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We show that the Rð3ÞδK operator in effective field theory is significant for avoiding the instability of
nonsingular bounce, where Rð3Þ and Kμν are the three-dimensional Ricci scalar and the extrinsic curvature

on the spacelike hypersurface, respectively. We point out that the covariant Lagrangian of Rð3ÞδK, i.e.,
LRð3ÞδK , has the second order derivative couplings of scalar field to gravity which do not appear in
Horndeski theory or its extensions but does not bring the Ostrogradski ghost. We also discuss the possible
effect of LRð3ÞδK on the primordial scalar perturbation in the inflation scenario.
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I. INTRODUCTION

Recently, the studies of the origin of the Universe and the
current accelerated expansion have greatly promoted the
development of gravity theories beyond general relativity
(GR); see Refs. [1–3] for recent reviews. How to design a
theory without an extra degree of freedom (DOF) has
acquired persistent attention.
The Horndeski theory was proposed in the 1970s [4]; see

also Refs. [5,6], in which the equations of motion have at
most second order time derivatives, which avoids the extra
DOF (so the Ostrogradski ghost). However, it seems that
equations of motion with higher order time derivatives do
not necessarily suggest the presence of extra DOF. The
discoveries of the beyond Horndeski theory [7–9] and
degenerate higher order scalar-tensor (DHOST) theory
[10–13] have confirmed this possibility and greatly
enriched our understanding of gravity. In Horndeski and
DHOST theories, the Lagrangian involves only the non-
minimal couplings fðϕ; XÞR and ϕμνRμν, where X ¼ ϕμϕ

μ,
ϕμ ¼ ∇μϕ, and ϕμν ¼ ∇μ∇νϕ.
Along a different line, the effective field theory (EFT) of

cosmological perturbations has been developed for inves-
tigating inflation [14,15] and current cosmological accel-
eration [16–18]; see Ref. [19] for a review. Recently, the
EFT has also been applied to the nonsingular cosmologies
[20–22]. It was found first in Refs. [20,21] that the
operators with three-dimensional Ricci scalar Rð3Þ, espe-
cially Rð3Þδg00, could play a significant role in curing the
gradient instability induced by a negative sound speed
squared (i.e., c2s < 0) of scalar perturbation [23,24].
Actually, as will be shown, the operator Rð3ÞδK (K is
the extrinsic curvature) could play a role similar to that
of Rð3Þδg00.

We built a fully stable cosmological bounce scenario in
Ref. [25] by applying a least set of operators (ðδg00Þ2 and
Rð3Þδg00), namely, a “least modification.” The graviton
throughout the bounce behaves itself like that in GR, which
could naturally avoid the strong coupling regime appearing
in Ref. [26]; see also Ref. [27]. The covariant Lagrangian
proposed in Ref. [25] belongs to beyond Horndeski theory
(see also Ref. [28] for a different implementation of a fully
stable bounce), which is a subclass of the DHOST theory,
but the equations of motion still could be second order in
time derivatives. This enlightens us that there might still be
some space of scalar-tensor theory to be explored.
As will be pointed out, the covariant description of

Rð3ÞδK contains the second order derivative couplings of
the field ϕ to gravity, such as ϕμϕμνϕ

νR, ϕμϕνð□ϕÞRμν,
and ϕμϕνϕρϕ

ρσϕσRμν, which do not appear in Horndeski
(or even DHOST) theory. The mimetic gravity with the
coupling ð□ϕÞR has been proposed in Ref. [29]. In scalar-
tensor theory, it is interesting to explore the possibility of
such higher order derivative couplings.
In this paper, we point out that the covariant Lagrangian

of Rð3ÞδK, i.e., LRð3ÞδK , has the second order derivative
couplings of scalar field to gravity which do not appear in
Horndeski theory or its extensions but does not bring the
Ostrogradski ghost. We discuss its implication on scalar-
tensor theory. We also show the interesting applications of
LRð3ÞδK in the nonsingular cosmologies and the inflation
scenario.

II. HIGHER ORDER DERIVATIVE
COUPLING TO GRAVITY

As was first found in Ref. [20] (see also Ref. [21]), the
Rð3Þδg00 operator plays a crucial role in solving the gradient
instability problem induced by c2s < 0 (see also Ref. [30] for
the unitarity problem), which suffered by the nonsingular
cosmologies based on the Horndeski theory [23,24,31,32].
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In the Appendix, we point out that the Rð3ÞδK operator
actually could play a role similar to that of Rð3Þδg00. As will
be shown, the covariant Lagrangian of Rð3ÞδK contains the
second order derivative of ϕ coupled to gravity, such as
∼ϕμϕμνϕ

νR, ϕμϕνð□ϕÞRμν, and ϕμϕνϕρϕ
ρσϕσRμν.

However, in Horndeski theory, such derivative couplings
do not appear, since they will bring the Ostrogradski ghost.
Thus, it is interesting to have a survey.
In this section, wewill derive the covariant Lagrangian of

Rð3ÞδK in unitary gauge. The induced metric on the three-
dimensional spacelike hypersurface (ϕ ¼ const) is hμν ¼
gμν þ nμnν, where nμ ¼ − 1ffiffiffiffiffi

−X
p ϕμ is the unit vector orthogo-

nal to the hypersurface and nμnμ ¼−1, with X ¼ ϕμϕ
μ and

ϕμ ¼ ∇μϕ. The extrinsic curvature Kμν is defined as

Kμν ¼ hσμ∇σnν: ð1Þ

Since δK ¼ K − 3H, it is straightforward to get

δK ¼ −
1ffiffiffiffiffiffiffi
−X

p
�
□ϕ −

ϕμϕμνϕ
ν

X

�
− 3H; ð2Þ

with ϕμν ¼ ∇ν∇μϕ. In unitary gauge ϕ ¼ ϕðtÞ, we have
H ¼ HðtðϕÞÞ. Using the Gauss-Codazzi relation, we have

Rð3Þ ¼ R −
ϕμνϕ

μν − ð□ϕÞ2
X

þ 2ϕμϕμνϕ
νσϕσ

X2

−
2ϕμϕμνϕ

ν
□ϕ

X2
−
2Rμνϕ

μϕν

X
: ð3Þ

Note that in the second line of Eq. (3), we also have
Rμνϕ

μϕν ¼ ϕν
μ
μϕ

ν − ϕν
νμϕ

μ with ϕν
νμ ¼ ∇μ∇ν∇νϕ, as

given in Ref. [25].
We define SRð3ÞδK ¼ R d4x ffiffiffiffiffiffi−gp

LRð3ÞδK , with

LRð3ÞδK ¼ f̄5 · ðRð3ÞδKÞ

¼ −
f̄5ffiffiffiffiffiffiffi
−X

p
�
ð□ϕÞ − ϕμϕμνϕ

ν

X

�
R

þ 2f̄5ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−XÞ3

p �
−ϕμϕνð□ϕÞ þ ϕμϕνϕρϕ

ρσϕσ

X

�
Rμν

þ f̄5ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−XÞ3

p �
ð□ϕÞ3 − ð□ϕÞϕμνϕ

μν −
ð□ϕÞ2ϕμϕ

μνϕν − ϕμνϕ
μνϕρϕ

ρσϕσ

X

�

þ 2f̄5ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−XÞ5

p �
ð□ϕÞ2ϕμϕ

μνϕν − ð□ϕÞϕμϕ
μνϕνρϕ

ρ

−
ð□ϕÞðϕμϕ

μνϕνÞ2 − ϕμϕ
μνϕνρϕ

ρϕσϕ
σλϕλ

X

�
− f̄4Rð3Þ; ð4Þ

where the leading contribution of Rð3ÞδK is the perturbation
at quadratic order, so that f̄5 could be a function of ϕ, X
(and even □ϕ and ϕμϕ

μνϕν), and f̄4 ¼ 3f̄5HðtðϕÞÞ. When
f̄4 ¼ 0 is set, LRð3ÞδK reduces to ∼Rð3ÞK.
Recalling that in Horndeski theory, LH

5 contains the
coupling of the second order derivative of ϕ to gravity, i.e.,
fðϕ; XÞGμνϕ

μν (or Rμνϕ
μν). Here, we require that f is also

X dependent; otherwise, Gμνϕ
μν will be equivalent to

Gμνϕ
μϕν, the cosmological applications of which have

been studied; see, e.g., Refs. [33–36]. While in LRð3ÞδK , the
couplings

ð□ϕÞR; ϕμϕμνϕ
νR; ϕμϕνð□ϕÞRμν; ð5Þ

ϕμϕνϕρϕ
ρσϕσRμν ð6Þ

appear and are independent with Rμνϕ
μν. In addition,

such couplings to gravity also include ϕμρϕρϕ
νRμν,

ϕμϕνρϕσRμνρσ , which are not independent and could be
obtained by the combinations of Rμνϕ

μν and (5), as pointed
out in Ref. [12].
In Horndeski theory, the cubic order of □ϕ in LH

5 will
induce the higher derivatives in the metric and field
equations, which are actually set off by Gμνϕ

μν [37].
This makes it be free from the Ostrogradski ghost. In
DHOST theory [10,11], all possible terms of cubic order of
the second order derivative of ϕ appear and result in higher
order equations of motion, but there is still no Ostrogradski
ghost due to the degeneracy.
Though the DHOST theory extends the Horndeski

theory, the coupling of the second order derivative of ϕ
to gravity is still onlyGμνϕ

μν, since the derivative couplings
(5) and (6) will bring the Ostrogradski ghost (higher
derivatives in the equations of motion). However, in
LRð3ÞδK, the Ostrogradski ghost could be dispelled by the
combination of ð□ϕÞ3, ð□ϕÞϕμνϕ

μν, etc., and Rð3Þ; see (4).
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In principle, we could merge the Horndeski (even
DHOST) theory and LRð3ÞδK into a (second order) derivative
coupling theory with all independent couplings [Rμνϕ

μν,
Eqs. (5) and (6)] of the second order derivative of ϕ to
gravity. In such a theory, the background equations of
motion could be set only by the Horndeski (DHOST)
theory, since LRð3ÞδK only contributes ð∂ζÞ2; ð∂2ζÞ2 at
leading order.
The quadratic coupling of the second order derivative of

ϕ to R, such as ð□ϕÞ2R, might be obtained in L ∼ KRð3ÞδK
or equivalently f̄5ð□ϕ;ϕμϕ

μνϕνÞRð3ÞδK, where all coef-
ficients must be fixed as (4).
In mimetic gravity [38,39] (see, e.g., Ref. [40] for a

review), since δg00 ¼ 0, instead of Rð3Þδg00, the operator

Rð3ÞδK might be significant for curing the instabilities
pointed out in Refs. [41–43]. Here, since the mimetic
constraint gμνϕμϕν þ 1 ¼ 0 suggests X ¼ −1, we have

Rð3Þ ¼ 2ϕμϕνRμν þ R − ϕμνϕ
μν − ð□ϕÞ2; ð7Þ

the covariant LRð3ÞδK will be simpler.
It should be mentioned that at quadratic order LRð3ÞδK

also contributes ð∂2ζÞ2 ∼ k4ζ2, which is harmful or
harmless, depending on the coefficient. However, ð∂2ζÞ2
could be removed by using ðRð3ÞÞ2 (if required), since
ðRð3ÞÞ2 ∼ ð∂2ζÞ2 at leading order. We define SðRð3ÞÞ2 ¼R
d4x

ffiffiffiffiffiffi−gp
LðRð3ÞÞ2 and LðRð3ÞÞ2 ¼ f6 · ðRð3ÞÞ2, with

ðRð3ÞÞ2 ¼ R2 −
4ϕμϕνRμνR

X
þ 4ðϕμϕνRμνÞ2

X2

þ 2R

�ð□ϕÞ2 − ϕμνϕ
μν

X
þ 2ϕμϕμρϕ

ρνϕν

X2
−
2ð□ϕÞϕμϕμνϕ

ν

X2

�

þ 4Rμνϕ
μϕν

�
ϕρσϕ

ρσ

X2
−
ð□ϕÞ2
X2

−
2ϕαϕ

αβϕβσϕ
σ

X3
þ 2□ϕϕαϕ

αβϕβ

X3

�

þ ðϕμνϕ
μνÞ2

X2
−
4ϕμνϕ

μνϕαϕ
αβϕβσϕ

σ

X3
þ 4ðϕμϕ

μνϕνρϕ
ρÞ2

X4

þ 4ð□ϕÞϕμνϕ
μνϕαϕ

αβϕβ

X3
−
8ð□ϕÞϕαϕ

αβϕβϕμϕ
μνϕνρϕ

ρ

X4

þ 4ð□ϕÞ2ðϕμϕ
μνϕνÞ2

X4
−
2ð□ϕÞ2ϕμνϕ

μν

X2
þ 4ð□ϕÞ2ϕμϕ

μνϕνρϕ
ρ

X3

−
4ð□ϕÞ3ϕμϕ

μνϕν

X3
þ ð□ϕÞ4

X2
; ð8Þ

where both R2 order and the coupling of ð□ϕÞ2 to R actually appear and f6 is a function of ϕ and X (and even □ϕ and
ϕμϕ

μνϕν). In addition, LðRð3ÞÞ2 itself also has an interesting application in nonsingular cosmologies [20,44].

III. COSMOLOGICAL APPLICATIONS

A. Stable model for ekpyrotic scenario

We consider the ekpyrotic scenario [45,46]. How to build a fully stable bounce model is a significant issue. We proposed
such a model with LRð3Þδg00 in Ref. [25]. In Ref. [28], Kolevatov et al. also proposed a different model by applying the
“inverse method” adopted in Refs. [23,47]. However, with the covariant LRð3Þδg00 , the design is actually simpler [25]. Here,
with LRð3ÞδK , the method is similar (though slightly complicated).
We begin with the ekpyrotic Lagrangian

Lekpy ∼
M2

p

2
R − X=2þ V0

2
eϕ=M1

�
1 − tanh

�
ϕ

M2

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Contraction and expansion

þ ~Pðϕ; XÞ|fflfflfflffl{zfflfflfflffl}
Bounce ðnull energy condition violationÞ

ðaroundϕ ¼ 0Þ þ LRð3ÞδK or LRð3Þδg00|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Removing c2s<0Removing ghost

; ð9Þ
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with constant M1, M2, V0. ~PX > 1=2 must be satisfied
around ϕ≃ 0, so that _H > 0. In Ref. [25], see also
Refs. [48,49], we adopted

~Pðϕ; XÞ ¼ k0
ð1þ κ1ϕ

2Þ2 X=2þ
q0

ð1þ κ2ϕ
2Þ2 X

2 ð10Þ

with the constants k0, κ1 [switching the sign before X=2
in (9) around ϕ≃ 0] and q0, κ2 (making X2 appear
around ϕ≃ 0). A full ekpyrotic Lagrangian (9) also

should involve a mechanism (a coupling e−
λ

Mp
ϕ∂μχ∂μχ

[50–52]) responsible for the scale invariant primordial
perturbation.
The quadratic action of scalar perturbation for (9) is

Sð2Þζ ¼
Z

a3Qs

�
_ζ2 − c2s

ð∂ζÞ2
a2

�
d4x; ð11Þ

where

Qs ¼
2 _ϕ4 ~PXX −M2

p
_H

H2
; c2sQs ¼

_c3
a
−M2

p; ð12Þ

and c3 ¼ aM2
p

H ð1 − 2f̄5QsH
M4

p
Þ; see the Appendix (or Ref. [20])

for details. In the Appendix, we have M4
2ðtÞ ¼ _ϕ4 ~PXX,

m̄5=2 ¼ f̄5 and λ̄=2 ¼ f6. The quadratic action of tensor
perturbation is unaffected by LRð3ÞδK and is still that in GR.
Here, we require 2X2 ~PXX > M2

p
_H, so that Qs > 0 can

be obtained. If f̄5 ¼ 0, around the bounce point H ≃ 0,
we will have c2s ∼ − _H < 0. However, since f̄5 ≠ 0 and
satisfies

2f̄5QsH
M4

p
¼ 1 −

H
aM2

p

Z
aðQsc2s þM2

pÞdt; ð13Þ

we always could set c2s ∼Oð1Þ with suitable f̄5. It should
be mentioned that when H ∼ 0, f̄5 ∼ 1

HQs
∼H crosses 0.

In (11), ð∂2ζÞ2 has been canceled by adding LðRð3ÞÞ2 to
Lekpy for simplicity, which requires

4f6 ¼
f̄5
H

−
�
3þ Qs

M2
p

�
f̄25
M2

p
: ð14Þ

Thus, a fully stable nonsingular bounce (Qs > 0 and
c2s ¼ 1) can be designed by using (9) with f̄5 given by
(13), and f4 ¼ 3f̄5H, and f6 given by (14). With (10), the
calculation is similar to that in Ref. [25].

B. Slow-roll inflation with modified c2s
We consider the inflation scenario. Here, the covariant

LRð3ÞδK and also LRð3Þδg00 only affect the sound speed cs of
scalar perturbation, but the background and the tensor

perturbation are unaffected. The effect of modified c2s may
be encoded in the power spectrum of primordial scalar
perturbation, which might be observable.
The Lagrangian is

L ∼
M2

p

2
Rþ Linf þ LRð3ÞδK þ LðRð3ÞÞ2 ; ð15Þ

where Linf ¼ −ϕμϕ
μ=2 − VðϕÞ is responsible for the infla-

tion. We set the slow-roll parameter ϵ ¼ − _H=H2 ¼
const > 0 for simplicity. The quadratic action of scalar
perturbation is given in (A4) of the Appendix with
M2 ¼ ~m4 ¼ 0. We have Qs ¼ ϵM2

p and

c2s ¼ 1 −
m̄5H
M2

p
−

_̄m5

M2
p
; ð16Þ

c4 ≃ 3m̄2
5

M2
p
−
2m̄5

H
þ 8λ̄: ð17Þ

Here, LRð3ÞδK modifies c2s . We require c4 ¼ 0, which
suggests that λ̄ in (17) is determined by m̄5 and H.
The equation of motion for ζ is

u00 þ
�
c2sk2 −

z00s
zs

�
u ¼ 0 ð18Þ

with the definition u ¼ zsζ and zs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2ϵM2

p

q
, and

the superscript 0 is the derivative with respect to
τ ¼ R dt=a. The initial state of the perturbation mode is
u ¼ 1ffiffiffiffiffiffiffi

2csk
p e−icskτ. The power spectrum of ζ is

PR ¼ k3

2π2

���� uzs
����2: ð19Þ

We have Pinf
R ¼ H2

inf
8π2M2

pϵ
ð k
aHÞ−2ϵ for slow-roll inflation

(c2s ¼ 1). Here, if c2s ¼ const < 1 is required, _̄m5 ¼ 0
in (16) should be satisfied. This will result in
c2s ¼ 1 − m̄5Hinf

M2
p

≃ 1, since Hinf ≪ Mp while m̄5 ≲Mp.

Thus, the case with c2s ≠ const might be interesting.
For an example, we consider a model in which c2s

acquires a dip [Fig. 1(a)]. We numerically show the
corresponding evolutions of m̄5 and λ̄ in Figs. 1(b)
and 1(c), according to (16) and (17), which could be
rewritten as m̄5ðϕÞ and λ̄ðϕÞ since ϕ ¼ ϕðtÞ. We plot Pζ

in Fig. 1(d) by solving Eq. (18); see Refs. [53–55] for a
similar method. We see that the effect of LRð3ÞδK on c2s
could be encoded in the power spectrum of scalar
perturbation.
The phenomenological effect of LRð3ÞδK is very similar to

that of LRð3Þδg00 at quadratic order, if the contribution of
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LRð3ÞδK to term ∼k4ζ2 in the quadratic action is totally
canceled by LðRð3ÞÞ2, i.e., c4 ¼ 0, which requires λ̄ ¼ λ̄0 with

λ̄0 ≃ 3m̄2
5

8M2
p
− m̄5

4H. However, when the condition c4 ¼ 0 is

violated, Eq. (18) should be modified to u00 þ
ðc2s;effk2 − z00s=zsÞu ¼ 0 where c2s;eff ¼ c2s − 2c4k2=z2s (for
simplicity, we will focus on the cases in which c4 ¼ 0
initially so that the initial state of the perturbation mode is
still u ¼ 1ffiffiffiffiffiffiffi

2csk
p e−icskτ).

Phenomenologically, we could distinguish the operator
LRð3ÞδK from LRð3Þδg00 . First, when c4 ≠ 0, the frequency of
the oscillations in the power spectrum will increase with k,
while the frequency of the oscillations is nearly constant for
c4 ¼ 0; see Fig. 2(b). Second, when c4 ≠ 0 (even when λ̄
slightly deviates from λ̄0), c2s;eff may induce a larger
amplitude of oscillations than that of c2s in the power
spectrum, as numerically shown in Fig. 2, unless c2s has
more drastic (or fine-tuned) variation.

(a) (b)

FIG. 2. The background is the slow-roll inflation with ϵ ¼ 0.003. We set c2s ¼ 1 −A�e−B�ðt−t�Þ2 with A� ¼ 0.02, B� ¼ 80 and
t� ¼ 6 for both (a) and (b), while we set λ̄ ¼ λ̄0 (i.e., c4 ¼ 0) for the green dashed curves and λ̄ ¼ 0.997λ̄0 (i.e., c4 ≠ 0) for the magenta
solid curves.

(a)

(c) (d)

(b)

0.004

0.003

FIG. 1. The background is the slow-roll inflation with ϵ ¼ 0.003. We set c2s ¼ 1 −A�e−B�ðt−t�Þ2 with A� ¼ 0.1, B� ¼ 80 and t� ¼ 6.
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The effect of varying c2s on scalar perturbations has been
also studied in Refs. [56–61], but based on Pðϕ; XÞ (or
equivalent EFT).

IV. DISCUSSION

Recently, it has been found in Refs. [20,21] that the
operators with a three-dimensional Ricci scalar Rð3Þ in EFT,
especially Rð3Þδg00, are significant for solving the problem
of c2s < 0, which is suffered by the nonsingular cosmol-
ogies. Here, we find that the Rð3ÞδK operator actually could
play a role similar to that of Rð3Þδg00.
We derived the covariant Lagrangian of Rð3ÞδK. The

covariant LRð3ÞδK has the second order derivative coupling
of the field ϕ to gravity, such as (5) and (6) (which do not
appear in Horndeski and DHOST theory), but does not
bring the Ostrogradski ghost. This suggests that the
Horndeski (or even DHOST) theory and LRð3ÞδK might
be merged into a second order derivative coupling theory
with all possible independent couplings, i.e., Gμνϕ

μν (or
Rμνϕ

μν), Eqs. (5) and (6), of the second order derivative of
ϕ to gravity. Here, how (5) and (6) consistently appear in
such a theory is just what is told by the covariant
description of the Rð3ÞδK operator.
With LRð3ÞδK , we built a fully stable cosmological model

for the ekpyrotic scenario, by applying similar method used
in Ref. [25]. Our work indicates that with the covariant
LRð3Þδg00 (proposed in Ref. [25]) or LRð3ÞδK, the stable
nonsingular bounce scenario could be concisely designed.
Here, our study is motivated straightly by the EFT
operators, e.g., Ref. [20]. However, other studies based
on modified gravity will also be interesting [62–68],
especially their stabilities.
We also studied the possible effect of LRð3ÞδK on the

primordial scalar perturbation in the inflation scenario,
which might be encoded in the TT spectrum of cosmic
microwave background. We will come back to the relevant
issues elsewhere.

ACKNOWLEDGMENTS

We thank Yunlong Zheng, Mingzhe Li, and Xian Gao
for helpful discussions. Y. C. would like to thank Youping
Wan and Yi-Fu Cai for discussions and hospitality during
his visit at University of Science and Technology of China.
This work is supported by NSFC, Grants No. 11575188
and No. 11690021, and is also supported by the
Strategic Priority Research Program of CAS, Grants
No. XDA04075000 and No. XDB23010100.

APPENDIX: THE EFT

As pointed out in Refs. [47,22], the cubic Galileon only
moves the period of c2s < 0 to the outside of the null energy
condition violating phase but cannot dispel it completely;
see also the earlier discussion [69] on this point.

In this Appendix, we briefly review the EFT for non-
singular cosmologies and show how the Rð3Þδg00 and
Rð3ÞδK operators play crucial roles in solving the problem
of c2s < 0.
With the ADM line element, we have

gμν ¼
�
NkNk − N2 Nj

Ni hij

�
;

gμν ¼
 
−N−2 Nj

N2

Ni

N2 hij − NiNj

N2

!
; ðA1Þ

and
ffiffiffiffiffiffi−gp ¼ N

ffiffiffi
h

p
, where Ni ¼ hijNj. The induced metric

on the three-dimensional hypersurface is hμν ¼ gμν þ nμnν,
where nμ ¼ n0ðdt=dxμÞ ¼ ð−N; 0; 0; 0Þ, nν ¼ gμνnμ ¼
ð1=N;−Ni=NÞ is orthogonal to the spacelike hypersurface,
and nμnμ ¼ −1. Thus,
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�
; hμν ¼
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The EFT action is

S ¼
Z
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where δg00 ¼ g00 þ 1, Rð3Þ is the three-dimensional Ricci
scalar, Kμν ¼ hσμ∇σnν is the extrinsic curvature and
δKμν ¼ Kμν − hμνH. The first row describes the back-
ground, while the rest are for the perturbations. We always
could set f ¼ 1, which implies cðtÞ ¼ −M2

p
_H and

cðtÞ þ ΛðtÞ ¼ 3M2
pH2. See, e.g., Ref. [20] for the details.

Here, we only consider the coefficients set ðM2; ~m4;
m̄5; λ̄Þ and set other coefficients in (A3) equal to 0. Only
with ðM2; ~m4; m̄5; λ̄Þ ≠ 0, the quadratic action of scalar
perturbation ζ is (see, e.g., our Ref. [20])

Sð2Þζ ¼
Z

d4xa3Qs

�
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ð∂ζÞ2
a2

þ c4
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ð∂2ζÞ2
�
; ðA4Þ

where
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ðA9Þ

Only if Qs > 0 and c2s > 0 is the nonsingular cosmo-
logical model healthy. In models with the operator ðδg00Þ2,
Qs > 0 can be obtained, since ðδg00Þ2 contributes _ζ2,
while c2s < 0 can be avoided since Rð3Þδg00 or Rð3ÞδK
contributes ð∂ζÞ2.
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