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The unimodular version of the ghost-free higher derivative gravity is obtained. It is the unimodular
reduction of some particular Lagrangians quadratic in curvature.
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I. INTRODUCTION

Unimodular gravity (UG) is an interesting truncation of
general relativity (GR), where the spacetime metric is
restricted to be unimodular,

g≡ det gμν ¼ −1: ð1:1Þ

It is convenient to implement the truncation through the
(noninvertible) map

gμν → jgj−1=ngμν: ð1:2Þ

The resulting theory is not diffeomorphism (Diff) invariant
anymore, but only TDiff invariant. Transverse diffeomor-
phisms are those whose generator is transverse, that is,

∂μξ
μ ¼ 0: ð1:3Þ

The ensuing action of unimodular gravity (cf., [1] for a
recent review with references to previous literature) reads

SUG ≡
Z

dnxLUG

≡ −Mn−2
P

Z
jgj1=n

�
Rþ ðn − 1Þðn − 2Þ

4n2
gμν∇μg∇νg

g2

�
:

ð1:4Þ

It can be easily shown using Bianchi identities that the
classical equations of motion (EM) of unimodular gravity
coincide with those of general relativity with an arbitrary
cosmological constant. The main difference at this level
between both theories is that a constant value for the matter
potential energy has no weight at all, which solves part of
the cosmological constant problem (namely, why the
cosmological constant is not much bigger that observed).
This property is preserved by quantum corrections.

While the nature of the cosmological constant makes
unimodular gravity an appealing alternative to general
relativity, it is still an effective field theory for low energies
as it has the same problems with renormalizability.
On the other hand, it has long been known [2] that

quadratic theories of gravity are quite interesting. They are
renormalizable (even asymptotically free) and they are in
many senses the closest analogues to Yang-Mills theories.
The problem however is with unitarity or, equivalently,
with a ghostly state in the spectrum. This problem can in
turn be traced to the quartic propagators, which contradict
the Källen-Lehmann spectral representation.
It has been suggested by Siegel [3], however, that string

theory provides a natural way out, namely, exponential
falling off of the propagators, of the type

L ¼ ϕ□e−
□

2M2ϕþϕT: ð1:5Þ

Building on these ideas, in [4,5] general actions of the type

S ¼
Z

dðvolÞRμνρσO
μνρσ
αβγδR

αβγδ ð1:6Þ

(where O is a differential operator) in the quadratic
approximation in the weak field expansion gμν ≡
ημν þ κhμν are analyzed. Using the same notation as
in [5] this yields the action

S ¼ −
Z

dnx

�
1

2
hμνað□Þ□hμν þ hσμbð□Þ∂σ∂νhμν

þ hcð□Þ∂μ∂νhμν þ
1

2
hdð□Þ□h

þ hλσ
fð□Þ
□

∂σ∂λ∂μ∂νhμν
�
: ð1:7Þ

Here all coefficients a, b, c, d, f are dimensionless
functions of the d’Alembert operator.
The aim of the present work is to see if it is possible to

extend this idea to the unimodular theory. As is well known
[6] flat space UG is a consistent theory propagating spin 2
only, with no admixture of spin zero, in the same foot as
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(and inequivalent to) Fierz Pauli, with the curious property
that it does not admit massive deformations.
We see in the sequel that all ghost-free quadratic theories

admit unimodular cousins.

II. UNIMODULAR REDUCTION

In [7] we have demonstrated that there is a (noninjective)
map that we call unimodular reduction (UR) that yields
the flat space unimodular theory out of the ordinary
Fierz-Pauli one. Similar mappings can also be introduced
also in the full nonlinear case. To be specific, the UR

UR∶ hμν → hμν −
1

n
hημν ð2:1Þ

of the action (1.7) reads

SUG≡UR½S�

¼−
Z

dðvolÞ
�
1

2
hμνað□Þ□hμνþhσμbð□Þ∂σ∂νhμν

þhλσ
fð□Þ
□

∂σ∂λ∂μ∂νhμν−
2

n
hαβðbð□Þþfð□ÞÞ∂α∂βh

þh

�
1

n2
fð□Þ− 1

2n
að□Þþ 1

n2
bð□Þ

�
□h

�
: ð2:2Þ

Please note that the UG action is independent of cð□Þ
and dð□Þ. Moreover, the local (two-derivative) unimodular
gravity in [6] corresponds to constant values of the
functions, namely,

a ¼ 1

2
b ¼ −

1

2
f ¼ 0: ð2:3Þ

When computing the UR of the EM it is important to
realize [6] that the unimodular reduction does not commute
with the variation, that is,

½UR;EM� ≠ 0: ð2:4Þ
From now on, we work in momentum space, where
the different functions að□Þ etc. in (2.2) are functions of
k2. Actually, the EM stemming from the action S can be
written as

Kμνρσhρσ ¼ 0; ð2:5Þ
where

Kμνρσ ¼
a
4
k2ðημρηνσ þ ημσηνρÞ

þ b
4
ðkσkνημρ þ kρkνημσ þ kμkσηνρ þ kμkρηνσÞ

þ c
2
ðηρσkμkν þ ημνkρkσÞ

þ d
2
k2ημνηρσ þ f

kμkνkρkσ
k2

: ð2:6Þ

It is important to note that the EM are symmetrized,
id est,

Kμνρσ ¼ Kρσμν; Kμνρσ ¼ Kνμρσ: ð2:7Þ

It is clear that the unimodular equations of motion cannot
be the unimodular reduction of the Fierz-Pauli ones, since
cð□Þ does not disappear, whereas it is not even present in
the UG action. To obtain the latter, there is a general
procedure explained in [6]. Define

Kμν ≡ Kμνρση
ρσ; K ≡ Kμνη

μν: ð2:8Þ

Then

KUG
μνρσ ≡ Kμνρσ −

1

n

�
Kμνηρσ þ Kρσημν −

1

n
Kημνηρσ

	
;

ð2:9Þ

where this operator is built in such a way that it inherits the
previous symmetries,

KUG
μνρσ ¼ KUG

ρσμν; KUG
μνρσ ¼ KUG

νμρσ; ð2:10Þ

plus an extra one,

KUG
μνρση

ρσ ¼ 0: ð2:11Þ

This yields

KUG
μνρσ ¼

1

4
aðημρηνσ þ ημσηνρÞk2

−
bþ f
n

ðkμkνηρσ þ kρkσημνÞ

þ 1

4
bðkρkνημσ þ kρkμηνσ þ kσkνημρ þ kμkσηνρÞ

þ 2ðbþ fÞ − na
2n2

k2ημνηρσ þ f
kμkνkρkσ

k2
: ð2:12Þ

It is plain that

kμKUG
μνρσ ¼

a
4
ðkρηνσ þ kσημρÞk2 −

bþ f
n

ðk2kνηρσ þ kνkρkσÞ

þ b
4
ð2kσkρkν þ k2kρηνσ þ k2kσηνρÞ

þ 2ðbþ fÞ − na
2n2

k2kνηρσ þ fkρkνkσ: ð2:13Þ

The Bianchi identity implies thatKμνρσ is transverse, so that
the source term in [5] must also be conserved,

∂νTμν ¼ 0: ð2:14Þ

This means that the source term after UR, which is the
traceless piece of the energy-momentum tensor, namely,
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TT
μν ≡ Tμν −

1

n
Tημν ð2:15Þ

(where T ≡ ημνTμν), is not transverse anymore, but rather

∂νTT
μν ¼

1

n
∂μT: ð2:16Þ

This is a nontrivial constraint, which is true only when
the functions a and b are such that

aþ b ¼ 0

in which case the trace is given by

T ¼
�ðn − 2Þaþ 2ðn − 1Þf

2n
k2ηρσ

þ 2ðn − 1Þf − ðn − 2Þa
2

kσkρ

�
hρσ: ð2:17Þ

There are no constraints in the unimodular case on the
function fðk2Þ.

III. PROPAGATORS

KUG ¼ a1P1 þ a2P2 þ asPs
0 þ awPw

0 þ a×P×
0 ; ð3:1Þ

where

a1 ¼ 0;

a2 ¼
1

2
ak2;

as ¼
2ðn − 1Þf − ðn − 2Þa

2n2
k2 ¼ Lk2;

aw ¼ 2ðn − 1Þ2f − ðn − 1Þðn − 2Þa
2n2

k2

¼ ðn − 1ÞLk2 ¼ ðn − 1Þas;

a× ¼
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p ðn − 2Þa − 2ðn − 1Þf
2n2

k2

¼ −
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
Lk2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
as; ð3:2Þ

where we have defined

L≡ 2ðn − 1Þf − ðn − 2Þa
2n2

: ð3:3Þ

The discriminant vanishes,

Δ≡ asaw − a2× ¼ 0: ð3:4Þ

This means that we have to introduce a TDiff gauge fixing,

Kgf
1 ≡ α1P1; ð3:5Þ

and besides another one for Weyl’s symmetry, namely,

Kgf
2 ≡ α2ðPw

0 þ ðn − 1ÞPs
0 þ

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
P×
0 Þ: ð3:6Þ

The full operator is then

KUG
gf ¼ α1P1 þ a2P2 þ ðas þ ðn− 1Þα2ÞPs

0 þ ðaw þ α2ÞPw
0

þ ðα2
ffiffiffiffiffiffiffiffiffiffiffi
n− 1

p
þ a×ÞP×

0 : ð3:7Þ

Using the formulas in the appendix, the propagator is
given by

K−1
UG¼ 1

α1
P1þ

�
2

a
P2þ

1

n2α2L
ððLk2þðn−1Þα2ÞPw

0

þðLðn−1Þk2þα2ÞPs
0þ

ffiffiffiffiffiffiffiffiffiffi
n−1

p
ðLk2−α2ÞP×Þ

�
1

k2
:

ð3:8Þ

The interaction energy between external, gauge invariant
sources is a physical quantity. In our case this is given by
the coupling of the graviton to the traceless piece of the
energy-momentum tensor,

Z
dðvolÞTT

μνhμν: ð3:9Þ

The source then is not transverse, but rather

∂μðTTÞμν ¼ 1

n
∂νT: ð3:10Þ

The only projectors that do not vanish when sandwiched
between physical sources are

TTμν · ðP2Þμνρσ · TTρσ ¼ T2
μν −

1

n − 1
T2; ð3:11Þ

TTμν · ðP1Þμνρσ · TTρσ ¼ 0; ð3:12Þ

TTμν · ðPs
0Þμνρσ · TTρσ ¼ 1

n2ðn − 1ÞT
2; ð3:13Þ

TTμν · ðPx
0Þμνρσ · TTρσ ¼ −

2

n2
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p T2; ð3:14Þ

TTμν · ðPw
0 Þμνρσ · TTρσ ¼ 1

n2
T2: ð3:15Þ

This yields the value for the free energy in the linear limit
of our theory to be

W ¼ 1

k2

�
2

a
T2
μν þ

a − 2n2L
aðn − 1Þn2LT2

�
: ð3:16Þ
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In order not to disagree with the classical solar system GR
tests, this must be proportional to the well-known result
(which is the Fierz-Pauli result, reproduced also by UG)

WFP ¼ 1

k2

�
T2
μν −

1

n − 2
T2

�
: ð3:17Þ

This determines

L ¼ −
aðn − 2Þ

2n2
; ð3:18Þ

that is, f is given in terms of a through

fðkÞ ¼ 0: ð3:19Þ

It is known that the function fðzÞ must be an entire
function of the complex variable z. This condition is
trivially satisfied here.

IV. CONCLUSIONS

We have demonstrated here that the complete set of
higher-derivative ghost-free theories has a related unim-
odular theory that can be easily obtained from the parent
theory through unimodular reduction.
These theories, as also happens with the usual uni-

modular gravity constructed out of the Einstein-Hilbert
Lagrangian, do not couple the constant vacuum energy to
gravity, which makes them an interesting alternative to the
standard ones.
Further work is needed to investigate if one can get

different physical predictions from the unimodular reduc-
tion than those of the parent theory. In spite of some work
[8], no differences were found at tree level between
unimodular gravity and general relativity other than the
role of the vacuum energy just mentioned.
Let us finish with a word of caution. The suggestion has

been made [9] that in spite of the original claims there are
hidden ghosts in the quantum version of these theories. This
question asks for a more detailed analysis. Let us point out,
finally, that it is interesting to generalize the bootstrap
mechanism to the unimodular case, in particular, for higher
order in curvature theories. Some suggestions have been
made in [10].Work on this topicwill be reported in due time.
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APPENDIX: SPIN PROJECTORS

We start with the longitudinal and transverse projectors

θαβ ≡ ηαβ −
kαkβ
k2

; ωαβ ≡ kαkβ
k2

: ðA1Þ

They obey

θνμ þ ων
μ ¼ δνμ; θβαθ

γ
β ¼ θγα; ωβ

αω
γ
β ¼ ωγ

α; ðA2Þ

as well as

trθνμ ¼ n − 1; trων
μ ¼ 1: ðA3Þ

The four-indices projectors are

ðP2ÞμνρσÞ≡ 1

2
ðθμρθνσ þ θμσθνρÞ −

1

n − 1
θμνθρσ;

ðP1Þμνρσ ≡ 1

2
ðθμρωνσ þ θμσωνρ þ θνρωμσ þ θνσωμρÞ;

ðPs
0Þμνρσ ≡ 1

n − 1
θμνθρσ;

ðPw
0 Þμνρσ ≡ ωμνωρσ;

ðPsw
0 Þμνρσ ≡ 1ffiffiffiffiffiffiffiffiffiffiffi

n − 1
p θμνωρσ;

ðPws
0 Þμνρσ ≡ 1ffiffiffiffiffiffiffiffiffiffiffi

n − 1
p ωμνθρσ: ðA4Þ

They obey

Pa
i P

b
j ¼ δijδ

abPb
i ; Pa

i P
bc
j ¼ δijδ

abPac
j ;

Pab
i Pc

j ¼ δijδ
bcPac

j ; Pab
i Pcd

j ¼ δijδ
bcδadPa

j ; ðA5Þ

as well as

trððP2ÞμνρσÞÞ≡ημνðP2Þμνρσ¼0;

trððPs
0ÞμνρσÞ≡ημνðPs

0Þμνρσ¼θρσ;

trððPw
0 ÞμνρσÞ≡ημνðPw

0 Þμνρσ¼ωρσ;

trððP1ÞμνρσÞ≡ημνðP1Þμνρσ¼0;

trððPsw
0 ÞμνρσÞ≡ημνðPsw

0 Þμνρσ¼
ffiffiffiffiffiffiffiffiffiffi
n−1

p
ωρσ;

trððPws
0 ÞμνρσÞ≡ημνðPws

0 Þμνρσ¼
1ffiffiffiffiffiffiffiffiffiffi
n−1

p θρσ;

ðP2ÞρσμνþðP1ÞρσμνþðPw
0 ÞρσμνþðPs

0Þρσμν¼
1

2
ðδνμδσρþδσμδ

ν
ρÞ: ðA6Þ
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Any symmetric operator can be written symbolically as

K ¼ a2P2 þ a1P1 þ awPw
0 þ asPs

0 þ a×P×
0 ðA7Þ

(where P×
0 ≡ Pws

0 þ Psw
0 ). Then

K−1 ¼ 1

a2
P2 þ

1

a1
P1 þ

as
asaw − a2×

Pw
0

þ aw
asaw − a2×

Ps
0 −

a×
asaw − a2×

P×
0 : ðA8Þ

Sometimes the action of those projectors on
trace-free tensors is needed. Defining the trace-free
projector

ðPtrÞρσλδ ≡ 1

2
ðδλρδδσ þ δδρδ

λ
σÞ −

1

n
ηρση

λδ: ðA9Þ

It is a fact that

P2Ptr ¼ P2;

Ps
0Ptr ¼ Ps

0 −
n − 1

n
Ps
0 −

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p

n
Psw
0 ;

Pw
0Ptr ¼ Pw

0 −
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p

n
Pws
0 −

1

n
Pw
0 ;

P1Ptr ¼ P1;

Psw
0 Ptr ¼ Psw

0 −
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p

n
Pws
0 −

1

n
Pw
0 ;

Pws
0 Ptr ¼ Pws

0 −
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p

n
Psw
0 −

n − 1

n
Ps
0: ðA10Þ
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