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Using electromagnetism to study analogue space-times is tantamount to considering consistency
conditions for when a given (meta-) material would provide an analogue space-time model or—vice
versa—characterizing which given metric could be modeled with a (meta-) material. While the consistency
conditions themselves are by now well known and studied, the form the metric takes once they are satisfied
is not. This question is mostly easily answered by keeping the formalisms of the two research fields here in
contact as close to each other as possible. While fully covariant formulations of the electrodynamics of
media have been around for a long while, they are usually abandoned for (3þ 1)- or six-dimensional
formalisms. Here we use the fully unified and fully covariant approach. This enables us even to generalize
the consistency conditions for the existence of an effective metric to arbitrary background metrics beyond
flat space-time electrodynamics. We also show how the familiar matrices for permittivity ϵ, permeability
μ−1, and magnetoelectric effects ζ can be seen as the three independent pieces of the Bel decomposition for
the constitutive tensor Zabcd, i.e., the components of an orthogonal decomposition with respect to a given
observer with four-velocity Va. Finally, we use the Moore-Penrose pseudoinverse and the closely related
pseudodeterminant to then gain the desired reconstruction of the effective metric in terms of the permittivity
tensor ϵab, the permeability tensor ½μ−1�ab, and the magnetoelectric tensor ζab, as an explicit function
geffðϵ; μ−1; ζÞ.
DOI: 10.1103/PhysRevD.96.124019

I. INTRODUCTION

When studying analogue space-times [1,2], one has a
choice of many different approaches. Basically whenever a
physical model, or approximation thereof, provides a wave
equation for some scalar physical quantity f, one can look
for a metric geff such that this wave equation would be the
corresponding Laplace-Beltrami equation

∇a∇af¼f;a;a¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetgeff j

p ∂að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetgeff j

p ∂afÞ¼0; ð1Þ

though maybe an inhomogeneous one. More generally (as
in the present case of electrodynamics), a general wave
equation is a Lorentz-invariant,1 hyperbolic partial differ-
ential equation (PDE) of second order. Likewise, instead of
the Laplace-Beltrami equation one wants to express this
given PDE as another PDE of the same type, but now
depending on an effective, Lorentzian metric geff and its
(Lorentzian) geometry. The abundance of (tensorial) wave
equations in physics therefore raises the question of
when exactly this can be done. In this paper, we take a
look at the special case of (four-dimensional) macroscopic

electrodynamics, i.e., electrodynamics in a medium. In this
particular context the question also quickly becomes one of
finding an appropriate formalism: If we want to study a
given wave equation through an analogue space-time a
fully covariant approach will prove to be the most natural
approach. But while microscopic electrodynamics (i.e.,
electrodynamics in vacuum albeit with sources) in flat
space easily provides the well-known, fully covariant
Maxwell equations2

∂ ½aFbc� ¼ 0; Fab
;b ¼ ϵ−10 ja; ð2Þ

this fully covariant approach is a bit more intricate in the
context of electrodynamics in media. While results have
been known for a long time, see for example [5–13] and
[14], they have rarely been used to their full extent. The
general idea is to exchange the metric dual of the field
strength tensor

Fab ¼ gacgbdFcd ¼
1

2
ðgacgbd − gadgbcÞFcd ð3Þ

with the excitation tensor

Gab ≔ ZabcdFcd: ð4Þ*sebastian.schuster@sms.vuw.ac.nz
†matt.visser@sms.vuw.ac.nz
1Though not necessarily with respect to the speed of light in

vacuum. 2See, for example, Ref. [3] or [4].
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Here Zabcd is the so-called constitutive tensor (or general
susceptibility tensor [14]). What is usually done is to use
the properties of the constitutive tensor (elaborated below)
and switch from four space-time indices a; b; c;… ranging
from 0 to 3 to two “field indices” A;B;C;… ranging from 1
to 6. This enables one to collect the index pair ab into a new
compound index A and the index pair cd into a new
compound index B. Schematically,

ðZabcdÞa;b;c;d∈f0;…;3g → ðZABÞA;B∈f1;…;6g: ð5Þ

The issue here is that one loses the full covariance and
instead implicitly uses an observer-dependent 3þ 1
decomposition. In the context of premetric electrodynamics
(see, for example, [15] and references therein) this is not a
bug, but a feature. Our current approach is orthogonal to the
premetric one: Not only do we want to keep the physical
background metric g, we also look for an effective metric
geff . As both metrics will be four-dimensional and general,
we want to stick with space-time indices.
As a result, the strategy in this paper is twofold: First, we

showcase this fully covariant formalism for electrodynam-
ics of media using only space-time indices as it is done, for
example, in [5,16]. Second, we also want to find the
consistency conditions in terms of the constitutive tensor
that have to be fulfilled in order for it to describe a material
providing a model for analogue space-times. The require-
ment for this to work is that the constitutive tensor Z can be
written in terms of an effective metric geff , analogously to
Eq. (3), as

Zabcd ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det geff

p ffiffiffiffiffiffiffiffiffi
det g

p ð½g−1eff �ac½g−1eff �bd − ½g−1eff �ad½g−1eff �bcÞ: ð6Þ

As this second point in turn is important when engineering
materials for this purpose, we give these consistency
conditions in terms of the familiar matrices ϵ; μ−1, and ζ
(or their four-dimensional generalizations).
While the derivation of the consistency conditions has

been done before (in numerous and various contexts and
formalisms), see for instance Refs. [5–7,12,13], it still
remains to explicitly write down the resulting effective
metric once the consistency conditions are satisfied. (In the
context of premetric electrodynamics this is quite naturally
done as soon as the space-time metric is recovered
[12,15,17].)
However, as we work assuming a nontrivial background

metric gab for the material, the approach herein differs
greatly. We soon see that whenever an electromagnetic
medium can be characterized by an effective metric ½geff �ab,
there always exists an observer with four-velocity Va in
whose rest frame the well-known consistency conditions

ϵab ¼ μab; ζab ¼ 0 ð7Þ

hold. In this rest frame the effective metric geff can be
written in terms of the Moore-Penrose pseudoinverse and
the related pseudodeterminant in the following way:

ðgeffÞab¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðg••Þ
pdetðϵ••Þ

s
VaVbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdetðϵ••Þ
−detðg••Þ

s
½ϵ••�#ab; ð8aÞ

¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðg••Þ
pdetðμ••Þ

s
VaVbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdetðμ••Þ
−detðg••Þ

s
½μ••�#ab: ð8bÞ

The paper is organized as follows: First, we recapitulate
the properties of the constitutive tensor, also elaborating a
bit on the traditional rewriting as ZAB. In the second section
we develop from this a 3þ 1 decomposition of the
constitutive tensor. For a given observer moving with some
arbitrary four-velocity Va, this provides the link between
electric field E, magnetic field B and the corresponding
displacement field D and magnetizing field M via the
“constitutive matrices” ϵ; μ−1, and ζ. In this (3þ 1)-
decomposed case we derive the sought-after consistency
conditions. Having done so it is then possible to develop the
next section: The fully covariant formulation and the
corresponding version of the consistency conditions.
After concluding, we provide two appendixes: First, a
small aside on the relation between the constitutive tensor’s
Bel decomposition and the ϵ; μ−1, and ζ three-tensors, and
second, an example application of the formalism presented
here to the case of moving, isotropic media.

A. Notation

This paper follows the sign conventions of [3,4].
Specifically, our metrics have signature ð−þþþÞ.
Symmetrization and antisymmetrization on indices is
indicated by enclosing these indices in round or square
brackets, respectively. Raising and lowering of indices is
always done by employing the physical background metric
g. For the sake of brevity, we do not always place physical
before background metric. If indices need to be raised or
lowered by geff, geff appears explicitly. • (for four-indices)
and ∘ (for three-indices) are used to denote index place-

ment, mostly used in determinants. We use the symbol ¼!
whenever we manually set things equal or demand them to
be equal.

II. GENERAL PROPERTIES OF THE
CONSTITUTIVE TENSOR

A. Counting degrees of freedom

A first part of the analysis is to compare the degrees of
freedom of the effective metric and the constitutive tensor.
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Note that quite generally the action in our case is

S ¼ −
Z

d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
4

FabGab; ð9Þ

¼ −
Z

d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
4

FabZabcdFcd; ð10Þ

plus possible source terms. Assuming the existence of an
effective metric then enforces

S¼! −
1

8

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det geff

p
× ð½g−1eff �ac½g−1eff �bd − ½g−1eff �ad½g−1eff �bcÞFabFcd: ð11Þ

From this it follows that the action is invariant under
conformal transformations of geff . Instead of the regular
degrees of freedom of a symmetric 4 × 4 matrix, geff
therefore has only 4ð4þ 1Þ=2 − 1 ¼ 9 degrees of freedom.
For the degrees of freedom of Z, again take a look at

Eq. (10): As Fab is antisymmetric, both the first and the
second index pair of Zabcd can only contribute a completely
antisymmetric part.

ZðabÞcd ¼ ZabðcdÞ ¼ 0: ð12Þ

Therefore, each index pair has only 4ð4 − 1Þ=2 ¼ 6
degrees of freedom, which gives rise to the aforementioned
possibility to rewrite it as ZAB.
Furthermore, the action remains invariant under renam-

ing the indices, providing

Zabcd ¼ Zcdab; ð13Þ

resulting in the total degrees of freedom of 6ð6þ 1Þ=
2 ¼ 21.
The discrepancy between the degrees of freedom of the

conformal class of geff (9 d.o.f.) and those of Z (21 d.o.f.)
clearly shows that some consistency conditions will have to
exist and be fulfilled for Z to be described by an effective
metric geff as in Eq. (6).

B. The 6 × 6 representation of Z

It is instructive to have a closer look at the representation
of Z as a symmetric 6 × 6 matrix, as indicated in Eq. (5) in
the introduction and justified above. Written out, this
matrix is

ðZABÞA;B∈f1;…;6g ¼
�

ϵ ζ

ζ† μ−1

�
; ð14Þ

where ϵ is the 3 × 3 permittivity matrix, μ−1 is the (inverse)
3 × 3 permeability matrix, and ζ is the 3 × 3 magnetoelec-
tric matrix. Here, ϵ and ½μ−1� are real and symmetric, while

ζ is real, but in general asymmetric. These link E, B with
D, H in the following way3:

D ¼ ϵEþ ζB; H ¼ ζ†Eþ μ−1B: ð15Þ
In terms of the 6 × 6 version of Z this could be rewritten as�

D

H

�
¼
�

ϵ ζ

ζ† μ−1

��
E

B

�
: ð16Þ

This demonstrates the issue with this formalism for our
purposes: All fields involved implicitly depend on the four-
velocity Va of the observer. Therefore, the constitutive
matrices mix in a quite messy way under Lorentz trans-
formations (which are important in the flat space-time
context), and even more so under general coordinate
transformations (which become important, if we want to
view geff as an effective metric on a general, possibly
curved background with physical metric g). In the appendix
we further investigate the relationship between Va and the
constitutive matrices—they prove to be the elements of the
Bel decomposition (also known as the orthogonal decom-
position) with respect to given Va.

C. Utilizing the conformal invariance

As our counting of degrees of freedom showed, the
effective metric is a conformal class of metrics rather than a
metric as such. This in turn means that any representative of
this class is equally valid, and thus we can simplify our
analysis tremendously by focusing on the representative for
which

det geff ¼ det g: ð17Þ
Our constitutive tensor now takes on the form

Zabcd ¼ 1

2
ð½g−1eff �ac½g−1eff �bd − ½g−1eff �ad½g−1eff �bcÞ: ð18Þ

If we use, for the time being, the effective metric geff to
raise and lower indices, it is then easy to show that

½½geff �ae½geff �bfZefcd�½½geff �cm½geff �dnZmnpq�

¼ ½geff �ae½geff �bfZefpq ¼ 1

2
ðδapδbq − δa

qδb
pÞ: ð19Þ

This corresponds to the reciprocity or closure condition as
found, for example, in [15,17]. Note that since we are not in
a premetric setting it is unimportant to distinguish the two
concepts.

3Just as the use of Franklin’s “inconvenient” choice of the sign
of the electric current (opposite to that of the flow of electrons) is
a historical accident, so is the use of ½μ−1� instead of μ. We have to
mention this again later on, as it sadly makes some subsequent
results rather cumbersome in appearance.
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III. EASING INTO THE PROBLEM:
A FLAT-SPACE 3+ 1 DECOMPOSITION

While it is possible to immediately jump into the fully
covariant, four-dimensional analysis, it is much more
educational to first look at a more explicit 3þ 1 decom-
position than in Eq. (14). Furthermore, we (for the time
being) restrict attention to the flat space-time case, where
g ¼ η ¼ diagð−1; 1; 1; 1Þ. The previous choice of a con-
formal factor turns to det geff ¼ −1.4 In the context of
Sec. IV, this means that we consider going to Riemann
normal coordinates. More specifically, we choose an
observer with four-velocity V ¼ ð1; 0; 0; 0ÞT ; spatial pro-
jection simply means limiting the range of an index to
f1; 2; 3g, while time-projection is equivalent to setting the
index equal to 0. This also means that all remaining indices
are spatial and raised or lowered with a three-dimensional
Kronecker symbol. Should we need four-dimensional
indices, they start from a, three-dimensional ones then
from i. It is easy to see that the definitions (see for example
Appendix A in [2])

ϵij ¼ −2Zi0j0; ½μ−1�ij ¼ 1

2
εiklε

j
mnZklmn;

ζij ¼ εiklZklj0 ð20Þ
satisfy Eq. (15).

A. Vanishing magnetoelectric ζ

A first step would now be to see what consistency
conditions can be extracted under the simplifying
assumption of a vanishing magnetoelectric ζ. Inserting
Eq. (18) into Eqs. (20), we find that

0¼! ζij ¼ −ðεikl½g−1eff �l0Þ½g−1eff �kj: ð21Þ
From this it can be deduced that vanishing magnetoelectric
effects imply

½g−1eff �i0 ¼ 0: ð22Þ
Using this, we get for the other two constitutive matrices

ϵij ¼ ½g−1eff �ij½g−1eff �00; ð23Þ

½μ−1�ij ¼ −
1

2
εiklεjmnð½g−1eff �km½g−1eff �lnÞ: ð24Þ

Thus, g−1eff block diagonalizes. Since we know that
det geff ¼ −1, we therefore can write this block structure as

ð½g−1eff �abÞa;b∈f0;…;3g ≕
�− 1

detðγijÞ 0

0 γij

�
: ð25Þ

Combining this with the following variant of Cramer’s rule
for 3 × 3 matrices,

εiklεjmnfXkmXlng ¼ 2 detðXÞX−1
ij ; ð26Þ

we can then reduce the equations for ϵij and ½μ−1�ij to5

μ−1ij ¼ detðγ∘∘Þγ−1ij ; ⇔ μij ¼ γij

detðγ∘∘Þ ð27Þ

and

ϵij ¼ γij

detðγ∘∘Þ ¼ μij: ð28Þ

This last equation, (28), is exactly the consistency condition
we were after. If it is fulfilled, we can write g−1eff then as

½g−1eff �ab ¼

0
B@−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðϵ∘∘Þp

0

0 ϵijffiffiffiffiffiffiffiffiffiffiffi
detðϵ∘∘Þ

p

1
CA

¼

0
B@−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðμ∘∘Þp

0

0 μijffiffiffiffiffiffiffiffiffiffiffi
detðμ∘∘Þ

p

1
CA: ð29Þ

This particular result is well known and can, for example,
be found in [2,18,19]. Of course the matching condi-
tion ϵij ¼ μij does not hold for naturally occurring media.6

It is onlywith the development ofmodernmetamaterials that
the ϵij ¼ μij matching condition becomes plausible physics.
To see what the effective metric (not the inverse effective

metric) would be, one now needs to invert the matrix (29).
Doing this, we simply arrive at our final results for zero
magnetoelectric effects,

½geff �ab ¼
�− detð½γ�∘∘Þ 0

0 γ−1ij

�
: ð30Þ

This implies

½geff �ab ¼
 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðμ∘∘Þp −1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðμ∘∘Þp

μ−1ij

!
; ð31aÞ

¼
 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðϵ∘∘Þp −1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðϵ∘∘Þp

ϵ−1ij

!
: ð31bÞ

4Note that this differs from the choice in [1], where the
conformal invariance was used to set ½g−1eff �00 ¼ −1.

5Remember that spatial indices are raised and lowered with the
three-dimensional Kronecker symbol.

6Already a quick check on Wikipedia or in your favorite
material data reference table will show this.
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B. Nonvanishing magnetoelectric ζ

The big difference, obviously, is that with nonvanishing
magnetoelectric effects Eq. (21) does not hold. This
complicates the algebra—but not in an impossible manner.
Setting

βi ≔ ½g−1eff �0i; ð32Þ
and, again using the conformal freedom to set det ½g−1eff �ab ¼
−1, we consider the following, Kaluza-Klein (KK)-inspired
form7 for ½g−1eff �:

½g−1eff �ab ¼
�
− detðγ−1∘∘ Þ þ γ−1kl β

kβl βj

βi γij

�
: ð33Þ

Clearly, Eq. (27), the result for ½μ−1� from the previous
calculation, remains the same. However, the equations for ζ
and ϵ will change and become more difficult to deal with. It
is useful to distinguish the earlier mentioned two ways to
look at the consistency conditions: In the first case, one
wants to take a given metric ½g−1eff �ab and see with what
material this metric could be achieved. After a bit of algebra
[such as inverting γij as defined in Eq. (33)], this can easily
be done by looking at the following rewritten defining
equations for the constituent matrices:

ϵij ¼ ðγijfdetðγ−1∘∘ Þ − γ−1kl β
kβlg þ βiβjÞ; ð34aÞ

μij ¼ γij

detðγ∘∘Þ ; ð34bÞ

ζij ¼ −
1

2
ðεiklβlγkjÞ: ð34cÞ

Should this set of equations not hold simultaneously, then
the given metric cannot be interpreted as an effective metric
in macroscopic electrodynamics.

The other way of looking at the consistency conditions is
more involved and requires actually finding a concrete form
of this condition. For this, take Eq. (34) and use it to rewrite
ϵ as

ϵij ¼ μijð1 − μ−1kl β
kβlÞ þ βiβj: ð35Þ

This is the consistency condition we were looking for.
Thus, if you are given the optical properties (ϵ, μ, ζ), and
they fulfil this consistency condition, then you can calculate
the effective metric via

γij ¼ μijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðμ∘∘Þp ; ð36Þ

βm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðμ∘∘Þ

p
εmk

iμ
−1
jk ζ

ij; ð37Þ
and insert in Eq. (33) to arrive at

½g−1eff �ab ¼
 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðμ∘∘Þp ð1 − μ−1kl β

kβlÞ βj

βi μijffiffiffiffiffiffiffiffiffiffiffi
detðμ∘∘Þ

p

!
: ð38Þ

This could, in principle, be turned into an equivalent
formula involving ϵij, but the results are not particularly
edifying. In either case, if the consistency condition (35) is
not satisfied, then the medium is simply not equivalent to an
effective metric.
Doing either of these, we can then evaluate the effective

metric ½geff �ab itself. In general, the inversion of the Kaluza-
Klein decomposition (38) reads

½geff �ab ¼
 

−detðγ∘∘Þ detðγ∘∘Þγ−1jk βk
detðγ∘∘Þγ−1ik βk γ−1ij − detðγ∘∘Þðγ−1ik βkÞðγ−1jl βlÞ

!
:

ð39Þ

Inserting the consistency condition (35) we arrive at

½geff �ab ¼
 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðμ∘∘Þp −1 μ−1jk β

k

μ−1ik β
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðμ∘∘Þp ðμ−1ij − ðμ−1ik βkÞðμ−1jl βlÞÞ

!
; ð40aÞ

½geff �ab ¼
�−

ffiffiffiffiffiffiffiffiffiffiffiffi
det ϵ∘∘

p −1ð1 − ϵ−1kl β
kβlÞ ϵ−1jk β

k

ϵ−1ik β
k

ffiffiffiffiffiffiffiffiffiffiffiffi
det ϵ∘∘

p ðϵ−1ij Þ

�
; with βm ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðϵ∘∘Þ

p
εmk

iϵ
−1
jk ζ

ij: ð40bÞ

IV. GENERALIZING TO A FULLY COVARIANT APPROACH

The general idea for upgrading the analysis to a fully covariant approach is that the analysis in Minkowski space-time can
be seen as the case of an arbitrary space-time in Riemann normal coordinates. Remember that we can use the temporal and
spatial projection operators, respectively, tab ¼ −VaVb and hab ¼ gab þ VaVb, to write any vector as

7As for the distinction between Kaluza-Klein and Arnowitt-Deser-Misner (ADM) formulations, note that they are dual to each other:
The same decomposition is applied either to the metric (ADM, see [20]), or to the inverse metric (Kaluza-Klein, see [21]). For a modern
textbook treatment, see Chapter X, Appendixes 6 through 9 of Ref. [22]. This ADM versus KK duality holds in the sense of the
cotangent space being dual to the tangent space. This distinction is independent of additional considerations of dimensionality.
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Xa ¼ δabXb ¼ tabXb þ habXb: ð41Þ
This naturally and obviously extends to higher-degree
tensors. Also, note the signs due to Lorentz signature.
Then, effectively, in our earlier calculation spatial indices
i ¼ 1, 2, 3 correspond to spatially projected indices and
timelike indices (indices set to 0) correspond to a contraction
with the given four-velocity V.8 Any three-dimensional
Kronecker symbol εijk corresponds then to a contraction
of the four-dimensional one with the four-velocity.
Summarizing, we get the following set of translation rules:

Xi → habXb; ð42aÞ
X0 → VaXa ⇔ X0 → tabXb; ð42bÞ
εijk → εabcdVa: ð42cÞ

A quick consistency check: If we were to use these trans-
lation rules on the definition of the constitutive matrices
(20), we arrive at just the equations (A7) in terms of the
constitutive matrices ϵ, ½μ−1� and ζ,

ϵab ≔ −2ZacbdVcVd; ð43aÞ

½μ−1�ab ≔ 1

2
εcaefε

db
ghZefghVcVd; ð43bÞ

ζab ≔ εcaefZefbdVcVd: ð43cÞ

This links the previously considered special case with the
general orthogonal decomposition presented in the appen-
dix. Inserting the mimicking conditions (6), we get

ϵab ¼ −ð½g−1eff �ab½g−1eff �cd − ½g−1eff �ac½g−1eff �bdÞVcVd; ð44aÞ
μ−1ab ¼ εaefcεbmndð½g−1eff �em½g−1eff �fnÞVcVd; ð44bÞ

ζa
b ¼ −ðεamnd½g−1eff �mcÞ½g−1eff �nbVcVd: ð44cÞ

However, there are two ingredients missing: Looking
back at our equations in Sec. III we note that we frequently
encounter both the inverses of 3 × 3 matrices and their
determinants. Both notions are not as straightforwardly
translated. To solve this, we use the Moore-Penrose pseu-
doinverse A# (see, e.g., [23–25]9) and the pseudodetermi-
nant10 pdetðAÞ, defined for a general square n × n matrix A
with eigenvalues λi as follows:

pdetðAÞ ¼
YrankðAÞ
i¼1
λi≠0

λi: ð45Þ

Furthermore, the following identities hold for the pseudo-
determinant, with the last equality valid for (anti-) sym-
metric or (anti-) Hermitian matrices,11

detð1þ zAÞ ¼ pdetðAÞzrankðAÞ þOðzrankðAÞ−1Þ; ð46aÞ

pdetðAÞ¼ lim
z→0

detðAþz1Þ
zn−rankðAÞ

¼ lim
z→0

detðAþz1Þ
znullityðAÞ

; ð46bÞ

¼ detð½1 − AA#� þ AÞ: ð46cÞ

Then note that while the generally covariant ½μ−1� and ϵ
remain symmetric, due to their orthogonality to Va they do
not have full rank as 4 × 4matrices. Put differently, the null
space of ϵ or ½μ−1� is one-dimensional, and any two
projection operators onto this null space are therefore
proportional to each other. As VaVb ¼ −tab is a projector
onto this null space of ½μ−1� and ϵ, this has to be proportional
to the corresponding ½1 − AA#�ab. Note that ½t••�#ab ¼
tab ¼ −VaVb. Furthermore, as we want the 3þ 1 case to
drop out if we chose V ¼ ð1; 0; 0; 0ÞT , we can see that

½1 − AA#�ab ¼ −tab ¼ þVaVb: ð47Þ
Put to use on the pseudodeterminant, we can then give it in
terms of a perfectly well-behaved, standard determinant,

pdetðϵabÞ ¼ detð−tab þ ϵabÞ ¼ detðVaVb þ ϵabÞ: ð48Þ
Now we are in the position to actually generalize the

det ϵij or det ½μ−1�ij terms to a fully covariant formalism that
appears in, for example, Eq. (29) or (37). As determinants
of a tensor pick up determinants of the physical metric
under general coordinate transformations, we need the
following rules for promoting determinants to quantities
that behave as scalars under general coordinate trans-
formations,12

detðAijÞ → pdetðAabÞ
− detðgabÞ : ð49Þ

We summarized all important rules in Table I.

8Strictly speaking, the index should be hit with the temporal
projector tab, but the actual information contained in these
processes is the same.

9[25] also contains some more historic references about other
(re)discoveries of the pseudoinverse.

10Early notions of the pseudodeterminant can be found in [26],
while more modern appearances include [27,28]. Written as
det0ðAÞ, a similar notion for operators can be found in the
quantum field theory literature in [29] and probably even earlier.
This notation has been adopted, for example, in [30].

11For general (asymmetric) matrices, this can be generalized to

pdetðAA†Þ ¼ detð½1 − AA#� þ AA†Þ
using the singular value decomposition of A.

12Note that as we only take determinants of symmetric
matrices, S½ab� ¼ 0, the bullet notation we employ is sufficient.
This means, in terms of translation rules, that

S∘∘ → S••; S∘∘ → S••:
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A. Zero magnetoelectric effects

Again, vanishing magnetoelectric effects greatly ex-
pedite the calculation. And as we see later in Sec. IV C,
this now is more than just a pedagogical introduction—it
actually has a connection to the final form of the con-
sistency condition. With our translation rules in place, we
can immediately proceed and get for the expression for the
inverse of the effective metric

½g−1eff �ab ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdetðϵ••Þ
− detðg••Þ

s
VaVb þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðg••Þ
pdetðϵ••Þ

s
ϵab; ð50Þ

while our consistency condition is turned into

ϵab ¼ ½½μ−1�#••�ab: ð51Þ

If we then were to define

μab ≔ ½½μ−1•• �#�ab; ð52Þ

we could simplify this to the familiar

ϵab ¼ μab: ð53Þ

However, the hidden mix of inverse (from the traditional
notation ½μ−1� to link magnetic field to excitation, unlike for
the permittivity) and pseudoinverse has to be kept in mind.
Again, this is related to the historical artefact of the naming
of ½μ−1�, as mentioned in footnote 3. The effective metric
itself now takes on any of the following forms:

ðgeffÞab ¼
pdetðγ••Þ
− detðg••Þ tab þ ½γ••�#ab; ð54aÞ

¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðg••Þ
pdetðϵ••Þ

s
VaVbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdetðϵ••Þ
−detðg••Þ

s
½ϵ••�#ab; ð54bÞ

¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðg••Þ
pdetðμ••Þ

s
VaVbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdetðμ••Þ
−detðg••Þ

s
μ−1ab : ð54cÞ

B. Nonzero magnetoelectric effects

The starting point here is now the consistency conditions
(35), the 0i components of the metric (37), together with the
result for the Kaluza-Klein decomposition (38). All of these
are turned into the corresponding, fully covariant versions
by straightforwardly applying the previously derived rules.
First, take a look at what happens to the three-vector βi,

βi → βe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdetðμ••Þ
− detðg••Þ

s
εecadμ−1bc ζa

bVd: ð55Þ

We can immediately see that the four-vector βe satisfies

βeVe ¼ 0; ð56Þ
a transversality result we can immediately put to use to
see that

μ−1ij β
iβj → μ−1abβ

aβb: ð57Þ
From this we can derive the inverse effective metric,13

½g−1eff �ab ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdetðμ••Þ
− detðg••Þ

s
ð1 − μ−1cdβ

cβdÞVaVb

þ Vaβb þ βaVb þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðg••Þ
pdetðμ••Þ

s
μab: ð58Þ

The consistency condition is simply turned into the fully
Lorentz-invariant, covariant equation

ϵab ¼ μabð1 − μ−1cdβ
cβdÞ þ βaβb: ð59Þ

For the effective metric itself, we can use the fact that γ
and γ# will again be orthogonal to V. The somewhat long
expression we get is

½geff �ab ¼
− detðg••Þ
pdetð½γ••�#••Þ

�
tab − Va½γ••�#bcβc − Vb½γ••�#acβc þ

pdetð½γ••�#••Þ
− detðg••Þ

½γ••�#ab − ½γ••�#acβc½γ••�#bdβd
�
: ð60aÞ

More specifically, in terms of μ,

TABLE I. Translating 3þ 1 terms to fully covariant terms.

Xi → habXb

X0 → VaXa

or X0 → tabXb

εijk → εabcdVa
ðAijÞ−1 → ðAabÞ#
detðS∘∘Þ → pdetðS••Þ

− detðg••Þ

13Had we chosen to turn βi into the equivalent tensorial form ~βab ≔ tac½g−1eff �cdhdb, the transversality would have been ~βabVb ¼ 0, and
the combination βaVb would be equal to ~βba.
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½geff �ab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdet½½μ−1�••�
− detðg••Þ

s
tab − ðVaμ

−1
bcβ

c þ Vbμ
−1
acβ

cÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðg••Þ

pdetð½μ−1�••Þ

s
ðμ−1ab − μ−1acβ

cμ−1bdβ
dÞ: ð60bÞ

Alternatively, we can also write this in terms of ϵ as

½geff �ab ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g••

pdetϵ••

s
ð1 − ϵ#cdβ

cβdÞVaVb − Vaϵ
#
bdβ

d − Vbϵ
#
adβ

d þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdetϵ••

− det g••

s
ϵ#ab; ð60cÞ

where now

βe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdetðϵ••Þ
− detðg••Þ

s
εecadϵ#bcζa

bVd: ð60dÞ

C. A new look at the consistency condition

On physical grounds, the “light cones” of geff have to lie
inside the light cones of the physical metric g. Therefore,
for any physical four-velocity Ua, the quantity

Q ¼ ½geff �abUaUb ð61Þ
is negative. Now look for the minimum ofQ by solving the
Lagrange multiplier problem

L ¼ ½geff �abUaUb − λðgabUaUb þ 1Þ; ð62Þ
and call this minimum V. Now adopting Riemann normal
coordinates (gab → ηab) and going to the rest frame of V [so
Va → ð1; 0; 0; 0Þ] we can block diagonalize the effective
metric

½geff �ab ¼
�−λ 0

0 ½geff �ij

�
ð63Þ

with inverse

½geff �ab ¼
 
− 1

λ 0

0 ½g−1eff �ij

!
: ð64Þ

In particular, this means that, for this effective metric,
there exists a rest frame for an observer with four-velocity
V such that in this rest frame the magnetoelectric effects
vanish. Now this means that we can, for this specific
observer, use the much simpler analysis of Sec. IVA. Let us
therefore call this the natural rest frame of the given
medium.
Thus, another possible approach to the problem is this:

Assume we have found this V for our given effective
metric. We then define the corresponding permittivity as ϵV
and the corresponding permeability as μ−1V . What, then,
would be the constitutive matrices ϵ, ½μ−1�, and ζ of another
observer with four-velocityW in terms of these ϵV and μ−1V ?

D. Natural reference frame versus arbitrary observer

In order to answer the question at the end of the last
subsection, let us first establish helpful notation for this.
Choose any four-velocity Va and an arbitrary, not neces-
sarily symmetric matrix qab four-orthogonal to it,

qabVb ¼ Vbqba ¼ 0: ð65Þ
Let us then define the following fourth-rank tensor:

Qabcd≔VaVdqbcþVbVcqad−VbVdqac−VaVcqbd: ð66Þ
Furthermore, let us use this tensor Qabcd to define four
more tensors by setting q equal to one of the four
constitutive matrices ϵabV , ½μ−1V �ab, ζabV , and its transpose
½ζTV �ab as measured with respect to four-velocity Va,

Eabcd
V ≔ Qabcd

q→ϵV ; ð67aÞ
Mabcd

V ≔ Qabcd
q→μ−1V

; ð67bÞ
Aabcd
V ≔ Qabcd

q→ζV
; ð67cÞ

ðAT
VÞabcd ≔ Qabcd

q→ζTV
: ð67dÞ

If we now compare this with the Bel-decomposed
expression for the constitutive tensor Zabcd in Eq. (A8),
we see that we can rewrite Eq. (A8) in terms of these four
tensors in the following way:

Zabcd ¼ 1

2
ðEV þ ð�MV�Þ þ ð�AVÞ þ ðAT

V�ÞÞabcd: ð68Þ
While the right-hand side is implicitly dependent on the
previously chosen four-velocity Va, the left-hand side is
general and independent of it. This, then, enables us to give
deceptively simple expressions for how to calculate the
constitutive matrices ϵabW , ½μ−1W �ab, and ζabW as seen by a
different observer with four-velocity Wa,

ϵabW ¼ −2ZdacbWdWc; ð69aÞ
ζabW ¼ 2ð�ZÞdacbWdWc; ð69bÞ

½μ−1W �ab ¼ 2ð�Z�ÞdacbWdWc; ð69cÞ

½ζ†�ab ¼ 2ðZ�ÞdacbWdWc: ð69dÞ
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While it would certainly be possible to now give ϵabW ,
½μ−1W �ab, and ζabW in full generality in terms of ϵabV , ½μ−1V �ab,
ζabV , Va, and Wa, the resulting expressions would be
stigmatized by being unilluminatingly and excessively
complicated. Nevertheless, in special cases this is much
less of a problem. Also, the existence of closed-form
expressions proves useful when working numerically in
this formalism. Nonetheless, in Appendix B we give an
explicit example on how to use this. Specifically, we look at
an isotropic medium in motion and regain the well-known
magnetoelectric effect of moving media [2,9,14], of which
the Fresnel-Fizeau effect is a special case [31,32].

V. CONCLUSION

In conclusion, we have seen that even going to generally
covariant formulations of an effective metric given by
macroscopic electrodynamics gives no additional physical
results: There is always a natural reference frame for a
given medium such that in this frame the consistency
condition reduces to the well-known result

ϵij ¼ μij: ð70Þ

It remains to be seen how far-reaching or maybe even
limiting this result proves to be. On physical grounds,
however, this should not come as a surprise: The very
nature of the effective metric geff is to describe the given
physics via a light cone—in particular, this implies locality.
And in classical electrodynamics it is well known (see [9])
that only nonlocal (and so, when Lorentz-transformed,
noninstantaneous), or dissipative phenomena can give rise
to nonvanishing magnetoelectric ζ. While both nonlocality
(through, for example, helical molecules) and dissipation
(through electrical resistance in a medium) are obviously
important effects in macroscopic electrodynamics, their
effects lead beyond mere Lorentzian geometries in an
analoguemodel. It is useful to compare thiswith the physical
arguments behind requiring a vanishing birefringence in the
context of premetric electrodynamics, as done in Ref. [12].
The covariant formulation we employed, however,

should provide—in the right context—a great boon to
presentations of macroscopic electrodynamics. In particu-
lar, the concept of pseudoinverses and pseudodeterminants
provides a quite intuitive (and so far underappreciated)
mathematical technology. Therefore, it proves useful to
further disseminate this framework: When communicating
with researchers with a background in relativity (who are
used to treating microscopic electrodynamics fully cova-
riantly), the different 3þ 1 notation inherited from the
electrodynamics community, and the focus there on three-
dimensional quantities, often complicates discussion. Vice
versa, the fully covariant formulation can be used to make
the covariant approach itself more appealing to people used
to the three-dimensional quantities E, B, D, and H on the
one hand, and the corresponding 3 × 3 matrices for

permittivity ϵ, (inverse) permeability ½μ−1�, and magneto-
electric effects ζ [or their 6 × 6 matrix analogue as in
Eq. (5)]. Especially in the context of analogue space-times
implemented via macroscopic electrodynamics, this trans-
lational device should prove helpful, as it is here that both
respective communities have to come together.
Note that nothing could prevent us from using a covariant

polarization tensor Pab instead of the excitation tensor Gab,
thus generalizing the present discussion somewhat. However,
this could not give rise to new physical insights and would
rather only make the notation even more cumbersome in this
particular context. Similarly, while the constitutive tensor in
macroscopic electrodynamics is often immediately made
complex valued to deal with dissipation and dispersion, in
the present context this runs into problems early on—one
would have to provide a physical interpretation of a com-
plexified effective metric. While this might prove important
for applications of electrodynamic, analogue space-times, it is
far from obvious how to solve this problem.
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APPENDIX A: THE BEL DECOMPOSITION
OF THE CONSTITUTIVE TENSOR

The Bel decomposition was originally developed as the
orthogonal decomposition, with respect to a given four-
velocity Va, of the Riemann curvature tensor (see for
example [33–38] and references therein; for unnamed
appearances in the present context see for example [6]).
In order to see how this comes about, it is useful to remind
oneself of the orthogonal decomposition with respect to an
observer of four-velocity Va of some two-form, e.g., the
electromagnetic field-strength tensor Fab or the excitation
tensor Gab.
For all four-velocities Va there exist two uniquely

determined vector fields Ea and Ba, such that

Fab ¼ VaEb − VbEa þ εabcdVcBd: ðA1Þ

A proof can be found in [3], page 83ff; see also page 493
therein.
This enables us to have a rigorous look at Sec. II B:

Together with the symmetries of Z given in Eqs. (12) and
(13), we can then deduce that there exist YA (a collection of
two-forms labeled by A) and a symmetric 6 × 6matrix XAB,
such that

Zabcd ¼ Yab
A XABYcd

B : ðA2Þ
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Each of the six Yab
A decomposes as the field-strength tensor

for a given four-velocity Va with corresponding vector
fields EA and BA.

14 Inserting these decompositions in
Eq. (A2) and collecting terms, we can define three separate
matrices from four separate terms,

Wab
ϵ ≔ Ea

AX
ABEb

B Wab
ζ ≔ Ea

AX
ABBb

B ðA3Þ

½WT
ζ �ab ≔ Ba

AX
ABEb

B Wab
μ ≔ Ba

AX
ABBb

B: ðA4Þ

With these definitions, Z decomposes in the following
manner:

Zabcd ¼ VbVdWac
ϵ þ VaVcWbd

ϵ − VaVdWbc
ϵ − VbVcWad

ϵ

þ VfðεabefWeg
μ εcdghÞVh

þ ðWag
ζ Vb −Wbg

ζ VaÞεcdghVh

þ Vfεabefð½WT
ζ �ecVd − ½WT

ζ �edVcÞ: ðA5Þ
Now define

− 2Wϵ ¼ ϵ; ðA6aÞ

2Wζ ¼ ζ; ðA6bÞ

2Wμ ¼ ½μ−1�: ðA6cÞ
It is noteworthy that the above procedure bears a close

relationship to the left, right, and double dual as usually
defined for the Riemann tensor, see e.g. [4], as

Wbd
ϵ ¼ VaVcZabcd; ðA7aÞ

Wbd
μ ¼ VaVcð�Z�Þabcd; ðA7bÞ

½WT
ζ �bd ¼ VaVcð�ZÞabcd; ðA7cÞ

Wbd
ζ ¼ VaVcðZ�Þabcd: ðA7dÞ

After some longer index algebra, Eq. (A5) can be
turned into

Zabcd ¼ 1

2
ðVaVdϵbc þ VbVcϵad − VbVdϵac − VaVcϵbdÞ

þ 1

8
εabefε

cd
ghðVf½μ−1�egVh þ Ve½μ−1�fhVg − Ve½μ−1�fgVh − Vf½μ−1�ehVgÞ

þ 1

4
εabefðζfcVdVe þ ζedVcVf − ζecVdVf − ζfdVcVeÞ

þ 1

4
εcdghð½ζ†�bgVaVh þ ½ζ†�ahVbVg − ½ζ†�agVbVh − ½ζ†�bhVaVgÞ: ðA8Þ

To get another way of writing this decomposition, make use
of the spatial projection hab ≔ gab þ VaVb and the time
projection tab ≔ −VaVb. Noting that

ϵcd
afϵebcdVeVf ¼ −2ðgab þ VaVbÞ ¼ −2hab; ðA9Þ

and using

gb1c1 � � � gbncnεc1…cnε
a1…an

¼ −n!gb1c1 � � � gbncnδa1 ½c1 � � � δancn�; ðA10Þ

explicitly written out for n ¼ 4, one gets

Zabcd¼1

2
ðVdVaϵbc−VcVaϵbdþVcVbϵad−VdVbϵac

þhad½μ−1�cb−hac½μ−1�dbþhbc½μ−1�ad−hbd½μ−1�ac
þðhbdhac−hbchadÞ½μ−1�eeþεfabeðVdζe

c−Vcζe
dÞVf

þεfcdeðVbζe
a−Vaζe

bÞVfÞ: ðA11Þ

Note that every term involving two V’s corresponds to a
time projection.
The three equations (A5), (A8), and (A11) now are the

Bel decomposition of the constitutive tensor. They show
that, once an observer’s four-velocity Va is chosen, there
exists a unique decomposition of Z into three constitutive
matrices ϵ; ½μ−1�, and ζ for that given observer. Put differ-
ently, this decomposition clearly shows the observer
dependence of ϵ; ½μ−1�, and ζ.
While ϵ and ½μ−1� are automatically symmetric, ζ has

(a priori) no symmetries. Also note that the antisymmetry
properties of either εabcd or Zabcd guarantee that ϵ; ½μ−1�,
and ζ are four-orthogonal to V,

14The naming is chosen such that their role in the correspond-
ing version of Eq. (A1) is clear; this is not to mean that they are
six electric or magnetic fields.
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ϵabVb ¼ ½μ−1�abVb ¼ ζabVb ¼ ζbaVb ¼ 0: ðA12Þ
It should be mentioned that, ironically, the names given

to the three independent matrices Wϵ, Wζ, and Wμ

encountered in this decomposition in the general relativity
(GR) community are very misleading in the present
context: In GR, the Bel decomposition of the Riemann
tensor is used to find dynamical analogies between the
Einstein equations on the one hand, and the Maxwell
equations on the other hand. In our case, now, the role of
the Bel decomposition is only kinematical and entirely in
the realm of electromagnetism itself. For example, what
goes under the name of “electric tensors” in [39] corre-
sponds to both the permittivity and the permeability
tensors, while the “magnetic tensors” here are the mag-
netoelectric tensor and its transpose.

APPENDIX B: MOVING ISOTROPIC MEDIA

An isotropic medium with no magnetoelectric effects
moving with four-velocity Va has in its rest frame permit-
tivity tensor and permeability tensor given by the following
equations:

ϵab ¼ ϵðgab þ VaVbÞ ¼ ϵhab ðB1aÞ
and

½μ−1�ab ¼ μ−1ðgab þ VaVbÞ ¼ μ−1hab: ðB1bÞ
Inserting this in the Bel-decomposed constitutive tensor
Zabcd yields, according to Eq. (A8),

Zabcd ¼ −
ϵ

2
ðVaVchbd þ VbVdhac − VaVdhbc

− VbVchadÞ þ μ−1

2
ðhachbd − hadhbcÞ: ðB2Þ

This in turn can be rearranged to get

Zabcd ¼ μ−1

2
½ðhac − ϵμVaVcÞðhbd − ϵμVbVdÞ

− ðhad − ϵμVaVdÞðhbc − ϵμVbVcÞ�; ðB3Þ

which then in turns lends itself to two different applica-
tions: The first is to derive again the consistency condition
(28). The second is to get fully covariant expressions for the
magnetoelectric effect of moving media. We do both
consecutively in the following short subsections.

1. The consistency condition

Taking from Eq. (11) that an effective metric would
mean

Zabcd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det geff
det g

s
ð½g−1eff �ac½g−1eff �bd − ½g−1eff �ad½g−1eff �bcÞ; ðB4Þ

and comparing this with the just derived Eq. (B3), we see
that the existence of an effective metric geff would implyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgeffÞ
detðgÞ

4

s
½g−1eff �ab ¼ μ−1=2ðhab − ϵμVaVbÞ: ðB5Þ

Taking determinants on both sides, we get the following
equivalent of the previously derived consistency condition
(28) in the special case of an isotropic medium:

−1 ¼ −
ϵ

μ
: ðB6Þ

If the isotropic medium fulfils this condition we can then
immediately write down the inverse effective metric as

½g−1eff �ab ∝ ðhab − ϵμVaVbÞ ðB7Þ
or more specifically as

½g−1eff �ab ¼ ðϵμÞ−1=4ðhab − ϵμVaVbÞ: ðB8Þ

2. The magnetoelectric effect of moving media

Instead of looking for the possibility for an effectivemetric
describing the constitutive tensor, we can also
use the results of Sec. IV D to see what constitutive matrices
an observer, who is not comoving to the natural reference
frame of themedium,wouldmeasure. To this end, let us look
at Eqs. (69), again, withWa denoting the four-velocity of the
observer. First, we calculate the permittivity ϵabW . After some
algebra Eq. (69a) is evaluated to be

ϵbdW ¼ −2ZabcdWaWc; ðB9Þ
¼ μ−1ðgbd þWbWdÞ þ ðϵ − μ−1ÞðgbdðV ·WÞ2

−ðWbVd þ VbWdÞðV ·WÞ − VbVdÞ: ðB10Þ
Defining

hbdW ≔ gbd þWbWd; ðB11Þ
and realizing that

hbeW hefh
fd
W ¼ gbd þ ½1þ ðV ·WÞ2�WbWd

þ ðV ·WÞ½WbVd þ VdWb� þ VbVd; ðB12Þ

we can even simplify ϵabW further to

ϵbdW ¼ μ−1ðhbdW Þ − ðϵ − μ−1Þ½hbeW hefh
fd
W −½1þ ðV ·WÞ2�hbdW �;

ðB13aÞ

¼ ϵhbdW þðϵ−μ−1Þ½ðV ·WÞ2hbdW −hbeW hefh
fd
W �: ðB13bÞ

For ½μ−1W �bd it is helpful to realize that hab − ϵμVaVb is for
the following calculational needs the inverse of a
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(Lorentzian) metric Gab.
15 Therefore, it has an associated Levi-Civita tensor (density) εG. This then means that we can

“pictorially,”meaningwe forget numerical factors andphysical coefficients likeμ−1, rewrite the definingEq. (69c) to showcase
the tensorial dependencies,

½μ−1W �•• ≃ ð�ðG−1G−1 − G−1G−1Þ�Þ••••W•W•; ðB14aÞ
≃ ε••••ðG−1G−1 − G−1G−1Þ••••ε••••W•W•; ðB14bÞ
≃ ½g−1�••½g−1�••½g−1�••½g−1�•• ε••••ε••••|fflfflffl{zfflfflffl}

≃
ffiffiffiffiffi
det g
detG

p
2
εG••••ε

G
••••

ðG−1G−1 − G−1G−1Þ••••W•W•; ðB14cÞ

≃ det g
detG

½g−1�••½g−1�••½g−1�••½g−1�••εG••••εG••••ðG−1G−1 − G−1G−1Þ••••|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≃ðGG−GGÞ••••

W•W•; ðB14dÞ

≃ det g
detG

ð½g−1Gg−1�½g−1Gg−1� − ½g−1Gg−1�½g−1Gg−1�Þ••••: ðB14eÞ

Now det g
detG evaluates to ϵμ and

½g−1Gg−1�•• ¼ g•• þ
�
1 −

1

ϵμ

�
V•V•: ðB15Þ

With thiswe can then performa similar analysis to the one for
ϵab and arrive at

½μ−1W �bd ¼ hbdW
μ

þ ðμ−1 − ϵÞððV ·WÞ2hbdW − hbeW hefh
fd
W Þ:

ðB16Þ

Finally, starting from Eq. (69b) we arrive, again after some
algebra, at the equation

ζacW ¼ ðϵ − μ−1ÞðV ·WÞðϵacefWeVfÞ ðB17Þ
for the magnetoelectric matrix ζacW .
Note that this calculation reproduces several important

physical insights.
(1) If we pull out a factor ϵ in front of the right-hand side

of Eq. (B17), the remainder of the right-hand sides
will contain a factor of 1 − 1=ϵμ ¼ 1 − 1

n2, which
nicely reproduces the Fresnel-Fizeau effect in
flat space.

(2) Similarly, in flat space and if both the observer and
the natural reference frame of the medium are
inertial frames, note that ðV ·WÞ2 ¼ γ2 is just the
Lorentz factor we expect second-rank tensors like
the constitutive matrices to have.

(3) Finally, Eq. (B17) gives the well-known result that a
moving medium will have magnetoelectric effects,
even if it did not at rest. Again, this is tightly related
to the Fresnel-Fizeau effect, but is a more general
result.

(4) Also, isotropy is lost under a change of observer.
This happens even for inertial observers in Min-
kowski space and is intimately connected to the
appearance of magnetoelectric effects.
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