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We show that the R®)SK operator in effective field theory is significant for avoiding the instability of

nonsingular bounce, where R®) and K v are the three-dimensional Ricci scalar and the extrinsic curvature

on the spacelike hypersurface, respectively. We point out that the covariant Lagrangian of R®)8K, i.e.,
Lgesk, has the second order derivative couplings of scalar field to gravity which do not appear in
Horndeski theory or its extensions but does not bring the Ostrogradski ghost. We also discuss the possible
effect of L5, on the primordial scalar perturbation in the inflation scenario.
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I. INTRODUCTION

Recently, the studies of the origin of the Universe and the
current accelerated expansion have greatly promoted the
development of gravity theories beyond general relativity
(GR); see Refs. [1-3] for recent reviews. How to design a
theory without an extra degree of freedom (DOF) has
acquired persistent attention.

The Horndeski theory was proposed in the 1970s [4]; see
also Refs. [5,6], in which the equations of motion have at
most second order time derivatives, which avoids the extra
DOF (so the Ostrogradski ghost). However, it seems that
equations of motion with higher order time derivatives do
not necessarily suggest the presence of extra DOF. The
discoveries of the beyond Horndeski theory [7-9] and
degenerate higher order scalar-tensor (DHOST) theory
[10-13] have confirmed this possibility and greatly
enriched our understanding of gravity. In Horndeski and
DHOST theories, the Lagrangian involves only the non-
minimal couplings f(¢, X)R and ¢**R,,,, where X = ¢, ¢,
¢, =V, and ¢ = VIV .

Along a different line, the effective field theory (EFT) of
cosmological perturbations has been developed for inves-
tigating inflation [14,15] and current cosmological accel-
eration [16—-18]; see Ref. [19] for a review. Recently, the
EFT has also been applied to the nonsingular cosmologies
[20-22]. It was found first in Refs. [20,21] that the
operators with three-dimensional Ricci scalar R®), espe-
cially R®)8g%, could play a significant role in curing the
gradient instability induced by a negative sound speed
squared (i.e., ¢2 <0) of scalar perturbation [23,24].
Actually, as will be shown, the operator R®)6K (K is
the extrinsic curvature) could play a role similar to that
of R®)5g0.
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We built a fully stable cosmological bounce scenario in
Ref. [25] by applying a least set of operators ((5g°°)? and
R®)5¢g%), namely, a “least modification.” The graviton
throughout the bounce behaves itself like that in GR, which
could naturally avoid the strong coupling regime appearing
in Ref. [26]; see also Ref. [27]. The covariant Lagrangian
proposed in Ref. [25] belongs to beyond Horndeski theory
(see also Ref. [28] for a different implementation of a fully
stable bounce), which is a subclass of the DHOST theory,
but the equations of motion still could be second order in
time derivatives. This enlightens us that there might still be
some space of scalar-tensor theory to be explored.

As will be pointed out, the covariant description of
RB)SK contains the second order derivative couplings of
the field ¢ to gravity, such as ¢*¢,, ¢*R, ¢"¢*(Cp)R,,,
and ¢*¢*¢,¢"° PR, which do not appear in Horndeski
(or even DHOST) theory. The mimetic gravity with the
coupling ((J¢)R has been proposed in Ref. [29]. In scalar-
tensor theory, it is interesting to explore the possibility of
such higher order derivative couplings.

In this paper, we point out that the covariant Lagrangian
of ROSK, ie., L5, has the second order derivative
couplings of scalar field to gravity which do not appear in
Horndeski theory or its extensions but does not bring the
Ostrogradski ghost. We discuss its implication on scalar-
tensor theory. We also show the interesting applications of
Lyesx in the nonsingular cosmologies and the inflation
scenario.

II. HIGHER ORDER DERIVATIVE
COUPLING TO GRAVITY

As was first found in Ref. [20] (see also Ref. [21]), the
R®)5¢% operator plays a crucial role in solving the gradient
instability problem induced by ¢2 < 0 (see also Ref. [30] for

the unitarity problem), which suffered by the nonsingular
cosmologies based on the Horndeski theory [23,24,31,32].
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In the Appendix, we point out that the R®)SK operator
actually could play a role similar to that of R®)§¢%. As will
be shown, the covariant Lagrangian of R®)6K contains the
second order derivative of ¢ coupled to gravity, such as
N¢ﬂ¢/4»¢UR’ ¢M¢H(D¢)Ruw and ¢”¢U¢p¢pa¢aRﬂU'
However, in Horndeski theory, such derivative couplings
do not appear, since they will bring the Ostrogradski ghost.
Thus, it is interesting to have a survey.

In this section, we will derive the covariant Lagrangian of
R®)SK in unitary gauge. The induced metric on the three-
dimensional spacelike hypersurface (¢ = const) is h,, =
G + nyn,, where n* = — \/%)? ¢* is the unit vector orthogo-
nal to the hypersurface and n,n* = -1, with X = ¢,¢" and
¢" = VF¢. The extrinsic curvature K, is defined as

K, = hV,n,. (1)

LR<3>5K =fs- (R(3)5K)
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Since 0K = K — 3H, it is straightforward to get

1 P bug”

with ¢, = V,V,¢. In unitary gauge ¢ = ¢(¢), we have
H = H(t(¢)). Using the Gauss-Codazzi relation, we have

_ ¢;w¢’w - (D¢)2 + 2¢”¢yv¢yo—¢0
X e

2B T0h 2R,

X? X

RG) =R

(3)

Note that in the second line of Eq. (3), we also have
Ruv¢”¢y = ¢yﬂu¢v - ¢Dw¢ﬂ with ¢DW = vyvyvl/(ﬁ’ as
given in Ref. [25].

We define S5 = [ d*x\/=gL go 55> With

- _\/J:S_X [(54)) —M}R
+ % :—¢”¢”(D¢) + W} R
+ ﬁ :<D¢)3 - (Op e - D00 ;(’5"”4)%”(’%/)”
; % (0P~ OOt
(094, - §ﬂ¢ﬂ”¢yp¢ﬂ¢a¢ﬂ¢ﬂ 7RO, @

where the leading contribution of R(®)§K is the perturbation
at quadratic order, so that f5 could be a function of ¢, X
(and even (¢ and ¢, ¢,), and fa=23fsH(t(¢)). When
fa =0 is set, Lguz, reduces to ~ROK.

Recalling that in Horndeski theory, Lg’ contains the
coupling of the second order derivative of ¢ to gravity, i.e.,
f(¢.X)G,, ¢ (or R,,¢*). Here, we require that f is also
X dependent; otherwise, G,,¢*" will be equivalent to
G,,¢"¢", the cosmological applications of which have
been studied; see, e.g., Refs. [33-36]. While in L z¢)5, the
couplings

O)R.  P'Pu¢d’R. $¢*(LP)R,.  (5)

P Dy Ry (6)

appear and are independent with R, ¢*. In addition,
such couplings to gravity also include ¢*’¢,¢d"R,,,

|

PP P°R,, 5, Which are not independent and could be
obtained by the combinations of R,,,¢*" and (5), as pointed
out in Ref. [12].

In Horndeski theory, the cubic order of (¢ in L will
induce the higher derivatives in the metric and field
equations, which are actually set off by G, ¢" [37].
This makes it be free from the Ostrogradski ghost. In
DHOST theory [10,11], all possible terms of cubic order of
the second order derivative of ¢ appear and result in higher
order equations of motion, but there is still no Ostrogradski
ghost due to the degeneracy.

Though the DHOST theory extends the Horndeski
theory, the coupling of the second order derivative of ¢
to gravity is still only G,,,¢*, since the derivative couplings
(5) and (6) will bring the Ostrogradski ghost (higher
derivatives in the equations of motion). However, in
Ly 5k the Ostrogradski ghost could be dispelled by the
combination of (C¢)?, (Clg)¢p,, ", etc., and R®3); see (4).
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In principle, we could merge the Horndeski (even
DHOST) theory and L g 45 into a (second order) derivative
coupling theory with all independent couplings [R,, ¢,
Egs. (5) and (6)] of the second order derivative of ¢ to
gravity. In such a theory, the background equations of
motion could be set only by the Horndeski (DHOST)
theory, since Lgs s, only contributes (9¢)?, (9°¢)?
leading order.

The quadratic coupling of the second order derivative of
¢ to R, such as ([(lg)*R, might be obtained in L ~ KRG)SK
or equivalently fs(Clg, ¢, ¢, YRP)SK, where all coef-
ficients must be fixed as (4).

In mimetic gravity [38,39] (see, e.g., Ref. [40] for a
review), since 8¢°° = 0, instead of R®)5¢%, the operator
|

(RB)? =R? -
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RB)SK might be significant for curing the instabilities
pointed out in Refs. [41-43]. Here, since the mimetic
constraint ¢**¢,¢, + 1 = 0 suggests X = —1, we have

O) =20/ 'Ry, + R = g — (Og)* (7)
the covariant L i) 5, will be simpler.

It should be mentioned that at quadratic order L e 4k
also contributes (9%¢)? ~ k*¢?, which is harmful or
harmless, depending on the coefficient. However, (9%()?
could be removed by using (R®)? (if required), since
(R®))? ~ (626)2 at leading order. We define S 4o =

Jd*x\/=gL ey and Loy = fe- (RB))2, with

4¢"¢"R R n AP Ru)

X X?

(D¢)2 - ¢m/¢ﬂy

260D

2R
+2r [0S

+ 4R, P P

(O¢)

2(D¢)¢”¢W¢”]
X? X?

2¢(1¢aﬂ ¢/)’o’¢6

[fﬁ,mfﬁ” ’
X2

<¢;w ¢/u/)

44)/41145”” ¢a ¢aﬂ ¢/i0'¢0 +

_ + 2D¢¢a¢aﬂ¢/}’:|
X3 X3

A" ")

X2 X3
4(D¢)¢ﬂv¢ﬂy¢a¢aﬂ¢ﬂ _

X4

8 ( D¢)¢a¢aﬁ¢ﬂ¢/4 ¢ﬂy¢vp¢p

+ X

L AHOD D)

2(0¢)* g™ N

X4
4(0¢)* ¢ bupd”

X4

4(0gp)’pp b, N (Og)*

X3 X2

X2 X3

(8)

where both R? order and the coupling of ((J¢)? to R actually appear and f is a function of ¢ and X (and even (¢ and

¢, 9" #,). In addition, L g

@) itself also has an interesting application in nonsingular cosmologies [20,44].

III. COSMOLOGICAL APPLICATIONS

A. Stable model for ekpyrotic scenario

We consider the ekpyrotic scenario [45,46]. How to build a fully stable bounce model is a significant issue. We proposed
such a model with Ly 500 in Ref. [25]. In Ref. [28], Kolevatov et al. also proposed a different model by applying the
“inverse method” adopted in Refs. [23,47]. However, with the covariant L ) 5% the design is actually simpler [25]. Here,

with L 4
We begm with the ekpyrotic Lagrangian

2

L

ekpy ™ )

sk the method is similar (though slightly complicated).

%R —X/Z—l—%e‘/’//‘/l‘ [1 —tanh<Mi>]
2

Contraction and expansion

P(¢.X)
N——

Bounce (null energy condition violation)

_|_

(aroundp = 0) + Lgogxe O Lgos

g0 s

Removing c? <0 Removing ghost
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with constant M, M,, V,. Py > 1/2 must be satisfied

around ¢ =0, so that H > 0. In Ref. [25], see also
Refs. [48,49], we adopted

P ke 4
PO =g ™ (10

with the constants kg, k; [switching the sign before X /2
in (9) around ¢ =0] and ¢,, k, (making X?> appear
around ¢ =0). A full ekpyrotic Lagrangian (9) also

X/2 +

should involve a mechanism (a coupling e_Miﬂd’@”)(@M
[50-52]) responsible for the scale invariant primordial
perturbation.

The quadratic action of scalar perturbation for (9) is

e /3Qs<é— ((f))d“ (11)

where
2¢*Pyy — MAH
s :Tp7 ZQ.S - M2 (12)
and ¢; = %’2’ (1- 2f 5Q Hs0.Hy. see the Appendix (or Ref. [20])

for details. In the Appendlx, we have Mj(1) = * Py,
ins/2 = fs and /2 = f¢. The quadratic action of tensor
perturbation is unaffected by L), K and is still that in GR.

Here, we require 2X2PXX > M H, so that Q, > 0 can
be obtained. If f5 = 0, around the bounce point H =0,
we will have ¢? ~ —H < 0. However, since fs#0 and
satisfies

Zféﬂzsff o H
i T an
P amty

/Mg&+M@& (13)

we always could set ¢2 ~ O(1) with suitable fs. It should

be mentioned that when H ~ 0, fs5 ~ @ ~ H crosses 0.
In (11), (9%¢)? has been canceled by adding Ligoy to

L for simplicity, which requires

ekpy
fS st }%
4 = 14
f% }{ 3 +>A4% Al% ( )
Thus, a fully stable nonsingular bounce (Q; > 0 and

c2 = 1) can be designed by using (9) with f5 given by
(13), and f, = 3fsH, and f4 given by (14). With (10), the
calculation is similar to that in Ref. [25].

B. Slow-roll inflation with modified c?

We consider the inflation scenario. Here, the covariant
Lk and also Lpe)s00 only affect the sound speed ¢ of

scalar perturbation, but the background and the tensor
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perturbation are unaffected. The effect of modified ¢ may
be encoded in the power spectrum of primordial scalar
perturbation, which might be observable.

The Lagrangian is

A42
L~ 2”R+me+L osk T Ligoys (15)
where Li,; = —¢,¢* /2 — V(¢) is responsible for the infla-
tion. We set the slow-roll parameter e = —H/H? =
const > 0 for simplicity. The quadratic action of scalar
perturbation is given in (A4) of the Appendix with

M, = iny = 0. We have O, = eM? and
— H =
=152 T (16)
M, M,
35 _2ms | g (17)
Cfp=—% ——— .
M; H
Here, Lgss, modifies ¢2. We require ¢, =0, which
suggests that A in (17) is determined by /s and H.
The equation of motion for { is
Z//
u’” + <C%k2——s>u =0 (18)
s

with the definition u =z, and z; = /2a’e¢M3, and

the superscript ' is the derivative with respect to

7= [dt/a. The initial state of the perturbation mode is

u= \/ﬁe"’“’“. The power spectrum of ¢ is
(’l.\'

K| ul?
Pr=—|® 19
R 2712 ( )
We have Phf = 8;;&‘7 —(4:)7% for slow-roll inflation
(c2 =1). Here, if ¢ =const <1 is required, s =0

in (16)

2=1-

should be satisfied. This will result in

m<H. . . _
momt =1, since H,;,; <M, while ms <M,
P

Thus, the case with ¢ # const might be interesting.

For an example, we consider a model in which ¢2
acquires a dip [Fig. 1(a)]. We numerically show the
corresponding evolutions of 75 and A in Figs. 1(b)
and I(c), according to (16) and (17), which could be
rewritten as 7n5(¢) and A(¢) since ¢ = ¢(r). We plot P,
in Fig. 1(d) by solving Eq. (18); see Refs. [53-55] for a
similar method. We see that the effect of Lyp) sz on c?
could be encoded in the power spectrum of scalar
perturbation.

The phenomenological effect of L )5 is very similar to
that of Lgwsm at quadratic order, if the contribution of

124028-4
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FIG. 1.

Lposx to term ~k*¢? in the quadratic action is totally
canceled by L(R(z))z, i.e., ¢4, = 0, which requires 4 = 4, with
— 3’,;12 _

/10 = ﬁ — :]."_1_51
violated, Eq.

"

However, when the condition ¢4 =0 is

(18) should be modified to u”+

(3 eiek? = 2¥/z5)u =0 where ¢2 o = i —2c4k?/z5 (for
simplicity, we will focus on the cases in which ¢4 =0

initially so that the initial state of the perturbation mode is
1 e—icxk‘r).
£/ 2¢5k

still u =

1.x107* 5.x10740.001 0.005 0.010 0.050

(a)
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The background is the slow-roll inflation with e = 0.003. We set ¢2 = 1 — A*e‘m"’*>Z with A, = 0.1, B, =80 and 7, = 6.

Phenomenologically, we could distinguish the operator
L o5 from L) 30 First, when ¢4 # 0, the frequency of
the oscillations in the power spectrum will increase with &,
while the frequency of the oscillations is nearly constant for
c4 = 0; see Fig. 2(b). Second, when c4 # 0 (even when 1
slightly deviates from ), cf’cff may induce a larger
amplitude of oscillations than that of ¢? in the power
spectrum, as numerically shown in Fig. 2, unless ¢? has
more drastic (or fine-tuned) variation.

1.05¢

PglIP&™

0.006 0.008 0.010

(b)

0.004

0.002

FIG. 2. The background is the slow-roll inflation with e = 0.003. We set ¢2 =1 — .A*e‘B*(["*)2 with A, = 0.02, B, = 80 and

t, = 6 for both (a) and (b), while we set A = 4, (i.e., ¢, = 0) for the green dashed curves and 2 = 0.997%, (i.e., cs # 0) for the magenta
solid curves.
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The effect of varying c2 on scalar perturbations has been
also studied in Refs. [56-61], but based on P(¢,X) (or
equivalent EFT).

IV. DISCUSSION

Recently, it has been found in Refs. [20,21] that the
operators with a three-dimensional Ricci scalar R®) in EFT,
especially R8¢, are significant for solving the problem
of ¢z < 0, which is suffered by the nonsingular cosmol-
ogies. Here, we find that the R(®)6K operator actually could
play a role similar to that of R®)§¢%.

We derived the covariant Lagrangian of R®)SK. The
covariant L) 5, has the second order derivative coupling
of the field gb to gravity, such as (5) and (6) (which do not
appear in Horndeski and DHOST theory), but does not
bring the Ostrogradski ghost. This suggests that the
Horndeski (or even DHOST) theory and Ly s, might
be merged into a second order derivative couphng theory
with all possible independent couplings, i.e., G, ¢ (or
R, @"), Egs. (5) and (6), of the second order derivative of
¢ to gravity. Here, how (5) and (6) consistently appear in
such a theory is just what is told by the covariant
description of the R®)6K operator.

With L )55, we built a fully stable cosmological model
for the ekpyrotlc scenario, by applying similar method used
in Ref. [25]. Our work indicates that with the covariant
LR(3)5g00 (proposed in Ref. [25]) or Lgssk, the stable
nonsingular bounce scenario could be concisely designed.
Here, our study is motivated straightly by the EFT
operators, e.g., Ref. [20]. However, other studies based
on modified gravity will also be interesting [62-68],
especially their stabilities.

We also studied the possible effect of Lz 5, on the
primordial scalar perturbation in the 1nﬂat10n scenario,
which might be encoded in the TT spectrum of cosmic
microwave background. We will come back to the relevant
issues elsewhere.

ACKNOWLEDGMENTS

We thank Yunlong Zheng, Mingzhe Li, and Xian Gao
for helpful discussions. Y. C. would like to thank Youping
Wan and Yi-Fu Cai for discussions and hospitality during
his visit at University of Science and Technology of China.
This work is supported by NSFC, Grants No. 11575188
and No. 11690021, and is also supported by the
Strategic Priority Research Program of CAS, Grants
No. XDA04075000 and No. XDB23010100.

APPENDIX: THE EFT

As pointed out in Refs. [47,22], the cubic Galileon only
moves the period of ¢ < 0 to the outside of the null energy
condition violating phase but cannot dispel it completely;
see also the earlier discussion [69] on this point.

PHYSICAL REVIEW D 96, 124028 (2017)

In this Appendix, we briefly review the EFT for non-
singular cosmologies and show how the R(®)§¢™ and
RB)SK operators play crucial roles in solving the problem
of ¢2 < 0.

With the ADM line element, we have

N;NF—N?* N;
gﬂl/ = Nl h ’

)

N2 N/
o v
B N ij _ NN |’
¥ h ="

N

(A1)

and /=g =N V'h, where N; = h; ij . The induced metric
on the three-dimensional hypersurface is h,, = g,, + n,n,,
where n, = ny(dt/dx") = (=N,0,0,0), n*=g*n, =
(1/N,=N/N) is orthogonal to the spacelike hypersurface,

and n,nt = —1. Thus,
N.N¢ N, 0 O
]’l/w_( ¢ J)’ hﬂy—( ) (A2)
N; h;; 0 hv

1

The EFT action is

S = /d“x\/—_g {%f(t)R —A(t) = c(t)g™

MA(t 3t
T 22( ) (56%)2 — m%z( >5K5g00

1
— m2(1)(5K? — 6K, 6K™) + m“T()R@)agOO

s(0) pisyse A1) o
2

— m3(1)8K> + 6K +=

—%V,R@)V"R@) 4o, (A3)
P
where 8¢ = ¢" + 1, R®) is the three-dimensional Ricci
scalar, K,, = hjV,n, is the extrinsic curvature and
0K,, = K,, —h, H. The first row describes the back-
ground, while the rest are for the perturbations. We always
could set f =1, which implies c(r) = —M%H and
c(t) + A(t) = 3M3H?. See, e.g., Ref. [20] for the details.
Here, we only consider the coefficients set (M,, my,
ins, ) and set other coefficients in (A3) equal to 0. Only
with (M, g, ins,A) # 0, the quadratic action of scalar
perturbation ¢ is (see, e.g., our Ref. [20])

2
57 = / d*xa’Q, [éz - (afz)

(@%0)?].  (A4)

4Qs

124028-6
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M4 HM?
Qs = H? - H? (AS)
C?Qs - i 2 (A6)
a
¢y = M3, (A7)
2aMiims  aHins aM?  2am}
C3 = — + (Ag)

HM: ' H>  H  H

PHYSICAL REVIEW D 96, 124028 (2017)

2M3m%  Hmi 2ms 3mi 4dinsmi -
)= Sepuinndi: B M B Y + 87.
H’MY  H?M2 H M) HM

(A9)

Only if Q, > 0 and ¢? > 0 is the nonsingular cosmo-
logical model healthy. In models with the operator (59%°)2,
Q, >0 can be obtained, since (5¢™)? contributes &2,
while ¢2 <0 can be avoided since R®5¢° or ROSK

contributes (9¢)?.
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