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Trumpet geometries play an important role in numerical simulations of black hole spacetimes, which are
usually performed under the assumption of asymptotic flatness. Our Universe is not asymptotically flat,
however, which has motivated numerical studies of black holes in asymptotically de Sitter spacetimes. We
derive analytical expressions for trumpet geometries in Schwarzschild-de Sitter spacetimes by first
generalizing the static maximal trumpet slicing of the Schwarzschild spacetime to static constant mean
curvature trumpet slicings of Schwarzschild–de Sitter spacetimes. We then switch to a comoving isotropic
radial coordinate which results in a coordinate system analogous to McVittie coordinates. At large distances
from the black hole the resulting metric asymptotes to a Friedmann-Lemaître-Robertson-Walker metric
with an exponentially-expanding scale factor. While McVittie coordinates have another asymptotically de
Sitter end as the radial coordinate goes to zero, so that they generalize the notion of a “wormhole”
geometry, our new coordinates approach a horizon-penetrating trumpet geometry in the same limit. Our
analytical expressions clarify the role of time-dependence, boundary conditions and coordinate conditions
for trumpet slices in a cosmological context, and provide a useful test for black hole simulations in
asymptotically de Sitter spacetimes.
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I. INTRODUCTION

Numerical simulations of binary black hole mergers,
without any symmetry assumptions, became possible with
the pioneering work of [1–3]. One particularly simple
approach to handling the spacetime singularities at the
centers of the black holes is to adopt so-called moving-
puncture coordinates in the context of a spatial foliation of
the spacetime (see, e.g. [2,3] and numerous later references;
see also [4] for a textbook treatment.) Essentially, these
coordinates avoid the spacetime singularities by driving the
spatial slices toward what is now referred to as a trumpet
geometry (see, e.g., [5–7]).
Trumpet geometries have very special properties. In the

Schwarzschild spacetime [8], trumpet slices end on a
limiting surface of finite areal radius, say R0, and hence
do not reach the spacetime singularity at R ¼ 0.
Simultaneously, any point away from the limiting surface,
with R > R0, is an infinite proper-distance away from the
limiting surface (see [9] for a characterization of trumpet
geometries in Kerr spacetimes [10]). In an embedding
diagram (see Fig. 2 of [6] for an example) the shape of these
surfaces resembles a trumpet, which explains their name.
Trumpet geometries are not unique, and can have

different mean curvatures. Most common in numerical
simulations are trumpets in a “stationary 1þ log” slicing
(e.g. [5,6,11]), while maximally sliced trumpet geometries
[12] are easier to analyze analytically [13]. More recently,
we also found a remarkably simple family of analytical
trumpet slices of the Schwarzschild spacetime [14], which
can even be generalized for rotating Kerr black holes [9].

Most work on trumpet geometries applies to asymptoti-
cally flat spacetimes. Our Universe is not asymptotically
flat, however, and numerous numerical relativity simula-
tions have been performed in a cosmological context
[15–21]). In particular, cosmological observations suggest
that we live in a Universe that is dominated by dark energy,
or a cosmological constant with a small positive value (see,
e.g., [22,23] and numerous later references), so that, in the
future, the large-scale structure of our Universe will be
increasingly well approximated by that of a de Sitter (dS)
spacetime [24,25]. This, in turn, has motivated numerical
relativity simulations in asymptotically dS spacetimes,
including the binary black hole merger simulations of [26].
For single black holes, the authors of [26] adopt as initial

data a Schwarzschild-de Sitter (SdS) solution [27–29]
expressed in so-called McVittie coordinates [30] (see also,
e.g. [31,32] for more recent discussions) which generalize
the “wormhole” data familiar from Schwarzschild space-
times to SdS spacetimes (see Sec. II B below). They also
adopt moving-puncture coordinates, so that one would
expect dynamical simulations to settle down to a SdS
generalizationof a trumpet geometry. This raises thequestion
whether this final, asymptotic state of black hole simulations
can be expressed analytically, as in the asymptotically
flat case.
In this paper we derive and explore constant mean

curvature trumpet geometries in SdS spacetimes and
generalize the results of [13] to SdS spacetimes. We
introduce McVittie-like coordinates which may be better
suited for numerical simulations in some respects, but also

PHYSICAL REVIEW D 96, 124014 (2017)

2470-0010=2017=96(12)=124014(7) 124014-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.124014
https://doi.org/10.1103/PhysRevD.96.124014
https://doi.org/10.1103/PhysRevD.96.124014
https://doi.org/10.1103/PhysRevD.96.124014


introduce a time-dependence. We demonstrate how our
analytical solution can be used as a test of numerical black
hole simulations in asymptotically dS spacetimes, and hope
that these results will also be helpful in the interpretation of
future numerical simulations.
This paper is organized as follows. In Sec. II we present a

sequence of coordinate transformations for SdS spacetimes,
starting with static coordinates in Sec. II A and McVittie
coordinates in Sec. II B, and finally ending with trumpet
slices expressed in McVittie-like coordinates in Sec. II F. In
Sec. III we show results from a numerical implementation,
showing how our analytical results can be used as a test bed
for black hole simulations in asymptotically dS spacetimes.
We briefly summarize in Sec. IV. Throughout this paper we
adopt geometric coordinates with c ¼ G ¼ 1.

II. SLICING SCHWARZSCHILD–DE
SITTER SPACETIMES

A. Static coordinates

The line element for SdS spacetimes is often given in
static coordinates as

ds2 ¼ −fdT2 þ f−1dR2 þ R2dΩ2; ð1Þ

where we have abbreviated f ≡ 1–2M=R −H2R2 (see,
e.g., [33] for an introduction to dS and SdS spacetimes
in various coordinate systems). Here M is the black hole
mass, R the areal radius, and the Hubble parameter H can
be expressed in terms of the cosmological constant Λ as
H ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

. For

0 < MH < MHcrit ≡ 1=ð3
ffiffiffi
3

p
Þ ð2Þ

there are two distinct horizons, the black hole horizon
Rbh at

Rbh

M
¼ −

2ffiffiffi
3

p
MH

cos

�
1

3
arccos ð3

ffiffiffi
3

p
MHÞ − 2π

3

�

≈ 2þ 8ðMHÞ2 þOððMHÞ4Þ; ð3Þ

and the cosmological horizon Rcos > Rbh at

Rcos

M
¼ −

2ffiffiffi
3

p
MH

cos

�
1

3
arccos ð3

ffiffiffi
3

p
MHÞ þ 2π

3

�

≈
1

MH
− 1þOðMHÞ ð4Þ

(see Fig. 1 below).

B. McVittie coordinates

Alternatively, the line element (1) can be expressed in
McVittie coordinates [30] as

ds2 ¼ −
�
1 − ξ

1þ ξ

�
2

dt2M þ aðtMÞ2ð1þ ξÞ4ðdr̄2 þ r̄2dΩ2Þ;

ð5Þ

where ξ≡M=ð2aðtMÞr̄Þ and aðtMÞ≡ eHtM, and where r̄ is
an isotropic radius. In the limit of H → 0 we recover the
Schwarzschild metric in isotropic coordinates on slices of
constant Schwarzschild time T. We similarly recover the
line element for a flat Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetime [34–39]

ds2 ¼ −dt2M þ aðtMÞ2ðdr̄2 þ r̄2dΩ2Þ ð6Þ

in the limit r̄ → ∞. In the limit r̄ → 0, the metric (5) takes
the same form as (6), just with a different scale factor; we
therefore identify the McVittie coordinates (5) with a
“wormhole” slicing of SdS spacetimes.

C. Constant mean curvature slices

We now adopt a height-function approach to derive a
family of time-independent constant mean curvature slices
of SdS spacetimes (see also [40,41], where this family was
previously derived). We will specialize to trumpet slices in
Sec. II D.
We begin with the static coordinates (1) and transform to

a new time coordinate t with the help of a height function
hðRÞ,

T ¼ t − hðRÞ: ð7Þ

Only the derivative h0 ≡ dhðRÞ=dR will appear in the
equations to follow. Since dT ¼ dt − h0dR the new line
element is

ds2 ¼ −fdt2 þ 2h0fdtdRþ ðf−1 − fh02ÞdR2 þ R2dΩ2:

ð8Þ

Comparing terms with metric in the “3þ 1” form

ds2 ¼ ð−α2 þ βiβ
iÞdt2 þ 2βidxidtþ γijdxidxj; ð9Þ

we can identify the lapse function α, the shift vector βi, and
the spatial metric γij. In particular, we first note that βR ¼
h0f and identify the metric components γRR ¼ f−1 − fh02,
γθθ ¼ R2, and γϕϕ ¼ R2 sin2 θ. We then invert the metric
and raise the index of the shift vector to find βi ¼ ðβR; 0; 0Þ
with βR ¼ γRRβR ¼ ðf−1 − fh02Þ−1h0f. Finally we find the
lapse from

−f ¼ −α2 þ βRβ
R ¼ −α2 þ h0fðf−1 − fh02Þ−1h0f; ð10Þ

so that
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α2 ¼ f þ h02f2

f−1 − fh02
¼ 1

f−1 − fh02
¼ 1

γRR
¼ γRR: ð11Þ

The extrinsic curvature Kij of the new slices is defined as
Kij ≡ γi

aγj
b∇anb, where ∇a is the covariant derivative

associated with the spacetime metric gab, and where na ¼
ð1;−βiÞ=α is the normal vector on the slices. The mean
curvature, defined as the trace of the extrinsic curvature,
can then be computed from

K ¼ −∇ana ¼ −jgj−1=2∂aðjgj1=2naÞ
¼ jgj−1=2∂Rðjgj1=2βR=αÞ; ð12Þ

We now fix h0 by requiring that slices of constant t have the
same mean curvature as slices of constant tM of the FLRW
line element (6), namely

K ¼ K0 ¼ −3H: ð13Þ

Inserting this condition into (12) yields

−3HR2 ¼ ∂R

�
R2h0f=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f−1 − fh02

q �
; ð14Þ

which can be integrated to yield

−HR3 þ C ¼ R2h0fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f−1 − fh02

p ð15Þ

where C is a constant of integration. Solving for h0 we
obtain

h02f2 ¼ ð−HR3 þ CÞ2
fR4 þ ð−HR3 þ CÞ2 ; ð16Þ

and inserting this into (11) results in

α2 ¼ f
1 − f2h02

¼ fR4 þ ð−HR3 þ CÞ2
R4

: ð17Þ

or

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Meff

R
þ C2

R4

r
: ð18Þ

Here we have chosen the positive sign, and we have defined

Meff ≡M þ CH ð19Þ

as a notational convenience. Using βR ¼ h0fα2, we see that

βR ¼ �
�
Cα
R2

−HαR

�
: ð20Þ

Note that for large R the magnitude of βR increases linearly
with R when H > 0.
Because the spatial metric remains time independent, the

extrinsic curvature can be computed from

Kij ¼
1

2α
ðDiβj þDjβiÞ; ð21Þ

where Di is the covariant derivative associated with the
spatial metric γij. We find

KRR ¼ −
2CþHR3

α2R3
; Kθθ ¼

Kϕϕ

sin2θ
¼ C−HR3

R
: ð22Þ

It is straightforward to verify that the mean curvature K ¼
γijKij is indeed given by (13).

D. Constant mean curvature trumpets

The constant mean curvature slicing derived in Sec. II C
generalizes a family of maximal slices of the Schwarzschild
spacetime, parametrized by C. The special member of this
family describing a trumpet slicing can be identified by
requiring that the function α2 have a double root at some
0 < R0 < Rbh (see [5,6,9]). Applying the same criterion
here, we write the square of (18) as

R4−2MeffR3þC2¼ðR−R0Þ2ðA2R2þA1RþA0Þ; ð23Þ

where we have introduced three new unknown constants A2,
A1 andA0.Matching coefficients for the five different powers
of R, we find that A2 ¼ 1, A1 ¼ Meff , A0 ¼ 3M2

eff=4, as
well as

R0 ¼
3Meff

2
ð24Þ

and

C2 ¼ 27M4
eff

16
: ð25Þ

These expressions take the exact same form as in the
asymptotically flat case, when H ¼ 0 and Meff ¼ M.
Since, from its definition (19), Meff is a linear function
ofC, Eq. (25) is a quartic equation for C, but fortunately it is
one that is easy to solve by hand. There are four distinct
solutions; two diverge as H → 0, one has C ¼ −3

ffiffiffi
3

p
M2=4

in that limit, and the other has the expected limit of
C ¼ 3

ffiffiffi
3

p
M2=4. Choosing that last solution we have

C ¼ −
M
H

þ 2

3
ffiffiffi
3

p
H2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3

ffiffiffi
3

p
MH

q �
: ð26Þ

Inserting this value into (19) and (24) then yields the areal
radius R0 of the trumpet slices’ limiting surface. As shown
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in Fig. 1, we have 0 < R0 < Rbh < Rc for 0 < H < Hcrit, as
desired.

E. Isotropic coordinates

For numerical purposes it is convenient to introduce an
isotropic radius r. We start by writing the spatial line
element both in terms of the areal radius R and the isotropic
radius r,

dl2 ¼ α−2dR2 þ R2dΩ2 ¼ ψ4
staticðdr2 þ r2dΩ2Þ; ð27Þ

where γRR ¼ α−2 from Eq. (11). Comparing the angular
parts of (27) we find

ψ2
static ¼

R
r
; ð28Þ

and using this in a comparison of the radial parts of (27)
yields

RdRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 − 2MeffR3 þ C2

p ¼ � dr
r
: ð29Þ

The isotropic coordinate takes the same form as it does for
the maximal Schwarzschild trumpet [13], just for different
values for the mass and C. Choosing the positive sign in
Eq. (29) and picking the integration constant so that r → R
as R → ∞ we find

r¼ 2RþMeff þΞ
4

�ð4þ3
ffiffiffi
2

p Þð2R−3MeffÞ
8Rþ6Meff þ3

ffiffiffi
2

p
Ξ

�1=
ffiffi
2

p

; ð30Þ

where we have defined Ξ≡ ð4R2 þ 4MeffRþ 3M2
effÞ1=2.

Inserting this into (28) we obtain

ψ static ¼
�

4R
2RþMeff þ Ξ

�
1=2

×
�

8Rþ 6Meff þ 3
ffiffiffi
2

p
Ξ

ð4þ 3
ffiffiffi
2

p Þð2R − 3MeffÞ

�1=2
ffiffi
2

p

: ð31Þ

The origin of the isotropic coordinates, r ¼ 0, corresponds
to the limiting surface at (24), and it can be shown that the
conformal factor ψ static diverges there with r−1=2. This, in
turn, guarantees that any point at r > 0 is an infinite proper
distance removed from the origin at r ¼ 0. At large
separations from the black hole, ψ static approaches unity.
In these new coordinates, the lapse is still given by

Eq. (18), with R now understood as RðrÞ, which can be
obtained by inverting Eq. (30) numerically. The radial
component of the shift is

βr ¼ βR
dr
dR

¼ �C −HR3

ψ2
staticR

2
; ð32Þ

and the nonzero components of the extrinsic curvature are
given by

Krr ¼ KRR

�
dR
dr

�
2

¼ −
2CþHR3

Rr2
; ð33Þ

and

Kθθ ¼
Kϕϕ

sin2 θ
¼ C −HR3

R
: ð34Þ

Expressed in these coordinates the solution is still time-
independent. However, at large distances from the black
hole, the magnitude of the shift again increases linearly
with r when H > 0, so that this solution is not compatible
with the fall-off boundary conditions that are often imposed
in numerical relativity.

F. McVittie-trumpet coordinates

Finally, in order to cast our trumpet solution in a
McVittie-like form, we abandon our static trumpet coor-
dinates and switch to a new “comoving” isotropic radial
coordinate r̄ defined by

r ¼ aðtÞr̄: ð35Þ

Here aðtÞ is given by eHt. Note that this changes the
coordinates within each slice, but does not change the
slicing itself. In terms of this new coordinate, the line
element becomes

ds2 ¼ −
�
1 −

2Meff

R

�
dt2 þ 2C

Rr̄
dtdr̄þ R2

r̄2
ðdr̄2 þ r̄2dΩ2Þ;

ð36Þ

FIG. 1. The areal radius of the cosmological horizon Rcos [given
by Eq. (4); dash-dotted line, red online], the black hole horizon
Rbh [Eq. (3); dashed line, green online], and the trumpet slices’
limiting surface R0 [Eq. (24); solid line, blue online] as functions
of the Hubble parameter H.
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where R is understood to be given as a function of
r ¼ aðtÞr̄. The lapse is still given by Eq. (11), while the
radial component of the shift becomes

βr̄ ¼ γr̄ r̄βr̄ ¼
r̄2

R2

C
Rr̄

¼ Cr̄
R3

: ð37Þ

Unlike in the previous coordinate systems, the shift vector
now drops to zero for large r̄, so that it is compatible with
the fall-off boundary conditions often used in numerical
relativity. We also identify a new conformal factor ψ using

ψ4 ¼ R2

r̄2
¼ a2ψ4

static: ð38Þ

The nonzero components of the extrinsic curvature are
given by

Kr̄ r̄ ¼ −
2CþHR3

r̄2R
ð39Þ

together with Eq. (34). We can again verify that the mean
curvature K is still given by (13).
The above coordinates are McVittie-like in the sense that

we recover the flat FLRW line element (6) for large r̄. The
shift vector (37) also drops off to zero for large separations

from the black hole. Unlike the McVittie coordinates of
Sec. II B, however, our new coordinates take a trumpet
form instead of a “wormhole” form as r̄ → 0; in particular,
the conformal factor diverges with r̄−1=2. We believe that
these properties make these new coordinates well-suited
for numerical simulations. However, in comparison to the
static isotropic coordinates of Section II E the new
McVittie-like coordinates also have a disadvantage, since
they are time-dependent. We demonstrate this time-depend-
ence in Fig. 2, where we show profiles of the lapse function
α and the shift vector βr̄ at different instants of time for
H ¼ ffiffiffiffiffiffiffi

0.9
p

Hcrit [see Eq. (2)].

III. NUMERICAL DEMONSTRATION

As a brief numerical demonstration we evolve the above
data in a fully dynamical simulation. We use the numerical
code described in [42,43], which evolves Einstein’s equa-
tion in the Baumgarte-Shapiro-Shibata-Nakamura formu-
lation [44–46] in spherical polar coordinates. All spatial
derivatives are evaluated using fourth-order finite-
difference stencils (with the exception of advective terms,
which are implemented to third order), but time derivatives
are evaluated using a scheme that is accurate to second
order only. We follow [16] in implementing an asymptoti-
cally dS spacetime; specifically, we write the conformal
factor as ψ4 ¼ a2ðtÞ expð4ϕÞwith aðtÞ ¼ expðHtÞ. At large
radii, where we impose the boundary condition ϕ → 0, our
solutions then approach the FLRW line element (6).
One complication arises from the fact that trumpet slices

expressed in McVittie-like coordinates are time-dependent,
which has to be taken into account when imposing
coordinate conditions for the lapse and shift.
In asymptotically flat spacetimes, dynamical simula-

tions of black holes settle down to maximally sliced
trumpets when the lapse function is evolved with a
“nonadvective” version of the 1þ log slicing condition
∂tα ¼ −2αK (see [12,13,47]). As suggested by [26], it is
natural to replace this with ∂tα ¼ −2αðK − K0Þ for sim-
ulations in asymptotically dS spacetimes. As K → K0, this
results in ∂tα → 0. Unfortunately this condition cannot
result in the McVittie trumpet slices of Sec. II F, since, for
the latter, the lapse is not independent of time. In fact, we
find that

∂tα ¼ H
2
ð1 − α2 − 3ψ4ðβr̄Þ2Þ; ð40Þ

where we have used expressions for the lapse, shift, and
conformal factor to eliminate Meff , C, and R.
A slicing condition that (i) reduces to a 1þ log condition

in the limit H → 0 and (ii) captures the time-dependence
(40) when K ¼ K0 is therefore given by

∂tα ¼ H
2
ð1 − α2 − 3ψ4ðβr̄Þ2Þ − 2αðK − K0Þ: ð41Þ

FIG. 2. The lapse (top panel) and radial component of the shift
vector (bottom panel) at t ¼ 0, t ¼ 5.236M, and t ¼ 10.472M for
H ¼ 0.183M−1 ¼ ffiffiffiffiffiffi

0.9
p

Hcrit [see Eq. (2)]. The analytical ex-
pressions are plotted as solid lines (red, green, and blue online).
The locations of the black hole and cosmological horizons are
marked with filled circles and filled squares, respectively. As a
consequence of the large value ofH chosen here the two horizons
are quite close to each other (compare Fig. 1). The numerical
results (crosses, open circles, and open squares) are from
dynamical simulations of the McVittie-trumpet data of Sec. II F,
evolved with the coordinate conditions (41) and (43), using
1,536 radial gridpoints (the lowest resolution used in Fig. 3) and
an outer boundary at r̄ ¼ 64M. For clarity, only every second
gridpoint is shown. Agreement with the analytical expressions is
excellent (see also the convergence test in Fig. 3).
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We impose this slicing condition in our dynamical
simulations.
From the expressions in Sec. II F we similarly find

∂tβ
r̄ ¼ αβr̄K0: ð42Þ

This suggests the shift condition

∂tBr̄ ¼ 3

4
∂tΓ̄r̄ − ηβr̄; ∂tβ

r̄ ¼ Br̄ þ αβr̄K0; ð43Þ

which reduces to a nonadvective gamma-driver shift con-
dition [2] in the limit that H → 0.
In Figs. 2 and 3 we show results from dynamical

simulations of the McVittie-trumpet data of Sec. II F,
evolved with the coordinate conditions (41) and (43). In
Fig. 2 we show snapshots of the lapse function α and the

radial component of the shift vector βr̄ at different instants
of time for H ¼ ffiffiffiffiffiffiffi

0.9
p

Hcrit (2), comparing the analytical
expressions (lines) with numerical results (points). In Fig. 3
we show differences between the analytical and numerical
data for three different numerical resolutions, showing that
the numerical errors decrease at least as fast as expected for
a second-order convergent code.
We note that the coordinate conditions (41) and (43) are

“tailored” to the McVittie-trumpets of Sec. II F, and may
not be suitable for other data. In fact, we have found that
dynamical evolutions of the McVittie-wormholes (5)
with these coordinate conditions will lead to numerical
instabilities.

IV. SUMMARY

Motivated by numerical simulations of black holes in
asymptotically dS spacetimes [26] we study trumpet slices
in SdS spacetimes. Starting with the line element for SdS
spacetimes in static coordinates we follow a sequence of
coordinate transformations and identify special constant
mean-curvature slices which we then express in isotropic
McVittie-like coordinates [30]. These slices are natural
generalizations of the maximal trumpet slices of the
Schwarzschild spacetime [12,13]: they cast the black
hole in a trumpet geometry, while far away from the black
hole the metric approaches the FLRW form (6). Unlike the
trumpet slices of the Schwarzschild spacetime, however,
McVittie-trumpets of SdS spacetimes do depend on time.
This time-dependence needs to be taken into account in
coordinate conditions designed to reproduce these trumpets
in dynamical simulations. We perform such simulations,
and demonstrate how our results can be used as a test for
black hole simulations in asymptotically dS spacetimes.
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