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The detection of gravitational waves (GWs) from black hole (BH) mergers provides an inroad toward
probing the interior of astrophysical BHs. The general-relativistic description of the BH interior is that of
empty spacetime with a (possibly) singular core. Recently, however, the hypothesis that the BH interior
does not exist has been gaining traction, as it provides a means for resolving the BH information-loss
problem. Here, we propose a simple method for answering the following question: Does the BH interior
exist and, if so, does it contain some distribution of matter or is it mostly empty? Our proposal is premised
on the idea that, similar to the case of relativistic, ultracompact stars, any BH-like object whose interior has
some matter distribution should support fluid modes in addition to the conventional spacetime modes. In
particular, the Coriolis-induced Rossby (r-) modes, whose spectrum is mostly insensitive to the
composition of the interior matter, should be a universal feature of such BH-like objects. In fact, the
frequency and damping time of these modes are determined by only the object’s mass and speed of rotation.
The r-modes oscillate at a lower frequency, decay at a slower rate, and produce weaker GWs than do the
spacetime modes. Hence, they imprint a model-insensitive signature of a nonempty interior in the GW
spectrum resulting from a BH merger. We find that future GW detectors, such as Advanced LIGO with its
design sensitivity, have the potential of detecting such r-modes if the amount of GWs leaking out quantum
mechanically from the interior of a BH-like object is sufficiently large.
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I. INTRODUCTION

The view in general relativity (GR) of a black hole (BH)
as a region of empty space except for a highly dense and
classically singular core of matter has recently been
presented with a formidable challenge—it appears to be
in contradiction with the laws of quantum mechanics! The
modern point of view for diffusing this crisis is that
the interior does not exist on account of spacetime ending
at the BH horizon. There is, however, some divergence of
views on how spacetime terminates. Some argue that it
ends with a “firewall” of high-energy particles surrounding
the horizon [1] (also [2–4]). Others argue that part of the
geometry simply does not exist as in the fuzzball model of
BHs [5–8] (also see [9] and, more recently, [10]).
But what if the BH interior does exist and is filled with

some distribution of matter? The first obvious obstacle is
how to prevent the inevitable fate of gravitational collapse
that awaits any matter distribution whose size is approach-
ing its gravitational radius [11]. What is then required is
some exotic spacetime containing equally exotic matter
which can be stored in an ultracompact object that is able to
withstand gravitational collapse. This object must, at the

same time, exhibit all of the standard properties of BHs
when viewed from the outside. We will refer to such
spacetimes collectively as “BH-like objects”. One example
for such an object is described by our recent proposal that a
BH should be modeled as a bound and metastable state of
highly energetic, interacting, long, closed strings; figura-
tively, a collapsed polymer [12,13]. (Here, we are using
“collapsed” as it is meant in the polymer literature, e.g.,
[14], and not gravitationally so.)
One can understand on a from a physics perspective how

such a stringy object might evade gravitational collapse.
A hot bath of closed strings will entropically favor a state
with just a few long loops. These long strings can be
effectively described as performing a random walk whose
linear size, for a fixed total length of the strings, scales in
four dimensions with the square root of the total length of
the string. In the case of the polymer model, this means that
the linear size of the region occupied by the strings scales
with the Schwarzschild radius. We are then assuming that
this effective and repulsive random-walk “force” is enough
to overcome the would-be gravitational collapse. We are
also assuming that, like any other polymer, a fluidlike
description should be applicable, if only in a macroscopic,
coarse-grained sense.
Here the collapsed-polymer model is meant only as an

illustrative example of a possibly more general situation;
namely, a BH proxy that is composed of fluidlike matter. It
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will eventually become clear that the analysis applies for
this broader range of models.
Putting such claims to the test need no longer be limited

to the purview of thought experiments and computer
simulations. Thanks to the recent advancement in gravita-
tional wave (GW) astronomy, brought to the forefront by
the celebrated observation of GW150914 [15] and its
companions [16,17], there are reasons to be optimistic
about the prospects for future detections. Indeed, the
current observations have already proven their utility for
constraining deviations from the GRmodel of BHs [18,19].
Let us briefly review as to why GWs can be expected to

carry information about their BH sources. (A longer
discussion appears in [20].) The post-merger stage of a
BH collision is that of a single BH settling down into a state
of equilibrium. As is typical for partially open systems, the
return to equilibrium is associated with a set of ringdown
modes whose characteristic frequencies are determined by
the system’s size, shape and composition. These modes are
necessarily damped and often called quasinormal modes
(QNMs). BHs are partially open in the sense that matter can
enter but not exit whereas, normally, the opposite is true.
This makes BHs quite different from other partially open
systems because the modes are not escaping from the BH
itself, which is of course an impossibility. Rather, space-
time modes propagating in from infinity are reflected back
from the surrounding gravitational potential barrier or,
otherwise, transmitted through it. Whereas the transmitted
modes continue on past the horizon and are gone forever,
some of the reflected modes constitute the observed GWs.
The frequencies and damping times for the reflected

modes are determined by the properties of the gravitational
potential barrier and, therefore, by only a handful of BH
parameters. Provided that the BH carries no net charges
(nor any exotic “hair”), the only relevant parameters are its
mass M and angular velocity Ω. For further reading, one
can start with the excellent review articles [21–23] and
then, for example, [24–31].
The arguments in the current paper are premisedon the idea

that a BH-like object—which is assumed to contain a non-
trivial matter distribution rather than just a singular core—has
some resemblance to a relativistic star. As such, a BH-like
object will have a collection of fluid modes in addition to the
previously described set of spacetime modes, just like a
relativistic star has both. In the relevant literature, the
spacetimemodes are calledw-modes. As for the fluid modes,
there aremanydifferent classes,with each class representing a
different restoring force acting on the star to return it to
equilibrium.An incomplete list includes pressure (p-)modes,
buoyancy or gravitational-restoring (g-) modes, shear (s-)
modes and torsional (t-) modes. For most of these cases, the
frequencies and damping times of the modes are sensitive to
the precise composition of the stellar object.
Our current interest is the spectra of the so-called r

modes (e.g., [32–34]). These are nonradial modes whose

amplitudes grow from zero at the center of the star to a
maximal value at the surface. Their leading-order frequen-
cies are insensitive to the interior composition and, just like
the spacetime modes of a BH, depend only on the mass and
rotational speed of the stellar body. So that, if one wants an
answer to a simple binary question—“does a BH-like
object contain a nontrivial matter distribution or does it
not?”—these modes are just what is needed.
The r modes are Rossby (planetarylike) waves that arise

due to the effects of the Coriolis force; these being the
dominant effects of rotation provided that the object’s radial
velocity is smaller than the speed of light c. This is because
the Coriolis force is proportional to Ω, whereas the effects
of the centrifugal force are proportional to Ω2. As a
consequence, a stellar body that is rotating slower than
the speed of light can be treated, approximately, as a
spherically symmetric rotator. In a case where the axis of
rotation points north, the Coriolis force induces counter-
clockwise motion for fluid initially flowing to the north
pole from the equator and clockwise motion in the opposite
case. One complete cycle defines the characteristic
frequency of the mode, which scales linearly with Ω.
One might wonder about the other types of fluid modes.

These would also be interesting for the purposes of
discriminating between different models. But, as other
types of internal modes do depend on the composition
of the object, they would not have the same type of
universality that is being exploited here. One might also
wonder about the spacetime modes. But these, by defi-
nition, do not know about the details of the internal
composition, as they depend strictly on the exterior
geometry and boundary conditions at the outer surface.
The former is the same for any BH-like object, whereas the
latter is a model-dependent consideration; for instance,
some models are supposed to produce “echoes” (see
below). Nonetheless, a sufficiently compact object can
be expected to produce modes that are similar to the
predominant modes of a Kerr BH.
In the remainder of the paper, we review some basic facts

about r modes, both in general and in the current context
(Sec. II), determine the characteristic properties of the
resulting GWs (Sec. III), present a gravitational waveform
along with a plot of the associated spectrum (Sec. IV),
discuss the prospects for detecting r modes in the near
future (Sec. V), and then conclude (Sec. VI).
Before proceeding any further, it is important to empha-

size that our compact objects of interest are those whose
outer surfaces act (at least effectively) as BH horizons in
that they inhibit the leakage of matter from inside to outside
when only the effects of general relativity are considered.
Our collapsed polymer model has just such a “quantum
horizon”; its outer surface does not permit matter to escape
by classical means but is otherwise only partially opaque
for finite ℏ [13]. This is because matter can only escape as a
result of string interactions, which is controlled by the
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string coupling, a strictly quantum parameter. More gen-
erally, a quantum horizon refers to the outer surface of a
BH-like object for which the escape of matter is a quantum
process—quantum in the sense that it can be parametrized
by a small, dimensionless parameter which would not be
present for the BHs of general relativity. We commonly
refer to this small parameter as a “dimensionless ℏ”, which
is simply the square of the string coupling for the collapsed-
polymer model. (It is also assumed that the fundamental
spacetime modes of the object are close enough to those of
a Kerr BH so as to not yet be ruled out by the observational
data.) And it is this quantum transparency that will allow
for the internal modes to couple to external GWs; albeit
with an appropriate suppression. This point is discussed
further in Sec. III, although a full explanation will be
deferred until a later article [35], where the same picture is
considered from the perspective of both an internal and
external observer.
Let us also take note of a different approach [36–38]

(also [39,40]) which argues that, for “exotic compact
objects” without horizons, there is a new class of modes
that are absent in the classical-GR BH case and analogous
to echoes (i.e., modes trapped between the object’s outer
surface and potential barrier for a finite time). The basic
idea is to model the interior of the object as a wormhole, as
the inner light ring of a wormhole captures the essence of
an echo chamber. Given this setup, one finds that the
damping times of the trapped modes depend on a certain
power of the log of the throat location relative to the
Schwarzschild radius [41]. Due to this large power, such a
deviation in the damping times from the BH case effec-
tively enters as a power-law deviation [38]. As shown in a
companion article [20], the collapsed-polymer model also
predicts power-law deviation to the damping times, albeit
with a much different expansion parameter.

II. THE r MODES OF A ROTATING
BLACK-HOLE-LIKE OBJECT

A rotating BH-like object can be treated, approximately
and to leading order inΩ, as a spherically symmetric rotator
with a constant angular velocity. Such a rotator naturally
supports r modes. Corrections to the leading order in Ω are
expected to be of order Ω2. We will argue later that for the
cases of interest, such corrections are small and therefore
justify this approximation. Since our goal is to demonstrate
how one could discriminate a fluid-filled interior from
others in simple terms, we will confine ourselves to the
nonrelativistic approximation that allows us to obtain
closed form expressions for the frequency and life-time
of the rmodes. A more precise analysis may be required for
the purpose of making definitive quantitative predictions.
Closely following [33], let us now review how these r

modes come about.
The starting point is the hydrodynamic momentum

equation in the co-rotating frame of reference (e.g.,

[42]). To leading order in the angular velocity Ω⃗, this
can be written as1

∂u⃗
∂t ¼ −∇⃗δΦ −

1

ρ
∇⃗δpþ δρ

ρ2
∇⃗p − 2Ω⃗ × u⃗; ð1Þ

where δΦ represents a perturbation of the gravitational
potential, p and δp are the pressure and its perturbation, ρ
and δρ are the energy density and its perturbation, and u⃗ is
the velocity of the fluid. It will be assumed that Ω⃗ ¼ Ωẑ
with Ω > 0.
Let us now consider the radial component of the curl of

Eq. (1). With the approximations that nonradial motion

dominates over radial motion, ur ≪ u⊥, and that ∇⃗ · u⃗ is at
least linear order in Ω (in fact, it scales as Ω3 for the r

modes [33]), the resulting equation is ∂Z
∂t ¼ −2ðu⃗⊥ · ∇⃗⊥ÞΩ⃗r,

where Z ¼ ð∇⃗ × u⃗Þr is the radial component of the
vorticity and a subscript ⊥ stands for the nonradial
components of the vector. We also used the fact that p
for the background only acts radially. Since Ω⃗ does not
depend on time explicitly,

d
dt

ðZ þ 2ΩrÞ ¼ 0; ð2Þ

to linear perturbative order. The quantity in the brackets is
the radial component of the vorticity in an inertial frame,
and so Eq. (2) makes it clear that this component is
conserved.
One can deduce from Eq. (2) the nature of the induced

oscillations. Working in the co-rotating frame, let us
suppose that a fluid element starts out at the equator
(θ ¼ π=2) where it is moving north. Then, initially, Z is
a constant becauseΩr ¼ Ω cos θ ¼ 0 and we choose Z ¼ 0
for simplicity. Now, as the fluid element proceeds upwards,
Ωr increases because of the factor of cos θ. From Eq. (2), it
follows that a negative vorticity is generated, corresponding
to a clockwise rotation of the fluid element. The element
then rotates in such a way that it eventually returns to the
equator and continues its motion downwards, only to come
back up to the equator and so on. This type of motion is
described in several nice movies [45].

1We are taking some liberty in using a nonrelativistic (New-
tonian) equation to calculate the r-mode spectrum of BH-like
objects. Our justification being that the production of r modes is,
at leading order, a surface effect and thus insensitive to what lies
inside. For reference, relativistic corrections only affect the
r-mode frequency of a neutron star by 8%–20% [43,44], although
these corrections would be enhanced for the case of a BH.
Ultimately, one would have to resort to the numerical analysis of
the relativistic equations to make definitive predictions. Such a
study is outside the scope of the current paper, which is meant to
convey the basic idea of using GWs to discriminate between
fluid-filled interiors and other models.
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A more formal approach allows one to deduce the actual
relationship between the r-mode frequency and Ω. As an r
mode is toroidal at leading order, its velocity vector in the co-
rotating frame can be approximately decomposed as [46]

u⃗≃ iωrKlm

�
0;

1

sin θ
∂Ym

l

∂ϕ ;−
∂Ym

l

∂θ
�
eiωt; ð3Þ

where l, m are the angular-momentum quantum numbers,
the Y’s are spherical harmonics and Klm is some smooth
function of r which is not relevant to our purposes. When
substituting Eq. (3) into Eq. (2), one finds that the leading-
order frequency of the r modes in the co rotating frame is
ω ¼ 2mΩ

lðlþ1Þ. In an inertial frame, the frequency translates

into ω ¼ Ωð−mþ 2m
lðlþ1ÞÞ.

Our main interest is the case of l ¼ 2, m ¼ 2, for which

ωr−mode ¼ −
4

3
Ω: ð4Þ

The fact that the frequency is negative is significant and
may, under some circumstances, result in an instability
which amplifies the r modes [47]. This possibility will not
be discussed any further and the negative sign will be
left off.
To determine the value of Ω for rotating BH-like objects,

we may borrow some of the standard results for Kerr BHs
(e.g., [48]). This is because, as far as their external
properties are concerned, BH-like objects and the BHs
of GR should—by our previous assumptions and definition
for the compact objects of interest—be similar and, in some
cases like the collapsed-polymer model, indistinguishable.
In what follows, v is the rotational speed of the object and u
indicates the speed of a mode.
For spinning BHs, the frequency of rotation is para-

metrized by the measure of spin a ¼ 2v=c (a is the
dimensionless Kerr parameter),

MΩ ¼ a

2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ
: ð5Þ

Then, for the r modes (with l ¼ m ¼ 2),

Mωr−mode ¼
2

3

a

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ
: ð6Þ

In merger events for which the masses of the two
colliding BHs are approximately equal and their initial
(total) spin is small compared to their angular momentum,
the final spin parameter is a ≈ 0.7 and depends weakly on
the ratio of the masses (see [49] for details). Also, as
reported in [16], this value of a is approximately what was
measured in the three recently detected events assuming
classical-GR BHs. Then, with this choice,

MΩ ¼ 0.20 ð7Þ

for the BH-like object and

Mωr−mode ¼ 0.27 ð8Þ

for the frequency of the r modes with l ¼ m ¼ 2
[cf., Eq. (4)].
For such cases, the relativistic corrections due to the

centrifugal force or to any additional relativistic corrections
are governed by the small number v

2

c2 ¼ a2
4
¼ 0.12ð a

0.7Þ2. The
velocity of an rmode is somewhat larger than the rotational
velocity of the object but still quite nonrelativistic,
u2r−mode

c2 ¼ ω2
r−mode
Ω2

v2

c2 ¼ 16
9
v2

c2 ≃ 0.22ð a
0.7Þ2. This means that the

expected relativistic corrections are less than about 25% of
the nonrelativistic values. At the level of accuracy of this
paper, this is sufficient. To obtain more precise results one
has to resort to better analytic and numerical analysis that
will take into account also the relativistic corrections.
We now want to compare the frequency of the rmodes in

Eq. (8) to that of the slowest-oscillating spacetime modes
ωst. The value of the latter frequency for the case of a ¼ 0.7
can be found in, e.g., Table II of [50],

Mωst ¼ 0.53: ð9Þ

It follows that the frequency of an r mode is about half that
of the lowest-frequency spacetime modes in the a ¼ 0.7
case,

ωr−mode

ωst
≃ 0.5; ð10Þ

up to a small (known) dependence on the ratio of the
masses of the colliding BHs.

III. FREQUENCY, DECAY TIME, AND
AMPLITUDE OF THE EMITTED

GRAVITATIONAL WAVES

We would now like to determine the three quantities that
characterize the additional emission of GWs due to the r
modes: frequency, decay time and amplitude. We find that
the frequency, which is the most robust prediction, scales
roughly as ωr−mode ∼ ωstv=c. The decay time scales as
1=τr−mode ∼ ð1=τstÞðv=cÞ2 and is less robust. The amplitude
scales as hr−mode ∼ hstðv=cÞ3 and is the least robust
prediction. (Here, we have been using ur−mode ∝ v.)
Each of the three quantities will be discussed in turn.
Let us first recall what was found for the frequency. For

GWs that are sourced by r-mode oscillations, this is given
by Eq. (6) in general and, for values of the spin parameter
close to a ¼ 0.7, by Eqs. (8) and (10). In the latter case, we
recall that Mωr−mode ¼ 0.27 or, equivalently, ωr−mode=
ωst ≃ 0.5. We will thus use the scaling relation
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ωr−mode ∼
ur−mode

c
ωst ≃ 0.5ωst

�
a
0.7

�
: ð11Þ

Although such a relation is based on only a single choice of
a (namely, a ¼ 0.7), it can be checked that Eq. (11)
recovers the correct value of ωr−mode in Eq. (6) for the
choice of, e.g., a ¼ 0.5 to within 5% accuracy.
Let us next move on to the decay time. In general, the

decay time τ of a mode can be estimated by the ratio of its
dissipated energy dE

dt to its total energy E, 1=τ ¼ 1
E
dE
dt . The

decay time of the r modes and, therefore, of their
corresponding GWs is determined by the shortest dissipa-
tion time of three possibly important sources of dissipation:
(i) the emission of GWs which reduces the energy of the r
modes accordingly, (ii) the leakage of r modes away from
the BH-like object by processes that differ from the
emission of GWs (for instance, by coupling to other types
of matter) and (iii) the intrinsic dissipation within the
interior matter.
First, the decay time of the r modes due to emission of

GWs scales as the light-crossing time R=c divided by a
factor of ðMωr−modeÞ6 (e.g., [47]). This is much too long a
time scale to be of any relevance to our discussion.
Second, the time scale for leakage can be estimated by

calculating the imaginary part of the QNM frequencies. As
explained in detail in [20], when the modes are non-
relativistic, the imaginary part of the frequency ωI is
parametrically smaller than the real part ω because of
the scaling ωI ∼ u

cω. Then it follows from Eq. (11) that the
imaginary part of the r-mode frequency is doubly sup-
pressed relative to that of the spacetime QNMs,

ωI r−mode ∼
�
ur−mode

c

�
2

ωI st; ð12Þ

where the value of ωIst for a ¼ 0.7 is given in, e.g., Table II
of [50], MωI st ¼ 0.08. Equivalently,

τr−mode ∼
�
ur−mode

c

�
−2
τst ≃ 4.6τst

�
a
0.7

�
−2
: ð13Þ

The third source of energy loss is the intrinsic dissipa-
tion, whose time scale can be estimated following [47].
As will be shown, unless the ratio of the shear viscosity η
to the entropy density s is the smallest that it can be—an
approximate saturation of the KSS bound η=s ∼ 1 [51]—
then the intrinsic dissipation is too large and it is likely that
the modes will decay too quickly to ever be detected. In the
case of the polymer model, the interior matter does indeed
saturate the KSS bound [13], and a simple argument (based
on reinterpreting the KSS bound as an upper limit on the
entropy [52]) suggests that this must be generally true for
other models as well. Following [47], one then finds that
the intrinsic-dissipation time ~τ for the r modes is given by

1

~τr−mode
∼

η

ρR2
∼
�
ur−mode

c

�
2 1

τst
; ð14Þ

where we have used the fact that η=ρ ∼ R for KSS-
saturating matter with relativistic modes and η=ρ effectively
scales like ðucÞ2 for nonrelativistic modes [20] so that
η=ρ ∼ ðucÞ2R. If η=ρ is parametrically larger than R, as is
the case for all known forms of nonexotic matter, then the
decay time would be much smaller than that of the longest-
lived spacetime modes, meaning that the detection of the r
modes would no longer be feasible.
Conversely, if η=ρ ∼ R as expected, then both the

leakage time and the intrinsic-dissipation time are para-
metrically longer than the decay time of the spacetime
QNMs by a factor of ðu=cÞ−2,

τr−mode ∼ ~τr−mode ∼
�
ur−mode

c

�
−2
τst ≃ 4.6τst

�
a
0.7

�
−2
:

ð15Þ

Let us now consider the amplitude of the emitted GWs.
Our approach is to use Einstein’s celebrated quadrupole
formula, while taking into account that the matter in some
models can be surrounded by a (possibly semi-transparent)
horizon. The latter consideration can be incorporated by
parametrizing the strength of the coupling of the fluid
modes to the emitted GWs. For any specific case, this
coupling is determined by the details of the model. For
example, if the matter within a BH-like object is not
surrounded by any horizon, this coupling can be estimated
by treating the background spacetime as fixed and (essen-
tially) flat [53]. Then, h ∝ d2Q=dt2, where h is the
gravitational waveform and Q is the quadrupole moment
of the energy density.
Now suppose that some quadrupole moment does exist

in a confined region of space. Just how much of this
moment contributes to the production of outgoing GWs? If
the region is surrounded by a classical horizon, the answer
is none. In this case, the horizon is completely opaque and
nothing can escape from inside. On the other hand, the
region will be semi-transparent if surrounded by a “quan-
tum horizon” because then some GWs can escape to the
outside. The fraction of those escaping is proportional to
the dimensionless ℏ of the problem, ~ℏ < 1. For example, in
the polymer model, the relevant dimensionless parameter
for a certain class of fluid modes is ~ℏ ¼ g2s [20], where the
string coupling gs is the ratio between the Planck length and
the string length scale. The numerical value of gs is
expected to be small but not extremely small. For instance,
the string coupling cannot be too much smaller than unity
given that the expected grand unification of forces at the
Planck energy is correct. In cases like the wormhole model
[36], the region is not surrounded by any horizon.
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We will cover this broad spectrum of cases by intro-
ducing a “transparency” or transmission coefficient Thor
that ranges from 0 (a classical horizon) to 1 (no horizon).
An r mode can now be characterized as follows: Its
frequency and lifetime are fixed by the frequency of
rotation (equivalently, the Kerr parameter a) of the BH-
like object, whereas its amplitude additionally depends on a
model-dependent parameter Thor for which 0 ≤ Thor ≤ 1.
Let us briefly comment on how Thor can generally be

estimated (see [35] for a detailed discussion). One can
assign a width to a given quantum horizon of ΔRS ¼ ~ℏRS
(RS is the object’s Schwarzschild radius). The width ΔRS
can, when the BH is out of equilibrium, be expected to be
macroscopically large and still well within the potential
barrier at about 3

2
RS. This is because ΔRS scales with the

product of the horizon radius and a simple, positive power
of the dimensionless ℏ which need only be smaller than
unity. The width ΔRS implies that the GWs corresponding
to some fluid mode will first appear in the exterior at a

radius where the Tolman redshift factor is
ffiffiffi
~ℏ

p
. Using this

redshift along with the quadrupole formula, one finds that
the amplitude of the GWs, by the time they reach the
potential barrier, will be suppressed by some power of ~ℏ—
it is this suppression that should be identified with Thor, a
number that is less than one but, at the same time, need not
be unobservably small. On the other hand, in cases like the
wormhole model for which there is no horizon, one can
view Thor as some power of the redshift factor at the
location of the object’s outermost surface or its throat.
The redshift factor describes how an external observer,

who believes that the fluid modes originate from outside of
the horizon, is able to reconcile the suppression factor Thor
with her knowledge of general relativity. From an internal
perspective, the suppression can be attributed to quantum
effects being the primary source of mode leakage. One
should not combine these two sources of suppression, as
this would amount to a double counting. The consistency
between the internal and external perspectives and that
these provide complementary pictures will be exposed in
the aforementioned treatment [35].
Putting all of these ingredients together and recognizing

that the rmodes induce velocity perturbations, one can find
an appropriate estimate of the GW amplitude in [53] (also
[47]). Let us first express the r-mode waveform as

hr−mode ¼ Ar−modee−t=τr−mode sinðωr−modet − ϕrÞ; ð16Þ
with ϕr representing the constant phase and Ar−mode, the
dimensionless strain amplitude. Then

Ar−mode ∼ αr−modeThor
M
rs

�
ur−mode

c

�
3

; ð17Þ

where αI < 1 parametrizes the amount of energy that the
merger injects into the Ith class of mode perturbations and

rs is the radial distance from the center of the source. The
factor ður−mode

c Þ3 is a product of a factor of ður−mode
c Þ2

originating from the two time derivatives in the quadrupole
formula (d=dt ∼ ωr−mode ∝ ur−mode) and additional factor
of ur−mode

c that can be attributed to the waves being sourced
by velocity perturbations.
This amplitude should be compared to that of the

spacetime modes, which scales as

Ast ∼ αst
M
rs

: ð18Þ

In the recently detected events, the fraction of radiant
energy in the form of GWs was found to be a few percent of
the system’s total mass, which is consistent with prior
estimates of about αst ∼ 0.1 corresponding to a gravita-
tional radiant energy of around 3% ofM [54,55]. It is likely
that αr−mode and αst are of similar magnitudes, in which
case the suppression of the r-mode amplitude is determined
solely by Thorður−mode=cÞ3,

Ar−mode ∼ Thor

�
ur−mode

c

�
3

Ast ∼ 0.1ThorAst

�
a
0.7

�
3

: ð19Þ

IV. GRAVITATIONAL WAVEFORM
AND SPECTRUM

Let us now look at the gravitational waveform for the r
modes in both the time and Fourier domain, beginning with
the former. The case of primary interest is when the final
spin is a ¼ 0.7, which corresponds to the merger of two
nonspinning, equal-mass BHs. From the results of the
previous section, the following picture emerges: In a BH-
merger event, the r modes produce a GW signal at a lower
frequency, ωr−mode ∼ 0.5ωst, with a longer decay time,
τr−mode ≃ 4.6τst, and with a suppressed amplitude,
hr−mode ∼ 0.1hst, in comparison to the standard space-
time-mode signal. One can also anticipate some additional
delay in the emission of GWs due to the reduction in
frequency, as there is an expected delay of about one
oscillatory period. (This allows time for the mode to reach
the outer surface.) Figure 1 depicts the waveform of GWs
emitted from a BH-merger—if the r modes do exist—for a
final spin of a ¼ 0.7, v=c ¼ 0.35, ωr−mode ¼ 0.5ωst,
τr−mode ¼ 5τst and hr−mode ¼ 0.1hst, along with a delay
of about one period.
We next consider the GW spectrum in the Fourier

domain, as this is important for calculating the signal-to-
noise ratio (SNR) later. The Fourier transform of a damped
sinusoid is given by [20,56]
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j ~hðfÞj

¼ Ar−modeτr−mode

����2f
2
rQr cosϕr−frðfr− 2ifQrÞsinϕr

f2r − 4iffrQrþ 4ðf2r −f2ÞQ2
r

����;
ð20Þ

where fr ≡ ωr−mode=ð2πÞ is the r-mode frequency and
Qr ≡ πfrτr−mode. To make this transform explicit, Eqs. (11)
and (13) can be used to determine how the r-mode
frequency and damping time scale with respect to those

of the spacetime mode. Meanwhile, the fitting function for
the spacetime-mode parameters in terms ofM and a can be
found in [50]. Similarly, Eq. (19) can be used for the
amplitude scaling, where the spacetime-mode amplitude
Ast can be obtained from [20].
Figure 2 presents such spectra for a ¼ 0.5 and a ¼ 0.68.

Here, we have set Thor ¼ 1, ϕr ¼ 0, depicted the sky-
averaged amplitude at a luminosity distance of DL ¼
410 Mpc and chosen M ¼ 62.3 M⊙, where the last two
values correspond to those of GW150914 [15,16]. The
relation between a and the symmetric mass ratio η of a BH
binary [57] has been adopted to rewrite the radiation
efficiency in Ast (with the pre-merger BH spins set to 0
for simplicity) in terms of a. One can observe how the
amplitude, frequency and the width of the peak all grow
with increasing a. For reference, we have included the
spectrum of the spacetime mode for GW150914; as well as
the noise spectral density of Advanced LIGO (aLIGO),
both for its O1 run and for its design sensitivity.

V. PROSPECTS FOR DETECTION

Let us now discuss the future prospects for detecting r
modes. In [20], we derive an upper bound on the amplitude
of the secondary ringdown mode relative to the primary one
assuming that the former was not detected in the
GW150914 observation. Applying that result to the current
analysis and choosing a ¼ 0.68 (the final spin of the
remnant BH for GW150914 [15,16]), we then obtain
hr−mode=hst < 0.26. This inequality can, using Eq. (19),
be mapped to one on Thor, leading to Thor ≲ 2.6. This
should be regarded as only a rough bound, as it is based on
scaling relations for the amplitude, frequency and damping
time which neglect any Oð1Þ prefactors. Rough or other-
wise, such a bound is not really useful because Thor cannot
be any larger than unity.
Our main interest is in the scaling relation for the

minimum Thor that is required for detecting r modes

(which we denote TðminÞ
hor ) in terms ofM, a, DL and detector

sensitivity. The starting point is the calculation of the SNR,
which is obtained from

SNR2 ¼ 4

Z
fmax

fmin

j ~hðfÞj2
SnðfÞ

df; ð21Þ

where fmin and fmax are the minimum and maximum
frequencies, while Sn is the noise spectral density. Then
using Eqs. (19)–(21), along with ur−mode=c ∝ a and
df ∼ 1=τr−mode, one finds that

SNR ∝ Ar−mode
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τr−mode

p
∝ ThorAsta3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τr−mode

p ð22Þ

for a white-noise background. It is worth noting that the
SNR scales as ðv=cÞ2 since Ar−mode ∝ ðv=cÞ3 and
τr−mode ∝ ðv=cÞ−2. One can now derive the minimum
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FIG. 2. Sky-averaged GW spectrum of the r mode for BH-
like objects with a ¼ 0.5 (blue, dotted-dashed) and a ¼ 0.68
(green, double dotted-dashed). We choose M ¼ 62.3 M⊙, DL ¼
410 Mpc and Thor ¼ 1. For reference, the spectrum correspond-
ing to the observed ringdown for GW150914 (red, dashed) is
included. Also shown are the noise spectral density of aLIGO in
the O1 run (thin, black, solid) and for its design sensitivity (thick,
black, solid). The ratio between the signal and noise roughly
corresponds to the SNR and the signal is detectable if this ratio is
above the threshold ð∼5Þ. We stress that the results presented here
are not robust and should be understood as only rough estimates.

FIG. 1. Gravitational waves emitted during the ringdown phase
of a BH merger with the parameters listed in the text. The blue
(thick, dashed) line depicts hst in arbitrary units as a function of
time in units ofM, while the red (thin, solid) line depicts hr−mode.
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Thor for detection by equating this calculation to the
threshold SNR. However, our main interest is still in the

scaling behavior of TðminÞ
hor . For instance, since DL only

appears in Eq. (22) through Ast as Ast ∝ 1=DL, T
ðminÞ
hor is

linearly proportional to DL.

Let us next look at theM dependence of TðminÞ
hor . Recalling

that Ast ∝ M and τr−mode ∝ M, one can see from Eq. (22)
that SNR ∝ M3=2. Thus, setting this expression for the SNR

equal to the threshold SNR of 5, one can deduce that TðminÞ
hor

is proportional toM−3=2. The top panel of Fig. 3 shows, for

a fixed set of a values, the M dependence of TðminÞ
hor as

calculated directly from Eq. (21) [i.e., without imposing
the white-noise assumption or using Eq. (22)] for a sky-
averaged waveform. One can compare this figure to the fit
proportional to M−3=2 (which is also plotted) and observe
that the numerical values follow the anticipated M−3=2

dependence for the smaller values of M. For larger M, the
peak frequency of the GW spectrum in Fig. 2 shifts
to a lower frequency and, as a result, the white-noise
assumption becomes less valid. Thus, the minimum Thor for
detection deviates from its expected M−3=2 dependence in
this regime of larger mass.

Finally, we can consider the a dependence of TðminÞ
hor . For

one thing, Ast is proportional to the radiation efficiency,
which is further proportional to the symmetric mass ratio η

[49], which is roughly proportional to a [57]. For another,
τr−mode ∝ a−2, and hence Eq. (22) indicates that SNR ∝ a3.
It then follows, in analogy to the M-dependence argument,

that TðminÞ
hor is proportional to a−3. The bottom panel of Fig. 3

depicts how TðminÞ
hor depends on a as calculated from Eq. (21)

for a set of fixed M values. Also shown is the fit propor-
tional to a−3. Once again, the numerical values nicely
follow the anticipated dependence when M is smaller but
deviate from expectations when M is larger. The logic
underlying this behavior is, of course, the same as that
discussed in the previous paragraph.
In light of its dependence on M, a and DL, one can

roughly estimate the minimum Thor for detection as

TðminÞ
hor ≈ 0.97

�
M

62.3 M⊙

�
−3=2

�
a

0.68

�
−3
�

DL

410 Mpc

�

×

�
Ns

1

�
−1=2

�
Nd

2

�
−1=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
Snðf0Þ

p
4 × 10−24 Hz−1=2

�
;

ð23Þ
where we also included the dependence on the number of
(identical) GW sources Ns and the number of (identical)
GW detectors Nd. See, for instance, [58] on how to
coherently stack small-SNR signals from different GW
sources. Additionally,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Snðf0Þ

p
is the detector sensitivity at

f0 ¼ 200 Hz and is merely a representative parameter for

an overall sensitivity scaling [as TðminÞ
hor depends on

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
and not just

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Snðf0Þ

p
].

Let us study the prospect for the detection of r modes in
more detail. Equation (23) and Fig. 3 imply that the detect-
ability increases for sufficientlymassive, rapidly spinningand

close-enough objects. For such sources, TðminÞ
hor becomes

smaller than unity and falls into the theoretically allowed
range of Thor, as indicated by the magenta shaded regions in
Fig. 3. For example, a mass of M ¼ 100 M⊙ allows one to
detect an rmodewithThor as small as∼0.5. IfVirgo,KAGRA
andLIGO-India further comeonline (Nd ¼ 5), an rmodecan
be detected with Thor ≳ 0.3. On the other hand, third-
generation GW detectors, such as the Einstein Telescope
and Cosmic Explorer, will have ∼10 times better sensitivity
than aLIGO. Hence, an r mode can be detected with Thor as
small as ∼0.1 for the fiducial parameters in Eq. (23) when
using third-generation detectors. Alternatively, such detectors
may find ∼103 GW sources having a similar SNR to that of
GW150914 ð∼20Þ. Setting DL (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Snðf0Þ

p
) to be 10 times

larger (smaller) and Ns ¼ 103 in Eq. (23), one finds that r
modes can be detected with Thor ≳ 0.03.

VI. CONCLUSION

We have argued that a BH-like object—an object that
resembles a BH from the outside but with a different
composition for its interior—can be discriminated from the
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FIG. 3. The minimum Thor, which characterizes the amount of
quantum leakage of the r-mode GWs through the horizon, that is
needed for aLIGO at Hanford and Livingston with its design
sensitivity to detect r-mode GWs from equal-mass BH binaries at
DL ¼ 410 Mpc. We show the minimum Thor as a function of M
(top) and a (bottom). Solid lines are the fits proportional toM−3=2

and a−3. The shaded region ðThor ≤ 1Þ corresponds to the

theoretically allowed range of Thor. Observe that TðminÞ
hor for

massive and rapidly spinning sources falls into this range. We
stress that the bounds presented here are not robust and should be
understood as only rough estimates.
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BHs of GR on the basis of its r modes. This follows from
the observation that, just like a relativistic star, the r-mode
frequency and damping time should be essentially inde-
pendent of the object’s composition, depending only on its
mass and speed of rotation v to leading order in v=c.
Under suitable circumstances, the GWs originating from

the r modes should stand out clearly in the data, as their
frequencies scale with the rotational speed of the BH-like
object and their lifetimes are enhanced by a factor of ðv=cÞ−2.
However, because the wave amplitude drops off quickly by a
factor of ðv=cÞ3, one is facedwith two competing effects: The
easier it is to distinguish the r-mode-sourcedGWs from those
sourced by the spacetime modes, the weaker is the r-mode
signal. The GW spectrum also drops out of the detector band
for smaller v=c, making the detection of such lower-fre-
quency waves even more difficult. More optimistically, we
have shown that, given aLIGO’s design sensitivity and a
sufficiently massive, rapidly rotating and close-enough
source, the minimum value of Thor—this being a parameter
which characterizes the quantum leakage of the r-modeGWs
through the horizon—that is needed for detection is below
unity, which is the theoretical upper bound on Thor. The
prospect for detection increases as the detector sensitivity
improves,more detectors come online and the number ofGW
sources increases. Alternatively, the absence of any r modes
would allow one to place upper bounds onThor. Such a bound
would enable one to rule out some of the proposedmodels for
the BH interior.
Here, we mainly focused on answering the binary

question: Are the BHs in Nature those of GR or are they
not? If the latter is indeed true, further discrimination will

be possible by looking at other classes of fluid modes, as
most of these carry information about the interior compo-
sition already at leading order in frequency. In these cases,
however, the theoretical predictions will necessarily be
model dependent. A detailed discussion of this topic from
the perspective of the collapsed-polymer model [12] can be
found in [20]. Other relevant works in this direction include
[36,37,39,40,59,60].
Finally, one might be concerned as to (i) how interior

fluid modes can couple to external GWs in models with a
horizon, albeit a horizon with a quantum disposition,
and (ii) how an external observer would perceive this
class of GWs in a way that is consistent with classical
GR (which certainly maintains its validity in the exterior
part of spacetime). As these are important issues in their
own right, we intend to address them in a separate
discussion [35].
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