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We analyze scale invariant quadratic quantum gravity incorporating nonminimal coupling to a multiplet
of scalar fields in a gauge theory, with particular emphasis on the consequences for its interpretation
resulting from a transformation from the Jordan frame to the Einstein frame. The result is the natural
emergence of a de Sitter space solution which, depending the gauge theory and region of parameter
space chosen, can be free of ghosts and tachyons, and completely asymptotically free. In the case of an
SO(10) model, we present a detailed account of the spontaneous symmetry breaking, and we calculate the
leading (two-loop) contribution to the dilaton mass.
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I. INTRODUCTION

There has been increasing interest in the past few years in
finding alternatives to the common lore concerning the
fundamental interactions. With no sign of supersymmetric
particle production (as yet) at the LHC, the idea that weak-
scale supersymmetry (SUSY) might be the solution to the
hierarchy problem of the Standard Model (SM) has become
less attractive. Secondly, especially since it seems that our
Universe may well have a positive cosmological constant,
the relationship of string theory to cosmology seems ever
more remote. The landscape of string theory vacua has
difficulty accommodating de Sitter-like backgrounds.
Further, since the asymptotic behavior of such spacetimes
is not flat, there is no S-matrix. Motivated by these
observations, in a series of recent papers [1–5], we have
explored the properties of a renormalizable [6], asymptoti-
cally free [7], classically scale-invariant, quantum field
theory (QFT) of gravity, including matter fields in such a
way that all couplings remain asymptotically free (AF).
Asymptotic freedom allows one to entertain the possibility
that this is an ultraviolet (UV) completion of gravity and
that there is no new physics to be discovered at higher
scales. It also allows one to make perturbative, controllable
calculations at arbitrarily high-energy scales.1 Even though
the QFTs we study are not truly scale invariant because of
the conformal anomaly, it is attractive to assume that the
models are classically scale invariant since such theories are
technically natural [11] in the sense that it is not necessary
to fine-tune power-law divergent loop corrections in order

to stabilize their scalar mass spectra. Under these circum-
stances, all masses, including the Planck mass MP and the
cosmological constant Λ, arise via dimensional transmu-
tation (DT) [12]. (Such a program was already proposed
in Ref. [7].)
Contrary to the widespread belief that renormalizable

gravity violates unitarity, having both a spin-two ghost as
well as a spin-zero tachyon in flat background, we claim
that, in a de Sitter (dS) background, these models have no
unstable fluctuations for a certain range of couplings. (This
was already known for the theory without matter [13]. See
Sec. III.) There remain five zero modes which, we have
argued [5], correspond to collective modes that are unphys-
ical and, similar to gauge modes, do not contribute to on-
shell observables. Thus, although these zero modes are a
generic feature of all such models in a dS background, they
are not a barrier to stability. Our assertion is limited to
quadratic order in the fluctuations, the same order at which
claims of instabilities and ghosts have been made. We do
not know whether, in higher order when interactions are
included, this will remain true. This is closely related to the
question of unitarity, since we do not have a canonical
action or a Hamiltonian that guarantee unitary evolution.
In previous work [1–4], we have displayed models

exhibiting DT for a range of couplings, within which there
is a subset of values such that the extrema are local minima
of the Euclidean action. We have also satisfied the con-
straints on the couplings so that the Euclidean path integral
(EPI) is convergent for all values of the fields. We found
that these minima lie within the basis of attraction of the AF
fixed point gauge model with a “Higgs” field in the adjoint
representation, for a certain fermion content [4]. So far, we
have only described the spectrum of this model qualita-
tively. In this paper, we wish to discuss the physics of this
model near or below the scale of symmetry breaking. In the
process, we shall also substantiate our claim that the
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1Such models have been termed “totally asymptotically free”

in Ref. [8]. The notion of AF is distinct from nonperturbative
“asymptotic safety” [9], which has undergone a resurgence in
recent years; see e.g. Ref. [10].
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fluctuations are stable. For this purpose, as is often the case,
it will prove useful to pass from the Jordan frame to the
Einstein frame.
To set the stage and review our conventions, we begin

with the action for gravity without matter. The action for
renormalizable gravity can be written in several different
equivalent forms; we take it (in the Jordan frame) as

SðJÞho ¼
Z

d4x
ffiffiffiffiffi
gJ

p �
C2

2a
þ R2

3b
þ cG

�
; ð1:1Þ

where Cκλμν is the Weyl tensor, R is the Ricci scalar, and G
is the so-called Gauss-Bonnet (G-B) term, G≡ C2 − 2W,
where W ≡ R2

μν − R2=3. We shall work with the Euclidean
form of the metric with the convention for the Ricci tensor
Rμν in which R > 0 corresponds to positive curvature.2 To
this must be added a matter action, which will be discussed
in due course. Euclidean dS space is the S4 sphere. This
may be regarded as a submanifold of flat, Euclidean space
in five dimensions. From this perspective, the radius of the
S4 sphere is r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12=R0

p
, where R0 is the value of the

Ricci scalar on-shell.
The metric gμν of Eq. (1.1), in transverse-traceless (TT)

gauges, includes five on-shell tensor modes as well as a
scalar mode (dilaton), plus an additional four modes that
are gauge-dependent. So this may be thought of as a scalar-
tensor theory of gravity. One may add an Einstein-Hilbert
(E-H) term −M2

PR=2 as well as a cosmological constant
M2

PΛ. Since they are UV-irrelevant, their presence does not
affect renormalizability or AF, although issues of fine-
tuning may reemerge, at least in nonsupersymmetric
models. This is what has usually been done in the past,
but, in the scenarios that we have described in which scalar
matter is added in a classically scale-invariant fashion, such
terms are not needed so long as DT occurs at a scale where
the dimensionless couplings are sufficiently small that
perturbative calculations remain reliable.
Over the years, there have been numerous papers involv-

ing higher-derivative gravity in a similar spirit to ours, some
of which attempt to provide a complete QFT of gravity
[7,8,14,15], possibly conformal and/or supersymmetric
[16,17], while others attempt to generate the Planck mass
dynamically along the lines of induced gravity [18–21].
This subject has been reviewed in Refs. [17,22]. These
references are just a sample, and, given the extensive
literature about higher-derivative gravity, spanning more
than 50 years, we shall have to limit further citations to those
that are of immediate relevance.
An outline of the subsequent sections is as follows: In the

next section, we discuss aspects of the stability of the model
in de Sitter background, the controversy over the sign of b,

and some of the difficulties establishing that QFTs of this
sort are (or are not) unitary. In Sec. III, we review the
addition of matter in the Jordan frame, taking up the
simplest example of the real scalar field, while in Sec. IV,
we transform the same model to the Einstein frame in order
to elaborate on several points not discussed in our previous
papers. Then in Sec. V, we apply these methods to the case
of the SOð10Þ model, which is a prototype for any such
non-Abelian gauge theory coupled to gravity. In Sec. VI,
we turn to the issue of spontaneous symmetry breaking
(SSB) in this model, emphasizing the differences from a
similar calculation in the Jordan frame. Then we embark
upon a discussion of the resulting particle spectrum in this
model for the vector bosons (Sec. VII), the heavy scalars
(Sec. VIII), the curvature fluctuations (Sec. IX) and finally
the dilaton mass (Sec. X) arising at two-loop order.
Following some remarks on the resulting low-energy
effective field theory (Sec. XI), we summarize our results
and discuss open questions in Sec. XII. There follow two
appendices with details useful in the body of the text. In
Appendix A, we review how the curvature tensor trans-
forms under conformal transformations, and in Appendix B
our Lie algebra notation and the form of the model after
SSB to SUð5Þ ⊗ Uð1Þ.

II. STABILITY, ASYMPTOTIC FREEDOM,
AND UNITARITY

Everyone who has considered renormalizable gravity
agrees that a > 0 is necessary and sufficient for this
coupling to be AF. As we have previously mentioned
[4], the appropriate sign of b has been subject to some
dispute, and we shall take up this issue below.
We adopt the assumptions of Euclidean quantum gravity

[23] to the extent that they are known. To some extent, these
have been reviewed in Refs. [17,22]. Our philosophy is
very close to that elaborated by Christensen and Duff [24]
and by Avramidi [13].3 A basic tenet of this approach is that
the Euclidean path integral (EPI) be convergent for all
values of the fields. Unlike E-H gravity, integrating over
conformal modes presents no special difficulties. This
requires both a and b in Eq. (1.1) to be positive for
sufficient large scales where the “classical” approximation
is valid. This appears to be a minimal requirement for the
existence of candidates for stable “vacuum” states in QFT.
In flat spacetime, the requirement that the Euclidean action
be bounded below together with certain others [25],
eventually allows for analytic continuation to Lorentzian
signature with an action that respects CPT invariance and
unitarity. Whether something similar is true for the exten-
sion of gravity given in Eq. (1.1) is not known. It should not
be difficult to extend reflection-positivity to Euclidean

2Because the variation of G vanishes, the term C2 can be
replaced by 2W in Eq. (1.1). This often simplifies some tensor
algebra.

3These will be further reviewed below. Reference [24] does not
consider renormalizable gravity, and Ref. [13] mentions the
inclusion of matter only in passing.
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renormalizable gravity, but cluster decomposition obvi-
ously must be modified for a compact spacetime such as S4.
For Euclidean spacetimes without boundaries, this would
imply that there are not degenerate no-particle states. In
particular, apparently degenerate no-particle states must
have finite tunnelling amplitudes between them so that they
can be superposed. For example, this is familiar in flat
space when there are finite action solutions of the classical
equations of motion (EoM) for Euclidean signature (instan-
tons). In that case, there are degenerate no-particle states in
perturbation theory for which, as a result of nonperturbative
affects, the degeneracy is removed.
There exist persistent doubts about unitarity in this class

of theories. Unitarity is certainly suspect in theories with
actions containing both quadratic curvature terms of the
kind exhibited in Eq. (1.1) and an explicit linear term
−M2

PR, because of the following observations, which were
raised originally in Ref. [6]. In the presence of a nonzero
Planck mass MP, the propagator in flat space contains a
term in the tensor mode that behaves as

1

q2ðq2 þM2
PÞ

¼ 1

M2
P

�
1

q2
−

1

q2 þM2
P

�
: ð2:1Þ

Thus, if the graviton term 1=q2 has the usual sign, the
second term corresponds to a massive, spin two particle
with negative kinetic energy, i.e., a ghost. Further, in the
scalar sector, there remains a particle with mass [6] m0 ¼ffiffiffiffiffiffi
−b

p
MP=2, where MP ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
is the so-called

“reduced” Planck mass or string scale. Thus, there is a
tachyon instability for b > 0 in flat background, a primary
reason some have argued that b < 0. Yet, as remarked
above, b > 0 is the sign required for convergence of the
EPI. Since, however, we have demonstrated (and will
confirm here) that the phase of our model having terms
both linear and quadratic in curvature exists only below a
definite scale that is determined by DT, the argument based
on Eq. (2.1) does not apply. We shall make some further
comments about unitarity below.
Another argument suggesting that b < 0 would be

preferable goes as follows: One adds to R2 a term with
an auxiliary field χ

1

3b
R2 ∓ 1

2

�
χ2 −

ξ

2
R

�
2

¼
�
1

3b
∓ ξ2

8

�
R2 � ξχ2

2
R ∓ χ4

2
;

ð2:2Þ

with ξ an arbitrary “coupling constant.” The sign of ξ must
be chosen to be the same as the sign of hRi, so that h χi2 ¼
ξhRi=2 has a solution for real h χi. The sign of the added
term must be chosen to be opposite to the sign of b, so that
the coefficient of R2 on the RHS can be taken to vanish
ðξ2 ¼ 8=j3bjÞ. Thus, it seems that the original term in the
Lagrangian density proportional to R2 is equivalent to a

nonminimal gravitational coupling of a scalar field together
with its self-interaction. We then see that if b < 0, the linear
term in R corresponds to attractive gravity, and the
“potential term” χ4 is bounded below. This is frequently
used [26] to argue that the sign demanded physically is
b < 0. This sign is the opposite of that required for
convergence of the EPI and for AF of b.
We do not, however, subscribe to this popular belief

that bðμÞ < 0 (for sufficiently large scales μ) because the
field χ, unlike an independent dynamical degree of freedom
(DoF), is inextricably linked to the scalar curvature, i.e.
χ2 ¼ ξR=2. From the point of view of the EPI, the preceding
construction is misleading; one cannot simply add such a
term and integrate over χ since, having insisted bðμÞ > 0 at
large scale, the integral over χ would diverge. To introduce
an auxiliary field, one must actually add to the integrand of
the EPI a term proportional to Dχ2δð χ2 − ξR=2Þ, or its
equivalent.
To confirm the fallacy in such arguments, consider the

far simpler situation in ordinary ϕ4 field theory in flat
spacetime with potential VðϕÞ ¼ m2ϕ2=2þ λϕ4=4. It is
generally believed that, in order to have a sensible ground
state, one must have the renormalized coupling λðμÞ > 0,
at least for some range of relatively large scales4 Following
a procedure similar to the previous one, we write

λ

4
ϕ4∓1

4
ðσ−ξϕ2Þ2¼1

4
ðλ∓ξ2Þϕ4�ξσ

2
ϕ2∓1

4
σ2: ð2:3Þ

σ is an auxiliary field5 for which hσi ¼ ξhϕi2. To be able to
cancel the ϕ4 term on the RHS, thereby reducing the action
for ϕ from quartic to quadratic, we must choose the sign of
the added term to be opposite to that of λ. For the “potential
term” σ2 to be bounded below, the last term must be
positive. By the logic above, we ought then to demand
λ < 0, the very opposite of what we required initially.
We conclude that one may not treat an auxiliary field

such as σ as if it can be taken “off-shell” for fixed values of
the other fields on which it depends. Conversely, it may
also not be consistent to discuss the behavior of a
dynamical field such as ϕ for arbitrary values of the
auxiliary field. The construction is also wrong in detail,
because the equation ξðμÞ2 ¼ λðμÞ is not in fact correct for
arbitrary μ; in short, it is not renormalization group
invariant6 (RGI). Similarly, in the gravitational case, the
relation 3bðμÞ ¼ 8=ξðμÞ2 is not RGI. In sum, although one
may introduce an auxiliary field in the manner outlined

4The sign of λ is a renormalization group invariant since λ ¼ 0
yields free field theory. λ > 0 is IR-free and not AF, so this must
be regarded as an effective field theory.

5Note that, with this definition, σ has dimensions of mass-
squared.

6For further discussion on this point, see, e.g., Sec. II of
Ref. [27].
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here, one can be misled drawing conclusions based on
treating it as an independent DoF.
As an aside, this same issue arises in other models

involving polynomials in R of even higher degree, so-called
fðRÞ models of gravity. It seems that a similar sign error
afflicts many of those treatments in the literature.7

In this paper, we shall assume that the cosmological
constant of the effective field theory at low energy is
positive, so we shall only be concerned with de Sitter-like
solutions of the model. That assumption happens to be
correct in the classically scale-invariant theories we have
studied, although we have not investigated whether it must
be true in all such theories.
An effort similar to ours embracing a classically scale-

invariant action for both matter and gravity has been called
“agravity” [19]. However, our approach is fundamentally
different inasmuch as these authors insist that b < 0 for the
reasons reviewed above. Given that the (b < 0) model is no
longer AF, they treated renormalizable gravity as an
effective field theory. It is an improvement over the E-H
theory in the same way that the electroweak theory is an
improvement over the Fermi model and may allow some
speculations about physics beyond the Planck scale. More
recently [20], by considering nonperturbative possibilities
rather than adding new dynamical degrees of freedom, they
have speculated that perhaps the non-AF theory is correct
to infinite energy. We prefer to explore the possibility that
the AF model ðb > 0Þ is the completion of the E-H theory,
that perturbation theory continues to hold, and no new
physics is required at higher scales, which, we contend,
would be a far more compelling result.
As we have indicated in past work [4] and has been

emphasized long ago in Refs. [24] and [14], further
complications and opportunities arise in the presence
of a cosmological constant, even though the curvature
may be small. In that case, flat space is not a solution
to the EoM, so some of the foregoing issues may
disappear. Our point of view overlaps with that adopted
by Avramidi [13], who explicitly includedMP and Λ in his
action and who emphasized that, so long as his couplings
and masses obeyed certain inequalities, neither the
scalar nor the tensor modes present instabilities. In the
present notation, he showed that the tensor modes
are stable and ghost-free for a > 0, Λ > 0, and 2=ð3bÞ <
1=aþM2

P=ð16ΛÞ. Moreover, there is no instability in the
scalar sector provided M2

P=ð16ΛÞ < 2=ð3bÞ, which is
compatible with the tensor constraint. These inequalities
can even be satisfied in the classically scale-invariant
case where MP → 0 (for fixed Λ.) When matter is

included,8 for the cases we studied [1,3,4], the inequalities
were modified, but there still existed regions of parameter
space where there were no instabilities.
Nevertheless, in calculating the one-loop correction to

dS space, there remain five zero modes that seem to be
universally present in both Einstein gravity and in renor-
malizable gravity, with or without the inclusion of matter.
As we have reviewed elsewhere [5], these so-called non-
isometric, conformal Killing modes have a rather long
history. We have argued that these reflect a collective mode
that, in four-dimensions, is peculiar to the S4 manifold. If
so, they will be present not just at one loop but to all orders
in perturbation theory. However, unlike other occurrences
of such coherent motions, we claim the corresponding
collective degrees of freedom (DoF), i.e., the “center-of-
mass” coordinates, are unphysical and not relevant to the
determination of the stability of dS background. They
nevertheless do enter into the calculation of various gauge-
invariant quantities, such as the on-shell effective action.
The essential issue is whether or not there is a collective
coordinate missing from the effective action. We pre-
sume not.
As a result of the foregoing, we believe that there exists a

renormalizable, theory of gravity that, when matter fields
are included, can yield new models that (1) undergo DT in
perturbation theory, (2) yield a positive cosmological
constant, (3) are locally stable for a range of couplings,
and (4) are AF in all couplings. So far, we have confirmed
this for only one such model [4], but it is surely not unique.
The issue of unitarity remains unresolved, but it is far more
subtle than has been treated thus far in the present context.
For example, one of the lessons from considering QFT in
curved spacetime [30,31] is that the so-called no-particle
state can appear completely different to observers in
different frames, resulting in the definition of particle states
correspondingly different.
In the next section, we expand on the way in which these

results have been achieved. In previous papers, we used the
renormalization group to determine the one-loop effective
action. This method makes some assumptions that direct
calculations via path integrals avoid. In the next section, we
shall discuss this in the simplest case, that of a real scalar
field [3], but most of these points apply to the non-Abelian
case as well, as will be discussed in Sec. V.

III. INCLUDING MATTER FIELDS
IN THE JORDAN FRAME

We discussed DT in pure gravity, Eq. (1.1), in Ref. [1],
and shall not repeat that here. Matter can be added in many
forms, and our goal is to focus on non-Abelian models, in

7For reviews of such models, see e.g., Refs. [26]. For further
extensions of this method, see Ref. [28]. More recently, Narain
[29] has argued that there is a conflict between the Lorentzian and
Euclidean formulations. Our expectation would be that, once
again, this is a reflection of a similar sign issue.

8For b < 0, the one-loop corrections to the effective action in
dS background should have an imaginary part, reflecting an
instability. This is another reason that we believe that agravity
[19] is not self-consistent.
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particular, on the SOð10Þ model discussed in Ref. [4].
However, there are a few points that can be more easily
stated in the simplest case, that of the real scalar field [3]. It
is also easier to have the experience of transforming to the
Einstein frame in that case, as we shall do in Sec. IV, before
proceeding to the non-Abelian gauge theory in Sec. V. For
pedagogical reasons, then, we shall first reconsider the real
field, taking the opportunity to clarify certain points
omitted from our earlier paper.
To the action in Eq. (1.1), we add the action for a single,

real field ϕ:

SðJÞcl ≡ SðJÞho þ SðJÞm ; ð3:1aÞ

SðJÞm ≡
Z

d4x
ffiffiffiffiffi
gJ

p �
1

2
ð∇ϕÞ2 þ λ

4
ϕ4 −

ξϕ2

2
R

�
: ð3:1bÞ

Defining the rescaled couplings y≡ λ=a, x≡ b=a, we
showed in Ref. [3] that this model in dS background has a
single ultraviolet fixed point (UVFP) at ξ¼0;y¼0;x≈39.8.
Given that all couplings are AF, the classical approximation
ought to be increasingly accurate the higher the scale. In
that paper, we derived the form of the one-loop corrections
to the effective action using RGI, the known β-functions
and generic form of the corrections in dS background.
However, this “shortcut” has its limitations. It does not
necessarily reveal all constraints on the couplings and
would not produce the imaginary part present if the
perturbative corrections were unstable. These can only
be revealed by explicitly calculating the one-loop effective
action. Here, we shall review that calculation via the EPI in
a “classical” background field given by ĝμνðxÞ;φðxÞ. For
our purposes, it will suffice to consider the corrections on
mass shell, i.e., where the effective action has extrema. To
zeroth order, i.e., classically, the on-shell values of neither

φ nor R can be known since the classical action SðJÞcl is scale
invariant; however, the dimensionless ratio ϕ2=R can be
fixed. The first variation of the classical action gives

δSðJÞcl

δϕ
¼ −□ϕþ λϕ3 − ξϕR; ð3:2Þ

−
δSðJÞcl

δgμν
¼ 1

6a
½4RRμν−12RκλRμκνλþ gμνð3R2

κλ−R2Þ

þð2∇μ∇νRþ gμν□R−6□RμνÞ�

þ 2

3b

hgμν
4
R2−RRμνþð∇μ∇ν− gμν□ÞR

i

−
1

2

�
Tμν− ξϕ2½Rμν− gμνR�þ ½∇μ∇ν− gμν□�ξϕ

2

2

�
;

where Tμν≡∇μϕ∇νϕ− gμν

�
1

2
ð∇ϕÞ2þ λ

4
ϕ4

�
:

ð3:3Þ

It is difficult to characterize the most general solution of
these equations. Most sufficiently symmetric solutions of
Einstein’s equations continue to hold for these modified
equations, such as the Schwarzschild and Schwarzschild-de
Sitter solutions [32]. We can get a hint of what may be
necessary if we take the trace of Eq. (3.3):

−2gμν
δSðJÞcl

δgμν
¼ −

4

b
□Rþ ð∇ϕÞ2 þ λϕ4 þ ξð3□ − RÞϕ2:

ð3:4Þ

(The terms in 1=a cancel out of the trace because
of classical conformal invariance of the Weyl action.)
Writing □ϕ2 ¼ 2ϕ□ϕþ 2ð∇ϕÞ2, the right-hand side
becomes

−
4

b
□Rþð6ξþ1Þð∇ϕÞ2þ6ξϕ□ϕþλϕ4−ξϕ2R: ð3:5Þ

Only for the conformal values b → ∞; ξ ¼ −1=6 does
Eq. (3.5) become identical to ϕ times Eq. (3.2). On the
other hand, there are solutions other than the conformal
limit that are mutually compatible with the vanishing of
both Eqs. (3.2), (3.3). For example, in the case that ϕ and R
are constant (corresponding to Euclidean dS space,) both
equations are satisfied when λϕ2 ¼ ξR.
Our first goal here is to make more explicit the require-

ments for calculating the one-loop effective action. Using
the standard background field method of quantization
by the path integral,9 we expand the classical action

SðJÞcl , Eq. (3.1), about a generic background by writing
ϕðxÞ ¼ φðxÞ þ δϕðxÞ, gμν ≡ ĝμνðxÞ þ hμνðxÞ, expanding in
a Taylor series about φðxÞ; ĝμνðxÞ, and dropping the term
linear in the “quantum fields” δϕðxÞ; hμνðxÞ. The one-loop
correction is obtained from the terms second order in the
fluctuations δϕðxÞ; hμνðxÞ. The tensor hμν can be conven-
iently decomposed in the transverse traceless (TT)
gauge

hμν ¼ h⊥μν þ ĝμνh=4þ � � � ; ð3:6Þ

where h≡ ĝμνhμν and h⊥μν is transverse ð∇̂μh⊥μν ¼ 0Þ
and traceless ðĝμνh⊥μν ¼ 0Þ. The other terms represented
by the ellipses involve gauge-dependent vector and
scalar modes. After a lengthy calculation, this procedure
yields

9This has been summarized in the present context in an
appendix in Ref. [1].
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Sð2Þ ¼ Ŝð0Þ þ 1

2

Z
d4x

ffiffiffî
g

p �
ð∇̂δϕÞ2 þ ð3λφ2 − ξR̂ÞðδϕÞ2

− δϕ
3ξφ

2

�
Δ0

�
R̂
3
−
2λφ2

3ξ

��
hþ 2ξφδϕR̂μνh⊥μν

þ 3

8b
h

�
Δ0

�
−
R̂
3

�
Δ0

�
−
bξφ2

4

��
h

þ 1

2a
h⊥μν

�
Δ2

�
aξφ2

2
þ R̂

3

�
1 −

2a
b

��
Δ2

�
R̂
6

��
h⊥μν

þ CT þ other

�
; ð3:7Þ

where the background metric ĝμν is to be used for
contractions and covariant derivatives. The terms repre-
sented by CT indicate implicit counterterms necessary to
render the effective action finite after integration over the
quantum fields. Those represented by other are gauge-
dependent and vanish on-shell, i.e., when the background
fields satisfy their EoM. The symbols Δj½X�≡ −□j þ X
for integer j involve the so-called constrained Laplacian,
□j, upon which we elaborate further below.
This expression is to be inserted into the EPI and the

integral over the quantum fields δϕ; h; h⊥μν performed. For a
generic background, this cannot be done analytically, but,
analogous to the flat space effective potential, for φ ¼ φ0

and R̂μν ¼ R0ĝμν=4with φ0; R0 constant, the integral can be
carried out. If we further require that the background be on-
shell, λφ2

0 ¼ ξR0, the quadratic action for the fluctuations
can be put into the form

δð2ÞSð2Þos

¼ 1

2

Z
d4x

ffiffiffî
g

p �
δϕΔ0½2ξR0�δϕ− δϕ

3ξ

2

ffiffiffiffiffiffiffiffi
ξR0

λ

r
Δ0

�
−
R0

3

�
h

þ 3

8b
h

�
Δ0

�
−
R0

3

�
Δ0

�
−
bξ2R0

4λ

��
h

þ 1

2a
h⊥μν

�
Δ2

�
aξ2R0

2λ
þR0

3

�
1−

2a
b

��
Δ2

�
R0

6

��
h⊥μν

�
;

ð3:8Þ

where the CT and other terms have been suppressed. We
take the background to be the sphere S4 with curvature R0.
In flat five-dimensional Euclidean space, this corresponds
the four-sphere of radius r0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12=R0

p
and angular volume

ω4 ¼ 8π2=3. Thus the Euclidean spacetime volume
V ≡ ω4r04 ¼ 384π2=R2

0, is finite in this approximation.
Following Refs. [7,13], we expand in normalized eigen-
functions of the “constrained” Laplacian □j in order to
determine whether the modes are stable and to be able to
deal with the mixing between δϕ and h. □j ¼ ĝμν∇̂μ∇̂ν,

where ∇̂μ represents the covariant derivative acting on a

field of “spin” j. For example, □0 represents the Laplacian
on the background manifold acting on a scalar field such as
δϕ. □1 represents the Laplacian acting on a conserved
vector field, εμ with ∇̂με

μ ¼ 0.□2 represents the Laplacian
on the background vector bundle acting on tensor fields
such as h⊥μν, which is transverse and traceless. (Further
details with references to the literature can be found in
Ref. [7], summarized in Ref. [13].) Since the S4 sphere is
compact, the eigenvalues of the elliptic operator −□j are
discrete and nonnegative. Explicitly, they are given by

−□jY
nj
l;m ¼ r−20 λnjY

nj
l;m;

λnj ¼ nðnþ 3Þ − j; n ¼ j; jþ 1;…: ð3:9Þ

for n; j ≥ 0. The indices ðl; mÞ denote the various
states of the degenerate eigenvalue. We shall not need
their precise definitions; we just need to know the
total degree of degeneracy [33], dnj¼ð2nþ3Þð2jþ1Þ×
ððnþ1Þðnþ2Þ−jðjþ1ÞÞ=6;n≥j≥0. For a scalar field
j ¼ 0, λn0 ¼ nðnþ 3Þ is simply the value of the quadratic
Casimir of the angular momentum generators of SOð5Þ. It
has degeneracy dn0 ¼ ð2nþ 3Þðnþ 1Þðnþ 2Þ=6.
Expanding the fluctuations in terms of the eigenfunc-

tions Ynj, normalized to one on the unit S4,

1

ω4

δð2ÞSos¼
3ξ

ay

X
n¼0

dn0

�
2½λn0þ24ξ�

�
δϕn

φ0

�
2

−3ξ½λn0−4�δϕn

φ0

hn

þ y
16xξ

½λn0−4�
�
λn0−

3xξ2

y

�
h2n

�

þ 1

8a

X
n¼2

dn2

�
λn2þ

6ξ2

y
þ4

�
1−

2

x

��
½λn2þ2�h⊥n 2;

ð3:10Þ

where ω4 ≡ 8π2=3, y≡ λ=a. It is the ratios y and x that
approach finite UVFPs. As in pure gravity, we take a > 0
so that it will be AF. Because the λnj monotonically
increase with n, the modes will certainly be nonnegative
for n sufficiently large but finite. Hence, we just need to
determine whether a finite number of modes are stable.
First, however, we must deal with the fact that each of

these sums formally diverge as n → ∞ and are rendered
finite by adding renormalization counterterms that have not
been explicitly included above.10 Regardless of how
renormalization is carried out, instabilities at low n for

10Given the forms of λnj and dnj above, the zeta-function
method [34] naturally comes to mind. This involves certain
subtleties in applications such as this involving products of
quadratic, elliptic operators, as reviewed in Ref. [35], but these
should not affect our arguments.
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arbitrarily large scale μwill not be removed. They introduce
singularities for certain values of the couplings, which
renormalization does not do and which, because of AF, will
not be removed in higher order. Zero modes, such as those
associated with λ10 ¼ 4, must be subtracted and dealt with
separately and will be discussed below.
Let us begin our stability analysis with the tensor

modes h⊥n 2 in Eq. (3.10). The lowest mode has n ¼ 2
for which λ22 ¼ 8. Hence, the factor λn2 þ 2 will be
positive for all n, but the first factor will be positive only
for 2þ ξ2=y > 4=ð3xÞ. Given the aforementioned proper-
ties of the UVFP, together with the information that ξ2=y
actually vanishes as the UVFP is approached, this inequal-
ity is easily satisfied at sufficiently high scales, so all the
tensor modes are stable, at least at sufficiently high scale.
An instability at lower scales would be associated with a
phase transition.
What about the scalar (j ¼ 0) modes? We must deter-

mine under what conditions the quadratic form in ðδϕn; hnÞ
is nonnegative. For n ¼ 0, λ00 ¼ 0, so this is simply

9ξ2

ay

�
16

�
δϕ0

φ0

�
2

þ 4
δϕ0

φ0

h0 þ
1

4
h20

�
: ð3:11Þ

This quadratic form has one eigenvalue equal to
þ585ξ2=ð4ayÞ, which is positive since11 y > 0. Its eigen-
vector has ðδϕ0=φ0; h0Þ ∝ ð8; 1Þ. The other eigenvalue is 0
with eigenvector ðδϕ0=φ0; h0Þ ∝ ð−1; 8Þ. This zero mode is
the dilaton and should have been anticipated: Under the
assumption that the background field has nonzero curvature
R0 and nonzero scalar field φ0, the classical scale invari-
ance is spontaneously broken, so there must be a Goldstone
boson. We can regard the preceding calculation as a purely
classical determination of the eigenvalues for small fluc-
tuations, so it must reflect this Goldstone mode. When we
insert this into the EPI and integrate over the fields, this
becomes the one-loop correction. In so doing, the zero
mode must be factored out in order to obtain a finite result.
To this order, this corresponds to a flat direction of the
effective potential.
Since the scale invariance is anomalous and not a

symmetry of the QFT, this mode can get a nonzero mass
md in higher-order. Indeed, at two-loop order, we argued in
Ref. [3] that m2

d ≠ 0 and can be positive for some range of
values of x; ξ; y. [See Eq. (10.15) below.] In particular, it is
positive near the UVFP, so this zero mode ultimately does
not destroy local stability.
The next mode is n ¼ 1, for which λ10 ¼ 4 with

degeneracy 5. Clearly, the quadratic form degenerates to

24ξ

ay
ð6ξþ 1Þðδϕ1=φ0Þ2: ð3:12Þ

Since y > 0 was required for stability of the n ¼ 0 mode,
we must therefore have ξ > 0 for stability of this mode.
Obviously, its eigenvector ðδϕ1=φ0; h1Þ ∝ ð1; 0Þ. The sec-
ond eigenvalue is obviously zero due to fluctuations in the
direction (0,1). Thus, there are 5 zero modes associated
with the fluctuation h1 with δϕ1 ¼ 0. These existed already
in the pure gravity case and are present in all models with
S4 background on-shell. As mentioned earlier, we have
argued in Ref. [5] that these five zero modes are artifacts of
the SOð5Þ isometry of dS corresponding to an unphysical
coherent fluctuation, a would-be collective mode corre-
sponding to the motion of the center-of-mass coordinate of
the S4 sphere, so we expect these zero modes to persist to
all orders in perturbation theory. They are not Killing
vectors, but are conformal Killing vectors not usually
associated with physical isometries of the action. They
are peculiar to an S4 background and even occur for the E-
H action [24]. We have argued that these unique modes do
not reflect an actual physically allowed fluctuation. As they
only exist for an S4 background, it seems likely that more
realistic models will not have such unphysical collective
coordinates. Further research is required to determine
whether some nonperturbative effect, such as tunneling
to a background with a different topology, leads to a
different background that removes such modes.
What about the n ¼ 2 mode, for which λ20 ¼ 10? The

quadratic form becomes

6ξ

ay

�
2ð5þ12ξÞ

�
δϕ2

φ0

�
2

−9ξ
δϕ2

φ0

h2þ
3y
16xξ

�
10−

3xξ2

y

�
h22

�
:

ð3:13Þ

Both eigenvalues will be positive provided ξ > 0 and

y
x
>

3ξ2ð1þ 6ξÞ
2ð5þ 12ξÞ : ð3:14Þ

Since y > 0 is required for convergence of the EPI, this
inequality will be satisfied sufficiently near to the UVFP,
i.e., to first order in ξ, y. All n > 2 eigenvalues are also
positive. There is no guarantee that this continues to hold
when nonlinear effects become important, e.g., if the
UVFP were approached along a trajectory in violation
of Eq. (3.14).
In sum, there are no unstable modes associated with the

fluctuations, provided these inequalities are satisfied, as
they are near the UVFP. At one loop order, there are 6 zero
modes (or flat directions.) One is the scalar dilaton, which
we shall show gets mass at two loops. The other five are
associated with a coherent fluctuation that, we believe,
should be regarded as unphysical.
Since we found no unstable modes, there will be no

imaginary part to the one-loop correction. The result for the
renormalized effective action is therefore the one given in11y > 0 is required for convergence of the EPI.
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our earlier paper [3] for this model, obtained by the
renormalization group method.
The preceding remarks do not imply that the one-loop

correction to the effective action cannot be negative at
lower scales. In fact, our investigation [3] of the possibility
of DT showed that it can indeed become negative.
Unfortunately, we found the range of couplings for which
the extremum was actually a minimum did not lie within
the basin of attraction of the UVFP, so this model does not
produce a physically useful result. This was one of several
reasons that we proceeded to consider non-Abelian gauge
theories, which are potentially more physically relevant
anyway.

IV. TRANSFORMATION FROM THE JORDAN
TO THE EINSTEIN FRAME

Most discussions of classical general relativity proceed
from the E-H action with minimal coupling. An action with
nonminimal coupling, like the one discussed in the pre-
vious section, may under certain circumstances be trans-
formed into a minimal coupling form by means of a
conformal transformation of the metric. This is often
referred to as going from the Jordan frame to the
Einstein frame. Since this only involves a field redefinition,
one might think that it is a simply matter of convenience,
since interpretations of observables generally start from the
Einstein frame. In the present context at least, we wish to
argue that such a transformation is not so straightforward.
Given the classical action, Eq. (3.1), the conformal

transformation is

~gμν ≡Ω−2gμν; where Ω2 ≡ ϕ2=M2; ð4:1Þ

andM is any convenient choice for the unit of mass. In any
theory (and in the real world), the only observables are
dimensionless ratios, so the choice for M is arbitrary12 but
fixed (i.e., not scale dependent). Such a transformation is
permissible provided Ω neither vanishes nor is singular. In
classically scale-invariant models, this is not at all trivial. In
the path integral, the integration over ϕðxÞ is formally over
all real values at every point, so it is impossible to guarantee
this in general unless one assumes that it is a set of measure
zero. This can be argued in the context of the perturbation
expansion in which ϕðxÞ ¼ hφðxÞi þ δϕðxÞ, assuming that
the background field hφðxÞi is nowhere vanishing and that
the perturbation δϕðxÞ=hφðxÞi is in some sense small, so
that it makes sense to assume φðxÞ ≠ 0 everywhere. Should
the result of the calculation be that the on-shell background
field vanishes anywhere, this construction would have to be
revisited.

Assuming that ϕðxÞ ≠ 0, the effects of the field
redefinition in Eq. (4.1) on the various quantities in
Eq. (3.1) are complicated. In Appendix A, we summarize
the resulting changes on the various quantities entering the
action. Defining ξ0 ≡ ξþ 1=6, ζ ≡ ffiffiffiffiffiffi

6ξ0
p

M logðϕ=MÞ, and
ϑμ ≡ ∂μ logϕ ¼ 1=ð

ffiffiffiffiffiffi
6ξ0

p
MÞ∂μζ, we find13

SðEÞ ¼
Z

d4x
ffiffiffi
~g

p �
λM4

4
−
ξM2

2
~Rþ1

2
ð ~∇ζÞ2þLho

�
; ð4:2aÞ

where Lho ≡ 1

2a
~C2 þ 1

3b
ð ~Rþ 6 ~∇ · ϑ − 6ϑ2μÞ2 þ c ~G:

ð4:2bÞ

On the one hand, we have simply performed a field
redefinition, so one might expect the physics to be
unchanged. On the other hand, the supposition that
ϕðxÞ ≠ 0 corresponds to SSB of scale invariance, so in
fact, the physics is manifested quite differently in this
broken phase. First of all, ζ plays the role of the dilaton, the
(classical) Goldstone boson, which we previously identi-
fied in the Jordan frame from the mode expansion. [See
discussion below Eq. (3.11).] As expected, ζ is derivatively
coupled classically, so hζi, if constant, is arbitrary. [We
shall find a convenient choice below in Eq. (10.9).] In
principle, in the QFT, it may or may not be the case that
hϕðxÞi ≠ 0. In fact, the issue of spontaneous breaking of
scale invariance is actually moot in the QFT, because this is
an anomalous symmetry. As a result, as mentioned earlier,
this scalar will get a mass at two loops owing to the
conformal anomaly.
The appearance of the dilaton field is just one conse-

quence of the supposition that ϕðxÞ ≠ 0. The matter action,
Eq. (4.2a), takes the form of an E-H term linear in ~R, with
Planck mass-squared M2

P ≡ ξM2, plus a cosmological
constant term withM2

PΛ≡ λM4=4, plus a term correspond-
ing to the kinetic energy of the dilaton ζ.
The gravitational action, Eq. (4.2b), involves, in addition

to the quadratic curvature terms, involves terms in various
powers of ∇ζ=M. This is clearly extremely complicated,
but it proves convenient to choose M to be on the order of
the SSB scale v, where the one-loop correction has its
minimum determined by DT. (See Ref. [3].) So long as ξðvÞ
is in the range 0.1–10, this is also on order of the Planck
mass, MP ¼ ffiffiffi

ξ
p

M. For small dilaton momenta, more
precisely, when

ffiffiffi
ξ

p
~□ζ ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξ

p
MP

~R, these terms
may be neglected in first approximation. Then the entire
dependence on the dilaton field is given by the matter
action, Eq. (4.2a).
Although we have shown that DT can occur in this

model, the values of the coupling constants required for this
to occur with local stability of the associated scale does not12In theories having other mass parameters, such as the Planck

mass MP or scalar masses, M is usually chosen to some
combination of those parameters. We leave it unspecified for now. 13We have dropped a surface term associated with ∇2ζ.
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lie within the basin of attraction of the UVFP in this model
[3]. Consequently, we shall defer the determination by DT
and the calculation of the dilaton mass to the SOð10Þmodel
in the next section.

V. NON-ABELIAN GAUGE FIELD

We want to transform our SOð10Þ model with a single
adjoint scalar Φ [4] from the Jordan frame to the Einstein
frame. Renormalizability will not be affected by a field
redefinition and, for present purposes, a nonlinear trans-
formation is useful. To review, our Jordan frame matter
action is

SðJÞm ¼
Z

d4x
ffiffiffi
g

p �
1

4
Tr½F2

μν� þ
1

2
Tr½ðDμΦÞ2�

−
ξTr½Φ2�

2
Rþ VJðΦÞ

�
: ð5:1Þ

The adjoint scalar field Φ is a 10 × 10 Hermitian matrix
that may be decomposed as Φ ¼ ffiffiffi

2
p

ϕaRa, where the fϕag
are real, and fRag represents the 45 Hermitian generators
of the fundamental or defining representation 10 of
SOð10Þ. Similarly, the real, adjoint gauge field can be
represented by Aμ ¼

ffiffiffi
2

p
Aa
μRa, with the associated field

strength Fμν ≡ ∂μAν − ∂νAμ − ig½Aμ; Aν�=
ffiffiffi
2

p
. The covari-

ant derivative of Φ is DμΦ≡ ∂μΦ − ig½Aμ;Φ�= ffiffiffi
2

p
.

A brief review of our algebraic conventions is given in
Appendix B.
In order to transform to the Einstein frame, we want to

presume that the model undergoes SSB hΦi ≠ 0. The exact
nature of the breaking will be worked out in subsequent
sections. A nonlinear field redefinition will enable us to
proceed in much the same way as in the case of the real
singlet in the preceding section. We define T2 ≡ Tr½Φ2� ¼P

aϕ
2
a, and define

Φ≡ ΩΣ with Ω2 ≡ T2=M2; ð5:2Þ

in terms of an arbitrary unit of mass M. Then,

Tr½Σ2� ¼ M2: ð5:3Þ

Note that both T2 and Ω are formally SOð10Þ invariant.
One consequence of these definitions is that hΦi ¼

hΩihΣi, so that hΦi ≠ 0 if and only if both hΩi ≠ 0 and
hΣi ≠ 0. Although one may entertain other possibilities for
SSB, they do not seem to be relevant in perturbation theory.
Then

DμΦ ¼ Σ∂μΩþ ΩDμΣ ð5:4aÞ

Tr½ðDμΦÞ2� ¼ M2ð∂μΩÞ2 þ Ω2Tr½ðDμΣÞ2�: ð5:4bÞ

In passing from the first to the second line in Eq. (5.4), the
cross term vanishes because

Tr½ΣDμΣ� ¼ Tr½Σ∂μΣ� − igTr½Σ½Aμ;Σ��
¼ ∂μTr½Σ2�=2 ¼ ∂μM2=2 ¼ 0; ð5:5Þ

where the term involving the gauge field Aμ vanishes by the
cyclic property of the trace. The Jordan frame Lagrangian
density, Eq. (5.1), then becomes

LðJÞ
m ¼ ffiffiffi

g
p �

1

4
Tr½F2

μν� −
ξM2Ω2

2
RþM2

2
ð∂μΩÞ2

þ Ω2

2
Tr½ðDμΣÞ2 þ VJðΩΣÞ�

�
; ð5:6Þ

subject to the constraint Tr½Σ2� ¼ M2, Eq. (5.3).
The original field Φ provided a linear representation of a

real adjoint multiplet and represented 45 DoF in the matter
action Eq. (5.1). Evidently, in Eq. (5.6), one degree of
freedom has been apportioned to Ω and only 44 DoF
remain in Σ. This can be seen from Eq. (5.5), which implied
that Tr½Σ∂μΣ� ¼ 0. Thus, the dynamical degrees of freedom
associated with ∂μΣ are restricted to those “orthogonal”
to Σ.
To complete this rewriting of the action Eq. (5.1),

consider the potential, VJðΦÞ. Defining T4 ≡ Tr½Φ4� ¼
Ω4Tr½Σ4�, the potential is

VJðΦÞ≡h1
24

T2
2þ

h2
96

T4¼
h1M4

24
Ω4þh2

96
Ω4Tr½Σ4�: ð5:7Þ

Thus, the only dependence of VJ on Σ is through T4.
Further, the nonminimal coupling to the curvature in

Eq. (5.6) is independent of Σ. As a result, the SOð10Þ
singlet Ω plays the role of the real scalar in the preceding
section. Evidently, to transform to the Einstein frame, we
need only suppose that hΩi ≠ 0 and can postpone the
question of hΣi until later. Without loss of generality
(WLOG), we take hΩi > 0. Then we can perform a
conformal transformation, ~gμν ≡Ω−2gμν, to get the action
in the Einstein frame

SðEÞho ¼
Z

d4x
ffiffiffi
~g

p �
~C2

2a
þ 1

3b
ð ~Rþ 6 ~∇ · ϑ − 6ϑ2μÞ2 þ c ~G

�
;

ð5:8aÞ

SðEÞm ¼
Z

d4x
ffiffiffi
~g

p �
1

4
Tr½ ~F2

μν� −
ξ

2
M2 ~Rþ ð ~∇ζÞ2

2
þ h1
24

M4

þ 1

2
Tr½ð ~DμΣÞ2� þ

h2
96

Tr½Σ4�
�
; ð5:8bÞ

where, similar to the previous case, Eq. (4.2),
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ζ≡M
ffiffiffiffiffiffi
6ξ0

p
logΩ; ϑμ≡ ~∂μ logΩ¼ 1ffiffiffiffiffiffi

6ξ0
p

M
~∂μζ: ð5:9Þ

We must also keep in mind the constraint, Eq. (5.3).
One can show that the G-B term changes by a total

divergence, G → ~Gþ∇μJμ. (See Appendix A.) Although
not the simplest form to quantize, the spectrum may be read
off rather easily. The last line of Eq. (5.8b) shows that Σ is
described by a gauged nonlinear sigma model with a scale-
invariant self-interaction strength proportional to h2.
Regardless of the pattern of SSB, Tr½Σ4� ≥ ðTr½Σ2�Þ2=10 ¼
M4=10, and it proves useful to rewrite the terms involving
h1, h2 as the sum of two nonnegative terms

h3M4

24
þ h2
96

�
Tr½Σ4� −M4

10

�
; ð5:10Þ

where we defined h3 ≡ h1 þ h2=40.

Note that the action SðEÞ ¼ SðEÞho þ SðEÞm is still formally
invariant under the SOð10Þ local gauge symmetry, since the
conformal transformation employed only the gauge singlet
ΩðxÞ, which was presumed to have some nonzero vacuum
expectation value (VEV) hΩðxÞi to be determined.
Although in principle, this can vary with position xμ, there
is a tacit assumption that ΩðxÞ vanishes nowhere since,
otherwise, the transformed metric would degenerate some-
where. For simplicity, we shall seek SSB solutions in which
hΩi ≠ 0, independent of x.
The role of the couplings h1, h2, (or h2, h3) in the

Einstein frame suggests a dramatically different physical
picture than that in the Jordan frame. In Eq. (5.8b), we can
identify the Planck mass

MP ¼
ffiffiffi
ξ

p
M: ð5:11Þ

As in the case of the real field, we must have ξðvÞ > 0 at the
scale v of symmetry breaking in order for gravity to be
attractive.
From Eq. (5.10), the “vacuum energy density” is

h3M4=24 or possibly larger, depending on the direction
of SSB hΣi. In more conventional terms, the cosmological
constantΛ corresponding to a vacuum energy density equal
to h3M4=24 is

Λ≡ h3
24ξ2

M2
P: ð5:12Þ

Thus, we must have h3ðvÞ > 0 at the scale of symmetry-
breaking in order for Λ to be positive.
The field ζ is the dilaton, which is massless in this

approximation but will gain mass at two-loop order,Oðℏ2Þ.
(We shall determine its mass below in Sec. X.)
This is as much as can be said at the classical level about

the singlets in Eq. (5.8). Further interpretation requires

knowing more precisely the pattern of the breaking of
SOð10Þ, which we shall discuss next.

VI. SPONTANEOUS SYMMETRY BREAKING
OF SOð10Þ

In our parameterization, the direction of SOð10Þ break-
ing is embodied in hΣi. Since the Σ field enters the Einstein
frame action only via Eq. (5.8b), we can determine the
possible extrema ignoring Eq. (5.8a), which is to say that
they are essentially independent of the scale of SSB.
In fact, we already showed in Ref. [4] that the only
extremum that is a local minimum corresponds to breaking
to SUð5Þ ⊗ Uð1Þ. In passing to the Einstein frame, we only
utilized the singlet field ΩðxÞ, so we would not expect this
pattern to change. Indeed, unless there exists a sensible
phase in which hΦi ¼ 0, the Einstein frame action,
Eq. (5.8), must be completely equivalent to the Jordan

frame action, SðJÞ ≡ SðJÞho þ SðJÞm , Eqs. (1.1), (5.1). Although
we could proceed by assuming this pattern of SSB is
correct, it is illuminating to rederive it in the Einstein frame
to confirm this expectation and to take note of the
substantial differences from the Jordan frame.
For our purposes, it is convenient to make a unitary

transformation to a basis in which the generators of SOð10Þ
take the form

Ra≡ 1ffiffiffi
2

p
� Ra

1 Ra
2

Ra
2
† −Ra

1
τ

�
¼ 1ffiffiffi

2
p

� Ra
1 Ra

2

−Ra
2
� −Ra

1
�

�
; ð6:1Þ

where14 the Ra
j are 5 × 5 (complex) matrices with the

properties that Ra
1 is Hermitian, and Ra

2 is antisymmetric.
Hence, Ra

1
� ¼ Ra

1
τ, where τ denotes the transpose. In this

basis, unlike the original one, the Cartan subalgebra of
SOð10Þ can be diagonalized.
Correspondingly, we define for real components σa

Σ≡ ffiffiffi
2

p
σaRa ¼

�
σaRa

1 σaRa
2

σaRa
2
† −σaRa

1
�

�
ð6:2aÞ

≡
� Σ1 Σ2

Σ2
† −Σ1

�

�
: ð6:2bÞ

The constraint Eq. (5.3) implies

X45
1

σ2a ¼ M2; or Tr½Σ2
1 þ Σ†

2Σ2� ¼ M2=2: ð6:3Þ

Assuming hΣi ≠ 0, one may utilize the SOð10Þ symmetry
of the action Eq. (5.8) to bring it to diagonal form

14The factor 1=
ffiffiffi
2

p
has been inserted so that fRa

1g are the
generators of SUð5Þ ⊗ Uð1Þ with canonical normalization,
Tr½Ra

1R
b
1� ¼ δab=2 for a ¼ f1; 2;…; 25g. For further discussion,

see Appendix B.
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hΣi ¼
� hΣ1i 0

0 −hΣ1i
�
; ð6:4Þ

where hΣ1i is the matrix, Diagfς1; ς2; ς3; ς4; ς5g. These ςi
are the eigenvalues of hΣi, which are of course independent
of the choice of basis. However, the basis chosen above,
Eq. (6.1), is particularly convenient. Let us call the
generators of the SOð10Þ Cartan subalgebra Hi, with the
corresponding generators of SUð5Þ ⊗ Uð1Þ Hi. Then we
conclude that

ςiHi ¼ hσaiRa; and ςiHi
1 ¼ hσaiRa

1: ð6:5Þ

With reference to the action Eq. (5.8b) and the constraint
Eq. (6.7), in order to seek the extrema of the action, we
must consider

h2
48

Tr½hΣ1i4� −
η

2
Tr½hΣ1i2� ¼

X5
i¼1

�
h2
48

ς4i −
η

2
ς2i

�
; ð6:6Þ

where η is a Lagrange multiplier associated with the
constraint

Tr½hΣ1i2� ¼ M2=2: ð6:7Þ

The first derivative of Eq. (6.6) is

h2
12

ς3i − ηςi ¼ ςi

�
h2
12

ς2i − η

�
; fi ¼ 1;…; 5g: ð6:8Þ

This will vanish for each ςi provided either ςi ¼ 0 or
ςi ¼ �ς0, where ς0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12η=h2

p
. With regard to the sign of

the nonzero ςi, it can be resolved as we did in the Jordan
frame [4]. Referring to Eq. (6.4), by means of a unitary
transformation, we may interchange any negative element
in hΣ1i with the corresponding positive element in −hΣ1i.
Thus, WLOG, we may assume that the elements of
Σ1 are nonnegative. There are then five distinct extrema,
depending on the number k of zeros in Σ1, so that
T2 ¼ 2ð5 − kÞς20 ¼ M2, k ¼ f0; 1;…; 4g. Therefore,15

ς0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2ð5 − kÞÞp

M, with corresponding Lagrange
multiplier η ¼ h2M2=ð24ð5 − kÞÞ > 0.
To determine which of these five extrema are minima, we

consider the second derivative

∂2VðσÞ
∂ςi∂ςj ¼ δij

�
h2
4
ς2i − η

�
: ð6:9Þ

This is diagonal as well (unlike the Jordan frame calcu-
lation [4]) with elements either −η if ςi ¼ 0 or h2ς20=4 − η if

ςi ≠ 0. Since η > 0, the extremum has an unstable
mode if any of the ςi is zero. Taking k ¼ 0 then, we
find that V 00ðς0Þ ¼ h2ς20=4− η ¼ h2M2=40− h2M2=120 ¼
h2M2=60 > 0, so this case is (locally) stable, just as before
[4]. Hence,

hΣ1i ¼ ς015; with ς0 ¼ M=
ffiffiffiffiffi
10

p
: ð6:10Þ

In sum, we have confirmed that, in this model, the only
possibility for SSB to a phase having a local minimum is
SOð10Þ → SUð5Þ ⊗ Uð1Þ. Having done so, we are now in
a position to determine the masses of the vector bosons and
the other heavy scalars arising from fluctuations in Σ.

VII. VECTOR BOSON MASSES

Another quantity that can be read directly from the
Einstein frame action Eq. (5.8) is the mass of the vector
bosons, which, in this section, will be shown to be MV ¼
gMP=

ffiffiffiffiffi
5ξ

p
. These masses arise from the scalars’ covariant

derivative in Eq. (5.8b)

1

2
Tr½DμΣ�2 ¼

1

2

X
a

ð∂μσa þ gfabcAμ
bσcÞ2; ð7:1Þ

using Σ ¼ ffiffiffi
2

p
σaRa, as in Sec. V. The fabc are the structure

constants for SOð10Þ. In the action, Eq. (5.8b), the field
strength, Tr½F2

μν�=4, is canonically normalized. Therefore,
Eq. (7.1) implies that the vector boson mass matrix is

ðM2
VÞab ¼ g2facdfbcehσdihσei: ð7:2Þ

As discussed in Appendix B, the 20 gauge bosons
that acquire mass after SSB transform as conjugates
104 ⊕ 10−4 of SUð5Þ ⊗ Uð1Þ. As a result, all 20 will
have the same massMV , so we may simplify the calculation
by summing

Tr½hðM2
VÞi� ¼ g2CG

X
a

hσai2 ¼ g2CGTr½hΣi2�; ð7:3Þ

where CG is the quadratic Casimir in the adjoint repre-
sentation. In SOðNÞ, CG ¼ ðN − 2Þ=2, so

Tr½ðM2
VÞ� ¼ 4g2Tr½hΣi2� ¼ 4g2M2 ¼ 4g2M2

P=ξ; ð7:4Þ

where, in the last steps, we applied first the constraint
Eq. (5.3) and then Eq. (5.11). As mentioned, the 20
particles have identical masses, so each of them has mass

MV ¼ gMP=
ffiffiffiffiffi
5ξ

p
: ð7:5Þ

15ς0 implicitly depends upon k, but we hope that will be clear
in context without having to introduce more cumbersome
notation.
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VIII. HEAVY SCALAR MASSES

Unlike the 25 massless vector bosons, the SUð5Þ⊗Uð1Þ
gauge symmetry does not protect the 25 corresponding
adjoint scalars from acquiring invariant masses after SSB of
SOð10Þ. Returning to the action, Eq. (5.8b), we have
previously mentioned that formally it remains SOð10Þ
gauge invariant. As an aside, one might think it would
permit hΣi ¼ 0, but that is illusory, a result of using a
nonlinear representation of the symmetry. As discussed in
Sec. VI, the transformation to the Einstein frame tacitly
requires hΣi ≠ 0, and that property is also subsumed in
the constraint conditions Eqs. (5.3), (6.7). Thus, despite
appearances, SOð10Þ must be spontaneously broken to
arrive at Eq. (5.8b).
To determine the scalar masses, we shall start from the

decomposition of Σ into block form, Eq. (6.2b). It is
convenient to work in a gauge (e.g. unitary gauge) in which
the off-diagonal blocks involving Σ2 have been “eaten” to
give masses to the vector bosons, so that Σ2 ¼ 0. Then Σ
takes the form:

Σ ¼
ffiffiffi
2

p
σaRa ¼

�Σ1 0

0 −Σ�
1

�
; ð8:1Þ

with Σ1 ¼ σaRa
1 . (N.B. Σ1 is not diagonal.) As explained in

Sec. V, Σ has only 44 independent DoF before SSB. With
20 absorbed by the vector bosons, only 24 DoF remain
in Σ1.
This results in a fundamental difference16 between the

masses of the SUð5Þ ⊗ Uð1Þ scalar multiplet 240 associ-
ated with Σ or Σ1 and the singlet 10 attributed to Ω
through ζ.
We wish to solve the constraint conditions to make

explicit the 24 DoF represented by Σ. Writing the adjoint
field Σ in the form Σ ¼ hΣi þ ΔΣ, we may expand the
Einstein frame action Eq. (5.8) about the background hΣi,
assumed as usual to be constant. Keeping only the terms
depending on Σ, the Lagrangian density becomes

LS ≡ 1

2
Tr½ðDμΔΣÞ2� þ

h2
96

Tr½ðhΣi þ ΔΣÞ4�: ð8:2Þ

To determine the masses associated with ΔΣ, we may
neglect the gauge bosons in Eq. (8.2) and expand the
potential terms through quadratic order in ΔΣ. Recall
from Sec. XI that hΣ1i ¼ ς015, with ς0 ¼ M=

ffiffiffiffiffi
10

p
. Then

Eq. (8.2) becomes

LS ¼ Tr½ð∂μΔΣ1Þ2� þ
h2
48

½5ς40 þ 4ς30Tr½ΔΣ1�
þ 6ς20Tr½ΔΣ2

1� þ � � ��: ð8:3Þ

The normalization of the kinetic energy in Eq. (8.3) appears
to be not canonical, but, from Eq. (8.1), ΔΣ1 ¼ δσaRa

1 and
Tr½Ra

1R
b
1� ¼ δab=2. Therefore,

Tr½ð∂μΔΣ1Þ2� ¼
1

2

X24
1

ð∂μδσaÞ2: ð8:4Þ

Wemust now take into account the constraints Eqs. (5.3),
(6.7),

Tr½ðhΣ1i þ ΔΣ1Þ2� ¼ M2=2; or ð8:5aÞ

2ς0Tr½ΔΣ1� þ Tr½ðΔΣ1Þ2� ¼ 0: ð8:5bÞ

To interpret this constraint, we decompose the 25 compo-
nents of ΔΣ1 as

ΔΣ1 ¼
ΔS1
5

15 þ Δ ~Σ1; ð8:6Þ

with17 ΔS1 ≡ Tr½ΔΣ1�, so that Tr½Δ ~Σ1� ¼ 0. Then Eq. (8.5)
implies

2ς0ΔS1 þ
1

5
ΔS12 þ Tr½ðΔ ~Σ1Þ2� ¼ 0; ð8:7aÞ

⇒
ΔS1
5ς0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Tr½ðΔ ~Σ1Þ2�=M2

q
− 1 ≈ ð8:7bÞ

− Tr½ðΔ ~Σ1Þ2�=M2 þ Tr½ðΔ ~Σ1Þ2�2=ð2M4Þ
þ � � � : ð8:7cÞ

In Eq. (8.7b), the positive square root must be chosen so
that ΔS1 → 0 for Δ ~Σ → 0. The interpretation of Eq. (8.7) is
that ΔS1 is determined by Δ ~Σ1 of SUð5Þ, with the leading
term of ΔS1 being quadratic in Δ ~Σ1.
Returning to LS in Eq. (8.3), we want to decomposeΔΣ1

as in Eq. (8.6) and replaceΔS1 using Eq. (8.7c). First, in the
kinetic term, ð∂μΔS1Þ2 can be discarded since it is actually

fourth order in Δ ~Σ1. Next, the second line of Eq. (8.3) can
be reexpressed as

4ς30ΔS1 þ 6ς20Tr½ðΔ ~Σ1Þ2� ≈ 4ς20Tr½ðΔ ~Σ1Þ2� þ � � � ; ð8:8Þ

neglecting terms in Δ ~Σ1 of higher order than quadratic.
Since the kinetic term is canonically normalized, the

mass-squared of the 24 SUð5Þ adjoint scalars is

M2
ΔΣ ¼ 4ς20 ¼

2

5
M2 ¼ 2

5ξ
M2

P ¼ 2

g2
M2

V; ð8:9Þ

16The reader may wish to refer to the branching rules for
SOð10Þ → SUð5Þ ⊗ Uð1Þ, Eq. (B7).

17Although ΔS1 transforms as a SUð5Þ ⊗ Uð1Þ singlet, it must
not be confused with the 10, SOð10Þ singlet Ω (or ζ).
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where we have included the last two relations in order to
facilitate comparison of these scalar masses with the Planck
mass and the massive gauge bosons.

IX. THE BACKGROUND CURVATURE
AND ITS FLUCTUATIONS

Renormalizable gravity is a scalar-tensor theory of
gravity, i.e. the metric involves a scalar DoF in addition
to the usual tensor degree of freedom associated with the
graviton. The scalar DoF can be identified with fluctuations
of the scalar curvature ~R. In the Jordan frame, we had to
calculate the radiative corrections to the effective action to
determine the magnitude of the background curvature hRJi
and its fluctuations. Therefore, it may come as a surprise
that the first approximation to the corresponding quantity in
the Einstein frame can be calculated from the classical
action Eq. (5.8). On second thought, since Eq. (5.8b)
contains a cosmological constant, both before and after
SSB, one could have anticipated that ~R ¼ 4Λ already from
the matter action. Therefore, before getting into the matter
of calculating radiative corrections to the effective action,
we shall first discuss the tree approximation.
For this purpose, as well as to enable calculation of

radiative corrections in the next section, we must make
some simplifying assumptions. By defining Φ≡ΩΣ, we
have distinguished the magnitude Ω of Φ from its direction
Σ. At the classical level, Eq. (5.8), we saw that the two
fields were essentially decoupled, i.e. Ω is expressed
through the dilaton field which does not couple directly
to Σ. Consequently, we may replace Σ → hΣi, while still
keeping the background metric and ζ (or Ω) off-shell. In
general, the metric ~gμν couples directly to everything via the
factor

ffiffiffi
~g

p
in the invariant volume density, but this will not

cause problems in leading order. Σ also couples to the
metric through the kinetic term ð∂μΣÞ2 but, assuming that
hΣi is constant, ∂μhΣi ¼ 0.
Secondly, we shall assume that the background metric

has maximal global symmetry, viz., that of dS spacetime. In
that case, the Euclidean spacetime volume is

Z
d4x

ffiffiffiffiffiffi
h~gi

p
¼

�
12

~R

�
2 8π2

3
≡ V4

ρ4
; ð9:1Þ

where, for economy of writing henceforth, we defined
ρ≡ð ~RÞ1=2 and the unit volume V4≡122×8π2=3¼384π2.
This does not require ρ to be on-shell; it follows simply
from the assumption that the background has maximal
symmetry, so that the spacetime volume is a sphere S4, with
an arbitrary radius of curvature related to ρ.
Our goal is to determine the extrema of ρ and ζ and to

determine which are minima. Our first task is to determine
that they have stable, constant background fields. So for the
moment, we shall assume that both are constant. With these

assumptions, the classical action Eq. (5.8) is independent of
ζ, since it only has derivative couplings. As we have
explained in Sec. VI, this is because classically, ζ is a
Goldstone boson. It is only from quantum corrections that
we can determine whether ζ has a minimum, even for
constant ζ. However, unlike the Jordan frame calculation
that appears to only enable one to determine the ratio
of fields,18 we can, as a consequence of the conformal
transformation, determine the minimum in ρ directly from
the classical action. Under the preceding assumptions, the
value of the classical action Eq. (5.8) off-shell is

1

V4

SðEÞcl ðρÞ ¼
�
1

3b
þ c
6
−
ξM2

2ρ2
þ h3M4

24ρ4

�
: ð9:2Þ

It may be surprising at first sight that the contributions
from the higher-order action, Eq. (5.8a), are independent of
ρ. It is clear that setting Σ → hΣi affects only Eq. (5.8b), but
the curvature and dilaton fields enter Eq. (5.8a) as well.
Upon reflection, this observation results from the
assumption that the classical background fields have
constant curvature ρ (or ~R) and constant ζ (or Ω). Then
the higher-derivative action, Eq. (5.8a), has the same
classically scale invariant form as in the Jordan frame.
Even off-shell, its value is independent of M, and, being
dimensionless, it must also be independent of ρ.
To determine the extrema in ρ and its nature, we calculate

the first two derivatives of Eq. (9.2):

1

V4

∂SðEÞcl

∂ρ ¼ ξM2

ρ3
−
h3M4

6ρ5
; ð9:3aÞ

1

V4

∂2SðEÞcl

∂ρ2 ¼ −
3ξM2

ρ4
þ 5h3M4

6ρ6
: ð9:3bÞ

Equation (9.3a) vanishes for

ρ20 ¼
h3
6ξ

M2 ¼ h3
6ξ2

M2
P: ð9:4Þ

For ρ¼ρ0, the curvature Eq. (9.3b) of the potential becomes
2ξM2=ρ40 ¼ 2M2

P=ρ
4
0 > 0, so ρ0 is in fact a minimum of the

classical potential. To translate this into a mass parameter,
we return to the Lagrangian density by dividing the action
by the invariant spacetime volume Eq. (9.1). Expanding
ρ ¼ ρ0 þ δρ to second order in δρ,

SðEÞcl ðρÞ ¼ SðEÞcl ðρ0Þ þ
Z

d4x
ffiffiffi
~g

p m2
ρ

2
δρ2 þ � � � ; ð9:5aÞ

with mρ ≡
ffiffiffi
2

p
MP: ð9:5bÞ

18In fact, because of the mixing between modes, we discovered
in Ref. [4] only belatedly that the minimum in ρ called ε1 was
classical. The calculation in this section makes that clear from the
outset.
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For future reference, the on-shell value of the classical
action in the Einstein frame, Eq. (9.2), is

1

V4

SðEÞcl ðρ0Þ ¼
�
1

3b
þ c
6
−
ξM2

4ρ20

�
¼

�
1

3b
þ c
6
−
3ξ2

2h3

�
: ð9:6Þ

Equation (9.5) is only valid for constant fluctuations δρ;
however, we need to demonstrate stability for nonstatic
fluctuations of the background. This becomes complicated,
even assuming that the background is dS spacetime with
constant curvature R̂ ¼ ρ20. So long as we assume that the
background ζ is constant, this analysis can be carried out
classically by expanding Eq. (5.8) to second-order in metric
fluctuations. To express local fluctuations in the metric, we
follow the same path as in Sec. III, writing ~gμν ≡ ĝμν þ hμν,
with the background ĝμν describing dS spacetime with
constant curvature R̂ ¼ ρ20, and hμνðxÞ corresponding to the
fluctuations. For hμνðxÞ, we adopt the transverse-traceless
(TT) gauge, described in Eq. (3.6) et seq. To explore
stability, we need to expand the fluctuations through second
order, up to which there is no mixing between the
fluctuations of fields having nontrivial classical back-
grounds and those that do not. The dilaton field is excep-
tional, inasmuch as it only appears in Eq. (5.8) derivatively
coupled. In that case, its fluctuations still do not mix with
other fields to quadratic order. Assuming that the back-
ground vector field Aμ vanishes, the result for fluctuations
to the metric will, to quadratic order, be the same as if we
started from the classical action

SðEÞho ¼
Z

d4x
ffiffiffi
~g

p �
1

2a
~C2 þ 1

3b
~R2 þ c ~G

�
; ð9:7aÞ

SðEÞm ¼
Z

d4x
ffiffiffi
~g

p �
−
ξM2

2
~Rþ h3

24
M4

�
: ð9:7bÞ

This is precisely the action for renormalizable gravity with
the inclusion an explicit Planck mass, Eq. (5.11) and a
cosmological constant, Eq. (5.12). This may be obtained
from the model discussed in Sec. III for the real field,
Eq. (3.1) with the replacements

δϕ → 0; φ → M; λ → h3=6: ð9:8Þ
This model was previously analyzed by Avramidi [13]. As
we mentioned in the Introduction, Sec. I, by expanding in
the Jordan frame, he showed that, with the exception of the
five zero modes that we discussed earlier, the fluctuations
are stable for a certain range of coupling constants, a result
that seems not to be as well known as perhaps it should be.
This conclusion should apply to the Einstein frame on-
shell, since the difference in the actions between the two
frames is simply a field redefinition.19 Therefore, we can

simply adapt Avramidi’s results20 to the action, Eq. (9.7).
We must have a; b > 0 and

tensor∶
2b
3a

< 1þ 3ξ2a
h3

; scalar∶ 18ξ2 <
h3
b
: ð9:9Þ

This calculation has been regarded as purely classical.
When quantum corrections are calculated, these couplings
become running couplings, and these inequalities must be
respected at a certain symmetry-breaking scale v that will
be defined precisely in the next section. We wrote these
inequalities in a form that takes advantage of the fact that
ξðμÞ and the ratios of couplings bðμÞ=aðμÞ; h3ðμÞ=aðμÞ
approach finite UVFPs as μ → ∞, so it is most convenient
to study their running in the range of scales above v, as we
did in Ref. [4]. We now turn to the determination of the
quantum corrections to the effective action.

X. SCALE OF SYMMETRY BREAKING
AND THE DILATON MASS

The developments in the preceding sections all stemmed
from the supposition that

hΦi ¼ hΩihΣi ≠ 0; ð10:1Þ

which permitted transformation to the Einstein frame. In
that frame, unlike the Jordan frame, we were able to
identify the classical values of the Planck mass, MP, the
cosmological constant Λ, hΣi; h ~Ri as well as the masses for
all the fields except for the dilaton ζ, which classically
appears as a free, massless scalar.21 In this section, we wish
to determine hζi, or equivalently hΩi, and the dilaton mass
md, by giving the radiative corrections to the effective
action.
In general, the analytic calculation of radiative correc-

tions to the effective action is impossible, and it has seldom
been done for any spacetime-dependent background hRðxÞi
or hΦðxÞi. (This is also true for fields in flat spacetime, with
instantons being an exception [37].) For backgrounds
having hRi and hΦi spacetime independent, the one-loop
corrections can be performed; even then, only bits and
pieces of the two-loop corrections have been calculated
to date.
Turning to the dilaton field ζ, the classical action

Eq. (5.8) depends on ζ only through its gradient
∇μζ ¼ ∂μζ, reflecting its role as a Goldstone boson
associated with scale breaking hΩi ≠ 0. As remarked
earlier, classical scale invariance is explicitly broken in
the QFT, and the dilaton will get a nonzero mass md at

19For further discussion, see e.g. Ref. [36].

20See Eqs. (4.170), (4.171) of Ref. [13].
21In the Jordan frame, had we made the assumption Eq. (10.1),

we could have performed an expansion about that background,
but it is still simpler to do in the Einstein frame with no
nonminimal coupling(s) to R.

MARTIN B. EINHORN and D. R. TIMOTHY JONES PHYSICAL REVIEW D 96, 124025 (2017)

124025-14



two-loop order. To determine whether or not it represents
an instability, we shall have to calculate these radiative
corrections. As mentioned in Sec. III, in our earlier work [4]
in the Jordan frame, we showed that the two-loop correc-
tions responsible for md ≠ 0 could be calculated knowing
only the one-loop β-functions. We also learned thatm2

d > 0

for some range of couplings, but, being unsure of the proper
normalization of the dilaton field, we could only determine
md within a multiplicative factor. Here, we wish to confirm
those results and to determine the dilaton mass md more
precisely.
In order to be able to compare with our previous work

[4], we begin with the form given there for the effective
action in the Jordan frame in dS background:

ΓðJÞ

V4

¼ SðJÞcl ðrÞ
V4

þ 1

2
BðrÞ logRJ

μ2
þ 1

8
CðrÞ

�
log

RJ

μ2

�
2

þ � � � ;

ð10:2Þ

where, we recall, the ratio r≡ T2=RJ, and V4 has been
defined earlier below Eq. (9.1). This presumes that both Φ
and RJ are constant. For constant Φ, the transformation
from Jordan to the Einstein frame yields RJ → Ω2 ~R and
r → M2= ~R, independent of Ω. With ρ≡ ð ~RÞ1=2, defined
beneath Eq. (9.1),

log
RJ

μ2
→ 2

�
ζffiffiffiffiffiffi
6ξ0

p
M

þ log
ρ

μ

�
: ð10:3Þ

In the Jordan frame, we thought of the one-loop corrections
as bringing in the dependence on the scalar curvature RJ for
a fixed ratio r. By contrast, in the Einstein frame, fixed r
represents fixed scalar curvature, ~R, and the dependence on
the dilaton field ζ enters through the corrections.
The effective action, like the classical action, is dimen-

sionless, so it is not rescaled or changed by a conformal
transformation. Therefore, Eq. (10.2) becomes

ΓðEÞ

V4

¼
SðEÞcl ðM

2

ρ2
Þ

V4

þ B

�
M2

ρ2

��
ζffiffiffiffiffiffi
6ξ0

p
M

þ log
ρ

μ

�

þ 1

2
C

�
M2

ρ2

��
ζffiffiffiffiffiffi
6ξ0

p
M

þ log
ρ

μ

�
2

þ � � � : ð10:4Þ

The original scale invariance is still reflected indirectly in
Eq. (10.4) by the property that, in the parentheses involving
logðρ=μÞ, changing the normalization scale μ can be offset
by a shift in ζ. Thus, although ζ is no longer derivatively
coupled when radiative corrections are included, its value
hζi is not renormalization group invariant, and, therefore,
not directly observable. We shall exploit this shift freedom
shortly.
All dependence on ζ in the effective action, Eq. (10.4),

enters through the radiative corrections. The first derivative is

1

V4

∂ΓðEÞ

∂ζ ¼
�

1ffiffiffiffiffiffi
6ξ0

p
M

��
B

�
M2

ρ2

�

þ C

�
M2

ρ2

��
ζffiffiffiffiffiffi
6ξ0

p
M

þ log
ρ

μ

��
: ð10:5Þ

To one-loop order, B → B1 and C → 0. To have an
extremum in ζ, therefore, it must be that B1ðM2=ρ2Þ ¼ 0.
To this order, we may replace ρ by its classical value,
ρ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h3=ð6ξÞ

p
M from Eq. (9.4), so the extremum in ζ is

determined by the equation

B1ð6ξðμÞ=h3ðμÞÞ ¼ 0: ð10:6Þ
This equation is not true for all choices of μ. Its inter-
pretation is that, in order for perturbative DT to occur, we
must be able to find a scale, μ ¼ v, at which this relation
among couplings holds. In previous work in Jordan frame
[4], we have obtained an explicit formula for B1ðrÞ, and
Eq. (10.6) is in fact identical to the Jordan frame condition
for an extremum in RJ at fixed r. We showed that this
equation can be satisfied for a range of coupling constants
within the basin of attraction of the UVFP.
Because Eq. (10.6) is independent of ζ, we must go

beyond one-loop order to determine a nonzero mass for the
dilaton. Even at one-loop order, however, we expect the
classical minimum in the curvature at ρ0 to change slightly,
ρ0 → ρ0 þ δρ0, to which end we calculate the first deriva-
tive of the effective action with respect to ρ:

1

V4

∂ΓðEÞ

∂ρ ¼ 1

V4

∂SðEÞcl

∂ρ þ1

ρ
B

�
M2

ρ2

�

−
2M2

ρ3
B0
�
M2

ρ2

��
ζffiffiffiffiffiffi
6ξ0

p
M
þ log

ρ

μ

�

þ1

ρ
C
�
M2

ρ2

��
ζffiffiffiffiffiffi
6ξ0

p
M
þ log

ρ

μ

�
þ���; ð10:7Þ

where we truncated the equation for reasons to be explained
below. As with Eq. (10.5), the one-loop correction has B →
B1 and C → 0. It is convenient to choose the normalization
scale μ ¼ v, at which Eq. (10.6) holds, so that the second
term on the RHS in Eq. (10.7) vanishes. Then, to first order,
we expand in δρ0 to get

1

V4

∂ΓðEÞ

∂ρ ≈
1

V4

∂2SðEÞcl

∂ρ2
����
ρ0

δρ0

−
2M2

ρ30
B0
1

�
M2

ρ20

��
ζffiffiffiffiffiffi
6ξ0

p
M

þ log
ρ0
v

�
; ð10:8aÞ

≈
2M2

ρ30

�
ξδρ0
ρ0

−B0
1

�
M2

ρ20

��
ζffiffiffiffiffiffi
6ξ0

p
M
þ log

ρ0
v

��
:

ð10:8bÞ
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Given M, setting Eq. (10.8b) to zero and ζ → hζi deter-
mines a relation between δρ0 and hζi. The value of hζi is
still not fixed at one-loop order, as we pointed out earlier.
Therefore, we may conveniently choose hζi such that

hζi þ
ffiffiffiffiffiffiffiffiffiffiffiffi
6ξ0ðvÞ

p
M log

ρ0
v
¼ 0; ð10:9Þ

where ξ0ðvÞ≡ ξðvÞ þ 1=6, and ρ0 is given in Eq. (9.4).
With this choice for hζi, we may conclude that the first-
order correction δρ0 vanishes!
Although we have a one-loop constraint Eq. (10.6)

consistent with ζ having a local extremum, we have not
determined its character. To do so requires going to two-
loop order. Although not all two-loop corrections to the
effective action or to the β-functions are known, some two-
loop effects are calculable from the one-loop β-functions
[38], including C2ðrÞ, the first nonzero contribution to
CðrÞ. Fortunately, these turn out to be sufficient to
determine the two-loop contributions to the effective action
that are required [4].
To see that in the present language, we need the second

variations which, on-shell with our conventions for M and
hζi, take the form

1

V4

∂2ΓðEÞ

∂ζ2
����
os

¼ 1

6ξ0M2
C2

�
M2

ρ20

�
; ð10:10aÞ

1

V4

∂2ΓðEÞ

∂ζ∂ρ
����
os
¼
�

1ffiffiffiffiffiffi
6ξ0

p
M

��
−
2M2

ρ30
B0
1

�
M2

ρ20

�
þ 1

ρ0
C2

�
M2

ρ20

��
;

ð10:10bÞ

1

V4

∂2ΓðEÞ

∂ρ2
����
os

¼ 1

V4

∂2SðEÞcl

∂ρ2
����
ρ¼ρ0

−
2

ρ30
B0
1

�
M2

ρ20

�

þ 1

ρ0
C2

�
M2

ρ20

�
þ � � � ; ð10:10cÞ

where the subscript os refers to the value “on-shell.”
Having arranged for the one-loop correction to ρ0 to
vanish, this means ρ → ρ0; ζ → hζi, with hζi given by
Eq. (10.9). In the last line, Eq. (10.10c), we have omitted
certain other one- and two-loop contributions for reasons
that will become clear shortly. Consider the matrix of
second variations

δð2ÞΓðEÞ ¼ 1

2
ðδζ δρ Þ

2
6664
∂2ΓðEÞ

∂ζ2
∂2ΓðEÞ

∂ζ∂ρ
∂2ΓðEÞ

∂ζ∂ρ
∂2ΓðEÞ

∂ρ2

3
7775
�
δζ

δρ

�
: ð10:11Þ

To review the order of the matrix elements, we recall that
the leading nonvanishing term of Eq. (10.10a) isOðℏ2Þ, i.e.
two loops; of Eq. (10.10b), OðℏÞ; of Eq. (10.10c), Oð1Þ.
Thus, the matrix has a familiar “see-saw” pattern, the same

structure that was encountered in the Jordan frame calcu-
lation [4]. The determinant is Oðℏ2Þ and the trace is Oð1Þ,
so one eigenvalue is Oð1Þ and the other Oðℏ2Þ.
Naturally, the larger one is associated with the classical

fluctuation determined in the previous section. To be precise,
we take the classical approximation for ∂2ΓðEÞ=∂ρ2,
viz., 2ξM2=ρ40 from just below Eq. (9.4). Then the larger
eigenvalue of the matrix in Eq. (10.11)

ε1 ¼
2ξM2V4

ρ40
þOðℏ2Þ; ð10:12Þ

with eigenvector ðδζ;δρÞ¼ð0;1ÞþOðℏ2Þ. When divided by
the spacetime volume V4=ρ40, ε1 gives precisely the valuem

2
ρ

in Eq. (9.5). Having arranged for the one-loop correction
to mρ to vanish, we are not really interested in its two-loop
corrections. In fact, they would require B2, which is not
known and cannot be determined using one-loop β-functions.
It would also require taking into account gravitational
corrections to the wave-function renormalization.
The smaller eigenvalue ε2 is associated with the dilaton,

ε2 ¼
�

1

16π2

�
2 V4

6ξ0M2

�
C2 −

B02
1

2ξ

�
þOðℏ3Þ; ð10:13Þ

with eigenvector

ðδζ; δρÞ ¼ ð1;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h3=ðξ0ξ3Þ

q
B0
1=6Þ þOðℏ2Þ: ð10:14Þ

All scale-dependent quantities on the RHS of Eqs. (10.13),
(10.14) are to be evaluated at the DT scale μ ¼ v, where
Eq. (10.6) is fulfilled. We have made explicit the factors of
16π2, heretofore suppressed, in order to emphasize how
very much smaller than ε1 this is. If we divide by the
spacetime volume, we find

m2
d

M2
P
¼
�

1

16π2

�
2 1

30ξξ0

�
h3
6ξ

�
2
�
C2 −

B02
1

2ξ

�����
μ¼v

; ð10:15Þ

corresponding to a term in the effective action
Z

d4x
ffiffiffi
~g

p m2
d

2
δζ2 þOðℏ3Þ: ð10:16Þ

Are we really justified in identifying this with the dilaton
mass? We believe the answer is yes, although it does
require further justification. The fact that the eigenvalue
Eq. (10.13) is already of Oðℏ2Þ hides a multitude of sins of
omission. For example, we did not address the one-loop
corrections to the spacetime volume,22 but that is clearly not
necessary in order to determine ε2 through Oðℏ2Þ in

22Of course, we should have raised the same point below
Eq. (10.12). Fortuitously, having arranged in Eq. (10.9) for δρ0¼0
in OðℏÞ, such corrections to Eq. (10.12) will be at least Oðℏ2Þ.
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Eq. (10.13). Similarly, any mixing of δζ with δρ affects m2
d

in Oðℏ3Þ or higher.
There is also the related issue of whether the kinetic

term (wave function normalization) for δζ is canonical.
The preceding calculations assumed the fluctuations
ðδζ; δρÞ were constant, but we must go beyond the static
limit to answer this question. In fact, a glance at the
original Einstein-frame action Eq. (5.8) casts doubt
on this. Besides the canonical term for ζ in Eq. (5.8b),
there are also the higher-derivative terms in Eq. (5.8a).
Since they are classical, i.e. Oðℏ0Þ, they cannot be ignored
in general.
We propose to deal with them as follows: As will be

discussed further in Sec. XI, below the Planck scale MP,
the gravitational theory is well-approximated by the E-H
action plus higher-dimensional operators. This is in effect
a derivative expansion in 1=MP. Since md ≪ MV ≲ v, we
may consider an expansion in 1=v on momentum scales
small compared to all the particles that acquire masses
after SSB in tree approximation in Einstein frame, which
were discussed in Sections VII, VIII, and IX. In that case,
all the terms in Eq. (5.8a) involving ϑμ comprise operators
of higher dimension than four and, thus, will be small
compared with the terms remaining. Then the leading
contribution to the kinetic term for ζ is entirely from
Eq. (5.8b), which is simply the canonical term ð ~∇ζÞ2=2. In
that case, what we have called m2

d in Eq. (10.15) above is
in fact correct. Furthermore, since − ~□ is an elliptic
operator on Hilbert space, we may conclude that the
nonstatic fluctuations in this approximation will also be
stable.

XI. LOW-ENERGY EFFECTIVE
FIELD THEORY

There have been several physical scales variously iden-
tified as MP;Λ;MV;MΔΣ; mρ, as well as v and md, their
ratios are in principle observables. Unfortunately, all but
md, are likely to be OðMPÞ, although we have not
exhaustively explored the range of parameter space delin-
eated by the determination of v, Eq. (10.6), and the
requirement that ε2 > 0, Eq. (10.13), or, equivalently,
m2

d > 0, Eq. (10.15). As with superstring phenomenology,
the only natural realm of application at such scales is to
precision cosmology around the time of the Big Bang and
earlier. On the other hand, unlike superstring theory, QFT
can deal with the time evolution of (gauge-invariant)
correlation functions, provided the measurement frame is
specified. This calls attention to the issue of whether
renormalizable gravity is unitary at scales above v. We
expect to have more to say about this in the future, but we
will have little to contribute to the debate in this paper.
Near the end of the previous section, we argued that there

may be a range of momentum scales, md < p≲MV ≲MP
in which all particles except the massless vector bosons of

SUð5Þ ⊗ Uð1Þ, the massless graviton, and the dilaton have
become irrelevant. The corresponding low-energy, classical
action can be extracted from Eq. (5.8) with the inclusion of
the dilaton mass term Eq. (10.16):

SðEÞeff ¼
Z

d4x
ffiffiffĩ
g

p �
1

2a
C̃2 þ 1

3b
R̃2 þ cG̃þ h3

24
M4

−
ξM2

2
R̃þ 1

4
Tr½F̃2

μν� þ
ð ~∇δζÞ2

2
þm2

dδζ
2

2

�
; ð11:1Þ

where F̃μν represents the SUð5Þ ⊗ Uð1Þ field strengths for
the massless gauge bosons. Recalling Eqs. (5.9), (5.11), we
have neglected terms involving θμ ¼

ffiffiffiffiffiffiffiffiffiffiffi
ξ=6ξ0

p ∂̃μζ=MP, with
ξ0 ¼ ξþ 1=6, since, for this range of energy scales, these
terms are of the same order as others dropped. Only the
dilaton and the massless vectors of SUð5Þ ⊗ Uð1Þ remain
in addition to the metric g̃μν. We could also calculate some
of the higher-dimensional operators that have been
neglected, but they are not of great interest for present
purposes unless the low-energy, effective action based on
Eq. (11.1) proved to be unstable or to have zero-modes that
may be removed by such higher-order terms.
The on-shell solution for the background turns

out to correspond to constant curvature R̂ ¼ 4Λ, with Λ ¼
h3M2

P=ð24ξ2Þ. Assuming that the background has dS
global symmetry, as in our earlier discussions, we can
expand about the background to explore stability. It will
come as no surprise that the fluctuations will be stable,
since we require m2

d > 0. There will remain the by-now
familiar five conformal, zero modes associated with coher-
ent fluctuations about S4 background.

XII. CONCLUSIONS

In Ref. [4], we discussed a classically scale-invariant
model in which renormalizable gravity is coupled to matter
in the form of an SOð10Þ gauge field plus a real scalar field
in the adjoint representation. We showed that the model
contains a locally stable UVFP, so that all couplings are AF.
Moreover, the domain of attraction of the UVFP includes a
region of parameter space corresponding to spontaneous
breaking of the gauge symmetry to SUð5Þ ⊗ Uð1Þ, with
the scalar multiplet acquiring a VEV. This VEV is pertur-
batively determined and calculable by DT, which deter-
mines the scale at which a specific relationship among the
various dimensionless couplings holds true, and its pres-
ence generates an E-H term from the nonminimal scalar
coupling to gravity. The quartic behavior of the metric’s
propagator may not admit an ordinary particle interpreta-
tion, but it is not an obstacle to the calculation of Euclidean
correlation functions.
In this paper, the same model was transformed from

Jordan to the Einstein frame, and the form of the one-loop
effective action there was further developed. The Planck
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mass, cosmological constant, vector boson masses, and
related scales were unambiguously identified. In particular,
we were able to identify the canonically normalized dilaton
field ζ and to determine the dilaton-mass, md, Eq. (10.15).
We wish to reemphasize that, even though the mass is a
two-loop effect, it can be calculated knowing only the one-
loop beta-functions. Whether such a light dilaton plays an
important role in cosmological applications remains to be
determined in future, as do other issues such as inflation
and dark energy.
We showed that the effective field theory below the scale

of symmetry breaking takes the form of the gauged
SUð5Þ ⊗ Uð1Þ nonlinear sigma model plus a dilaton and
graviton. Of course, we would like this to be prototypical of
a realistic model; obviously much remains to be done with
regard to demonstrating a realistic SM-like theory at low
energies, including in particular the emergence of the
electroweak scale.
Although we have likened our determination of the

symmetry-breaking scale dynamics to DT à la Coleman-
Weinberg [12], we wish to reemphasize certain differences
from their mechanism. In their seminal treatment, the self-
coupling λðμÞ of the scalar field is unusually small in a
neighborhood of the DT scale μ ¼ v. Indeed, λðvÞ is of the
same order as the one-loop amplitude, Oðα2Þ, very near to
where λðμÞ ¼ 0.
In our application, the picture is different and is in

fact frame dependent. In the Jordan frame [4], which is
most nearly similar to Ref. [12], we first determined the
direction of symmetry-breaking and the ratio hΦi=ρ, where
ρ≡ ffiffiffiffiffiffiffiffiffihRJi

p
, from extremizing the classical potential. We

then determined the value of the scalar curvature ρ ¼ v
from the radiative corrections. In a neighborhood of this
scale v, the one-loop correction to the effective action ΓðJÞ,
Eq. (10.2), becomes unusually small, of order of the two-
loop correction. More precisely, we seek the value of ρ at
which

ρ
∂ΓðJÞ

∂ρ
����
ρ¼v

¼ B1ðμÞ þ B2ðμÞ þ C2ðμÞ log
v
μ
¼ 0: ð12:1Þ

If we choose the normalization scale μ ¼ v, Eq. (12.1)
simplifies to B1ðvÞ þ B2ðvÞ ¼ 0. Thus, at the extremum,
the one-loop correction B1 is of order of the two-loop
correction B2ðvÞ. In first approximation, the extremum
occurs where B1ðvÞ ¼ 0, a relation among couplings at
scale v. In short, as compared with DT in Ref. [12], our
application is of higher order in the loop expansion. Instead
of the extremum occurring at the scale v where a tree
coupling λ falls to OðℏÞ corrections, our extremum v is
determined by the scale at which the OðℏÞ-correction falls
to Oðℏ2Þ. The determination that the extremum is in fact a
minimum is a two-loop effect which, fortunately, was
calculable from the one-loop β-functions.

In the Einstein frame, Eq. (5.8), the story was rather
different, although the results were the same. Since only the
ΩðxÞ field was used in performing the conformal trans-
formation, the calculation in Sec. XI of the “directions” hΣi
at which extrema occur was essentially the same as before
in Ref. [4], as was the determination of which one was a
local minimum. Unlike the Jordan frame calculation, we
were able to determine a first approximation to the scalar
curvature ρ≡ ð ~RÞ1=2 and to show it was a local minimum
already in tree approximation, Eq. (9.4). In contrast, the
dilaton degree of freedom ζ enters the effective potential
Eq. (10.4) only via radiative corrections, and, we found the
DT equation B1ðvÞ ¼ 0 as a result of seeking the extremum
in ζ. We were also able to calculate the one-loop correction
δρ0 to the curvature ρ0, Eq. (10.15), and, by a propitious
choice for hζi, we arranged for it to vanish. We then were
able to calculate the curvature in ζ and thereby determine
the dilaton mass md, Eq. (10.15), something which we had
only be able to estimate previously.
In the original description in the Jordan frame, it was

clear that the metric has a scalar DoF, i.e. that this is a
scalar-tensor theory of gravity. In the Einstein frame, this
DoF was represented by the conformal field ρ in Sec. X. In
the low-energy effective field theory, Sec. XI, this scalar
DoF does not appear, i.e. it decouples (except for the five
zero modes.) Even though the dilaton mass is proportional
to the scale of SSB, it is a two-loop effect andm2

d=M
2
P ≪ 1,

Eq. (10.15). Unlike the other massive scalars, it does
involve mixing with the scalar DoF of the metric.
These conclusions do not depend in detail on this

particular model, and we expect them to be generic.
While that is hopeful for finding a renormalizable extension
of the SM to include gravity, it also suggests that it may be
very difficult to test experimentally.
We have not discussed analytic continuation from

Euclidean to Lorentzian signature. We simply assumed
that for relevant spacetimes, it can be performed. New
issues arise however: not even dS remains compact,
although, depending on the frame, it is often the case that
a fixed time slice has compact spatial volume. Although
correlation functions remain well-defined, they can
become IR divergent as the timelike separation between
spacetime points grows indefinitely. This further compli-
cates the discussion of unitarity, but in the past, all
such perturbative infrared divergences in QFT have
been resolved by a careful specification of observables.
Regardless, having settled the primary issues of instability
and ghosts that caused this line of investigation to be
abandoned nearly 40 years ago, we are optimistic that
eventually asymptotically free models based on renorma-
lizable gravity will turn out to be consistent, unitary
completions of Einstein-Hilbert gravity. Whether they
can be extended to include the SM fields while preserving
naturalness down to the electroweak scale remains a
theoretical challenge.
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APPENDIX A: CONFORMAL REDEFINITION
OF METRIC

In this appendix,we summarize some formulas associated
with conformal transformations of the metric.23 As in the
text, we choose Euclidean signature and choose the defi-
nition of theRicci tensor so thatR > 0 for positive curvature.
Given the definitions, Eq. (4.1), ~gμν ≡Ω−2gμν, then obvi-
ously

ffiffiffi
~g

p ¼Ω−4 ffiffiffi
g

p
, or in n-dimensions,

ffiffiffi
~g

p ¼ Ω−n ffiffiffi
g

p
.

Relations among conformally related curvatures are
often more simply expressed when written in terms of
ϒ≡ logðΩÞ, and here we state the results in terms of ϒ
instead of Ω.
Some useful identities are

Ω−1∇μΩ ¼ ∇μϒ; ðA1aÞ

Ω−1∇μ∇νΩ ¼ ∇μϒ∇νϒþ∇μ∇νϒ; ðA1bÞ

Ω∇μ∇νΩ−1 ¼ ∇μϒ∇νϒ −∇μ∇νϒ: ðA1cÞ

The conformal transform of the connection is

Γκ
μν ¼ gκλð∂μgνλ þ ∂νgμλ − ∂λgμνÞ=2 → ðA2aÞ
~Γκ
μν ¼ Γκ

μν − Δκ
μν; with

Δκ
μν ≡ δκμ∂νϒþ δκν∂μϒ − gμνgκλ∂λϒ: ðA2bÞ

Δκ
μν transforms as an ordinary tensor under general coor-

dinate transformations. The Riemann curvature, Rκ
λμν ¼

∂μΓκ
λν − ∂νΓκ

λμ þ Γκ
μρΓ

ρ
λν − Γκ

νρΓ
ρ
λμ, transforms as

~Rκ
λμν ¼ Rκ

λμν þ δκ½μ∇ν�ϑλ þ∇κϑ½μgν�λ þ δκ½μϑν�ϑλ − ϑ2δκ½μgν�λ;

ðA3Þ
where ϑμ ≡ ∂μϒ, ∇μϑν ≡ ∂μϑν − Γλ

μνϑλ. Thus,

~Rμν ¼ Rμν þ ðn − 2Þ∇μϑν þ ð∇ · ϑÞgμν
þ ðn − 2Þðϑμϑν − ϑ2gμνÞ; ðA4aÞ

~̂Rμν¼ R̂μνþðn−2Þ
h
∇μϑνþϑμϑν−

gμν
n
ð∇ ·ϑþϑ2Þ

i
; ðA4bÞ

~R ¼ Ω2½Rþ 2ðn − 1Þ∇ · ϑ − ðn − 1Þðn − 2Þϑ2�: ðA4cÞ

Note that ∇ · ϑ ¼ □ϒ. For n ¼ 4, these become

~Rμν¼Rμνþ2∇μϑνþð∇ ·ϑÞgμνþ2ðϑμϑν−ϑ2gμνÞ; ðA5aÞ

~̂Rμν ¼ R̂μν þ 2

�
∇μϑν þ ϑμϑν

gμν
4

ð∇ · ϑþ ϑ2Þ
�
; ðA5bÞ

~R ¼ Ω2ðRþ 6ð∇ · ϑ − ϑ2ÞÞ: ðA5cÞ

The Weyl tensor Cκ
λμν is invariant under conformal

transformations, so that
ffiffiffi
g

p
C2 is also invariant. Assuming

that the conformal transform does not change the topology
(i.e., Euler characteristic), then G must change by ∇μJμ for
some current Jμ. SinceG¼C2−2W, withW≡R̂2

μν−R2=12,
we find that W transforms as

~W −W ¼ 4∇μJμ; where ðA6Þ

Jμ≡ϑν∇μϑ
ν−ϑμ∇ ·ϑþ

�
Rμν − gμν

R
2

�
ϑνþϑ2ϑμ: ðA7Þ

To derive this result, we must calculate

ffiffiffi
~g

p
~W ¼

ffiffiffi
~g

p �
~̂R
2

μν −
~R2

12

�
; ðA8aÞ

¼ ffiffiffi
g

p �h
R̂μνþ2

�
∇μϑνþϑμϑν−

gμν
4
ð∇ ·ϑþϑ2Þ

	i
2

−
½Rþ6ð∇ ·ϑ−ϑ2Þ�2

12

�
: ðA8bÞ

Hence, letting ΔW ≡ ~W −W, we find

ΔW ¼ 4R̂μνð∇μϑν þ ϑμϑνÞ − Rð∇ · ϑ − ϑ2Þ

þ 4

�
∇μϑν þ ϑμϑν −

gμν
4

ð∇ · ϑþ ϑ2Þ
�

2

− 3ð∇ · ϑ − ϑ2Þ2; ðA9aÞ

¼ 4R̂μν∇μϑν − R∇ · ϑþ 4R̂μνϑμϑν þ Rϑ2

þ 4ð∇μϑν þ ϑμϑνÞ2 − ð∇ · ϑþ ϑ2Þ2
− 3ð∇ · ϑ − ϑ2Þ2; ðA9bÞ

¼ ð4Rμν∇μϑν − 2R∇ · ϑÞ
þ 4ðRμνϑμϑν þ ð∇μϑνÞ2 − ð∇ · ϑÞ2Þ
þ 4ð2ϑμϑν∇μϑν þ ϑ2∇ · ϑÞ: ðA9cÞ

In the last step, the squares were expanded into monomials
and the various terms gathered into a polynomial in ϑμ. For
later convenience, the terms involving the curvature were
expressed in terms of the usual Ricci tensor.

23With appropriate adjustments for sign conventions, our
formulae agree with Appendix G of Ref. [39].
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We now wish to show that the changeΔW can be written
as the divergence of a vector. [Fortunately, the quartic terms
involving ðϑ2Þ2 canceled out in Eq. (A9c), as required.] The
linear terms may be written as 4∇μ½ðRμν − gμνR=2Þϑν�,
since the Einstein tensor has zero divergence. The cubic
terms are also easily seen to be 4∇μ½ϑ2θμ�.
The quadratic terms require a bit more work. We will

want to use the well-known relation24 Rμνϑν¼½∇ν;∇μ�ϑν¼∇ν∇μϑν−∇μ∇ ·ϑ, in order to write it as gradients like
the other terms. We may take advantage of the fact that
ϑν is itself the gradient of a scalar to rewrite ∇μϑν ¼∇μ∇νϒ ¼ ∇ν∇μϒ ¼ ∇νϑ

μ, since two covariant derivatives
commute when acting on a scalar. Hence, Rμνϑν ¼
□ϑμ −∇μ∇ · ϑ.
To bring all the quadratic terms into the form of a

divergence, note that there are only two vector monomials
that can be formed that are both quadratic in ϑμ and have a
single gradient, viz., ϑν∇μϑ

ν and ϑμ∇ · ϑ, so the quadratic
terms in the current Jμ must be a linear combination of
these two vectors. Their divergences are

∇μðϑν∇μϑνÞ ¼ ð∇μϑνÞ2 þ ϑν□ϑν; ðA10aÞ

∇μðϑμ∇ · ϑÞ ¼ ð∇ · ϑÞ2 þ ϑμ∇μð∇ · ϑÞ: ðA10bÞ

Pulling all these pieces together, we find the quadratic
terms become

½Rμνϑμϑν þ ð∇μϑνÞ2 − ð∇ · ϑÞ2� ðA11aÞ

¼ ϑν□ϑν − ϑμ∇μð∇ · ϑÞ þ∇μðϑν∇μϑνÞ − ðA11bÞ

ϑν□ϑν −∇μðϑμ∇ · ϑÞ þ ϑμ∇μð∇ · ϑÞ
¼ ∇μ½ϑν∇μϑν − ϑμ∇ · ϑ�; ðA11cÞ

establishing finally that ΔW is a total divergence. Thus, it
contributes nothing to the EoM and, unlike the G-B term,
also zero from the boundary of a compact manifold.
For example, in four dimensions, the Lagrangian density

Lho, Eq. (4.2b), involving the real field ϕðxÞ becomes

Lho ¼
ffiffiffi
g

p �
1

3b
½R−6□ϒþ6ð∇ϒÞ2�2þ 1

2a
C2
κλμνþcR�R�

�
;

ðA12Þ

withϒ≡ ð1=2Þ logðϕ2=M2Þ. The last term, which takes the
form of a divergence locally, can be ignored in perturbation
theory. With the form of Lho in Eq. (A12), the full action
can then be written as

SE ¼
Z

d4x
ffiffiffi
g

p h
−
ξM2

2
½R − 6∇2ϒþ 6ð∇ϒÞ2�

þ Lho þ LJðϕ; gμνÞ
i
; ðA13aÞ

where LJðϕ; gμνÞ ¼
ZM2

2
ð∇ϒÞ2 þ λM4

4
: ðA13bÞ

The linear term in R now has Einstein-Hilbert form, and
the original ϕ4 self-interaction has become a cosmological
constant that is positive for λ > 0! Having assumed that
ϕðxÞ ≠ 0, we may take ϕ > 0, WLOG, since the action is
invariant under ϕ → −ϕ.
What remains is to gather like terms together in

Eq. (A13). The terms quadratic in ϒ are

1

2
ðZ þ 6ξÞðM∇μϒÞ2; ðA14Þ

where we temporarily neglected other terms coming from
Lho. Assuming that Z þ 6ξ > 0, the canonically normal-
ized scalar field is ζ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðZ þ 6ξÞp

Mϒ. The preceding
action then becomes Eq. (4.2) in the text.
We see that terms in Lho involve powers of ζ=M.

Similarly, if we carry out a derivative expansion in the
metric as usual, then terms involving gradients of the metric
beyond the quadratic terms and all those coming from Lho
will carry inverse powers of M. Thus, while Lho is critical
for renormalizability, the low-energy effective theory at
energy scales small compared to M will be dominated by
the Einstein-Hilbert action as usual. Of course, M is
completely arbitrary here, but eventually in the QFT, we
hope to reconcile this with the observed value.

APPENDIX B: LIE ALGEBRA CONVENTIONS

We briefly review our conventions [4] for the Lie algebra
of SOð10Þ in order to establish our notation and conven-
tions. The defining or fundamental representation of the
group SOð10Þ consists of 10 × 10 real, orthogonal matri-
ces, O satisfying OOτ ¼ 1, where Oτ denotes the trans-
pose. Writing O ¼ expðiθaRaÞ, the (Hermitian) generators
Ra must be imaginary and antisymmetric, satisfying

½Ra; Rb� ¼ ifabcRc; Tr½RaRb� ¼ δab=2; ðB1Þ

where we adopted the usual normalization convention
(in physics) for the fundamental. Representation matrices
are considered equivalent if they differ only by a unitary
transformation ~Ra ¼ U†RaU. This is because the trans-
formed matrices ~Ra are Hermitian and still satisfy Eq. (B1)
with the same structure constants fabc. On the other hand,
these equivalent matrices may be neither real nor antisym-
metric. In particular, it is possible to choose them so that the
Cartan subalgebra is diagonal. (See, e.g. Ref. [41].) This is of
considerable advantage for analyzing the patterns of SSB.

24More generally, ½∇μ;∇ν�Vλ ¼ Rκ
λμνVκ which mathemati-

cians [40] would write as ∇2V ¼ RV, the wedge product being
understood. In this notation, ∇2 ≡∇ ∧ ∇ ≠ □.
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In order to understand better the choice of basis
described in Eq. (6.1) and thereafter, we can proceed as
follows. The 10 × 10 Hermitian generators Ra are broken
down into 4 5 × 5 blocks of the form given in Eq. (6.1).
The Ra

1 are 5 × 5 Hermitian matrices, of which there
are 25 linearly independent possibilities. These 25 con-
stitute a complete set that satisfy the algebra of Uð5Þ ¼
SUð5Þ ⊗ Uð1Þ, with the Cartan subalgebra given by the
diagonal generators. We associate them with the first 25
SOð10Þ generators, defining Ra

1 ¼ 0 for fa ¼ 26;…; 45g:

Ra
1 ≡ 1ffiffiffi

2
p

�Ra
1 0

0 −Ra
1
�

�
; fa ¼ 1;…; 25g: ðB2Þ

We choose the first 24 Ra
1 to be traceless, generators of the

5 of SUð5Þ, with the 25th proportional to 15, the generator
of the Uð1Þ, normalized as required by SOð10Þ. This is
frequently written as 5−2. The 25 conjugate matrices
f−Ra

1
�g of SUð5Þ ⊗ Uð1Þ are generators for 5̄2.

On the other hand, we may also employ these generators
to define the adjoint field,

Φ1 ≡
X25
1

ϕaRa
1; ðB3Þ

with ϕa real. The components of the matrixΦ1 transform as
the 240 ⊕ 10 representation of SUð5Þ ⊗ Uð1Þ.
The Ra

2 are complex, antisymmetric, 5 × 5 matrices, of
which there are 10 linearly independent that we shall call
Rn. Because these are antisymmetric, we have Rn†¼−Rn�.
From these, we may form two sets of 10 × 10, Hermitian
matrices,

R24þ2n
2 ≡ 1ffiffiffi

2
p

�
0 Rn

−Rn� 0

�
;

R25þ2n
2 ≡ 1ffiffiffi

2
p

�
0 iRn

iRn� 0

�
; ðB4Þ

for fn ¼ 1;…; 10g. Although the sub-blocks are obviously
not linearly independent, the two sets are linearly inde-
pendent as SOð10Þ generators. We define Ra

2 ¼ 0 for
fa ¼ 1;…; 25g.

These too may be used to compose fields

Φ2 ≡
X10
1

ðϕ24þ2n þ iϕ25þ2nÞRn; ðB5Þ

with real ðϕ24þ2n;ϕ25þ2nÞ. In fact, it can be shown that
ðΦ2Þij transforms as the antisymmetric product represen-

tation ð5−2 ⊗ 5−2Þa ¼ 10−4 of the Uð5Þ. Consequently,
−ðΦ�

2Þij ≡ −ðΦ2Þij transforms as the conjugate represen-
tation ð5̄2 ⊗ 5̄2Þa ¼ 10þ4. (See, e.g. Ref. [42], Tables 29
and 43.)
Combining these 45 component fields, we may write the

adjoint of SOð10Þ in the block form

Φ ¼
ffiffiffi
2

p
ϕaRa ¼

� Φ1 Φ2

−Φ�
2 −Φ�

1

�
: ðB6Þ

Indeed, the preceding decomposition describes the
branching rules for SOð10Þ → SUð5Þ ⊗ Uð1Þ, viz.,

45 → 10 ⊕ 240 ⊕ 10−4 ⊕ 10þ4: ðB7Þ

The first two 10; 240 are self-conjugate, whereas the last
two are distinct conjugate pairs. To break down this manner
of representing SOð10Þ into greater detail, since the Ra

1

generate the algebra of SUð5Þ ⊗ Uð1Þ, which has rank
five, we can choose generators of the Cartan subalgebra,
Hi

1; i ¼ f1;…; 5g, to be diagonal. Setting Hi
2 ¼ 0, the

corresponding five SOð10Þ generators are

Hi ≡ 1ffiffiffi
2

p
�Hi

1 0

0 −Hi
1
�

�
; fi ¼ 1;…; 5g: ðB8Þ

With the appropriate normalization of the Uð1Þ generator,
we may assume Tr½HiHj� ¼ Tr½Hi

1H
j
1� ¼ δij=2, as in

Eq. (B1), i.e. the Hi are the Cartan generators of
SOð10Þ as well. In the text, this was applied to the field
Σ, decomposed as in Eq. (6.2). It immediately follows that
the expectation values obey Eq. (6.5).
Similarly, the real vector fields, Aμ, which transform as

the adjoint of SOð10Þ, may be defined analogously to Φ,
Eq. (B6), Aμ ≡ ffiffiffi

2
p

Aμ
aRa.
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