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Ghost-free higher derivative unimodular gravity
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The unimodular version of the ghost-free higher derivative gravity is obtained. It is the unimodular
reduction of some particular Lagrangians quadratic in curvature.
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I. INTRODUCTION

Unimodular gravity (UG) is an interesting truncation of
general relativity (GR), where the spacetime metric is
restricted to be unimodular,

g =detg,, = —1. (1.1)

It is convenient to implement the truncation through the
(noninvertible) map

G = 197" G- (1.2)

The resulting theory is not diffeomorphism (Diff) invariant
anymore, but only TDiff invariant. Transverse diffeomor-
phisms are those whose generator is transverse, that is,

9,8 = 0. (1.3)

The ensuing action of unimodular gravity (cf., [1] for a
recent review with references to previous literature) reads

SUGE/d"XLUG

e ; n—1)(n-=2)¢"V,9V,g
- [ gl (mey UG =R

(1.4)

It can be easily shown using Bianchi identities that the
classical equations of motion (EM) of unimodular gravity
coincide with those of general relativity with an arbitrary
cosmological constant. The main difference at this level
between both theories is that a constant value for the matter
potential energy has no weight at all, which solves part of
the cosmological constant problem (namely, why the
cosmological constant is not much bigger that observed).
This property is preserved by quantum corrections.
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While the nature of the cosmological constant makes
unimodular gravity an appealing alternative to general
relativity, it is still an effective field theory for low energies
as it has the same problems with renormalizability.

On the other hand, it has long been known [2] that
quadratic theories of gravity are quite interesting. They are
renormalizable (even asymptotically free) and they are in
many senses the closest analogues to Yang-Mills theories.
The problem however is with unitarity or, equivalently,
with a ghostly state in the spectrum. This problem can in
turn be traced to the quartic propagators, which contradict
the Killen-Lehmann spectral representation.

It has been suggested by Siegel [3], however, that string
theory provides a natural way out, namely, exponential
falling off of the propagators, of the type

L = ¢pOe w07, (1.5)

Building on these ideas, in [4,5] general actions of the type

5= / d(VONR,,, O RV (1.6)

(where O is a differential operator) in the quadratic
approximation in the weak field expansion g, =
N + khy, are analyzed. Using the same notation as
in [5] this yields the action

1
S=- / d"x{ihwa(D)Dh"” + heb(0)0,0, b

+ he(D)D,0,h + %hd(l])[lh

i)

hﬂ(r
+ O

8{,8,18,48,,11””}. (1.7)

Here all coefficients a, b, ¢, d, f are dimensionless
functions of the d’Alembert operator.

The aim of the present work is to see if it is possible to
extend this idea to the unimodular theory. As is well known
[6] flat space UG is a consistent theory propagating spin 2
only, with no admixture of spin zero, in the same foot as
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(and inequivalent to) Fierz Pauli, with the curious property
that it does not admit massive deformations.

We see in the sequel that all ghost-free quadratic theories
admit unimodular cousins.

II. UNIMODULAR REDUCTION

In [7] we have demonstrated that there is a (noninjective)
map that we call unimodular reduction (UR) that yields
the flat space unimodular theory out of the ordinary
Fierz-Pauli one. Similar mappings can also be introduced
also in the full nonlinear case. To be specific, the UR

1
UR: by = hyy =, (2.1)

of the action (1.7) reads
Suc=UR([S]
1
:—/d(vol){Ehﬂya(D)Dh’“’—l—h,‘jb([l)agayh””

f(O)

1L 500,0,0,0,00 ~ 1 (6(0)-+1(2)0,05h

+h[i2f(D)—ia(D)+L2b(D)] Dh}. (2.2)
n 2n n

Please note that the UG action is independent of ¢([J)
and d(OJ). Moreover, the local (two-derivative) unimodular
gravity in [6] corresponds to constant values of the
functions, namely,

b=—-—=

2 2

When computing the UR of the EM it is important to

realize [6] that the unimodular reduction does not commute
with the variation, that is,

f=o0. (2.3)

[UR, EM] # 0. (2.4)

From now on, we work in momentum space, where
the different functions a([J) etc. in (2.2) are functions of
k. Actually, the EM stemming from the action S can be
written as

K/wpah/m =0, (25)
where
a2
K/,w/m = Zk (’1[4/)’11./6 + ’7;40’71//))
b
+ Z (kaku’/[ﬂp + kpkvr]/w + kﬂka’/lup + kykpr]va)
C
+ E (n/)ﬁkﬂkl/ + nlwk/)kﬂ)
d k kK k,

_kzrhwrlpa +f £ (26)

k2

\S]
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It is important to note that the EM are symmetrized,
id est,

K

uvpe — K

pouv> K

uvpe — K

vupo * (27)
It is clear that the unimodular equations of motion cannot
be the unimodular reduction of the Fierz-Pauli ones, since
¢(0) does not disappear, whereas it is not even present in
the UG action. To obtain the latter, there is a general
procedure explained in [6]. Define

K

o = K= K”,,n””.

(2.8)

4
;wpzr"]p ’

Then
UG _ 1 1
K;wpo‘ = K;wpa - ; (K/wnpa + Kparl;w - ;Kn/wnpo') ’
(2.9)

where this operator is built in such a way that it inherits the
previous symmetries,

Ko = K Kiape = Kiipor - (2.10)
plus an extra one,
K}{l,(/f(,n/’” =0. (2.11)
This yields
KUG _ 1 k2
uvpo Z a(’]uprlmr + nmrnv/))
b+ f
- (kukun/)or + kpka”//w)
1
+ Zb(kpkun;w + kpkur]ua + kakun,up + kyknnup)
2(b+f)—na k,k, k,k,
+ T kzn,uyr]/m + f% . (212)
It is plain that
a b+f
kﬂK/l{lga = Z (k/)nw + karlup)kz - T (kzkyrlpa + kvkpka)
b
+ 1 (2kok,k, 4+ K2k, + Kkon,,)
2(b+ f) —
+ %k%nﬂa + kK, (2.13)

The Bianchi identity implies that K, is transverse, so that
the source term in [5] must also be conserved,
a,T" = 0. (2.14)

This means that the source term after UR, which is the
traceless piece of the energy-momentum tensor, namely,
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1
TZ‘D = Tﬂy - ;T”My (215)

(where T = #*T,,), is not transverse anymore, but rather

(2.16)

vi v

0,17, = Lo,T.
n

This is a nontrivial constraint, which is true only when
the functions @ and b are such that

a+b=0
in which case the trace is given by

T ((n—2)a+2(n—1)f
2n

2(n=1)f—(n-2)
2

K1,

+ “kgkp> we. (2.17)

There are no constraints in the unimodular case on the
function f(k?).

III. PROPAGATORS

KYC = a\P| + ayP) + a,P) + a,, P} + a, Py, (3.1
where
ay = 0,
1
a, = Eakz,
2= Dag
2n
2n=1)2f = (n—1 -2
Ul e UV U P
2n
=(n—-1)LK* = (n—1)a,,
—2la—2(n—-1
o = T Da =20
2n
= —Vn—1LK* = —V/n — la,, (3.2)
where we have defined
2n—-1)f—-(n-=2
2n
The discriminant vanishes,
A =aa, —a’ =0. (3.4)

This means that we have to introduce a TDiff gauge fixing,

K%fEaIPl, (35)
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and besides another one for Weyl’s symmetry, namely,

K¥ =ay(PY 4+ (n=1)Py+Vn—1Py).  (3.6)

The full operator is then
Ky¥ =a P+ a;Py + (a, + (n = 1)ay) Py + (a,, + ) Py
+ (mVn—1+a,)P;. (3.7)

Using the formulas in the appendix, the propagator is
given by

1 2 1
Kl.=—p P+ ——((LK? -1 PY
UG g 1+{a 2+n2a2L(< +(n=1)a,)Py
1
P-
(3.8)

+(L(n=1)K* +ay)Py+Vn—1(Lk —az)Px)}

The interaction energy between external, gauge invariant
sources is a physical quantity. In our case this is given by
the coupling of the graviton to the traceless piece of the
energy-momentum tensor,

/d(VOl)TLh’w. (3.9)
The source then is not transverse, but rather
T 1
0,(THm = ;OVT. (3.10)

The only projectors that do not vanish when sandwiched
between physical sources are

1

T - (P3) e - T = T2, — ﬁTZ, (3.11)
T - (Py) e - TP = 0, (3.12)
TTH . (PS TTre = ! T? 3.13

: ( O)ﬂl/po' ’ - m ’ ( : )
TTH - (P§) o - TP = 2 p (3.14)

0 pvpo C onn—1 '
Tuv w Tpo 1 2

T - (PY) e T = — T2, (3.15)

n

This yields the value for the free energy in the linear limit
of our theory to be

12,
W T2, +

a—2n*L 2
—T77).
a(n—1)n’L
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In order not to disagree with the classical solar system GR
tests, this must be proportional to the well-known result
(which is the Fierz-Pauli result, reproduced also by UG)

1 1
Wep =— (T2, — T ). 3.17
e < won=2 ) (3.17)
This determines
a(n—-2)
L=- , 3.18
2n? ( )
that is, f is given in terms of a through
f(k) =0. (3.19)

It is known that the function f(z) must be an entire
function of the complex variable z. This condition is
trivially satisfied here.

IV. CONCLUSIONS

We have demonstrated here that the complete set of
higher-derivative ghost-free theories has a related unim-
odular theory that can be easily obtained from the parent
theory through unimodular reduction.

These theories, as also happens with the usual uni-
modular gravity constructed out of the Einstein-Hilbert
Lagrangian, do not couple the constant vacuum energy to
gravity, which makes them an interesting alternative to the
standard ones.

Further work is needed to investigate if one can get
different physical predictions from the unimodular reduc-
tion than those of the parent theory. In spite of some work
[8], no differences were found at tree level between
unimodular gravity and general relativity other than the
role of the vacuum energy just mentioned.

Let us finish with a word of caution. The suggestion has
been made [9] that in spite of the original claims there are
hidden ghosts in the quantum version of these theories. This
question asks for a more detailed analysis. Let us point out,
finally, that it is interesting to generalize the bootstrap
mechanism to the unimodular case, in particular, for higher
order in curvature theories. Some suggestions have been
made in [10]. Work on this topic will be reported in due time.
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APPENDIX: SPIN PROJECTORS

We start with the longitudinal and transverse projectors

k k k k
ap — ta®p
_kZ’ waﬁz k2'

9(1/1 = Nap (Al)

They obey
0+l =08 00, =0k

wng =wlh, (A2)

as well as
(A3)

trel”,:n—l, tra),’jzl.

The four-indices projectors are

1
(04006 + 0,50,,) ——0,,0

(PZ)/wpo') n—1 Heo

N = ] =

(Pl);u/pa (Qﬂpwua + eyava + Hupa)/w + gl/awyp)a

1
0,0

n—1 ™ po>

(P6 );w/m

(P0)po = O

% peos
( PSW) 1 6 )
0 /uvpo

\/HT] nw*pos
1
w,, 0

u’po-

(P6*) o

i

They obey

P¢PY = 5,6 PY,
b _ b c
PP = 5,67 PY°,

be _ b
P{P} = 6;;6°P}*,

PP PSd = §,;67°6/P4,  (AS5)

as well as

tr (PZ);wpa)) Enﬂy(PZ);wpa:O7
(P o) 21 (PY) e =0

(

1

(

( 0 )/uxp(f: po>
((P§) o) =1 (P yps = @po

(

(

-t

T (Pl)/wpo')
t((Pg")

”/w (P );wpa =0,
= 77”” (P 6w) uvpe — mw/m ’
1

uvpe — mepa ’

(P2 + (P1)jiw + (P Vi + (P = 5(8,67 +8757)-

~—

Hvpo

(PE o) =1 (PE)

/u/po')

(A6)

N =
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Any symmetric operator can be written symbolically as

K = ayPy + a\Py + a,P} + a,P§ + a, P§ (A7)
(where Py = P§* + P}"). Then
9 1 1 as ”
K"'=—P,+—P +—5P
ay a aga,, — dx
aW aX
P — PX. (A8)
asa,, — Cli 0 asay, — ai 0

Sometimes the action of those projectors on
trace-free tensors is needed. Defining the trace-free
projector
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1 1
(Ptr)pa/w = E (5?;62 + 526;1:) - ;’1/)0’7/16' (Ag)
It is a fact that
PyPy = Py,
i o on—1 , Vn-— 1 .
P3P, =Py —"—"ps— Py,
n n
V=1 1
Py, =py YT pus ~Py.
PP, = Py,
V=1 1
Pyp, =Py - YT pus Py,
V=1 ~1
PyPy = Py =Py =P (Al0)
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