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Relativistic effects due to gravimagnetic moment of a rotating body
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We compute the exact Hamiltonian (and corresponding Dirac brackets) for a spinning particle with
gravimagnetic moment x in an arbitrary gravitational background. The case xk = 0 corresponds to the
Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations. k = 1 leads to modified MPTD equations
with improved behavior in the ultrarelativistic limit. So we study the modified equations in the leading post-
Newtonian approximation. The rotating body with unit gravimagnetic moment has qualitatively different
behavior as compared with the MPTD body: (A) If a number of gyroscopes with various rotation axes are
freely traveling together, the angles between the axes change with time. (B) For specific binary systems,
gravimagnetic moment gives a contribution to the frame-dragging effect with the magnitude that turns out

to be comparable with that of Schiff frame dragging.
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I. INTRODUCTION

The rotating body in general relativity is usually
described on the base of manifestly generally covariant
Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equa-
tions that prescribe the dynamics of both trajectory and
spin of the body in an external gravitational field [1-6].
Starting from the pioneer works, these equations were
considered as a Hamiltonian-type system. In the recent
work [7], we realized this idea by constructing the minimal
interaction with gravity in the vector model of the spinning
particle, and showed that this indeed leads to MPTD
equations in the Hamiltonian formalism (see also below).
This allowed us to study the ultrarelativistic limit in exact
equations for the trajectory of the MPTD particle in the
laboratory time. Using the Landau-Lifshitz (1 + 3) decom-
position [8] we observed that, unlike a geodesic equation,
the MPTD equations lead to the expression for three-
acceleration, which contains divergent terms as v — ¢ [9].
Fast test particles are now under intensive investigation
[10-15], and represent an important tool in the study, for
example, of near horizon geometry of black holes [16-24].
Readers may also consult (we are grateful to the reviewer
for indicating these works) the very general treatment of
these problems in [25]. So, it would be interesting to find a
generalization of MPTD equations with improved behavior
in the ultrarelativistic regime. This can be achieved if we
add a nonminimal spin-gravity interaction through the
gravimagnetic moment [26]. In the theory with unit
gravimagnetic moment, both acceleration and spin torque
have reasonable behavior in the ultrarelativistic limit. In the
present work we study the modified equations in the regime
of small velocities in the leading post-Newtonian approxi-
mation. In Schwarzschild and Kerr space-times, the
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modified equations imply a number of qualitatively new
effects that could be used to test experimentally whether a
rotating body in general relativity has null or unit grav-
imagnetic moment.

The work is organized as follows. In Sec. II we shortly
describe Lagrangian and Hamiltonian formulations of the
vector model of the spinning particle and compute Dirac
brackets of the theory in an arbitrary gravitational back-
ground. In the formulation with use of Dirac brackets, the
complete Hamiltonian acquires a simple and expected
form, while an approximate Clz Hamiltonian, further
obtained in Sec. IV, strongly resembles that of the spinning
particle in electromagnetic background. This is in corre-
spondence with the known analogy between gravity and
electromagnetism [27-30]. In Sec. III we introduce non-
minimal spin-gravity interaction through the gravimagnetic
moment and obtain the corresponding equations of motion.
We show that constants of motion due to isometries of
space-time for the MPTD and the modified equations are
the same. In Sec. IV we compute the leading post-
Newtonian corrections to the trajectory and spin of our
particle with unit gravimagnetic moment, and present the
corresponding effective Hamiltonian in g—z-approximation.
The nonminimal interaction implies extra contributions into
both trajectory and spin, as compared with MPTD equa-
tions in the same approximation. A number of effects due to
nonminimal interaction are discussed in Sec. V.

Notation. Our variables are taken in arbitrary paramet-
rization 7, then X* = %. The square brackets mean
antisymmetrization, w/#7* = w*z* — w*7*. For the four-
dimensional quantities we suppress the contracted indices
and use the notation ¥*G, X" = xGx, NV, 3" = (Nx)*,
w’=g,0'®’, u, v=0, 1, 2, 3. Notation for the scalar
functions constructed from second-rank tensors is 05 =
S, §? = S$#S,,- When we work in four-dimensional
Minkowski space with coordinates x* = (x* = ct,x%), we
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then xw = Yo

use the metric 7, = (= +, +.+), Y=
—x%0° + ¥'@w’ and so on. Suppressing the 1ndlces of
three-dimensional quantities, we use bold letters, v'y; jaf
vya, v’G,-ﬂv” =vGv, i, j =1, 2, 3, and so on.

The covariant derivative is V! =%+ 17 %/
The tensor of Riemann curvature is R%;,, = 0,7, —
O + 05,17, =T, 1V,

II. VECTOR MODEL OF SPIN AND MATHISSON-
PAPAPETROU-TULCZYJEW-DIXON EQUATIONS

In the vector model of spin presented in [31], the
configuration space consists of the position of the particle
x*(z), and the vector w*(7) attached to the point x*(7).
Minimal interaction with gravity is achieved by direct
covariantization of the free action, initially formulated in
Minkowski space. That is we replace 7,, — g,, and usual
derivatives of the vector @* by the covariant derivative:
@* — Vaw*. The resulting Lagrangian action reads [7]

als
S=- \/_ dT|: C —;:|
x \/=iNi = VoNVe + T1/2, (1)

We have denoted T = [xNx + VoNVo)* —4(xNVw)?,
and N, =g, — 2«2 The matrix N is a projector on the
[0

plane orthogonal to w: N, ®"=0. The parameter a

determines the value of spin; in particular, @ = ﬁ corre-

sponds to the spin one-half particle. In the spmless limit,
o' =0 and a=0, Eq. (1) reduces to the standard
Lagrangian of a point particle, —meV—i2.

The action is manifestly invariant under general-coor-
dinate transformations as well as under reparametrizations
of the evolution parameter z. Besides, there is one more
local symmetry, which acts in the spin sector and is called
the spin-plane symmetry: the action remains invariant
under rotations of the vectors @ and x, = da—af,, in their
own plane [32]. Being affected by the local transformation,
these vectors do not represent observable quantities. But
their combination, S = 2(w*z* — w*7"), is an invariant
quantity, which represents the spin tensor of the particle.
We decompose the spin tensor as follows:

S =2(w'n’ — w’n*) = (S0 = DI, Sij = 2€%Sk),  (2)
where §; is the three-dimensional spin vector, and D; is the
dipole electric moment [33].

Since we deal with a local-invariant theory and, fur-
thermore, one of the basic observables is constructed from
the phase-space variables, the Hamiltonian formalism is the
most convenient for analyzing the dynamics of the theory.
So, we first obtain the Hamiltonian equations of motion,
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and next, excluding momenta, we arrive at the Lagrangian

equations for the physical-sector variables x and S.
Conjugate momenta for x* and »* are p, = d L and m,

(?afﬂ respectively. Because of the presence of i# in V¥, the

conjugated momentum p, does not transform as a vector,

so it is convenient to define the canonical momentum

P, = p, - Touomg, (3)

which transforms as a vector under general-coordinate
transformations. The full set of phase-space coordinates
consists of the pairs x*, p,, and *, x,. They fulfil the

fundamental Poisson brackets {x*,p,} =&, {o*,7,} =6&;
then

{Pﬂ’ a)v} = FZawa’ {Pﬂ’”l/} = _sz”av
{Pﬂ,a)Q} = {Pﬂ,ﬂ'z} ={P, 0n} =0. (4)

For the quantities x#, P¥, and S*, the basic Poisson
brackets imply the typical relations used by people for
spinning particles in Hamiltonian formalism,

{XM’PI/} =, {Pva} -
{P,, S} =T2,8% —Th,5°,
{S/w’ Sa/)’} — 2(guasu/3 _ gﬂﬂsva _

1
T4 RuapS?,

g7 + gPs).  (5)

Applying the Dirac-Bergman procedure for a singular
system to the theory (1), we arrive at the Hamiltonian [9]

2
H:EI[TI +4a(70P)T5 —4a(wOP)T4+Ts|+ 1, T>.  (6)

composed of the constraints

T, =P +m?c* =0, (7)

T2=C()7T:0, T3=PCU:0,

T,=Pr=0, Ts=n’——5=0. (8)
@

In the expression for H we have denoted

2

aﬂ/u/S ’ A= 55 o x" (9)

0
16m>c? + (6S)

w =R
The antisymmetric tensor 6,,, turns out to be a gravitational
analogy of the electromagnetic field strength F,,; see
below. Ty,...,T, appear as the primary constraints in
the course of the Dirac-Bergmann procedure, 75 is the
only secondary constraint of the theory, and 4, 4, are the
Lagrangian multipliers associated to 7'} and 7,. Poisson
brackets of the constraints are summarized in Table I. The
table implies that 75 and 74 represent a pair of second-class
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TABLE 1. Poisson brackets of constraints.
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T, Ts T, T; Ty
T, = P>+ m?c? 0 0 0 1 (w6P) 1 (m6P)
TS — 77,'2 _ % 0 0 —2T5 —2T4 —ZaT3/(a)2)2
T2 = 0 2T5 O —T3 T4
T, =Pz —1(z0P) 20T/ (?)? -7, P B L 0

constraints, while 7,, T5 and the combination 7| +
4a(nOP)T5 — 4a(wOP)T, are the first-class constraints.
So the Hamiltonian (6) consists of the first-class
constraints.

Taking into account that each second-class constraint
rules out one phase-space variable, whereas each first-class
constraint rules out two variables, we have the right number
of spin degrees of freedom, 8 — (2 4+ 4) = 2. The meaning
of the constraints becomes clear if we consider their effect
over the spin tensor. The second-class constraints 73 = 0
and T4 = 0 imply the spin supplementary condition

Swp, =0, (10)

while the first-class constraints 7, and T'5 fix the value of
the square of the spin tensor

$*S,, = 8a. (11)

Equations (10) and (11) imply that only two components
of spin tensor are independent, as it should be for an
elementary spin one-half particle.

We could use Poisson brackets to obtain the Hamiltonian
equations, z = {z, H}, for the variables of physical sector
z=(x,P,S). But in this case we are forced to work
with the rather inconvenient Hamiltonian (6). Instead,
we construct the Dirac bracket associated with second-
class constraints 73 and T,4. It is convenient to denote
{T5.T,} = —gx, where A = W—zws)’ then A ~ a on the
surface of mass-shell constraint 7; = 0. The Dirac bracket
reads

{A.B}p ={A.B} =8A[{A T3 }{T4, B} —{A, T4 }{T3, B}].
(12)

By construction, the Dirac bracket of any variable with the
constraints vanishes, so 75 and 7, can be omitted from the
Hamiltonian. The first-class constraints 7, and T’5 can be
omitted as well, since brackets of the variables x, P, and S
with them vanish on the constraint surface. In the result we
arrive at a simple Hamiltonian

A
H, :5‘(P2+m2c2), (13)

which looks like that of a free point particle. All the
information on spin and interaction is encoded now in the
Dirac bracket. In particular, equations of motion are
obtained according to the rule z = {z, Hy}p.

Poisson brackets of our variables with 73 and T, are

(T} =, (¥ Ty =1"

{P,. T3} = —L—lleaﬂw/f + TP,

{P,.T,} = —%aaﬁnﬂ + TP,

(8%, T3} = 2Pka] + TV 5490,

{§%. Ty} = 2Pk 4 TV §lenb, (14)

Using these expressions in (12), we obtain the manifest
form of the Dirac brackets

{xH, x"}p = 4ASH,
1
{P,.P}p=— Ze"” +4A(TP) Wsaﬂ (TP),
A af
- g(eyas {Hﬁu + 4(FP)ﬁu] - (ﬂ <~ I/)),
{xﬂ7 Pa}D = 5{; + Asﬂﬁ{eﬁa + 4(FP)ﬁa]’
1 a
{x#, 8%}, = —8A [Sﬂ[aPﬂJ -3 swr[ﬂsﬂlﬁ] :
{Pu. 8"}y = ~Tips'r
+ A0y + 4(TP) 5] (2881 PY — SPITY 512
{sw, 8%, = {S™, S} —8A {2(P”P"S/’” — prpPsw
— prpesi  prphsan) — plesirie ghlo
a v qulo 1 l qulo [@ ople
+ PlasliTy vl —EFMS] ST e8Pl |
(15)
Their right-hand sides do not contain explicitly the vari-

ables w and 7, so the brackets form a closed algebra for the
set (x, P, S).
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The Dirac brackets remain different from the Poisson
brackets even in the limit of a free theory, g,, — 7,,.
In particular, in the sector of canonical variables x and p
we have

s

2p? . p"}p=0.

(16)

{X”JD}D == {xﬂva}D =n",

Hence, the account of spin leads to deformation of the
phase-space symplectic structure: the position variables of
the relativistic spinning particle obey the noncommutative
bracket, with the noncommutativity parameter being pro-
portional to the spin tensor. This must be taken into account
in the construction of quantum mechanics of a spinning
particle [34,35]. In particular, for an electron in electro-
magnetic field, the spin-induced noncommutativity
explains the famous one-half factor in the Pauli equation
without appeal to the Thomas precession, Dirac equation, or
Foldy-Wouthuysen transformation; see [36]. Besides, for a
spinning body in gravitational field, the spin-induced non-
commutativity clarifies the discrepancy in expressions for
three-acceleration obtained by different methods; see [37].

Using the Dirac brackets together with the Hamiltonian
(13), we obtain equations of motion

Xt = {X”,Ho}D :ﬂl[Pﬂ‘i‘aSﬂﬂeﬂaPa},
. 1
P,={P, Hy}p= (—ZHW + (FP)W>/1| [P+ aS”ﬁGﬂaP“]

1
= 0u i T TP,

§" = {S". Ho}p
= (2PH o =T S) 24 [P* + aSP0y, P] - (4 <> 1)
= 2Pl — %, Sovie Ty, SHosa, (17)

They can be rewritten in a manifestly general-covariant
form as follows:

X = 2,(8", + aS"0,,) P, (18)

1 aff v — 1 sV
VP,” = _ZRI“/aﬂS X = —Zeﬂyx s (19)
Vst = 2(PHi¥ — PUit). (20)

Some relevant comments are in order.

(1) Comparison with MPTD equations. Despite the fact
that the vector model has been initially constructed
as a theory of an elementary particle of spin one-half,
it turns out to be suitable to describe a rotating body
in general relativity in the pole-dipole approximation
[5,38]. Indeed, Egs. (19) and (20) coincide with
Dixon equations of the body (our spin is twice that
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of Dixon), while our constraint (10) is just the
Tulczyjew spin supplementary condition.' Besides,
the Hamiltonian equation (18) can be identified with
the velocity-momentum relation, implied by MPTD
equations; see [26] for a detailed comparison. The
only difference is that values of momentum and spin
are conserved quantities of MPTD equations, while
in the vector model they are fixed by constraints. In
summary [26], to study the class of trajectories of a
body with V—P? = k and S? = 3, we can use our
spinning particle with m = ]f and a = g

(2) Ultrarelativistic limit. Using the Landau-Lifshitz
1 4 3-decomposition [8], we showed in [26] that
MPTD equations yield a paradoxical behavior in the
ultrarelativistic limit: three-dimensional acceleration
of the particle grows with its speed, and diverges as
|[v| = ¢. In the next section, we improve this by
adding a nonminimal spin-gravity interaction
through the gravimagnetic moment.

(3) Analogy between gravitation and electromagnetism.
Many people mentioned remarkable analogies be-
tween gravitation and electromagnetism in various
circumstances [17,27-30]. Here we observe an
analogy, comparing (18)-(20) with equations of
motion of the spinning particle (with null gyromag-
netic ratio) [31] in electromagnetic field with the
strength F,,

jCﬂ = /11(5”,, + aS”ﬁFﬂl,)P”,

—2e
h = 21
WHETe @ = 23 — e(SF) (21)

. e .
PM:EF/“,X, (22)
S = 2Pk, (23)

One system just turns into another if we identify
0 = RyqpS” ~F,,, and set e = —% That is a
curvature influences the trajectory of a spinning
particle in the same way as an electromagnetic field
with the strength 6,,. We now use this analogy to
construct a nonminimal spin-gravity interaction.

'While the variational problem dictates [39] Eq. (10), in the
multipole approach there is a freedom in the choice of a spin
supplementary condition, related with the freedom in the choice
of a representative point x* describing position of the body
[3,4,6]. Different conditions lead to the same results in
C'—Z—approximation; see [5,40,41].
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III. ROTATING BODY WITH
GRAVIMAGNETIC MOMENT

The Hamiltonian (6) is a combination of constraints, so
the Hamiltonian formulation of our model is completely
determined by the set of constraints (7) and (8), and by
the expression (3) for canonical momentum P* through the
conjugated momentum p*. We observe that algebraic
properties of the constraints do not change, if we replace
the mass-shell constraint T, = P> 4+ m?c®> by Tl =
P? + f(x,P,S) + m?c?, where f(x*,P",S") is an arbi-
trary scalar function. Indeed, in the modified theory 75
and T, remain the second-class constraints, while
T,, Ts, and the combination T, — {75, Ty}~ {T|, T4} T5 +
{T5.T,}""{T,.T5}T, form a set of first-class constraints.
If we confine ourselves to the linear in curvature and
quadratic in spin approximation, the only scalar function f,
which can be constructed from the quantities at our
disposal, is % R,,,5S" S = KR, .p0* n* 0" 7P, where  is
a dimensionless parameter. The resulting constraint,

Fo= P2+ % (0S) + m2c? = 0, (24)
is similar to the Hamiltonian & (P> — %% (FS) + m*c?) of a
spinning particle interacting with electromagnetic field
through the gyromagnetic ratio g; see [31]. In view of this
similarity, the interaction constant x is called the gravi-
magnetic moment [16,17], and we expect that nonmini-
mally interacting theory with the Hamiltonian (24) could be
a consistent generalization of MPTD equations. The con-
sistency has been confirmed in [26], where we presented
the Lagrangian action of a spinning particle that implies the
constraints (24) and (8) in Hamiltonian formalism.

Poisson brackets of the constraints Tl, T5, and T, read

1

{T,, T3} = (1 — k) (0OP) + k° (VR o) 0 1° 0* 7P
(25)
1
{T),T,} = (1 — k) (7OP) + k1 (VR p) 0 1 00",
(26)
_pr_
{T3,T,} =P 16(95) —8a,
_ 2
where a = : (27)

16m*c? + (k + 1)(6S)

These expressions must be substituted in place of terms
1(wBP), % (00P), and a in Table . The Dirac brackets (15),
being constructed with the help of 73 and T,, remain
valid in the modified theory. Our new Hamiltonian is
H=%H,+4H,, with H, from (13) and H, = & (65).
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Hence, to obtain the manifest form of equations of motion
z={z,Hy}p +{z,H:}p, we only need to compute the
brackets {z, H,},. They are

1
{x",HK}D = —ﬂlKC_l S""@aﬁP/}—gS””(VDRa/jM)S"/}SM s

(28)
1
{P,. Hc}p = a1 Oyt x* H }D+F#<1Pﬁ{x H}p
/1
o5 (VuRapor) S5, (29)
/)
{s". H}p = K41 0uH 2P {x e} p
- (FZﬂS"” + FZﬁSW){xﬂ’ H,}p. (30)

Adding them to the equations z = {z, Hy}, given in (18)-
(20), we arrive at the dynamical equations

X = /‘Ll [5”1/ - C_I(K - I)Sﬂae(w]Py

A KE
+ %aSﬂD(VURa/}M)S{IﬂSM’ (31)
1 57 MK aff Qo.
VPﬂ = —ZQWX 1 (V Raﬂml)S ﬁS A (32)
. j.lK
VsH = 2Pyt 4 Te[ﬂasﬂa. (33)

Together with the constraints (10), (11), and (24), they give
a complete system of Hamiltonian equations of spinning
particle with gravimagnetic moment k. As it should be, our
equations reduce to MPTD Egs. (18)—-(20) when « = 0.
Comparing the two systems, we see that the nonminimal
interaction yields quadratic and cubic in spin corrections to
MPTD equations.

The Egs. (31)—(33) are greatly simplified for a particle
with unit gravimagnetic moment, x = 1 (gravimagnetic
particle). It has a qualitatively different behavior as com-
pared with the MPTD particle. First, the gravimagnetic
particle has an expected behavior in the ultrarelativistic
limit [9,26]: three-dimensional acceleration of the particle
and angular velocity of precession remain finite as |v| — ¢,
while the longitudinal acceleration vanishes in the limit.
Second, at low velocities, taking x = 1 and keeping only
the terms which may give a contribution in the leading post-
Newton approximation, ~ C—lz, we obtain from (31)—(33) the

approximate equations

1 ,11

X = A P*, vp, = (v Rpor) S SO,

p
Vs = Zle[ﬂasﬂa, (34)
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while MPTD equations (xk = 0) in the same approximation
read

1
)'C”:/‘LIP”, VP :—19 )'Cy,

f » Vs = 0. (35)
In Sec. IV, we compute le corrections due to the extra terms
appearing in (34).

A. Conserved charges

In curved space that possesses some isometry,
MPTD equations admit a constant of motion (see, for
example, [7,25])

1
Jo = Pré, — i vafw (36)

where £, is the Killing vector that generates the isometry,
ie, V,§ +V,§, =0. Let us show that J©) remains a
constant of motion when the gravimagnetic interaction is
included. Using (32) and (33), we obtain by direct
calculation

) 2 1
J<f>:%‘ S“ﬂR”mﬂS””Vyéu—ZS“”S"*S”VﬂRaw]- (37)

Using the Bianchi identities we find the relation
SPSHEN R ypos = 28 SVEN 1R 1. (38)

The derivative of a curvature tensor is related with the
derivative of a Killing vector by the formula &V R, —
gﬂvuRaﬁay = Raﬂaﬂvvéy - Raﬂt/ﬂvo‘gﬂ —+ Ravaﬂvﬁéﬂ_
R4V o&,. Contracting twice with the spin tensor we
obtain

SPSVEN (R ypep = 28PRH 5058V &, (39)

uvaf
Using this expression in (38), we obtain S¥S*&V R .5, =
48P R .58V ,€,. This implies that the right-hand side of

(37) vanishes, so J') = 0. Thus, the quantity (36) represents
a constant of motion of a spinning particle with gravimag-
netic moment.

B. Lagrangian system of equations of motion

Since we are interested in the influence of nonminimal
spin-gravity interaction on the trajectory and spin of the
particle, we eliminate the momenta P# and the auxiliary
variable 1; from Eqgs. (31)—(33), obtaining their Lagrangian
form. In Eq. (31), which relates velocity and momentum,
there appears the matrix

7%, = 8%, — (k — 1)as®o,,. (40)

PHYSICAL REVIEW D 96, 124013 (2017)

Using the identity (SOS)* = —1(5%6,,)S*, we find the
inverse> of the matrix T,

~ 1

T, =6% -1)bS*0,,, b=—55——. 41
v v+(K ) ov 8m202—|—1<(59) ( )

Using (41), we solve (31) with respect to P#. Using the
resulting expression in the constraint (24), we obtain

A= % where m} = m? + £ (86) — k*Z* is the radi-
ation mass in gravitational field. By Z# we have denoted the
vector, which vanishes in spaces with covariantly constant
curvature, Z¥ =2 S7(V,R;,5)S*S*. Besides, in the
expression for A; appeared a kind of effective metric G
induced by spin-gravity interaction along the worldline,
G, = T"’ﬂ gaﬂfﬂ ,- Only for the gravimagnetic particle
(x = 1), the effective metric reduces to the original one.
Using (31) and (41), we obtain expression for momentum
in terms of velocity

T+ 3" — kcZW. (42)

We substitute this P# into (32) and (33), arriving at the
Lagrangian equations of our spinning particle with grav-
imagnetic moment «,

V| gu | = L Y20 G s
V—iGx 4e” " 32m,c?
+kVZH, (43)
vV —=xGx 2 -1
v = ~KVZAOE oy _ 2k~ Db gy, g
4m,c V—xGx
+ 2kciltzY. (44)

IV. LEADING POST-NEWTONIAN CORRECTIONS
DUE TO UNIT GRAVIMAGNETIC MOMENT

Taking k = 1 in (43) and (44), we obtain equations of our
gravimagnetic body

y —
v[m’x ]:—ieﬂ Y gn(s9) +VZE,  (45)

/—xgx 4¢” 7 32m,c?
Vs = — Y ggyil 4 iz, (46)
m,c

To test these equations, we compute the leading relativistic
corrections due to unit gravimagnetic moment to the
trajectory and precession of a gyroscope, orbiting around

*We point out that the analogous matrix, present in MPTD
equations, cannot be explicitly inverted in the multipole
approach.
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a rotating spherical body of mass M and angular momen-
tum J. To this aim, we write equations of motion implied by
(45) and (46) for the three-dimensional position x'(¢) and
for the spin vector

1 1 .
S 25(5237531,512), or S;(1) :Z%kS’k(f),
Sii = 2elik S, (47)

as functions of the coordinate time ¢ = ’“L—O Because of the
reparametrization invariance, the desired equations are
obtained by setting 7z = ¢ in (45) and (46). We consider
separately the trajectory and the spin.

A. Trajectory
We denote v =% = (c,v), so \/—kgx = /~vgv =
\/ —c%goo — 2¢go;v" — g;jv'v/. The temporal and spatial
parts of Eq. (45) read

d m, n
dr [\/—vgv
1 \/—Ugu 1
L (S VO(S6) +-V,Z°,
a2’ v” 32m,c? ( )+c !
’xt /=g d
dt m, dt|/—vgv

—0gv . vgy /=VgU _ _.
=—>— 0 +—-5V(S0) + —V.7Z'
4m,c W 32m2c? (56) + m, '

m, 0
c\/—vgv

e

uv

Using the first equation in the second one, we avoid the
necessity of computing the time derivative in the second
term, and obtain

B ‘ Vi —ogu [ . i
—5= —F’”yv"v”—l——l"oﬂ,,v”v”— 0 v" ——6° v
dt c m,c c

vgv . _v_i 0
L e [v (56) -2V (59)]
4+ ;fg v [V,zi —%V,ZO] : (48)

Now we assume a nonrelativistic motion, <1, and
expand all quantities in (48) in series with respect to L.

The typical metric of stationary spaces has the series of the
form [42]

goo = =1+ 2900 + *goo + -+ -,
9ij = 8ij +2gi; +*gi; + -,
gio =gi0 + gi0 + -+ -, (49)

where "g,, denotes the term in g,, of order 1/c". As a
consequence, the series of connection, curvature, and its
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covariant derivative starts from C% or from higher order. In

some details, we have

Ty = Thy + Tl for Ty, Thp 9, (50)

rlzfa - 3FI;11 + 51*/:(1 + Tt fOI' F(i)ma Fgov Fgm’ (51)

Rﬂmﬁ = zRﬂmﬂ + 4Rﬂmﬁ 4.
for ROmnO’ ROOmn’ Ri0m07 Rijmm (52)

R = 3R/4mﬁ + 5Rﬂm/j 4o
for Roimm ROOmO’ Ri()mm Riij' (53)

Besides, for various quantities that appear in Egs. (45) and
(46), we have the estimations

1 1
— ~ — “ e —_ ~ 2 —_— e
\/—vgv c+c+ s vgU c+1+cz+ s
1 1
2 2
my ~m +C4+--~, HWNCZ—F-",
1 1
bN?_F , Zﬂ~§_|_.... (54)

At last, the spin supplementary condition implies
, 1 .. .
N A (55)
C

Keeping only the terms that may contribute up to order C—lz in
Eq. (48), we obtain

d*x' . v
—dt2 =T Wt + ?l“owvl‘v”
1 . . . 1 .
+E[U€OO_000_01U1]_327V(S0> (56)

The terms on the right-hand side of this equation are
conveniently grouped according to their origin
d*x
W = ar + ap + aypg. (57)

Here ar is the contribution due to connection, ap comes
from interaction of spin with space-time curvature, and ayy
is the contribution that involves derivatives of the Riemann
tensor. Using (50)—(53) we obtain

. ‘ v
i = _T% paf o 7 10 pa,p
ap = I 00" + - Lopv®v
22 2 210
= =Ty — Thppv"v™ + 20T, yv™

— Tl + vy, — 26T v, (58)
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| 4 o
[v16% — by — 6 ;1]

ap = E
1 . . .
- _E {22Rlomosmnvn + 2lemnsmn k _ ZRO mnsmnyl}
_i3 iomnsmn’ (59)
,. LV, Ry S5
WrR= "3, a2 apuS" S
1
= 3m 52 0 R S S"™. (60)

As a concrete example of an external gravitational field, we
take a stationary, asymptotically flat metric in the post-

Newtonian approximation up to order [42],
2GM  2G*>M? €iind’ .
ds2:< 1+ T—7>(dx )2 —4G ’k a dxdx’
c°r
2GM  3G*M? oo
+ <1 +T+ﬁ> dx'dx'. (61)
cr 2¢*r

It can be obtained taking the asymptotic form of the Kerr
metric for a large radial coordinate [43]. With this metric,
Egs. (58)—(60) are’

0 MG 4GM vy - GM 2r+4G2M2f
r=-"2 2.2 22" 27
_|_222 [M] XV, (62)
c r
GM
ag =3——55[ExV)([E-S)+1(S- (FxV))]
me?r
1 _[G (3(J-B)F—1]
——v| 2 (RS ), 63

We denoted by t the unit vector in the direction of r.

B. Spin torque

Setting 7 =t = % in the spatial part of Eq. (46), this
reads
— [ vl — T it 4 YT gligila 4 ocylizil
dt 4m,c

(65)

For the spin vector (47), this equation implies

The first two terms in ap can be written also as follows:
—3-GM (v x §) = 28(f- (vx 8)) — (£ v)(F x S)].

mcr
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i Yty
as = —leijkrjﬂpv”S”k _VThIY €'kgi Sk 1 celikyizk,
dt 2 m,c

(66)

Taking into account Eqs. (50)—(54), we keep only the terms
that may contribute up to order Ciz

asi 1 : :
E = - Eeljk [CFJOOSOk + Unrjnznsmk + CF/OnSnk]
_ L kg gk
8m !
= §"(Tgov" + Tjv*) = 8" (T + Ty o + g, S*
1
L sz‘ SkSl. 67
+ m €mnl imn ( )

The total torque on the right-hand side of this equation can
be conveniently grouped as follows:

as

— =1, +1; + Ts, 68
dt v J R ( )
where 7, contains the velocity-dependent terms, 7; depends
on inner angular momentum of the central body, and 73 is
due to spin-curvature interaction. Computing these terms
for the metric (61), we obtained

- :%[z(s BV (EVS— (S VL (69)
_— g F(Jgr‘ﬂ XS, (70)
- :%(%) F(Srif)r] <. (71)

The torque (68) does not represent a directly measurable
quantity. Indeed, evolution of the gyroscope axis is
observed in the frame comoving with the gyroscope, so
the measurable quantity 1s , where S are components of
spin vector in the rest frame of the gyroscope, and s is its
proper time. Magnitudes of the two torques do not
coincide, since S is not a covariant object. According to
the classical work of Schiff [40], we can present S’ through
S and then use the resulting relation to compute S’ through
E given in (68). The procedure is as follows. Frrst, we
use the tetrad formalism, presenting an original metric
along an infinitesimal arc of the gyroscope trajectory as
G = €hebnsp. Let € be the inverse matrix of ;.
Applying a general-coordinate transformation x* — x4
with the transition functions §§§A = ¢ '1» the metric acquires
the Lorentz form, 1,5 = ¢/, 'A€39u- SO the transformed spin
tensor, SP = 2S¢l S*, represents the spin of the gyro-

scope in a free- fallmg frame. Second, we apply the Lorentz
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boost A€, (v), where v is velocity of the gyroscope, to
make the frame comoving with the gyroscope. This gives
the spin tensor P = AS,APgefelS*. Then three-
dimensional spin (47) in the comovrng frame can be
presented through the quantities given in original coordi-
nates as follows:

1
Y4

€ijkAjAAkBéﬁé§S/w. (72)
Since our metric is diagonal in Ll—approximation the
tetrad field is diagonal as well, and reads &) = 1 ——r,
e *1+G—Af, i=1,2, 3, again to

boost is given by the matrrx with components
Ay =y, Ng=A% =—yZ A, =6+ vy, where
y=(1—v%/c?)%. Using these expressions in Eq. (72),

we write it in L-approximation,
C

L order. The Lorentz

2GM 1
G S——[v*S-

s =541
+ c*r 22

(v-S)v]. (73)
To compute derivative % of this expression, we note that the
difference between ds and dt can be neglected, being of
order 2 5, SO We can replace on 4 on the right-hand side of

ds
(73). For & we use its expressron (57) in the leading

dr
approximation, < & Mr—sz'. The result is
as' dS GMm 1 1

= S -S =(v-S)t|. (74
o a ap |EVS TR E SV (S (74)

We substitute (68) into (74), and then replace S on S’ in the
resulting expression, since according to (73), S differs from
S’ only by terms of order . The final result for total torque
in the rest frame of the gyroscope is

ds’

i T, + 7, + 7}, (75)
where
3GM
Tg) = W [f' X V] X S/, (76)

while 7/, and 7}, are given by (70) and (71), where S must be
replaced on §'.

Comment 1. Curiously enough, spin torque in original
coordinates, being averaged over a revolution along an
almost closed orbit, almost coincides with instantaneous
torque in the comoving frame. This has been observed by
direct computation of the mean value of df; see [44,45]. The
same result is implied by Eq. (74), (&) — (48) ~ L (d8) . 1

dr ZNdi! T m
dS> ds’ dS> ds’

and since <d o o o

we have (
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2. The spin tensor subject to the condition $**P,, = 0 can
be used to construct the four-dimensional Pauli-Lubanski
vector

\/—det \/—detgy,

S, =

SV

P*SPr, where €y103 = —1.  (77)

In a free theory, where P* does not depend on S, this
equation can be inverted, so S# and s, are mathematically
equivalent. Hence spatial components s could be equally used
to describe the spin of a gyroscope [42]. In Clz-approximation
we have P*=mx“, and (77) implies s =S in the rest frame of
the gyroscope. Under general-coordinate transformations, S
transforms as the spatial part of a tensor, while s transforms
as a part of the four-vector. So the two spins differ in all
frames except the rest frame. Let us find the relation between
them in Clz—approximation. Using the approximate equalities
(—vgv)_% =1Q1 +2”—;+%) and ,/—detg,, =1 +2§§1:I
together with Egs. (42), (54), and (55), we obtain for the
spatial part of (77)

3GM

(V-S)v+—
cr

1 1
=-S+— S. 78
S , +C2 (78)

Computing the derivative of this equality and using
(68)—(71), we arrive at the following expression for variation
rate of s:

ds GM
— (s

il B)v—(v-F)s —2(s -

V)E| + 17, + 72 (79)
The first term coincides with that of Weinberg [42].

C. Post-Newtonian Hamiltonian

Let us obtain an effective Hamiltonian, which yields
Egs. (57) and (68) in —approxrmatlon According to the
procedure described in [36], the complete Hamiltonian for
dynamical variables as functions of the coordinate time ¢ is
H = —cpy, where p, is a solution to the mass-shell
constraint (24) with P, given in (3). Solving the constraint,
we obtain

H= YIP.P; 4+ —

Ve AT

c gOi
900

(05) - cm, o, 0"
+ P, (80)

where y = g/

gives the follow1ng expression up to C—z—order.
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2
H—mcz+i[p+ﬂ<2G Jxr] —|—2——[Sx ])}
2m c\ c r

(p>)* 3GM , GM (MG)’

8m3c? 2mccr r 20252

el bl

Together with the Dirac brackets (15), also taken in
%—approximation, this gives Hamiltonian equations of
motion. Excluding from them the momentum p, we arrive
at the Lagrangian Eqs. (57) and (68).

To write the Hamiltonian in a more convenient form, we
introduce® vector potential A;; = —c?g,; for the gravito-
magnetic field B, produced by rotation of the central body
(we use the conventional factor 276, different from that of
Wald [28]. In the result, our B; = 4Bw,q)

A, = 26 [Jx r]

then B; = [Vx Aj| =

2G63(J - f)f J

Then Eq. (81) prompts us to introduce also the vector
potential Ag of fictitious gravitomagnetic field B¢ due to
rotation of a gyroscope

ASZEE{SX :|

m c

MG3 S-t)r—S
then By — [V x A = LO3-DF=S s
m c r-
as well as the extended momentum
m

With these notations, the Hamiltonian (81) becomes similar
to that of the spinning particle in a magnetic field,

1 (Im?)?
— 2 2
H = mc + %H 8m3 >

3GM

T 2merr

e (85)

mGM  m(MG)* 1
- (B, +By)-S
r 20252 2c( s+ Bys)

c / - 1
= = (mC)2+ngZHJ+%(BJ+Bs)S (86)

-9

*We recall [46] that vector potential, produced by a localized
current distribution J(x’) in electrodynamics, is determined, in
the leading order, by the vector of magnetic moment u =
5= [IX' x J(x')]d’x as follows: A = [u x %], and the correspond-

ing magnetic field is B = [V x A] = 3#5f# r)r_”

PHYSICAL REVIEW D 96, 124013 (2017)

Note that the Hamiltonian (mc

\/_
sponds to the usual Lagrangian L = —mc,/—g,,x*x"
describing a particle propagating in the Schwarzschild
metric g,,. So, the approximate Hamiltonian (86) can be
thought of as describing a gyroscope orbiting in the field of
Schwarzschild space-time and interacting with the grav-
itomagnetic field.

The effective Hamiltonian for MPTD equations turns out
to be less symmetric: it is obtained from (86) excluding the
term 5- (B - S), while keeping the potential Ag in (84).
Hence the only effect of nonminimal interaction is the
deformation of gravitomagnetic field of central body
according to the rule

BJ—>BJ+Bs. (87)

)* + ¢ pip; corre-

V. CONCLUSION

Starting from a variational problem, we have studied the
relativistic spinning particle with nonminimal spin-gravity
interaction through the gravimagnetic moment . Hamiltonian
equations for an arbitrary k are presented in (31)—(33). When
k = 0, our variational problem yields MPTD Egs. (19) and
(20), accompanied by the momentum-velocity relation (18)
and by the expected constraints (7), (10), and (11). When
k # 0, the MPTD equations are modified by extra terms; see
Egs. (31)—(33) above. The case k = 1 is of special interest
[compare (34) with MPTD Egs. (35)], since only for unit
gravimagnetic moment, both acceleration and spin torque
have reasonable behavior in the ultrarelativistic limit [9].

We have computed, in the coordinate-time parametriza-
tion t = XC—O the acceleration (88)—(90) and the spin torque
(69)—(71) of our gravimagnetic particle in the field of a
rotating central body (61) in the leading post-Newtonian
approximation. We also obtained the approximate
Hamiltonian (86), which implies these expressions in the
Hamiltonian formulation with use of Dirac brackets. As it
should be expected, the expressions (62) and (63) and (69)
and (70) coincide with those known from analysis of
MPTD equations [41,44,45,47-54]. The new terms due
to the nonminimal interaction are (64) and (71). While they
are presented in the theory with any x # 0, we continue
with the case x = 1, in which the model is consistent in the
ultrarelativistic regime.

Using the notation (82) and (83), the total acceleration of
the spinning particle in Clz—approximation reads

AGM . GM ,. 4G°M”,
2T a2z (r'v)v_czrzv r+—33

(88)
(B,+Bs)xv+ oM IS xv3(Ss Exv)il - (89)

5 V([B, + BS]-S). (90)
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The first term in (88) represents the standard limit of
Newtonian gravity and implies an elliptical orbit. The next
three terms represent an acceleration in the orbital plane and
are responsible for the precession of perihelia [42,47,48]. The
term %B 7 X v represents the acceleration due to Lense-
Thirring rotation of the central body, while the remaining
terms in (89) and (90) describe the influence of the gyroscopes
spin on its trajectory. The first term in (89) has been computed
by Lense and Thirring [50-52]; the remaining terms in (89)
have been discussed in [18,28,37]. The gravitational dipole-
dipole force 7— V(B - S) has been computed by Wald [28].
The new contribution due to nonminimal interaction,
5—V(Bg - S), is similar to the Wald term. The acceleration
(89) comes from the second term of effective Hamiltonian
(85), while (90) comes from the last term.

The geodetic precession (69) comes from the second
term of effective Hamiltonian (85), while the frame-drag-
ging precession (70) is produced by the term 5- (B, - S). So
they are the same for both the gravimagnetic and MPTD
particle. They have been first computed by Schiff [40], and
measured during the Stanford Gravity Probe B experiment
[55,56]. The term (71) is due to nonminimal interaction,
and appears only for the gravimagnetic particle.

Comparing the expressions (70) and (71), we conclude
that precession of spin S due to nonminimal interaction is
equivalent to that caused by rotation of the central body
with the momentum J = 4§,

The effective Hamiltonian for the case of nonrotating
central body (Schwarzschild metric) is obtained from (86)
by setting A; = B; = 0. We conclude that, due to the term
i Bg-S, the spin of the gravimagnetic particle will
experience the frame-dragging effect (71) even in the field
of a nonrotating central body.

In a comoving frame, the gravimagnetic particle expe-

riences the precession ‘2—? = [Q x S] with angular velocity
3GM ., 1 1
:W[rxv}+2—cB1+zBs, (91)

which depends on gyroscopes spin S. Hence, two gyro-
scopes with different magnitudes and directions of spin
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precess around different rotation axes. Then the angle
between their own rotation axes changes with time in
Schwarzschild or Kerr space-time. Since the variation of
the angle can be measured with high precision, this effect
could be used to find out whether a rotating body has unit
or null gravimagnetic moment.

To estimate the relative magnitude of spin torques due to
B; and Bg, we represent them in terms of angular
velocities. Assuming that both bodies are spinning spheres
of uniform density, we write J = /l,w; and S = l,w,,
where @, is angular velocity and 1; = (2/5)m;r? is moment
of inertia. Then the last two terms in (91) read

2Gmr? A
ji="5 a5 Blo)+ o) D= (@ +p0)]. (92)

where p = (r,/r;). Note that Q, does not depend on mass
of the test particle. The ratio p> = (r,/r;)? is extremely
small for the case of the Gravity Probe B experiment, so the
MPTD and gravimagnetic bodies are indistinguishable in
this experiment. For a system like Sun Mercury p> ~ 107>,
For a system like Sun Jupiter p?> ~ 1072, The new effect
could be relevant to the analysis of binary pulsars with
massive companions, where the geodetic spin precession
has been observed [57-59]. Besides, the two torques could
have comparable magnitudes in a binary system with stars
of the same size (so p = 1), but one of them much heavier
than the other (neutron star or white dwarf). Then our
approximation of a central field is reasonable and, accord-
ing to Eq. (92), the frame-dragging effect due to the
gravimagnetic moment becomes comparable with the
Schiff frame-dragging effect.
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