → ∞
as R → 3=2 (a logarithmic divergence at the so-called
photon sphere), while the same happens only asR → 1 for
wormholes. Curve 2 shows a decrease in α in the region
where AðxÞ is decreasing. Actually, the role of AðxÞ is
similar to that of the Newtonian gravitational potential in
classical physics, so where A0 < 0, the gravitational field
is repulsive for both massive particles and photons. This
effect is still stronger if the peak of AðxÞ is larger and can
even lead to negative light bending at some R as can be
seen for curve 3. Curve 4 pertains to the Ellis wormhole,
which is massless and therefore much more weakly affects
the light beams, and its αðRÞ quicker decays at large R;
however, αðRÞ also diverges near R ¼ 1.

VI. CONCLUDING REMARKS

Let us enumerate the main results of this study.
(1) We have proved a no-go theorem showing that

it is impossible to obtain static asymptotically flat
or AdS wormholes without horizons, supported by
isotropic matter. It explains why in all previous
attempts to build such solutions it was necessary to
introduce boundaries with thin shells.

(2) We have obtained a family of wormholes with
isotropic matter which connect two de Sitter worlds
with the same or different curvature. In the sym-
metric case, such “bridges” may connect distant
regions of the same inflationary universe making
them causally connected. It is of interest that, unlike
other models where the wormhole throat expands

FIG. 13. Light bending angles α as functions of the closest
approach radius R for different wormholes and a Schwarzschild
black hole. Curves 1–3 show αðRÞ for wormholes with the throat
radius a ¼ 1 and Að0Þ ¼ 1=3; 1; 3, respectively, curve 4 for an
Ellis wormhole with the same throat radius, and curve 5 for a
Schwarzschild black hole with the same radius, 2m ¼ 1, of the
event horizon.
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together with the universes it connects, in our
solutions the throat radius is constant.

(3) It is important that even though we introduced, as
sources of gravity, isotropic fluids in the static
space-time region, these fluids inevitably become
anisotropic in a T-region with a time-dependent
Kantowski-Sachs-type metric.

(4) We have obtained a number of new numerical
asymptotically flat solutions to the equation R¼0,
describing Z2-symmetric or asymmetric wormhole
and regular black hole configurations, among which
asymmetric ones are obtained quite naturally by
specifying asymmetric initial data at x ¼ 0. Some
asymptotically flat metrics with R ¼ 0 contain up to
four Killing horizons.

(5) We have shown that the traversability condition for
wormholes considered here in terms of sufficiently
low tidal forces is actually the same as in other
models and requires a throat radius of about 105 km
or more. A brief consideration of the lensing proper-
ties of our twice asymptotically flat wormholes has
revealed their distinguishing features, but a more
complete analysis of this important phenomenon is
postponed for future studies.

(6) While solving the equations with respect to
AðxÞ ¼ gtt, expressing the isotropy condition pr ¼
pT in Sec. III, or zero scalar curvature in Sec. IV,
we have revealed intersection points in families of
integral curves, corresponding to different initial
values of A but the same initial slope A0. It is a
manifestation of a general interesting property of
linear ordinary differential equations, discussed in
the appendix. For the integral curves of AðxÞ, the
existence of such intersections leads to the following
general rule: given a fixed initial slope A0ð0Þ, a curve
that begins higher at x ¼ 0 [that is, Að0Þ is larger]
ends lower at large jxj in both positive and negative
directions.

Our results have been obtained in terms of the quasi-
global coordinate x. Let us comment on some other choices
of the radial coordinate which seem to be more intuitively
understandable. One of them is the curvature, or
Schwarzschild coordinate, r, equal to the spherical radius
eβ in the metric (1). As already explained in the introduc-
tion, this choice is not good if r has a minimum, in
particular, in all wormhole space-times. We can easily
transform our solutions to r as a new coordinate by the

substitution x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p
, which results in two separate

branches for positive and negative x in each solution. These
branches are identical when obtained from Z2-symmetric
solutions, but in asymmetric (that is, more general) ones
the unity of two branches becomes quite nonobvious.
However, r is a convenient parameter for showing the
wormhole lensing properties and their comparison with
lensing by a Schwarzschild black hole; see Fig. 13.

Another popular choice is the Gaussian, or proper
radial distance coordinate l, such that eα ≡ 0 in (1). This
coordinate is quite suitable for describing wormhole space-
times but is not good enough for black holes since at an
extremal (double) horizon, where, in terms of our metric
(7), AðxÞ ∼ ðx − xhorÞ2, the proper radial distance diverges.
So, if we used the coordinate l for finding the solutions,
we would lose their natural sequence at transitions from
wormhole to black hole cases, and we would simply lose
the solution with Að0Þ ¼ 0; see Fig. 8.
In a flat asymptotic region all three coordinates coincide,

and at an (A)dS infinity the Schwarzschild (r) and
quasiglobal (x) coordinates also coincide. However, in a
strong field region, as we see, the coordinate x is the most
preferable. It is always admissible at wormhole throats,
while at horizons in static, spherically symmetric space-
times it is always finite and behaves, up to a nonzero
constant factor, like a Kruskal-like coordinate needed to
cross the horizon [7]; it can therefore be used to jointly
describe inner and outer regions of black holes (hence
the name quasiglobal). Apart from the fact that, in our
notations, r≡ x in the Schwarzschild-(A)dS solutions and
their charged counterparts, the coordinate x is widely used
in solutions with scalar fields; see, e.g., [10,17,47,58,59]
and many others.
It should be noted that such physically meaningful

quantities as AðxÞ≡ gtt and the nonzero SET components
Tν
μ in the metric (1) (the density and pressures) are

insensitive to the choice of a radial coordinate and behave
as scalars at its transformations. Therefore in cases where
two coordinates are equally admissible, such as x and l in
asymptotically flat wormholes, a transition from one such
coordinate to another merely results in nonuniform but
finite stretching or squeezing of the corresponding plots
along the horizontal axis.
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APPENDIX: INTERSECTIONS
OF INTEGRAL CURVES

In this appendix we prove and discuss a very simple and
interesting property of linear second-order ordinary differ-
ential equations (L2-ODE), which must have numerous
applications and must probably be well known to mathe-
maticians, but we were unable to find proper references.
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Consider a general L2-ODE for yðxÞ,

AðxÞy00 þ BðxÞy0 þ CðxÞy ¼ FðxÞ; ðA1Þ

where the prime means d=dx, and all quantities involved
are supposed to be real. Let there be initial conditions at
some x0,

yðx0Þ ¼ a; y0ðx0Þ ¼ b: ðA2Þ
The general solution to Eq. (A1) is a function of x and

the initial data a, b. On the other hand,

y ¼ yðx; a; bÞ ¼ C1y1ðxÞ þ C2y2ðxÞ þ y3ðxÞ;
C1; C2 ¼ const; ðA3Þ
where y1ðxÞ and y2ðxÞ are two linearly independent
solutions to the homogeneous equation (A1), i.e., for
FðxÞ≡ 0, and y3ðxÞ is a special solution to the inhomo-
geneous equation (A1).
Suppose we know the functions yiðxÞ. Then, comparing

(A2) and (A3), we can write for x ¼ x0

C1y10 þ C2y20 ¼ a − y30;

C1y010 þ C2y020 ¼ b − y030; ðA4Þ
with the constants yi0 ¼ yiðx0Þ and y0i0 ¼ y0iðx0Þ, i ¼ 1, 2,
3. The algebraic equations (A4) may be used to express the
constants C1;2 in terms of the initial data a, b. By Kramer’s
formulas, we have (i ¼ 1, 2)

Ci ¼
Wi

W0

; W0 ¼
���� y10 y20
y010 y020

����; ðA5Þ

where W0 ≠ 0 is the Wronskian of y1;2 at x ¼ x0, and Wi

are the determinants obtained from W0 by replacing its ith
column with that of the rhs of (A4). Thus we obtain

C1 ¼ W−1
0 ½ða − y30Þy020 − ðb − y030Þy20�;

C2 ¼ −W−1
0 ½ða − y30Þy010 − ðb − y030Þy10�:

Substituting this into (A3), we present the solution with
explicit dependence on the initial data a and b,

yðx; a; bÞ ¼ y1ðxÞ
W0

½ða − y30Þy020 − ðb − y030Þy20�

−
y2ðxÞ
W0

½ða − y30Þy010 − ðb − y030Þy10� þ y3ðxÞ:

ðA6Þ
Now we put the following question: Is there such a value

of x, say, x ¼ x�, at which the function y takes the same
value for any choice of a if b is fixed? It means that all
integral curves yðxÞ, beginning at x0 with the same slope
y0ðx0Þ ¼ b but different starting points yðx0Þ ¼ a, intersect
at x ¼ x�.

If such a value does exist, then at x ¼ x� we should
have ∂y=∂a ¼ 0, where y ¼ yðx; a; bÞ is given by (A6).
Explicitly, the condition ∂y=∂a ¼ 0 has the form

y1ðx�Þy020 ¼ y2ðx�Þy010: ðA7Þ
It is an algebraic (in general, transcendental) equation
with respect to x� if the functions y1;2ðxÞ are known.
This equation may have any number of solutions, from zero
to infinity. Anyway, it is clear that the existence of such
intersection points is quite a general phenomenon.
Some important observations are in order:
(1) It is easily verified that Eq. (A7) is insensitive

to a particular choice of two linearly independent
solutions y1;2 to the homogeneous equation (A1).

(2) The value of x� is insensitive to the inhomogeneity
FðxÞ in Eq. (A1). It only depends on the left-hand
side of (A1) and on the choice of x0.

(3) The value of x� does not depend on b. In other
words, different sets of integral curves beginning at
x ¼ x0 at different “heights” a but with the same
slope b, intersect at the same x ¼ x� for all values of
b (though at a b-dependent height).

Example. Consider the simplest L2-ODE

y00 þ Ky ¼ L; K; L ¼ const ðA8Þ
Then, first of all, we can write the solution y3 ¼ L=K of the
inhomogeneous equation, which has no effect on anything
further on.
Next, if K ¼ k2 > 0, we can write

y1ðxÞ ¼ cos kx; y2ðxÞ ¼ sin kx; ðA9Þ
and if we choose x0 ¼ 0, then Eq. (A7) gives
cos kx� ¼ 0 ⇒ kx� ¼ π=2þ πn, where n ∈ Z, an infinite
number of solutions, or an infinite number of intersection
points of the integral curves along the x axis. The same
result is obtained if we take other y1;2, for example,
y1;2 ¼ cos kx� sin kx.
If the initial data are specified at another x0, the

intersection points are located at other x. For example,
if x0 ¼ π=ð4kÞ, then Eq. (A7) gives kx� ¼ −π=4þ πn,
n ∈ Z, again an infinite number of intersection points, but
they are located at other x� than for x0 ¼ 0.
Lastly, if K ¼ −k2 < 0, then, instead of (A9),

y1 ¼ ekx; y2 ¼ e−kx; or equivalently

y1 ¼ cosh kx; y2 ¼ sinh kx: ðA10Þ
If we choose x0 ¼ 0, Eq. (A7) leads to cosh kx� ¼ 0, so
there is no solution. Thus the integral curves of Eq. (A8)
with K < 0, beginning at x0 ¼ 0 with the same slope, do
not intersect. The same result is obtained for any x0 ≠ 0.
This example illustrates the observation that the number

of intersection points of integral curves may vary from zero
to infinity.
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