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We construct new black brane solutions in the context of Horndeski gravity, in particular, in its K-
essence sector. These models are supported by axion scalar fields that depend only on the horizon
coordinates. The dynamics of these fields is determined by a K-essence term that includes the standard
kinetic term X and a correction of the form Xk. We find both neutral and charged exact and analytic
solutions in D-dimensions, which are asymptotically anti–de Sitter. Then, we describe in detail the
thermodynamical properties of the four-dimensional solutions and we compute the dual holographic DC
conductivity.
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I. INTRODUCTION

The observed current Universe is not only expanding but
also accelerating because of the presence of a source to the
Einstein equations that differs from the usual mixture of
dark matter, baryonic matter, and radiation. In fact, the
simplest phenomenological explanation for the acceleration
is the presence of a cosmological constant Λ in the
Einstein-Hilbert action. At the quantum level, such a
constant can be interpreted as a renormalized vacuum
energy. The standard model of cosmology assumes that
the current Universe is dominated by the vacuum energy
together with a large amount of cold dark matter and a tiny
fraction of baryonic matter and it is called ΛCMD model.
From a fundamental point of view, however, the cos-

mological constant has a series of fundamental and con-
ceptual issues, which makes alternatives rather appealing
[1]. In general terms, one can replace the cosmological
constant with a dynamical degree of freedom that is often
modeled as a fluid with special properties that goes under
the name of “dark energy.” In this way, the matter sector of
the theory is implemented by a fluid with unusual but still
reasonable properties, whose dynamics dominates at late
times (for a comprehensive review, see e.g. [2]). Finally, the
acceleration of the Universe could also be driven by the
dynamics of the classical counterparts of the standard
model fields [3].
There is a somewhat more radical approach to the

problem of dark energy that relies upon a modification
of general relativity (GR) in the infrared. In other words,
this means that the Einstein equations are different at

cosmological scales. Several models of modified gravity
have been explored during the last decade [4,5]. One of the
most popular is the so-called scalar-tensor theories of
gravity (STT), first proposed in the late sixties by Brans-
Dicke [6] (for a modern review see e.g. [7]). STT represent
the simplest way to describe a diffeomorphism invariant
theory in four dimensions that avoids Ostrogradski insta-
bilities, which typically arise in higher order theories [8,9].
The price to pay is to introduce new degrees of freedom in
the form of one or more dynamical scalar fields. Through a
suitable Weyl rescaling of the fields, it is always possible to
write STT in terms of modified gravity actions where the
Ricci scalar R is replaced by some arbitrary function of it,
fðRÞ. At least at the classical level, STT and fðRÞ gravity
are perfectly equivalent [10].
In STT, gravity is described by the graviton spin-two

field and one or more spin-zero particles, represented by
scalar fields. In order to avoid possible violations of the
Einstein equivalence principle the usual prescription is that
the scalar fields are only coupled to the metric and not to
matter particles. This means that, in the matter action, there
is no coupling between the new degrees of freedom and
ordinary matter. However, due to the nonlinearity of
Einstein equations, scalar fields produce a backreaction
on the metric that, in turn, affects the motion of test
particles. Therefore the dynamics of matter fluids is
influenced by scalar fields even in the case of minimal
coupling [7,11].
The most general STT constructed in four dimensions

and yielding at most second order equations of motion is
known as the Horndeski model [12], which is better known
in its modern version as the Galileon theory [13]. The latter
is a STT coming from the generalization of the decoupling
limit of the brane-inspired Dvali-Gabadadze-Porrati model
[14]. Galileon theory, which exhibits Galilean symmetry in
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Minkowski spacetime, was further covariantized in [15]
and it was finally shown to be equivalent to the original
Horndeski action; see [16].
The Galileon action exhibits shift symmetry and, in its

covariant form, is given by

L ¼ KðXÞ − G3ðXÞ□ϕþ G4ðXÞR
þ G4;XðXÞ½ð□ϕÞ2 − ð∇μ∇νϕÞ2� þG5ðXÞGμν∇μ∇νϕ

−
G5;X

6
½ð□ϕÞ3 þ 2ð∇μ∇νϕÞ3 − 3□ϕð∇μ∇νϕÞ2�: ð1Þ

Here, X represents the canonical kinetic term for the scalar
field ϕ, while K and Gi are arbitrary functions of X. Each
function can be generalized to the case in which it also
explicitly depends on the scalar field itself. Nevertheless, in
such a case, the shift invariance of theory is lost and this
considerably complicates the integration of the field
equations.
Many sectors of the theory (1) have been investigated in

cosmology. For instance, it was shown that (1) contains a
subset which possesses a self-tuning mechanism that allows
to circumvent Weinberg’s theorem on the cosmological
constant [17]. Moreover, the sector defined by the non-
minimal kinetic coupling controlled by the Einstein tensor
exhibits interesting inflationary properties without the need
of ad hoc potential terms [18–22]. Likewise, the non-
minimal coupling between the Einstein tensor and the
scalar field kinetic term can, on large scales, mimic cold
dark matter and also flatten the rotational curves of galaxies
[23]. Finally, several works have been devoted to the study
of cosmological perturbations with the aim of finding
observable deviations from GR in large-scale structures
and the conditions on the parameter space that avoid too
large gravitational instabilities [24].
Technically speaking, the so-called K-essence models of

dark energy belong to the class of gravitational theories
represented by (1). In K-essence, the acceleration of the
Universe (both at early and late times) can be driven by the
kinetic energy instead of the potential energy of the scalar
field [25]. The model was first introduced in [26] and then
specifically used as dark energy models in [27–32]. These
models are characterized by a nonlinear kinetic term for the
scalar field and are expressed in (1) by the arbitrary
function KðXÞ (together with G4 ¼ 1 and G3 ¼ G5 ¼ 0).
Quantum and classical stability of K-essence have been
investigated [33]. In particular, the classical stability and
their perturbations are crucial to discriminate the model
from standard GR in view of the forthcoming Euclid
mission [34].
One fundamental step that may put the theory on a solid

theoretical foot is the construction of black hole solutions.
In principle, there is a no-hair theorem that prevents the
existence of nontrivial black hole solutions in Galileon
gravity [35]. However, there are ways to get around this
theorem and several black hole solutions have been found

for particular sectors of (1), in particular, the one containing
the nonminimal coupling between the Einstein tensor and
the kinetic term. Spherically symmetric solutions were
found in [36–39] where their thermodynamical properties
were also studied.1 Moreover, anti–de Sitter (AdS), asymp-
totically flat stealth and Lifshitz solutions with a self-tuned
effective cosmological constant were found making use of a
time-dependent scalar field in [44,45]. Charged solutions
were found in [46,47]. Recently also, for the sectors of (1)
controlled byG3 andG4, analytical and numerical solutions
have been found [48,49].2

There is still one sector of (1), where black holes
solutions are little known, that is the K-essence sector
governed by KðXÞ. This work aims to fill this gap, at least
partially, by exploring black hole configurations in the
sector of (1) that contains terms like Xk, in addition to the
usual kinetic term.3 To construct our solutions, instead of
considering a spherically symmetric scalar field, we use
axion fields which depend linearly on the Cartesian
coordinates along the flat horizon. We see later that these
kinds of configurations are used in the context of dual
condensed matter systems due to the fact that they break the
translational invariance of the dual field theory [52]. This is
an easy way to circumvent the no-hair theorem [35], which
is mostly based on the fact that the equation of motion for
the scalar field derived from (1) is given by a current
conservation law of the form ∇μJμ ¼ 0. For the case of
spherically symmetric scalar fields, this current is given by
the component Jr whose modulus diverges at the horizon.
In the case studied here, our axion fields yield a finite
current on the black hole horizon while simultaneously
satisfying the Klein-Gordon equation. Moreover, the con-
tribution to the equations of motion coming from the
K-essence term is still spherically symmetric and the
energy of the solutions remains finite.4

In Ref. [53], a static black brane with axionic charge
generated by the presence of two 3-form fields was
presented. The symmetry of the solution is endowed with
a planar horizon with a lapse function mimicking that of a
hyperbolic black hole in AdS. This apparent discrepancy
between the horizon topology and the metric behavior was
shown to be due to the presence of the axionic charges,
which play the role of an effective curvature term. The
thermodynamical properties and the possibility of phase
transitions were also reported in [53]. These ideas were also
applied to construct black branes with a source given by a

1This model has been also thoroughly investigated in the
context of astrophysical configurations such as neutron and
boson stars [40–43].

2In [50] solutions have been obtained considering a kinetic
coupling controlled by the Gauss-Bonet invariant.

3These kind of Lagrangians are used to obtain cosmological
models with equation of state parameter satisfying ω < 1 [51].

4This is similar to what happens in the case of the linearly time-
dependent scalar fields considered in [44].
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scalar field nonminimally coupled to gravity [54,55].5

Planar/toroidal black holes with a scalar field are of special
interest in the context of the AdS=CFT correspondence [57]
due, in particular, to their applications in nonconventional
superconductor systems [58,59]. Within this approach, the
nonzero condensate behavior of the unconventional super-
conductors can be reproduced by means of a hairy black
hole at low temperature with a hair that should disappear as
the temperature increases. Usually, planar/toroidal solu-
tions suffer from singular behaviors due to the lack of a
curvature scale on the horizon. Nevertheless, this situation
is successfully circumvented using axion fields which are
homogeneously distributed along the horizon coordinates,
providing in this way an effective curvature scale which
makes the spacetime nonsingular. Several solutions with
these ingredients have been reported in order to study
different aspects of their holographic dual systems [52,60–
66]. A very interesting application is the construction of
homogeneous black string and black p-branes with neg-
ative cosmological constant, with no more ingredients that
minimally coupled scalar fields [67]. Moreover, recently
these ideas have been applied to the case of Horndeski
theory, specifically to the nonminimal kinetic coupled
sector [68–70].
The paper is organized as follows: Section II is devoted

to the description of our model, its principal properties and
the equations of motion. In Sec. III we construct asymp-
totically AdS black brane solutions, including the case
where electric and magnetic monopole charges are con-
sidered. The particular case of vanishing cosmological
constant is also studied. Section IV is devoted to the
thermodynamical analysis of the AdS solutions while in
Sec. V we present some holographic applications. Finally
in Sec. VI we give some final remarks and outline some
possible extensions. In the appendix, we report the higher-
dimensional extension of the solution.

II. THE MODEL

We consider the following K-essence Lagrangian in four
dimensions,

L ¼ KðX1; X2Þ; ð2Þ

where the two scalar fields, with their kinetic terms X1 and
X2, correspond to the two axion fields. As considered
below, the axion fields are homogenously distributed along
the coordinates of the planar horizon. This explains the
reasons for considering two axion fields in four dimen-
sions. As mentioned before, we study the case in which the
dynamics of each scalar field is governed by a standard

kinetic term plus a nonlinear contribution given by an
arbitrary power of X. More precisely, we consider aK-term
of the form KðXiÞ ¼ −

P
2
i¼1ðXi þ γXk

i Þ, and hence our
four-dimensional action reads

I ½gμν;ϕi�

¼
Z �

κðR−2ΛÞ−
X2
i¼1

�
1

2
∇μϕi∇μϕiþγ

�
1

2
∇μϕi∇μϕi

�
k
��

×d4x
ffiffiffiffiffiffi
−g

p
; ð3Þ

where we have defined Xi ¼ 1
2
∇μϕi∇μϕi with i ¼ 1, 2. The

coupling γ (with mass dimension 4 − 4k) is supposed to be
positive in order to avoid phantom contributions.6 For
γ ¼ 0 we recover the case of two minimally coupled scalar
fields studied in [52,53]. Even if the solutions can be
constructed in arbitrary dimensions we focus our attention
on the four-dimensional case, leaving the D-dimensional
extension to Appendix A. The variation of the action
with respect to the metric yields the following Einstein
equations,

κðGμν þ ΛgμνÞ ¼
1

2

X
i

½∂μϕi∂νϕi − gμνXi

þ γðkXk−1
i ∂μϕi∂νϕi − gμνXk

i Þ�; ð4Þ

while the Klein-Gordon equation takes the form

½ð1þ γkXk−1
i Þgμν þ γkðk − 1ÞXk−2

i ∇μϕi∇νϕi�∇μ∇νϕi ¼ 0:

ð5Þ

We now impose the planar metric ansatz

ds2 ¼ −FðrÞdt2 þ dr2

GðrÞ þ r2ðdx21 þ dx22Þ; ð6Þ

and we assume that the axion fields depend on the
coordinates (x1, x2) only.

7 In the case F ¼ G, the Klein-
Gordon equations are easily solved by

ϕ1 ¼ λx1; ϕ2 ¼ λx2: ð7Þ

Note that these scalar fields can be dualized to construct
solutions with backreacting 2-forms, Bð2Þ, by setting

5A new planar solution with a conformally coupled scalar field
is presented in [56]. This solution represents a novel generali-
zation of the Bekenstein black hole plus cosmological constant,
without self interaction and free of self-tuned parameters.

6Recently, solutions for the minimally coupled case with
phantom axion fields were studied in [71].

7In [53] the authors considered Einstein gravity with a source
given by two 3-form fields (whose Hodge duals can be identified
with the exterior derivatives of two scalar fields). A Birkoff’s-like
theorem was established where it is shown that each of the two
3-form fields must depend on one for the transverse spatial
coordinate.
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HðiÞ
ð3Þ ¼ dBðiÞ

ð2Þ ¼ ⋆dϕi; i ¼ 1; 2; ð8Þ

where ⋆ denotes the Hodge dual.
In order to ensure that the solutions of the previous

equations do not generate ghosts, it is important to check
whether or not they satisfy the null energy condition
given by

Tμνnμnν ≥ 0; i ¼ 1; 2: ð9Þ

Classical stability is instead guaranteed by a positive sound
speed, namely

c2s ¼
K;Xi

K;Xi
þ2XiK;Xi;Xi

> 0: ð10Þ

In our model a sufficient condition to satisfy simultane-
ously both requirements is k > 1=2. As we discuss below,
the further restriction k > 3=2 also guarantees that the
solutions asymptotically match the GR ones and have finite
ADM mass.

III. K-ESSENCE BLACK HOLES WITH AXIONS

Under the conditions described above Eqs. (4) and (5)
have the following exact black brane solution:

FðrÞ ¼ GðrÞ ¼ r2

l2
−
2M
r

−
λ2

2κ
þ γλ2k

2kð2k − 3Þκ r
2ð1−kÞ

ϕ1 ¼ λx1; ϕ2 ¼ λx2: ð11Þ

The case k ¼ 3=2 needs to be integrated separately and it
yields a logarithmic branch as reported in Appendix A.
Looking at this four-dimensional solution we observe that
for 1=2 < k < 3=2, the asymptotic behavior of our AdS
solutions differs from the standard ones defined in [72],
and, as a consequence, configurations with infinite mass
could be obtained. Thus, from now on we consider only the
case k > 3=2, which allows the use of standard methods to
compute the mass of our solutions.
It is evident that the effect of the axion fields is to include

an effective hyperbolic curvature scale on the metric
proportional to the axion parameter λ. By setting γ ¼ 0,
we find the solution first described in [53].
These solutions can be easily generalized to include

electric and magnetic monopole charges. In order to do this
it is sufficient to include in the action (3) the standard
Maxwell term

S ¼ −
1

4

Z
FμνFμνd4x

ffiffiffiffiffiffi
−g

p
: ð12Þ

Then, the Maxwell equation

∇μFμν ¼ 0 ð13Þ

is easily solved by

A ¼ −
Qe

r
dtþQm

2
ðx1dx2 − x2dx1Þ; ð14Þ

where Qe and Qm are the electric and magnetic monopole
charges. Finally, the general charged solution of the
Einstein equations reads

FðrÞ ¼ GðrÞ ¼ r2

l2
−
2M
r

−
λ2

2κ
þ γ

λ2k

2kð2k − 3Þκ r
2ð1−kÞ

þ 1

4κr2
ðQ2

e þQ2
mÞ: ð15Þ

Solutions (11) and (15) are the neutral and charged K-
essence generalization of the solutions found in [52,53],
which are known to possess interesting holographic proper-
ties. We discuss a particular application in Sec. V.
A very interesting case is the one corresponding to

Λ ¼ 0. In particular, the uncharged solution takes the form

FðrÞ ¼ GðrÞ ¼ −
2M
r

−
λ2

2κ
þ γ

λ2k

2kð2k − 3Þκ r
2ð1−kÞ: ð16Þ

This solution can have two horizons. To show this in a
simple way let us consider the case k ¼ 2. Then, the
horizon location can be found algebraically by solving the
equation

FðrÞ ¼ GðrÞ ¼ −
2M
r

−
λ2

2κ
þ γ

λ4

4κr2
: ð17Þ

The two distinct solutions are

r1 ¼ −
2Mκ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2κ2 þ 2λ6γ

p
2λ2

; ð18Þ

r2 ¼
−2Mκ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2κ2 þ 2λ6γ

p
2λ2

: ð19Þ

For γ > 0 there is just one positive root that corresponds to
a cosmological horizon (r ¼ rc ¼ r2) which surrounds a
curvature singularity located at the horizon. However, if
both γ and M are negative, it is possible to find two
horizons. This is evident upon the substitutionsM → −jMj
and γ → −jγj, which gives the location of an event and a
cosmological horizon located respectively at r ¼ rh and
r ¼ rc, with

rc ¼
2jMjκ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jMj2κ2 − 2λ6jγj

p
2λ2

; ð20Þ

rh ¼
2jMjκ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jMj2κ2 − 2λ6jγj

p
2λ2

: ð21Þ
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As we mentioned above, negative values of γ could induce
violations of the null energy condition or nonhyperbolicity
of the Klein-Gordon equation. However, this violation may
be hidden behind the event horizon provided the condition

jMj > 7
ffiffiffi
3

p
λ3

12κ

ffiffiffiffiffi
jγj

p
ð22Þ

is satisfied.

IV. THERMODYNAMICAL PROPERTIES
OF ADS K-ESSENCE BLACK BRANES

In order to explore some holographic applications, we
first provide a complete and detailed analysis of the
thermodynamic features of the electrically charged AdS
solutions. Note that such studies have been done for
Horndeski black holes with sources given by scalar fields;
see e.g. [73].
In our case, the thermodynamics analysis is carried out

through the Euclidean approach. In this case, the partition
function for a thermodynamical ensemble is identified with
the Euclidean path integral in the saddle point approxima-
tion around the classical Euclidean solution [74]. Since we
are interested in a static metric with a planar base manifold,
it is enough to consider the following class of metric,

ds2 ¼ NðrÞ2FðrÞdτ2 þ dr2

FðrÞ þ r2ðdx21 þ dx22Þ;

where τ is the periodic Euclidean time related to the
Lorentzian time by τ ¼ it, and the radial coordinate
rh ≤ r < ∞. Now, in order to have a well-defined reduced
action principle with a Euclidean action depending only on
the radial coordinate, some precautions must be taken.
Indeed, in the present case, we are interested in configu-
rations where the scalar fields ϕi do not depend on the
radial coordinate but rather on the planar coordinates.
Nevertheless, since the scalar fields only appear in the
action through their derivatives that are constants, we can
“artificially” introduce radial scalar fields and their asso-
ciated “conjugate momentum” as

ΨiðrÞ ≔
Z

r

0

∂iϕidr; ΠðiÞ ≔ −
1

2
∂rΨiðrÞ;

Ψ̂iðrÞ ≔
Z

r

0

N∂rΨidr; Ψi;kðrÞ ≔
Z

r

0

ð∂iϕiÞkdr;

Πði;rÞ ≔ −
1

2
∂rΨi;k; Ψ̂i;kðrÞ ≔

Z
r

0

N
2k−1

r2ð1−kÞ∂rΨi;kdr:

ð23Þ

Under this prescription, the Euclidean action IE is
given by

IE ¼ σβ

Z
R

rh

X2
i¼1

�
N

�
2Π2

ðiÞ þ
2γ

2k−1
r2ð1−kÞΠ2

ði;kÞ þ
1

2r2
Π2

A

þ 2κrF0 þ 2κF −
6κr2

l2

�

− 2Ψ̂iΠ0
ðiÞ − 2γΨ̂i;kΠ0

ði;kÞ − AΠ0
A

�
drþ BE; ð24Þ

where β is the inverse of the temperature, σ stands for the
volume of the two-dimensional compact flat space and ΠA
denotes the conjugate momentum to the vector potential A,

ΠA ¼ −
r2A0

N
:

The Euclidean action is obtained in the limit R → ∞ and
the boundary term BE is fixed by requiring that the action
has a well-defined extremum, i.e. δIE ¼ 0. It is easy to
check that the field equations obtained by varying the
reduced action yield the electrically charged AdS solution
(15) with Qm ¼ 0. In fact the variations with respect to F
and A give respectively 2κrN0 ¼ 0 and Π0

A ¼ 0. The first
equation implies that N is constant and without loss of
generality, can be taken to be N ¼ 1. The second equation
imposes the electric potential to have the Coulomb form
At ¼ Qe

r . On the other hand, the variations with respect to
the conjugate momenta ΠðiÞ, Πði;kÞ and ΠA yield equations
that are trivially satisfied while those obtained by variation
with respect to Ψ̂i and Ψ̂i;k can be easily solved by choosing

ΠðiÞ ¼ −
1

2
λ; Πði;kÞ ¼ −

1

2
λk ⇒ ϕi ¼ λxi:

Finally, the equation obtained by varying N,

2Π2
ðiÞþ

2γ

2k−1
r2ð1−kÞΠ2

ði;kÞþ
1

2r2
Π2

Aþ2κrF0 þ2κF−
6κr2

l2
¼0;

gives rise to a differential equation for the metric function F
whose integration yields (15).
Now, in order to compute the boundary term, we

consider the formalism of the grand canonical ensemble
where the temperature β−1 as well as the “potentials” at the
horizon AðrhÞ; Ψ̂iðrhÞ and Ψ̂i;kðrhÞ are fixed. The extremal
condition δIE ¼ 0 implies that the contribution of the
boundary term must be given by

δBE ¼
�X2
i¼1

ð−2κσβNrδF þ 2σβΨ̂iδΠðiÞ þ 2σβγΨ̂i;kδΠði;kÞ

þ σβAδΠAÞ
�
r¼R

r¼rh

:

Without loss of generality, we can set again N ¼ 1, and the
contribution at infinity reduces to
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δBEðRÞ ¼ 4κσβδM ⇒ BEðRÞ ¼ 4κσβM:

At the horizon, in order to avoid the conical singularities,
the variation of the metric function at the horizon is given
by δFjrh ¼ − 4π

β δrh, and hence one gets

BEðrhÞ ¼ 4πκσr2h þ σβAðrhÞQe

− σβ
X
i

ðλΨ̂iðrhÞ þ γλkΨ̂i;kðrhÞÞ:

Finally, the boundary term becomes

BE ¼ 4κσβM − 4πκσr2h − σβAðrhÞQe

þ σβ
X
i

ðλΨ̂iðrhÞ þ γλkΨ̂i;kðrhÞÞ: ð25Þ

The Euclidean action is related to the Gibbs free
energy G by

IE ¼ βG¼ βM−S − βAðrhÞQe − β
X
i

ðΨ̂iQi þ Ψ̂i;kQi;kÞ:

The mass M is given by

M ¼
�∂IE
∂β

�
Ψ̂i;Ψ̂i;k

−
Ψ̂i

β

�∂IE
∂Ψ̂i

�
β

−
Ψ̂i;k

β

� ∂IE
∂Ψ̂i;k

�
β

¼ 4κσM

¼ 4κσ

�
r3h
2l2

−
λ2rh
4κ

þ γλ2kr3−2kh

2kþ1ð2k− 3Þκ þ
Q2

e

8κrh

�
; ð26Þ

while the entropy S, the electric charge Qe and the axion
charges Qi, Qi;k are defined by

S ¼ β

�∂IE
∂β

�
Ψ̂i;Ψ̂i;k

− IE ¼ 4πκσr2h;

Qe ¼ −
1

β

� ∂IE
∂AðrhÞ

�
β

¼ σQe;

Qi ¼ −
1

β

�∂IE
∂Ψ̂i

�
β

¼ −σλ;

Qi;k ¼ −
1

β

� ∂IE
∂Ψ̂i;k

�
β

¼ −σγλk: ð27Þ

With these results it is trivial to see that the first law holds,
namely

dM¼TdSþAðrhÞdQeþ
X
i

ðΨ̂iðrhÞdQiþΨ̂i;kðrhÞdQi;kÞ:

We conclude this section by comparing our results with
those obtained recently for a similar model with phantom
axion fields [71]. In this reference, the thermodynamics
analysis of the phantom black hole solution is carried out
without considering the axion parameter constant λ as an

axion charge. Because of that, the thermal properties of the
phantom solution are quite analogous to those of the
Schwarzschild-AdS black hole. The importance of consid-
ering axion parameter constant λ as an axion charge is
particularly important when holographic applications and
phase transitions are studied.

V. HOLOGRAPHIC DC CONDUCTIVITY

Charged black brane solutions provide a perfect setup to
compute holographic conductivities8 [52,68,76–79]. This
can be done by constructing a conserved current with radial
dependence from which it is possible to obtain the holo-
graphic properties on the boundary in terms of the black
hole horizon data. Here, we are interested in the effects of
the nonlinear kinetic term, controlled by the coupling
constant γ, on the conductivity of the dual field theory.
Along the lines of [78], we introduce a perturbation of the
fields of the form

ds2 ¼ −FðrÞdt2 þ dr2

GðrÞ þ r2ðdx21 þ dx22Þ

þ 2ϵr2htx1ðrÞdtdx1 þ 2ϵr2hrx1ðrÞdrdx1 ð28Þ
for the metric tensor,

A ¼ μ
	
1 −

r0
r



dt − ϵEdtþ ϵax1ðrÞdx ð29Þ

for the gauge field, and

ϕ1 ¼ ϕ
∘
1 þ ϵ

ΦðrÞ
λ

ð30Þ

for one of the axion fields, with the background axion field

fixed by ϕ
∘
1 ¼ λx1. Here μ ¼ Qe=r0 is the chemical

potential. Plugging this in the field equations and keeping
the linear terms in ϵ, Maxwell equations allow one to
construct the current density in terms of the horizon radius
rh as

J ¼ λ2r2h þ μ2r2h þ 21−kλ2kr4−2kh γk
λ2r2h þ 21−kλ2kr4−2kh γk

E; ð31Þ

which trivially leads to a DC conductivity of the form

σ ¼ ∂J
∂E ¼ λ2r2h þ μ2r2h þ 21−kλ2kr4−2kh γk

λ2r2h þ 21−kλ2kr4−2kh γk
: ð32Þ

Note that when γ ¼ 0, this expression coincides with the
result obtained in Eq. (4.4) of Ref. [78] for minimally
coupled axions with standard kinetic terms in D ¼ 4 (see

8See also [75] for the computation of thermoelectric
transport coefficients of systems which are dual to five-
dimensional, charged black holes with horizons modeled by
Thurston geometries.
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also [52,68]). Note that in such a case, in terms of the
chemical potential, the DC conductivity remains constant
as the radius of the horizon changes. Figure 1 shows the
behavior of the DC conductivity for a quadratic derivative
self-interaction (k ¼ 2) and for a cubic one (k ¼ 3). The
plots show that in the limit T → 0 the DC conductivity goes
to a constant, which shows that at low temperatures the dual
system presents a metallic phase. For large temperatures,
the dual system approaches the behavior of the dual system
with a minimally coupled axion; i.e. the conductivities
saturate to a constant which coincides with the one obtained
with γ ¼ 0. As the strength of the nonlinearities of the
axions (controlled by γ) increases, the conductivity at low
temperature decreases, and one can see that in such a case
larger temperatures are required to recover the result with
minimally coupled, free axions.

VI. CONCLUDING REMARKS

As we know, the Horndeski model [12] is the most
general STT we can construct with second order equations
of motion in four dimensions. In its shift invariant form, it is
given by the covariant version of Galileon gravity [15]
whose Lagrangian is given by (1). Black hole solutions
with spherical symmetry and with flat asymptotic behavior
are forbidden by the no-hair results of Hui and Nicolis [35].
Their argument relies on the shift invariance of (1) which
forces the scalar field equation of motion to be written as a
current conservation law. Then, by demanding that the
norm of this current is finite on the horizon of the
hypothetical black hole solution, it is possible to show
that, for spherically symmetric solutions with flat asymp-
totic geometry, the scalar field must be trivial. In spite of
this, for the particular model of the nonminimal coupling
between the Einstein tensor and the kinetic term of the
scalar field, there are two ways to circumvent the no-hair
conjecture. The first one is to relax the asymptotic flatness
of the solutions allowing (A)dS behaviors [36–38]. The
second one is to consider scalar fields that do not share the

same symmetries of the metric, but are nevertheless non-
trivial. In the latter case, the simplest way is to consider
scalar fields linearly dependent on time [44].
In this workwe have applied the second strategy in order to

construct black brane solutions in the K-essence sector of
Horndeski/Galileon gravity, specifically in the model in
which, along with the standard kinetic term, a nonlinear
contribution of the formXk is included. This sector represents
scalar fields with nonlinear kinetic terms without need of any
coupling between the scalar field and the curvature.9

Specifically speaking, to construct our solutions we have
considered scalar fields that depend linearly on the coor-
dinates of a flat horizon of (D − 2) dimensions. The scalar
fields are homogeneously distributed along these flat
directions, implying the inclusion of i ¼ ðD − 2Þ scalar
fields on the theory. It follows that each scalar current norm
jJij does not diverge on the horizon and, at the same time,
satisfies the continuity equation, ∇μJ

μ
i ¼ 0, with a non-

trivial profile for the scalar field. In order to satisfy the null
energy condition and to ensure the hyperbolicity of the
Klein-Gordon equation we have constrained the possible
values of k to be greater than ðD − 1Þ=2. This is a sufficient
condition to satisfy both requirements. It is interesting to
note that this choice of k endows our solutions with the
same asymptotic behavior of GR without affecting the
behavior of the mass term at infinity. Our solutions possess
flat horizon; however the inclusion of the axion fields
provides a new curvature scale including a noncanonical
hyperbolic term on the metric. The electrically and mag-
netically charged extension is shown to exist as well as the
higher-dimensional extension. We observe that in the case
in which Λ ¼ 0 solutions possessing a cosmological
horizon are also possible provided both mass and coupling
γ are negative. We have analyzed the thermodynamical

FIG. 1. DC conductivities as a function of temperature for the cases k ¼ 2 (left panel) and k ¼ 3 (right panel). Different curves on each
panel correspond to different values of the derivative self-interaction coupling γ. We have set the chemical potential μ ¼ 1, as well as the
AdS radius l ¼ 1, the axions constant λ ¼ 1 and κ ¼ 1.

9This could be interesting due to recent results which indicate
that the inclusion of nonminimal couplings with the curvature
might induce problems when defining a well-possessed initial
value problem in Horndeski theory [80].
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properties of the asymptotically AdS solutions in order to
study the possible holographic applications and we have
provided an explicit computation for the DC conductivities
in the holographic dual theory of the electrically charged
configurations. It would be also interesting to see whether
or not these solutions violate the reverse isoperimetric
inequality as is the case of the Horndeski black brane
solutions with axions recently constructed in [68] and
studied in [69]. Another possible extension of this work
would be to see how the nonlinear contribution for the
scalar field affects the realization of the momentum dis-
sipation phenomena extensively studied for minimally
coupled scalar fields [52] and also recently in the
Einstein coupled sector of Horndeski gravity [68].
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APPENDIX: D-DIMENSIONAL SOLUTIONS

The higher-dimensional neutral extension of the solution
is given by

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ þ r2dΣ2
D−2 ðA1Þ

where dΣD−2 stands for a (D-2) base manifold with null
curvature, and where

FðrÞ ¼ r2

l2
−

2M
rD−3 −

λ2

2ðD − 3Þκ − γ
λ2k

2kð2kþ 1 −DÞ r
2ð1−kÞ:

ðA2Þ

Here, the axion fields are ϕi ¼ λxi and l−2 ≔ − 2Λ
ðD−2ÞðD−1Þ.

As it was also clear in four dimensions with k ¼ 3=2, there
exists a logarithmic branch for k ¼ ðD − 1Þ=2.10 In four
dimensions, the logarithmic branch reads

FðrÞ ¼ r2

l2
−
2M
r

−
λ2

2κ
− γ

ffiffiffi
2

p

4

λ3 lnðr=r0Þ
κr

: ðA3Þ

It is easy to see that these solutions can be easily extended
to the charged cases.
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