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We compute the exact Hamiltonian (and corresponding Dirac brackets) for a spinning particle with
gravimagnetic moment κ in an arbitrary gravitational background. The case κ ¼ 0 corresponds to the
Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations. κ ¼ 1 leads to modified MPTD equations
with improved behavior in the ultrarelativistic limit. So we study the modified equations in the leading post-
Newtonian approximation. The rotating body with unit gravimagnetic moment has qualitatively different
behavior as compared with the MPTD body: (A) If a number of gyroscopes with various rotation axes are
freely traveling together, the angles between the axes change with time. (B) For specific binary systems,
gravimagnetic moment gives a contribution to the frame-dragging effect with the magnitude that turns out
to be comparable with that of Schiff frame dragging.
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I. INTRODUCTION

The rotating body in general relativity is usually
described on the base of manifestly generally covariant
Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equa-
tions that prescribe the dynamics of both trajectory and
spin of the body in an external gravitational field [1–6].
Starting from the pioneer works, these equations were
considered as a Hamiltonian-type system. In the recent
work [7], we realized this idea by constructing the minimal
interaction with gravity in the vector model of the spinning
particle, and showed that this indeed leads to MPTD
equations in the Hamiltonian formalism (see also below).
This allowed us to study the ultrarelativistic limit in exact
equations for the trajectory of the MPTD particle in the
laboratory time. Using the Landau-Lifshitz (1þ 3) decom-
position [8] we observed that, unlike a geodesic equation,
the MPTD equations lead to the expression for three-
acceleration, which contains divergent terms as v → c [9].
Fast test particles are now under intensive investigation
[10–15], and represent an important tool in the study, for
example, of near horizon geometry of black holes [16–24].
Readers may also consult (we are grateful to the reviewer
for indicating these works) the very general treatment of
these problems in [25]. So, it would be interesting to find a
generalization of MPTD equations with improved behavior
in the ultrarelativistic regime. This can be achieved if we
add a nonminimal spin-gravity interaction through the
gravimagnetic moment [26]. In the theory with unit
gravimagnetic moment, both acceleration and spin torque
have reasonable behavior in the ultrarelativistic limit. In the
present work we study the modified equations in the regime
of small velocities in the leading post-Newtonian approxi-
mation. In Schwarzschild and Kerr space-times, the

modified equations imply a number of qualitatively new
effects that could be used to test experimentally whether a
rotating body in general relativity has null or unit grav-
imagnetic moment.
The work is organized as follows. In Sec. II we shortly

describe Lagrangian and Hamiltonian formulations of the
vector model of the spinning particle and compute Dirac
brackets of the theory in an arbitrary gravitational back-
ground. In the formulation with use of Dirac brackets, the
complete Hamiltonian acquires a simple and expected
form, while an approximate 1

c2 Hamiltonian, further
obtained in Sec. IV, strongly resembles that of the spinning
particle in electromagnetic background. This is in corre-
spondence with the known analogy between gravity and
electromagnetism [27–30]. In Sec. III we introduce non-
minimal spin-gravity interaction through the gravimagnetic
moment and obtain the corresponding equations of motion.
We show that constants of motion due to isometries of
space-time for the MPTD and the modified equations are
the same. In Sec. IV we compute the leading post-
Newtonian corrections to the trajectory and spin of our
particle with unit gravimagnetic moment, and present the
corresponding effective Hamiltonian in 1

c2-approximation.
The nonminimal interaction implies extra contributions into
both trajectory and spin, as compared with MPTD equa-
tions in the same approximation. A number of effects due to
nonminimal interaction are discussed in Sec. V.
Notation. Our variables are taken in arbitrary paramet-

rization τ, then _xμ ¼ dxμ
dτ . The square brackets mean

antisymmetrization, ω½μπν� ¼ ωμπν − ωνπμ. For the four-
dimensional quantities we suppress the contracted indices
and use the notation _xμGμν _xν ¼ _xG_x, Nμ

ν _xν ¼ ðN _xÞμ,
ω2¼gμνωμων, μ, ν¼0, 1, 2, 3. Notation for the scalar
functions constructed from second-rank tensors is θS ¼
θμνSμν, S2 ¼ SμνSμν. When we work in four-dimensional
Minkowski space with coordinates xμ ¼ ðx0 ¼ ct; xiÞ, we
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use the metric ημν ¼ ð−;þ;þ;þÞ, then _xω ¼ _xμωμ ¼
−_x0ω0 þ _xiωi and so on. Suppressing the indices of
three-dimensional quantities, we use bold letters, viγijaj ¼
vγa, viGiμvμ ¼ vGv, i, j ¼ 1, 2, 3, and so on.
The covariant derivative is ∇ωμ ¼ dωμ

dτ þ Γμ
αβ _x

αωβ.
The tensor of Riemann curvature is Rσ

λμν ¼ ∂μΓσ
λν −

∂νΓσ
λμ þ Γσ

βμΓβ
λν − Γσ

βνΓβ
λμ.

II. VECTOR MODEL OF SPIN AND MATHISSON-
PAPAPETROU-TULCZYJEW-DIXON EQUATIONS

In the vector model of spin presented in [31], the
configuration space consists of the position of the particle
xμðτÞ, and the vector ωμðτÞ attached to the point xμðτÞ.
Minimal interaction with gravity is achieved by direct
covariantization of the free action, initially formulated in
Minkowski space. That is we replace ημν → gμν and usual
derivatives of the vector ωμ by the covariant derivative:
_ωμ → ∇ωμ. The resulting Lagrangian action reads [7]

S ¼ −
1ffiffiffi
2

p
Z

dτ

�
m2c2 −

α

ω2

�1
2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−_xN _x −∇ωN∇ωþ T1=2

p
: ð1Þ

We have denoted T ≡ ½_xN _xþ∇ωN∇ω�2 − 4ð_xN∇ωÞ2,
and Nμν ≡ gμν −

ωμων

ω2 . The matrix N is a projector on the
plane orthogonal to ω: Nμνω

ν ¼ 0. The parameter α

determines the value of spin; in particular, α ¼ 3ℏ2
4

corre-
sponds to the spin one-half particle. In the spinless limit,
ωμ ¼ 0 and α ¼ 0, Eq. (1) reduces to the standard
Lagrangian of a point particle, −mc

ffiffiffiffiffiffiffiffi
−_x2

p
.

The action is manifestly invariant under general-coor-
dinate transformations as well as under reparametrizations
of the evolution parameter τ. Besides, there is one more
local symmetry, which acts in the spin sector and is called
the spin-plane symmetry: the action remains invariant
under rotations of the vectors ωμ and πμ ¼ ∂L

∂ _ωμ in their
own plane [32]. Being affected by the local transformation,
these vectors do not represent observable quantities. But
their combination, Sμν ¼ 2ðωμπν − ωνπμÞ, is an invariant
quantity, which represents the spin tensor of the particle.
We decompose the spin tensor as follows:

Sμν ¼ 2ðωμπν − ωνπμÞ ¼ ðSi0 ¼ Di; Sij ¼ 2ϵijkSkÞ; ð2Þ

where Si is the three-dimensional spin vector, and Di is the
dipole electric moment [33].
Since we deal with a local-invariant theory and, fur-

thermore, one of the basic observables is constructed from
the phase-space variables, the Hamiltonian formalism is the
most convenient for analyzing the dynamics of the theory.
So, we first obtain the Hamiltonian equations of motion,

and next, excluding momenta, we arrive at the Lagrangian
equations for the physical-sector variables x and S.
Conjugate momenta for xμ and ωμ are pμ ¼ ∂L

∂ _xμ and πμ ¼∂L
∂ _ωμ respectively. Because of the presence of _xμ in ∇ωμ, the
conjugated momentum pμ does not transform as a vector,
so it is convenient to define the canonical momentum

Pμ ≡ pμ − Γβ
αμωαπβ; ð3Þ

which transforms as a vector under general-coordinate
transformations. The full set of phase-space coordinates
consists of the pairs xμ, pμ, and ωμ, πμ. They fulfil the
fundamental Poisson brackets fxμ;pνg¼δμν , fωμ;πνg¼δμν ;
then

fPμ;ωνg ¼ Γν
μαω

α; fPμ; πνg ¼ −Γα
μνπα;

fPμ;ω2g ¼ fPμ; π2g ¼ fPμ;ωπg ¼ 0: ð4Þ

For the quantities xμ, Pμ, and Sμν, the basic Poisson
brackets imply the typical relations used by people for
spinning particles in Hamiltonian formalism,

fxμ; Pνg ¼ δμν ; fPμ; Pνg ¼ −
1

4
RμναβSαβ;

fPμ; Sαβg ¼ Γα
μσSσβ − Γβ

μσSσα;

fSμν; Sαβg ¼ 2ðgμαSνβ − gμβSνα − gναSμβ þ gνβSμαÞ: ð5Þ

Applying the Dirac-Bergman procedure for a singular
system to the theory (1), we arrive at the Hamiltonian [9]

H¼ λ1
2
½T1þ4aðπθPÞT3−4aðωθPÞT4þT5�þλ2T2; ð6Þ

composed of the constraints

T1 ≡ P2 þm2c2 ¼ 0; ð7Þ

T2 ≡ ωπ ¼ 0; T3 ≡ Pω ¼ 0;

T4 ≡ Pπ ¼ 0; T5 ≡ π2 −
α

ω2
¼ 0: ð8Þ

In the expression for H we have denoted

θμν ≡ RαβμνSαβ; a≡ 2

16m2c2 þ ðθSÞ : ð9Þ

The antisymmetric tensor θμν turns out to be a gravitational
analogy of the electromagnetic field strength Fμν; see
below. T1;…; T4 appear as the primary constraints in
the course of the Dirac-Bergmann procedure, T5 is the
only secondary constraint of the theory, and λ1, λ2 are the
Lagrangian multipliers associated to T1 and T2. Poisson
brackets of the constraints are summarized in Table I. The
table implies that T3 and T4 represent a pair of second-class
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constraints, while T2, T5 and the combination T1 þ
4aðπθPÞT3 − 4aðωθPÞT4 are the first-class constraints.
So the Hamiltonian (6) consists of the first-class
constraints.
Taking into account that each second-class constraint

rules out one phase-space variable, whereas each first-class
constraint rules out two variables, we have the right number
of spin degrees of freedom, 8 − ð2þ 4Þ ¼ 2. The meaning
of the constraints becomes clear if we consider their effect
over the spin tensor. The second-class constraints T3 ¼ 0
and T4 ¼ 0 imply the spin supplementary condition

SμνPν ¼ 0; ð10Þ

while the first-class constraints T2 and T5 fix the value of
the square of the spin tensor

SμνSμν ¼ 8α: ð11Þ

Equations (10) and (11) imply that only two components
of spin tensor are independent, as it should be for an
elementary spin one-half particle.
We could use Poisson brackets to obtain the Hamiltonian

equations, _z ¼ fz;Hg, for the variables of physical sector
z ¼ ðx; P; SÞ. But in this case we are forced to work
with the rather inconvenient Hamiltonian (6). Instead,
we construct the Dirac bracket associated with second-
class constraints T3 and T4. It is convenient to denote
fT3; T4g ¼ − 1

8△
, where △ ¼ −2

16P2−ðθSÞ, then △ ≈ a on the

surface of mass-shell constraint T1 ¼ 0. The Dirac bracket
reads

fA;BgD ¼fA;Bg−8△½fA;T3gfT4;Bg−fA;T4gfT3;Bg�:
ð12Þ

By construction, the Dirac bracket of any variable with the
constraints vanishes, so T3 and T4 can be omitted from the
Hamiltonian. The first-class constraints T2 and T5 can be
omitted as well, since brackets of the variables x, P, and S
with them vanish on the constraint surface. In the result we
arrive at a simple Hamiltonian

H0 ¼
λ1
2
ðP2 þm2c2Þ; ð13Þ

which looks like that of a free point particle. All the
information on spin and interaction is encoded now in the
Dirac bracket. In particular, equations of motion are
obtained according to the rule _z ¼ fz;H0gD.
Poisson brackets of our variables with T3 and T4 are

fxμ; T3g ¼ ωμ; fxμ; T4g ¼ πμ;

fPα; T3g ¼ −
1

4
θαβω

β þ Γλ
αβPλω

β;

fPα; T4g ¼ −
1

4
θαβπ

β þ Γλ
αβPλπ

β;

fSμν; T3g ¼ 2P½μων� þ Γ½μ
αβS

ν�αωβ;

fSμν; T4g ¼ 2P½μπν� þ Γ½μ
αβS

ν�απβ: ð14Þ

Using these expressions in (12), we obtain the manifest
form of the Dirac brackets

fxμ; xνgD ¼ 4△Sμν;

fPμ; PνgD ¼ −
1

4
θμν þ 4△ðΓPÞμαSαβðΓPÞβν

−
△

8
ðθμαSαβ½θβν þ 4ðΓPÞβν� − ðμ ↔ νÞÞ;

fxμ; PαgD ¼ δμα þ△Sμβ½θβα þ 4ðΓPÞβα�;

fxμ; SαβgD ¼ −8△
�
Sμ½αPβ� −

1

2
SμσΓ½α

σλS
β�λ
�
;

fPα; SμνgD ¼ −Γ½μ
ασSν�σ

þ△½θαβ þ 4ðΓPÞαβ�ð2Sβ½μPν� − SβηΓ½μ
ηλS

ν�λÞ;

fSμν; SαβgD ¼ fSμν; Sαβg − 8△

�
2ðPμPαSβν − PμPβSαν

− PνPαSβμ þ PνPβSαμÞ − P½μSν�λΓ½α
λσS

β�σ

þ P½αSβ�λΓ½μ
λσS

ν�σ −
1

2
Γ½μ
σλS

ν�σSλρΓ½α
ρϵSβ�ϵ

�
:

ð15Þ

Their right-hand sides do not contain explicitly the vari-
ables ω and π, so the brackets form a closed algebra for the
set ðx; P; SÞ.

TABLE I. Poisson brackets of constraints.

T1 T5 T2 T3 T4

T1 ¼ P2 þm2c2 0 0 0 1
2
ðωθPÞ 1

2
ðπθPÞ

T5 ¼ π2 − α
ω2 0 0 −2T5 −2T4 −2αT3=ðω2Þ2

T2 ¼ ωπ 0 2T5 0 −T3 T4

T3 ¼ Pω − 1
2
ðωθPÞ 2T4 T3 0 P2 − ðθSÞ

16
≈ − 1

8a
T4 ¼ Pπ − 1

2
ðπθPÞ 2αT3=ðω2Þ2 −T4 −P2 þ ðθSÞ

16
≈ 1

8a
0
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The Dirac brackets remain different from the Poisson
brackets even in the limit of a free theory, gμν → ημν.
In particular, in the sector of canonical variables x and p
we have

fxμ; xνgD ¼ −
Sμν

2p2
; fxμ;pνgD ¼ ημν; fpμ;pνgD ¼ 0:

ð16Þ

Hence, the account of spin leads to deformation of the
phase-space symplectic structure: the position variables of
the relativistic spinning particle obey the noncommutative
bracket, with the noncommutativity parameter being pro-
portional to the spin tensor. This must be taken into account
in the construction of quantum mechanics of a spinning
particle [34,35]. In particular, for an electron in electro-
magnetic field, the spin-induced noncommutativity
explains the famous one-half factor in the Pauli equation
without appeal to the Thomas precession, Dirac equation, or
Foldy-Wouthuysen transformation; see [36]. Besides, for a
spinning body in gravitational field, the spin-induced non-
commutativity clarifies the discrepancy in expressions for
three-acceleration obtained by different methods; see [37].
Using the Dirac brackets together with the Hamiltonian

(13), we obtain equations of motion

_xμ ¼ fxμ;H0gD ¼ λ1½PμþaSμβθβαPα�;
_Pμ ¼ fPμ;H0gD ¼

�
−
1

4
θμνþðΓPÞμν

�
λ1½PνþaSνβθβαPα�

¼−
1

4
θμν _xνþΓα

μνPα _xν;

_Sμν ¼ fSμν;H0gD
¼ ð2Pμδνα −Γμ

ασSσνÞλ1½PαþaSαβθβγPγ�− ðμ↔ νÞ
¼ 2P½μ _xν� −Γμ

ασSσν _xα −Γν
ασSμσ _xα: ð17Þ

They can be rewritten in a manifestly general-covariant
form as follows:

_xμ ¼ λ1ðδμν þ aSμβθβνÞPν; ð18Þ

∇Pμ ¼ −
1

4
RμναβSαβ _xν ≡ −

1

4
θμν _xν; ð19Þ

∇Sμν ¼ 2ðPμ _xν − Pν _xμÞ: ð20Þ

Some relevant comments are in order.
(1) Comparison with MPTD equations. Despite the fact

that the vector model has been initially constructed
as a theory of an elementary particle of spin one-half,
it turns out to be suitable to describe a rotating body
in general relativity in the pole-dipole approximation
[5,38]. Indeed, Eqs. (19) and (20) coincide with
Dixon equations of the body (our spin is twice that

of Dixon), while our constraint (10) is just the
Tulczyjew spin supplementary condition.1 Besides,
the Hamiltonian equation (18) can be identified with
the velocity-momentum relation, implied by MPTD
equations; see [26] for a detailed comparison. The
only difference is that values of momentum and spin
are conserved quantities of MPTD equations, while
in the vector model they are fixed by constraints. In
summary [26], to study the class of trajectories of a
body with

ffiffiffiffiffiffiffiffiffi
−P2

p
¼ k and S2 ¼ β, we can use our

spinning particle with m ¼ k
c and α ¼ β

8
.

(2) Ultrarelativistic limit. Using the Landau-Lifshitz
1þ 3-decomposition [8], we showed in [26] that
MPTD equations yield a paradoxical behavior in the
ultrarelativistic limit: three-dimensional acceleration
of the particle grows with its speed, and diverges as
jvj → c. In the next section, we improve this by
adding a nonminimal spin-gravity interaction
through the gravimagnetic moment.

(3) Analogy between gravitation and electromagnetism.
Many people mentioned remarkable analogies be-
tween gravitation and electromagnetism in various
circumstances [17,27–30]. Here we observe an
analogy, comparing (18)–(20) with equations of
motion of the spinning particle (with null gyromag-
netic ratio) [31] in electromagnetic field with the
strength Fμν,

_xμ ¼ λ1ðδμν þ aSμβFβνÞPν;

where a ¼ −2e
4m2c3 − eðSFÞ ; ð21Þ

_Pμ ¼
e
c
Fμν _xν; ð22Þ

_Sμν ¼ 2P½μ _xν�: ð23Þ

One system just turns into another if we identify
θμν ≡ RμναβSαβ ∼ Fμν, and set e ¼ − c

4
. That is a

curvature influences the trajectory of a spinning
particle in the same way as an electromagnetic field
with the strength θμν. We now use this analogy to
construct a nonminimal spin-gravity interaction.

1While the variational problem dictates [39] Eq. (10), in the
multipole approach there is a freedom in the choice of a spin
supplementary condition, related with the freedom in the choice
of a representative point xμ describing position of the body
[3,4,6]. Different conditions lead to the same results in
1
c2-approximation; see [5,40,41].
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III. ROTATING BODY WITH
GRAVIMAGNETIC MOMENT

The Hamiltonian (6) is a combination of constraints, so
the Hamiltonian formulation of our model is completely
determined by the set of constraints (7) and (8), and by
the expression (3) for canonical momentum Pμ through the
conjugated momentum pμ. We observe that algebraic
properties of the constraints do not change, if we replace
the mass-shell constraint T1 ¼ P2 þm2c2 by ~T1 ¼
P2 þ fðx; P; SÞ þm2c2, where fðxμ; Pν; SμνÞ is an arbi-
trary scalar function. Indeed, in the modified theory T3

and T4 remain the second-class constraints, while
T2, T5, and the combination ~T1 − fT3; T4g−1f ~T1; T4gT3 þ
fT3; T4g−1f ~T1; T3gT4 form a set of first-class constraints.
If we confine ourselves to the linear in curvature and
quadratic in spin approximation, the only scalar function f,
which can be constructed from the quantities at our
disposal, is κ

16
RμναβSμνSαβ ≡ κRμναβω

μπνωαπβ, where κ is
a dimensionless parameter. The resulting constraint,

~T1 ¼ P2 þ κ

16
ðθSÞ þm2c2 ¼ 0; ð24Þ

is similar to the Hamiltonian λ1
2
ðP2 − eg

c ðFSÞ þm2c2Þ of a
spinning particle interacting with electromagnetic field
through the gyromagnetic ratio g; see [31]. In view of this
similarity, the interaction constant κ is called the gravi-
magnetic moment [16,17], and we expect that nonmini-
mally interacting theory with the Hamiltonian (24) could be
a consistent generalization of MPTD equations. The con-
sistency has been confirmed in [26], where we presented
the Lagrangian action of a spinning particle that implies the
constraints (24) and (8) in Hamiltonian formalism.
Poisson brackets of the constraints ~T1, T3, and T4 read

fT̄1; T3g ¼ 1

2
ð1 − κÞðωθPÞ þ κωσð∇σRμναβÞωμπνωαπβ;

ð25Þ

fT̄1; T4g ¼ 1

2
ð1 − κÞðπθPÞ þ κπσð∇σRμναβÞωμπνωαπβ;

ð26Þ

fT3; T4g ¼ P2 −
1

16
ðθSÞ ≈ −8ā;

where ā ¼ 2

16m2c2 þ ðκ þ 1ÞðθSÞ : ð27Þ

These expressions must be substituted in place of terms
1
2
ðωθPÞ, 1

2
ðωθPÞ, and a in Table I. The Dirac brackets (15),

being constructed with the help of T3 and T4, remain
valid in the modified theory. Our new Hamiltonian is
H ¼ λ

2
H0 þ λ

2
Hκ, with H0 from (13) and Hκ ¼ κ

16
ðθSÞ.

Hence, to obtain the manifest form of equations of motion
_z ¼ fz;H0gD þ fz;HκgD, we only need to compute the
brackets fz;HκgD. They are

fxμ; HκgD ¼ −λ1κā
�
SμαθαβPβ−

1

8
Sμνð∇νRαβσλÞSαβSσλ

�
;

ð28Þ

fPμ; HκgD ¼ −
1

4
θμαfxα; HκgD þ Γβ

μαPβfxα; HκgD

−
λ1κ

32
ð∇μRαβσλÞSαβSσλ; ð29Þ

fSμν; HκgD ¼ κλ1
4

θ½μα Sν�α þ 2P½μfxν�; HκgD
− ðΓμ

αβS
αν þ Γν

αβS
μαÞfxβ; HκgD: ð30Þ

Adding them to the equations _z ¼ fz;H0gD given in (18)–
(20), we arrive at the dynamical equations

_xμ ¼ λ1½δμν − āðκ − 1ÞSμαθαν�Pν

þ λ1κā
8

Sμνð∇νRαβσλÞSαβSσλ; ð31Þ

∇Pμ ¼ −
1

4
θμν _xν −

λ1κ

32
ð∇μRαβσλÞSαβSσλ; ð32Þ

∇Sμν ¼ 2P½μ _xν� þ λ1κ

4
θ½μαSν�α: ð33Þ

Together with the constraints (10), (11), and (24), they give
a complete system of Hamiltonian equations of spinning
particle with gravimagnetic moment κ. As it should be, our
equations reduce to MPTD Eqs. (18)–(20) when κ ¼ 0.
Comparing the two systems, we see that the nonminimal
interaction yields quadratic and cubic in spin corrections to
MPTD equations.
The Eqs. (31)–(33) are greatly simplified for a particle

with unit gravimagnetic moment, κ ¼ 1 (gravimagnetic
particle). It has a qualitatively different behavior as com-
pared with the MPTD particle. First, the gravimagnetic
particle has an expected behavior in the ultrarelativistic
limit [9,26]: three-dimensional acceleration of the particle
and angular velocity of precession remain finite as jvj → c,
while the longitudinal acceleration vanishes in the limit.
Second, at low velocities, taking κ ¼ 1 and keeping only
the terms which may give a contribution in the leading post-
Newton approximation, ∼ 1

c2, we obtain from (31)–(33) the
approximate equations

_xμ ¼ λ1Pμ; ∇Pμ ¼ −
1

4
θμν _xν −

λ1
32

ð∇μRαβσλÞSαβSσλ;

∇Sμν ¼ λ1
4
θ½μαSν�α; ð34Þ
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while MPTD equations (κ ¼ 0) in the same approximation
read

_xμ ¼ λ1Pμ; ∇Pμ ¼ −
1

4
θμν _xν; ∇Sμν ¼ 0: ð35Þ

In Sec. IV, we compute 1
c2 corrections due to the extra terms

appearing in (34).

A. Conserved charges

In curved space that possesses some isometry,
MPTD equations admit a constant of motion (see, for
example, [7,25])

JðξÞ ¼ Pμξμ −
1

4
Sμν∇νξμ; ð36Þ

where ξμ is the Killing vector that generates the isometry,
i.e., ∇μξν þ∇νξμ ¼ 0. Let us show that JðξÞ remains a
constant of motion when the gravimagnetic interaction is
included. Using (32) and (33), we obtain by direct
calculation

_JðξÞ ¼ κλ1
8

�
SαβRμ

σαβSσν∇νξμ−
1

4
SαβSσλξμ∇μRαβσλ

�
: ð37Þ

Using the Bianchi identities we find the relation

SαβSσλξμ∇μRαβσλ ¼ 2SαβSσνξμ∇σRμναβ: ð38Þ

The derivative of a curvature tensor is related with the
derivative of a Killing vector by the formula ξμ∇σRαβνμ −
ξμ∇νRαβσμ ¼ Rαβσ

μ∇νξμ − Rαβν
μ∇σξμ þ Rσνα

μ∇βξμ −
Rσνβ

μ∇αξμ. Contracting twice with the spin tensor we
obtain

SαβSσνξμ∇σRμναβ ¼ 2SαβRμ
σαβSσν∇νξμ: ð39Þ

Using this expression in (38), we obtain SαβSσλξμ∇μRαβσλ ¼
4SαβRμ

σαβSσν∇νξμ. This implies that the right-hand side of

(37) vanishes, so _JðξÞ ¼ 0. Thus, the quantity (36) represents
a constant of motion of a spinning particle with gravimag-
netic moment.

B. Lagrangian system of equations of motion

Since we are interested in the influence of nonminimal
spin-gravity interaction on the trajectory and spin of the
particle, we eliminate the momenta Pμ and the auxiliary
variable λ1 from Eqs. (31)–(33), obtaining their Lagrangian
form. In Eq. (31), which relates velocity and momentum,
there appears the matrix

Tα
ν ≡ δαν − ðκ − 1ÞāSασθσν: ð40Þ

Using the identity ðSθSÞμν ¼ − 1
2
ðSαβθαβÞSμν, we find the

inverse2 of the matrix T,

~Tα
ν≡δανþðκ−1ÞbSασθσν; b¼ 1

8m2c2þκðSθÞ : ð41Þ

Using (41), we solve (31) with respect to Pμ. Using the
resulting expression in the constraint (24), we obtain

λ1 ¼
ffiffiffiffiffiffiffiffiffi
−_xG_x

p
mrc

, where m2
r ≡m2 þ κ

16c2 ðSθÞ − κ2Z2 is the radi-
ation mass in gravitational field. By Zμ we have denoted the
vector, which vanishes in spaces with covariantly constant
curvature, Zμ ¼ b

8c S
μσð∇σRαβρδÞSαβSρδ. Besides, in the

expression for λ1 appeared a kind of effective metric G
induced by spin-gravity interaction along the worldline,
Gμν ¼ ~Tα

μgαβ ~T
β
ν. Only for the gravimagnetic particle

(κ ¼ 1), the effective metric reduces to the original one.
Using (31) and (41), we obtain expression for momentum
in terms of velocity

Pμ ¼ mrcffiffiffiffiffiffiffiffiffiffiffiffi
−_xG_x

p ~Tμ
ν _xν − κcZμ: ð42Þ

We substitute this Pμ into (32) and (33), arriving at the
Lagrangian equations of our spinning particle with grav-
imagnetic moment κ,

∇
�

mrffiffiffiffiffiffiffiffiffiffiffiffi
−_xG_x

p ~Tμ
ν _xν

�
¼ −

1

4c
θμν _xν − κ

ffiffiffiffiffiffiffiffiffiffiffiffi
−_xG_x

p

32mrc2
∇μðSθÞ

þ κ∇Zμ; ð43Þ

∇Sμν ¼ −
κ

ffiffiffiffiffiffiffiffiffiffiffiffi
−_xG_x

p

4mrc
ðθSÞ½μν� − 2mrcðκ − 1Þbffiffiffiffiffiffiffiffiffiffiffiffi

−_xG_x
p _x½μðSθ _xÞν�

þ 2κc_x½μZν�: ð44Þ

IV. LEADING POST-NEWTONIAN CORRECTIONS
DUE TO UNIT GRAVIMAGNETIC MOMENT

Taking κ ¼ 1 in (43) and (44), we obtain equations of our
gravimagnetic body

∇
�
mr _xμffiffiffiffiffiffiffiffiffiffiffi
−_xg_x

p
�
¼−

1

4c
θμν _xν−

ffiffiffiffiffiffiffiffiffiffiffi
−_xg_x

p
32mrc2

∇μðSθÞþ∇Zμ; ð45Þ

∇Sμν ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
−_xg_x

p
4mrc

ðθSÞ½μν� þ 2c_x½μZν�: ð46Þ

To test these equations, we compute the leading relativistic
corrections due to unit gravimagnetic moment to the
trajectory and precession of a gyroscope, orbiting around

2We point out that the analogous matrix, present in MPTD
equations, cannot be explicitly inverted in the multipole
approach.
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a rotating spherical body of mass M and angular momen-
tum J. To this aim, we write equations of motion implied by
(45) and (46) for the three-dimensional position xiðtÞ and
for the spin vector

S ¼ 1

2
ðS23; S31; S12Þ; or SiðtÞ ¼

1

4
ϵijkSjkðtÞ;

Sij ¼ 2ϵijkSk; ð47Þ

as functions of the coordinate time t ¼ x0
c . Because of the

reparametrization invariance, the desired equations are
obtained by setting τ ¼ t in (45) and (46). We consider
separately the trajectory and the spin.

A. Trajectory

We denote vμ ≡ dxμ
dt ¼ ðc; vÞ, so

ffiffiffiffiffiffiffiffiffiffiffi
−_xg_x

p ¼ ffiffiffiffiffiffiffiffiffiffiffi−vgvp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2g00 − 2cg0ivi − gijvivj

q
. The temporal and spatial

parts of Eq. (45) read

d
dt

�
mrffiffiffiffiffiffiffiffiffiffiffi−vgvp

�
þ mr

c
ffiffiffiffiffiffiffiffiffiffiffi−vgvp Γ0

μνvμvν

¼ −
1

4c2
θ0νvν −

ffiffiffiffiffiffiffiffiffiffiffi−vgvp
32mrc3

∇0ðSθÞ þ 1

c
∇tZ0;

d2xi

dt2
þ Γi

μνvμvν þ
vi

ffiffiffiffiffiffiffiffiffiffiffi−vgvp
mr

d
dt

�
mrffiffiffiffiffiffiffiffiffiffiffi−vgvp

�

¼ −
ffiffiffiffiffiffiffiffiffiffiffi−vgvp
4mrc

θiνvν þ
vgv

32m2
rc2

∇iðSθÞ þ
ffiffiffiffiffiffiffiffiffiffiffi−vgvp
mr

∇tZi:

Using the first equation in the second one, we avoid the
necessity of computing the time derivative in the second
term, and obtain

d2xi

dt2
¼−Γi

μνvμvνþ
vi

c
Γ0

μνvμvν−
ffiffiffiffiffiffiffiffiffiffiffi−vgvp
4mrc

�
θiνvν−

vi

c
θ0νvν

�

þ vgv
32m2

rc2

�
∇iðSθÞ−vi

c
∇0ðSθÞ

�

þ
ffiffiffiffiffiffiffiffiffiffiffi−vgvp
mr

�
∇tZi−

vi

c
∇tZ0

�
: ð48Þ

Now we assume a nonrelativistic motion, v
c ≪ 1, and

expand all quantities in (48) in series with respect to 1
c.

The typical metric of stationary spaces has the series of the
form [42]

g00 ¼ −1þ 2g00 þ 4g00 þ � � � ;
gij ¼ δij þ 2gij þ 4gij þ � � � ;
gi0 ¼ 3gi0 þ 5gi0 þ � � � ; ð49Þ

where ngμν denotes the term in gμν of order 1=cn. As a
consequence, the series of connection, curvature, and its

covariant derivative starts from 1
c2 or from higher order. In

some details, we have

Γμ
να ¼ 2Γμ

να þ 4Γμ
να þ � � � for Γi

00;Γi
mn;Γ0

0m; ð50Þ

Γμ
να ¼ 3Γμ

να þ 5Γμ
να þ � � � for Γi

0m;Γ0
00;Γ0

mn; ð51Þ

Rμ
ναβ ¼ 2Rμ

ναβ þ 4Rμ
ναβ þ � � �

for R0
mn0; R0

0mn; Ri
0m0; Ri

jmn; ð52Þ

Rμ
ναβ ¼ 3Rμ

ναβ þ 5Rμ
ναβ þ � � �

for R0
imn; R0

0m0; Ri
0mn; Ri

jm0: ð53Þ

Besides, for various quantities that appear in Eqs. (45) and
(46), we have the estimations

ffiffiffiffiffiffiffiffiffiffiffi
−vgv

p
∼ cþ 1

c
þ � � � ; −vgv ∼ c2 þ 1þ 1

c2
þ � � � ;

m2
r ∼m2 þ 1

c4
þ � � � ; θμν ∼

1

c2
þ � � � ;

b ∼
1

c2
þ � � � ; Zμ ∼

1

c5
þ � � � : ð54Þ

At last, the spin supplementary condition implies

Si0 ¼ 1

c
Sijvj þ � � � : ð55Þ

Keeping only the terms that may contribute up to order 1
c2 in

Eq. (48), we obtain

d2xi

dt2
¼ −Γi

μνvμvν þ
vi

c
Γ0

μνvμvν

þ 1

4m
½viθ00 − cθi0 − θijvj� −

1

32m2
∇iðSθÞ: ð56Þ

The terms on the right-hand side of this equation are
conveniently grouped according to their origin

d2x
dt2

¼ aΓ þ aR þ a∇R: ð57Þ

Here aΓ is the contribution due to connection, aR comes
from interaction of spin with space-time curvature, and a∇R
is the contribution that involves derivatives of the Riemann
tensor. Using (50)–(53) we obtain

aiΓ ≡ −Γi
αβv

αvβ þ vi

c
Γ0
αβv

αvβ

¼ −c22Γi
00 − 2Γi

mnvnvm þ 2vi2Γ0
m0v

m

− c24Γi
00 þ cvi3Γ0

00 − 2c3Γi
m0v

m; ð58Þ
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aiR ≡ 1

4m
½viθ00 − cθi0 − θijvj�

¼ −
1

4m
½22Ri

0m0Smnvn þ 2Ri
kmnSmnvk − 2R0

0mnSmnvi�

−
c
4m

3Ri
0mnSmn; ð59Þ

ai∇R ≡ −
1

32m2
giσ∇σRαβμνSαβSμν

¼ −
1

32m2
∂i

2RjklmSjkSlm: ð60Þ

As a concrete example of an external gravitational field, we
take a stationary, asymptotically flat metric in the post-
Newtonian approximation up to order 1

c4 [42],

ds2 ¼
�
−1þ 2GM

c2r
−
2G2M2

c4r2

�
ðdx0Þ2− 4G

ϵijkJjxk

c3r3
dx0dxi

þ
�
1þ 2GM

c2r
þ 3G2M2

2c4r2

�
dxidxi: ð61Þ

It can be obtained taking the asymptotic form of the Kerr
metric for a large radial coordinate [43]. With this metric,
Eqs. (58)–(60) are3

aΓ ¼ −
MG
r2

r̂þ 4GM
c2r2

ðr̂ · vÞv − GM
c2r2

v2r̂þ 4G2M2

c2r3
r̂

þ 2
G
c2

�
3ðJ · r̂Þr̂ − J

r3

�
× v; ð62Þ

aR ¼ 3
GM
mc2r3

½ðr̂ × vÞðr̂ · SÞ þ r̂ðS · ðr̂ × vÞÞ�

−
1

m
∇
�
G
c2

�
3ðJ · r̂Þr̂ − J

r3

�
· S

�
; ð63Þ

a∇R ¼ −
1

2m
∇
�
G
c2

�
M
m

��
3ðS · r̂Þr̂ − S

r3

�
· S

�
: ð64Þ

We denoted by r̂ the unit vector in the direction of r.

B. Spin torque

Setting τ ¼ t≡ x0
c in the spatial part of Eq. (46), this

reads

dSij

dt
¼ −Γi

αβv
αSβj − Γj

αβv
αSiβ þ

ffiffiffiffiffiffiffiffiffiffiffi−vgvp
4mrc

θ½iαSj�α þ 2cv½iZj�:

ð65Þ

For the spin vector (47), this equation implies

dSi

dt
¼ −

1

2
ϵijkΓj

μνvμSνk −
ffiffiffiffiffiffiffiffiffiffiffi−vgvp
8mrc

ϵijkθjνSνk þ cϵijkvjZk:

ð66Þ

Taking into account Eqs. (50)–(54), we keep only the terms
that may contribute up to order 1

c2,

dSi

dt
¼ −

1

2
ϵijk½cΓj

00S0k þ vnΓj
nmSmk þ cΓj

0nSnk�

−
1

8m
ϵijkθjnSnk

¼ Snð2Γn
00v

i þ 2Γn
ikv

kÞ − Sið2Γk
00 þ 2Γl

klÞvk þ c3Γk
0iS

k

þ 1

2m
ϵmnl

2Rk
imnSkSl: ð67Þ

The total torque on the right-hand side of this equation can
be conveniently grouped as follows:

dS
dt

¼ τv þ τJ þ τR; ð68Þ

where τv contains the velocity-dependent terms, τJ depends
on inner angular momentum of the central body, and τR is
due to spin-curvature interaction. Computing these terms
for the metric (61), we obtained

τv ¼
GM
c2r2

½2ðS · r̂Þv þ ðr̂ · vÞS − ðS · vÞr̂�; ð69Þ

τJ ¼
G
c2

�
3ðJ · r̂Þr̂ − J

r3

�
× S; ð70Þ

τR ¼ G
c2

�
M
m

��
3ðS · r̂Þr̂

r3

�
× S: ð71Þ

The torque (68) does not represent a directly measurable
quantity. Indeed, evolution of the gyroscope axis is
observed in the frame comoving with the gyroscope, so
the measurable quantity is dS0

ds , where S
0
i are components of

spin vector in the rest frame of the gyroscope, and s is its
proper time. Magnitudes of the two torques do not
coincide, since S is not a covariant object. According to
the classical work of Schiff [40], we can present S0 through
S, and then use the resulting relation to compute dS0

ds through
dS
dt given in (68). The procedure is as follows. First, we
use the tetrad formalism, presenting an original metric
along an infinitesimal arc of the gyroscope trajectory as
gμν ¼ ~eAμ ~eBν ηAB. Let eμA be the inverse matrix of ~eAμ .
Applying a general-coordinate transformation xμ → xA

with the transition functions ∂xμ
∂xA ¼ eμA, the metric acquires

the Lorentz form, ηAB ¼ eμAe
ν
Bgμν. So the transformed spin

tensor, SCD ¼ ~eCμ ~eDν Sμν, represents the spin of the gyro-
scope in a free-falling frame. Second, we apply the Lorentz

3The first two terms in aR can be written also as follows:
−3 GM

mc2r3 ½ðv × SÞ − 2r̂ðr̂ · ðv × SÞÞ − ðr̂ · vÞðr̂ × SÞ�.
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boost ΛC
AðvÞ, where v is velocity of the gyroscope, to

make the frame comoving with the gyroscope. This gives
the spin tensor S0CD ¼ ΛC

AΛD
B ~eAμ ~eBν Sμν. Then three-

dimensional spin (47) in the comoving frame can be
presented through the quantities given in original coordi-
nates as follows:

S0i ¼
1

4
ϵijkΛj

AΛk
B ~eAμ ~eBν Sμν: ð72Þ

Since our metric is diagonal in 1
c2-approximation, the

tetrad field is diagonal as well, and reads ~e00 ¼ 1 − GM
c2r ,

~eii ¼ 1þ GM
c2r , i ¼ 1, 2, 3, again to 1

c2 order. The Lorentz
boost is given by the matrix with components
Λ0

0 ¼ γ, Λi
0 ¼ Λ0

i ¼ −γ vi
c , Λi

j ¼ δij þ γ−1
v2 vivj, where

γ¼ð1−v2=c2Þ−1
2. Using these expressions in Eq. (72),

we write it in 1
c2-approximation,

S0 ¼ Sþ 2GM
c2r

S −
1

2c2
½v2S − ðv · SÞv�: ð73Þ

To compute derivative d
ds of this expression, we note that the

difference between ds and dt can be neglected, being of
order 1

c2, so we can replace
d
ds on

d
dt on the right-hand side of

(73). For dv
dt we use its expression (57) in the leading

approximation, dv
dt ¼ −MG

r2 r̂. The result is

dS0

ds
¼ dS

dt
−
GM
c2r2

�
ðr̂ · vÞSþ 1

2
ðr̂ · SÞv þ 1

2
ðv · SÞr̂

�
: ð74Þ

We substitute (68) into (74), and then replace S on S0 in the
resulting expression, since according to (73), S differs from
S0 only by terms of order 1

c2. The final result for total torque
in the rest frame of the gyroscope is

dS0

ds
¼ τ0v þ τ0J þ τ0R; ð75Þ

where

τ0v ¼
3GM
2c2r2

½r̂ × v� × S0; ð76Þ

while τ0J and τ
0
R are given by (70) and (71), where Smust be

replaced on S0.
Comment 1. Curiously enough, spin torque in original

coordinates, being averaged over a revolution along an
almost closed orbit, almost coincides with instantaneous
torque in the comoving frame. This has been observed by
direct computation of the mean value of dSds; see [44,45]. The
same result is implied by Eq. (74), hdS0ds i− hdSdti∼ 1

c2 hdSdti∼ 1
c4,

and since hdS0ds i ≈ dS0
ds , we have hdSdti ≈ dS0

ds .

2. The spin tensor subject to the condition SμνPν ¼ 0 can
be used to construct the four-dimensional Pauli-Lubanski
vector

sμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gμν

p
4

ffiffiffiffiffiffiffiffiffi
−P2

p ϵμαβγPαSβγ; where ϵ0123 ¼ −1: ð77Þ

In a free theory, where Pα does not depend on Sβγ , this
equation can be inverted, so Sβγ and sμ are mathematically
equivalent.Hence spatial components s could be equally used
to describe the spin of a gyroscope [42]. In 1

c2-approximation
we havePα¼m_xα, and (77) implies s¼S in the rest frame of
the gyroscope. Under general-coordinate transformations, S
transforms as the spatial part of a tensor, while s transforms
as a part of the four-vector. So the two spins differ in all
frames except the rest frame. Let us find the relation between
them in 1

c2-approximation. Using the approximate equalities

ð−vgvÞ−1
2 ¼ 1

c ð1þ v2

2c2 þ GM
c2rÞ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gμν

p ¼ 1þ 2GM
c2r

together with Eqs. (42), (54), and (55), we obtain for the
spatial part of (77)

s ¼ 1

γ
Sþ 1

c2
ðv · SÞv þ 3GM

c2r
S: ð78Þ

Computing the derivative of this equality and using
(68)–(71), we arrive at the following expression for variation
rate of s:

ds
dt

¼ GM
c2r2

½ðs · r̂Þv − ðv · r̂Þs − 2ðs · vÞr̂� þ τJ þ τR: ð79Þ

The first term coincides with that of Weinberg [42].

C. Post-Newtonian Hamiltonian

Let us obtain an effective Hamiltonian, which yields
Eqs. (57) and (68) in 1

c2-approximation. According to the
procedure described in [36], the complete Hamiltonian for
dynamical variables as functions of the coordinate time t is
H ¼ −cp0, where p0 is a solution to the mass-shell
constraint (24) with Pμ given in (3). Solving the constraint,
we obtain

H ¼ cffiffiffiffiffiffiffiffiffiffi
−g00

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmcÞ2 þ γijPiPj þ

1

16
ðθSÞ

r
− cπμΓμ

0νω
ν

þ cg0i

g00
Pi; ð80Þ

where γij ¼ gij − g0ig0j

g00 . After tedious computations, this

gives the following expression up to 1
c2-order:
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H¼mc2þ 1

2m

�
pþm

c

�
2G
c

�
J×

r
r3

�
þ 2

M
m
G
c

�
S×

r
r3

���
2

−
ðp2Þ2
8m3c2

−
3GM
2mc2r

p2−m
GM
r

þm
ðMGÞ2
2c2r2

þ 1

2c

�
2G
c

�
∇×

�
J×

r
r3

��
þM
m
G
c

�
∇×

�
S×

r
r3

���
·S:

ð81Þ
Together with the Dirac brackets (15), also taken in
1
c2-approximation, this gives Hamiltonian equations of
motion. Excluding from them the momentum p, we arrive
at the Lagrangian Eqs. (57) and (68).
To write the Hamiltonian in a more convenient form, we

introduce4 vector potential AJi ¼ −c2g0i for the gravito-
magnetic field BJ, produced by rotation of the central body
(we use the conventional factor 2G

c , different from that of
Wald [28]. In the result, our BJ ¼ 4BWald)

AJ ¼
2G
c

�
J ×

r
r3

�
;

then BJ ¼ ½∇ ×AJ� ¼
2G
c

3ðJ · r̂Þr̂ − J
r3

: ð82Þ

Then Eq. (81) prompts us to introduce also the vector
potential AS of fictitious gravitomagnetic field BS due to
rotation of a gyroscope

AS ¼
M
m

G
c

�
S ×

r
r3

�
;

then BS ¼ ½∇ ×AS� ¼
M
m

G
c
3ðS · r̂Þr̂ − S

r3
; ð83Þ

as well as the extended momentum

Π≡ pþm
c
ðAJ þ 2ASÞ: ð84Þ

With these notations, the Hamiltonian (81) becomes similar
to that of the spinning particle in a magnetic field,

H ¼ mc2 þ 1

2m
Π2 −

ðΠ2Þ2
8m3c2

−
3GM
2mc2r

Π2 ð85Þ

−
mGM
r

þmðMGÞ2
2c2r2

þ 1

2c
ðBJ þBSÞ ·S

¼ cffiffiffiffiffiffiffiffiffiffi
−g00

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmcÞ2þ gijΠiΠj

q
þ 1

2c
ðBJ þBSÞ ·S: ð86Þ

Note that the Hamiltonian cffiffiffiffiffiffiffi
−g00

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmcÞ2 þ gijpipj

q
corre-

sponds to the usual Lagrangian L ¼ −mc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _xμ _xν

p
describing a particle propagating in the Schwarzschild
metric gμν. So, the approximate Hamiltonian (86) can be
thought of as describing a gyroscope orbiting in the field of
Schwarzschild space-time and interacting with the grav-
itomagnetic field.
The effective Hamiltonian for MPTD equations turns out

to be less symmetric: it is obtained from (86) excluding the
term 1

2c ðBS · SÞ, while keeping the potential AS in (84).
Hence the only effect of nonminimal interaction is the
deformation of gravitomagnetic field of central body
according to the rule

BJ → BJ þ BS: ð87Þ

V. CONCLUSION

Starting from a variational problem, we have studied the
relativistic spinning particle with nonminimal spin-gravity
interaction through thegravimagneticmomentκ.Hamiltonian
equations for an arbitrary κ are presented in (31)–(33). When
κ ¼ 0, our variational problem yields MPTD Eqs. (19) and
(20), accompanied by the momentum-velocity relation (18)
and by the expected constraints (7), (10), and (11). When
κ ≠ 0, the MPTD equations are modified by extra terms; see
Eqs. (31)–(33) above. The case κ ¼ 1 is of special interest
[compare (34) with MPTD Eqs. (35)], since only for unit
gravimagnetic moment, both acceleration and spin torque
have reasonable behavior in the ultrarelativistic limit [9].
We have computed, in the coordinate-time parametriza-

tion t ¼ x0
c , the acceleration (88)–(90) and the spin torque

(69)–(71) of our gravimagnetic particle in the field of a
rotating central body (61) in the leading post-Newtonian
approximation. We also obtained the approximate
Hamiltonian (86), which implies these expressions in the
Hamiltonian formulation with use of Dirac brackets. As it
should be expected, the expressions (62) and (63) and (69)
and (70) coincide with those known from analysis of
MPTD equations [41,44,45,47–54]. The new terms due
to the nonminimal interaction are (64) and (71). While they
are presented in the theory with any κ ≠ 0, we continue
with the case κ ¼ 1, in which the model is consistent in the
ultrarelativistic regime.
Using the notation (82) and (83), the total acceleration of

the spinning particle in 1
c2-approximation reads

a ¼ −
MG
r2

r̂þ 4GM
c2r2

ðr̂ · vÞv − GM
c2r2

v2r̂þ 4G2M2

c2r3
r̂ ð88Þ

þ1

c
ðBJþBSÞ×vþ GM

mc2r3
½S×vþ3ðS ·ðr̂×vÞÞr̂� ð89Þ

−
1

2mc
∇ð½BJ þ BS� · SÞ: ð90Þ

4We recall [46] that vector potential, produced by a localized
current distribution Jðx0Þ in electrodynamics, is determined, in
the leading order, by the vector of magnetic moment μ ¼
1
2c

R ½x0 × Jðx0Þ�d3x as follows: A ¼ ½μ × r
r3�, and the correspond-

ing magnetic field is B ¼ ½∇ ×A� ¼ 3ðμ·r̂Þr̂−μ
r3 .
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The first term in (88) represents the standard limit of
Newtonian gravity and implies an elliptical orbit. The next
three terms represent an acceleration in the orbital plane and
are responsible for the precession of perihelia [42,47,48]. The
term 1

cBJ × v represents the acceleration due to Lense-
Thirring rotation of the central body, while the remaining
terms in (89) and (90) describe the influenceof thegyroscopes
spin on its trajectory. The first term in (89) has been computed
by Lense and Thirring [50–52]; the remaining terms in (89)
have been discussed in [18,28,37]. The gravitational dipole-
dipole force 1

2mc∇ðBJ · SÞ has been computed byWald [28].
The new contribution due to nonminimal interaction,
1

2mc∇ðBS · SÞ, is similar to the Wald term. The acceleration
(89) comes from the second term of effective Hamiltonian
(85), while (90) comes from the last term.
The geodetic precession (69) comes from the second

term of effective Hamiltonian (85), while the frame-drag-
ging precession (70) is produced by the term 1

2c ðBJ · SÞ. So
they are the same for both the gravimagnetic and MPTD
particle. They have been first computed by Schiff [40], and
measured during the Stanford Gravity Probe B experiment
[55,56]. The term (71) is due to nonminimal interaction,
and appears only for the gravimagnetic particle.
Comparing the expressions (70) and (71), we conclude

that precession of spin S due to nonminimal interaction is
equivalent to that caused by rotation of the central body
with the momentum J ¼ M

m S.
The effective Hamiltonian for the case of nonrotating

central body (Schwarzschild metric) is obtained from (86)
by setting AJ ¼ BJ ¼ 0. We conclude that, due to the term
1
2cBS · S, the spin of the gravimagnetic particle will
experience the frame-dragging effect (71) even in the field
of a nonrotating central body.
In a comoving frame, the gravimagnetic particle expe-

riences the precession dS
dt ¼ ½Ω × S� with angular velocity

Ω ¼ 3GM
2c2r2

½r̂ × v� þ 1

2c
BJ þ

1

c
BS; ð91Þ

which depends on gyroscopes spin S. Hence, two gyro-
scopes with different magnitudes and directions of spin

precess around different rotation axes. Then the angle
between their own rotation axes changes with time in
Schwarzschild or Kerr space-time. Since the variation of
the angle can be measured with high precision, this effect
could be used to find out whether a rotating body has unit
or null gravimagnetic moment.
To estimate the relative magnitude of spin torques due to

BJ and BS, we represent them in terms of angular
velocities. Assuming that both bodies are spinning spheres
of uniform density, we write J ¼ I1ω1 and S ¼ I2ω2,
whereωi is angular velocity and Ii ¼ ð2=5Þmir2i is moment
of inertia. Then the last two terms in (91) read

Ωfd ¼
2Gm1r21
5c2r3

½3ð½ω1þ ρ2ω2� · r̂Þr̂− ðω1þ ρ2ω2Þ�; ð92Þ

where ρ≡ ðr2=r1Þ. Note that Ωfd does not depend on mass
of the test particle. The ratio ρ2 ≡ ðr2=r1Þ2 is extremely
small for the case of the Gravity Probe B experiment, so the
MPTD and gravimagnetic bodies are indistinguishable in
this experiment. For a system like Sun Mercury ρ2 ∼ 10−5.
For a system like Sun Jupiter ρ2 ∼ 10−2. The new effect
could be relevant to the analysis of binary pulsars with
massive companions, where the geodetic spin precession
has been observed [57–59]. Besides, the two torques could
have comparable magnitudes in a binary system with stars
of the same size (so ρ ¼ 1), but one of them much heavier
than the other (neutron star or white dwarf). Then our
approximation of a central field is reasonable and, accord-
ing to Eq. (92), the frame-dragging effect due to the
gravimagnetic moment becomes comparable with the
Schiff frame-dragging effect.
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