
Andreev reflections and the quantum physics of black holes

Sreenath K. Manikandan1,2,* and Andrew N. Jordan1,2,3,†
1Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

2Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
3Center for Quantum Studies, Chapman University, Orange, California 92866, USA

(Received 3 May 2017; revised manuscript received 29 July 2017; published 11 December 2017)

We establish an analogy between superconductor-metal interfaces and the quantum physics of a black
hole, using the proximity effect. We show that the metal-superconductor interface can be thought of as an
event horizon and Andreev reflection from the interface is analogous to the Hawking radiation in black
holes. We describe quantum information transfer in Andreev reflection with a final state projection model
similar to the Horowitz-Maldacena model for black hole evaporation. We also propose the Andreev
reflection analogue of Hayden and Preskill’s description of a black hole final state, where the black hole is
described as an information mirror. The analogy between crossed Andreev reflections and Einstein-Rosen
bridges is discussed: our proposal gives a precise mechanism for the apparent loss of quantum information
in a black hole by the process of nonlocal Andreev reflection, transferring the quantum information through
a wormhole and into another universe. Given these established connections, we conjecture that the final
quantum state of a black hole is exactly the same as the ground state wave function of the superconductor/
superfluid in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity; in particular, the infalling
matter and the infalling Hawking quanta, described in the Horowitz-Maldacena model, forms a Cooper
pairlike singlet state inside the black hole. A black hole evaporating and shrinking in size can be thought of
as the analogue of Andreev reflection by a hole where the superconductor loses a Cooper pair. Our model
does not suffer from the black hole information problem since Andreev reflection is unitary. We also relate
the thermodynamic properties of a black hole to that of a superconductor, and propose an experiment which
can demonstrate the negative specific heat feature of black holes in a growing/evaporating condensate.
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I. INTRODUCTION

In this paper we study an analogy between the super-
conducting phase in superconductors and a black hole
which is approaching its final state [1,2]. A black hole
reaches the “halfway point” when it has already radiated
half the initial entropy and cannot accept information
anymore [2]. The information is reflected via Hawking
radiation [3] very quickly, and it is speculated that quantum
theories of gravity are necessary to understand the process
[1,2,4,5]. Attempts to understand the quantum physics of
black holes have led to interesting black hole analogies
proposed and observed in a variety of experiments, includ-
ing lasers [6,7], rapid change of dielectric constant in
waveguides [8], and time-varying refractive index of a
medium [9], moving plasma mirrors [10], sonic systems
[11,12] and Bose-Einstein condensates [13]. Hawking
radiation analogues in these experimental systems can be
understood as a process where the incoming modes are
converted to the outgoing modes, as discussed by Jacobson
[14]. The connection to gravity could be made, for
example, by considering fluids in motion that creates a
“sonic horizon” [13], and it has been shown by Unruh in

1981 that the behavior of sound waves in a hypersonic fluid
background is the analogue of the behavior of scalar waves
in a black hole spacetime [11,12]. These considerations
have been extended to gravity analogues in both fermionic
and bosonic superfluids [15]. In this paper, we present a
different approach to this problem that can be thought as a
solid state analogue of a black hole; we build up on the
original considerations of mode conversion in condensed
matter systems introduced by Andreev for normal metal-
superconductor interfaces [16–22], and relate that to
Hawking radiation based on the final state projection
models of black hole evaporation [1,4]. Further, we use
this analogy to propose a solid state quantum analogue of
several phenomena in quantum gravitational physics, such
as the information reflection from black holes and the
wormhole travel of information. We note that the analogy
between Andreev reflections and Hawking radiation is a
possibility that was first pointed out by Jacobson [14], even
before the development of the final state projection
approach [1,4] we take in this manuscript. Hence our
considerations go beyond and relate the quantum physics of
Andreev reflections to unitary models of black hole
evaporation from an information theory point of view.
We particularly focus on two models: The Horowitz-
Maldacena model for black hole evaporation [1] and
Hayden and Preskill’s black hole information mirror model
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[2], and show that the mode conversion process in black
hole evaporation [1,2,14] is analogous to the mode con-
version in Andreev reflections, and describe the latter as a
deterministic quantum teleportation [23]. The mode con-
version process in bosonic condensates can also be under-
stood via a bosonic version of Andreev reflection, as
studied in [13,24].
Hawking radiation, in the Horowitz-Maldacena model

for black hole evaporation, is mediated by particle-
antiparticle pairs created at the event horizon in close
proximity to the black hole. One among the two particles
from the pair falls into the black hole with the infalling
matter and the other particle carries away the quantum
information encoded in the infalling matter to infinity. The
information transfer in black hole evaporation from the
interface is also consistent with the holography principle
[25], which assumes that the information falling into the
black holes can be extracted from the surface.
The theory of superconductivity and the theory of black

holes contain many similarities, and this has lead to
interesting new perspectives of investigating one in light
of the parallels with the other. The theory of holographic
superconductors is an example where one benefits from the
gauge/gravity duality to provide a dual gravitational descrip-
tion for the superconductors [26–28]. There is also a sense in
which a class of black holes is called superconducting, when
the black holes undergo a phase transition near the event
horizon with a broken symmetry that is Uð1Þ, similar to the
spontaneously broken Uð1Þ gauge symmetry for super-
conductors in the Landau-Ginzburg theory [29–31].
We first review the statement of the problem of unitarity of

black hole evaporation (Susskind et al. [32], also see [5]),
where to begin with, one assumes that a local description of
quantum field theory exists and the universe can be
factorized into subsystems as desired for the conventional

descriptions of quantum information dynamics and entan-
glement [1,4,5]. The notion of different instances of time is
introduced by considering constant time slices of the
spacetime manifold, called Cauchy surfaces. Let a constant
time slice of the spacetime manifold prior to the formation of
the black hole be the Cauchy surface Γ. Formation of an
event horizon can be described similarly by another Cauchy
surface Γ0 which is a product of two causally disconnected
Cauchy surfaces, Γin and Γex,

Γ0 ¼ Γin × Γex; ð1Þ

for the interior and exterior of the black hole, respectively.
The assumption of validity of local quantum field theory,
linearity and unitarity of quantum mechanics together imply
that the time evolution between Cauchy surfaces is locally
described by a linear Schrödinger equation. Under these
assumptions, for an observer who is exterior to the black
hole, the Hilbert space of the interior and exterior of the
black hole is a product since the two surfaces (Γin;Γex) are
causally disconnected,

H ¼ Hin ⊗ Hex: ð2Þ

The Cauchy surface after the evaporation of the black
hole is labeled by Γ00. We proceed with the assumption that
this evolution Γ → Γ0 → Γ00 is linear and unitary. This
implies that a pure wave function ΨðΓÞ defined on the time
slice Γ is related to ΨðΓ00Þ defined on Γ00 via a unitary
transformation U,

ΨðΓ00Þ ¼ UΨðΓÞ: ð3Þ

The Cauchy surface Γ00 is causally connected only to the
exterior of the black hole, Γex, and hence the unitarity
assumption implies that the wave functions ΨðΓ00Þ and
ΨðΓexÞ are related by a unitary transformation U 0,

ΨðΓ00Þ ¼ U 0ΨexðΓexÞ: ð4Þ

Since we originally started with a pure state ΨðΓÞ, the two
unitary operations imply that ΨexðΓexÞ is also a pure state.
This necessitates ΨðΓ0Þ is a product of pure states,

ΨðΓ0Þ ¼ ΨinðΓinÞ ⊗ ΨexðΓexÞ: ð5Þ

Note that ΨexðΓexÞ is unitarily related to ΨðΓÞ. If we now
require ΨðΓÞ → ΨðΓ0Þ to be linear, this necessitates that the
wave function describing the interior of the black hole,
ΨinðΓinÞ, cannot have any dependence on ΨðΓÞ [5,32]. In
other words, the quantum state of the interior of the black
hole does not contain any information of the quantum state
prior to the formation of the black hole; something happens
at the event horizon in such a way that it prevents
information from entering the black hole. This can be

FIG. 1. Hawking radiation from a black hole in the Horowitz-
Maldacena model for black hole evaporation: Virtual particle-
antiparticle pairs exist at the event horizon of a black hole. An
incoming particle pairs with one of the virtual particles, and
enters the black hole interior. This process results in the ejection
of a quasiparticle which can escape to infinity.
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considered as a natural way of requiring a final state
boundary condition for the black hole, reconciling unitarity,
linearity and the quantum physics of a black hole. In this
paper, we adopt the above approach to the black hole
information problem, and show that the physics of
Andreev reflections in normal metal/ superconducting sys-
tems has many of the same features.
There are other proposals which give a special status to

the event horizon, and the notion of a firewall at the event
horizon is one such [33]: the infalling observer encounters a
flux of high energy particles (released from breaking of
entangled quasiparticle pairs) at the event horizon and gets
obliterated. This proposal would similarly contradict the
equivalence principle of general relativity according to
which the infalling observer should experience an approx-
imately flat space time as he/she crosses the event horizon
and nothing special can happen there. In particular, the
infalling observer should not encounter a firewall at the
horizon if we require that the equivalence principle is
sacred; no spacetime point can be given a special status as
such, which would be a violation of the equivalence
principle. Yet another take on this problem is the notion
that the black hole is a fuzzball [34]; the model assumes
reversibility, in that the quantum information encoded in
the infalling matter escapes as correlations among the
emitted Hawking quanta.
In this paper we note that the quantum physics of a

superconducting condensate share a surprising amount of
similarity with the quantum physics of black holes, and the
unitary models of black hole evaporation in particular.
When a normal metal becomes superconducting, the wave
function of the superconducting condensate is where all the
electrons are paired, and hence exists in a state [the
Bardeen-Cooper-Schrieffer (BCS) ground state [35]] inde-
pendent of the initial quantum state of the fermions that
formed the condensate. An interesting question to ask now
is the following: what happens to the information falling
into the superconductor after the formation of the con-
densate? This process is called Andreev reflection [16–22],
where electrons incident from the normal metallic region
falls into the condensate dragging another electron from the
metal, forming a Cooper pair. In the process the informa-
tion about the incident electron is reflected in the hole that
is left behind. To make our analogy precise, we discuss
Andreev reflections from the perspective of the Horowitz-
Maldacena model, which also necessitates a unique final
state for the black hole [1,4]. Our black hole analogy based
on superconductors has this additional advantage that the
pairing mechanism is also included, which is not present in
the Bose-Einstein condensate models of black holes. The
formation of pairs [1,4] implies that the infalling Hawking
quanta from the horizon also enter the black hole as
entangled pairs, which leaves the emitted Hawking radi-
ation in a paired entangled state: the correlations previously
existing between the particle-antiparticle pairs at the event

horizon are swapped to the correlations between particle
pairs and antiparticle pairs. In the special case when a hole
pair enters the superconductor (Andreev reflection by a
hole), the superconductor releases a Cooper pair into the
normal metal. We also note that a large superconducting
region may be stable against such evaporation: the back-
ground lattice will eventually accumulate charge as the
Cooper pairs leave the superconducting condensate. A
steady state is established for macroscopic superconduc-
tors, where the pairs of holes/electrons are transferred
between the normal metal and the superconductor at the
same rate. Note that the Horowitz-Maldacena model also
suggests a similar equilibrium at the event horizon for
bigger black holes which do not evaporate [1].
Hayden and Preskill’s black hole information mirror

model has a similar analogy that can be made [2]: they
consider an additional memory system maximally entangled
with the infalling matter and a black hole entangled with the
Hawking radiation.When the matter falls into the black hole,
it becomes maximally entangled with the black hole and that
causes the memory system to be maximally entangled with
the outgoing Hawking radiation. It is implied that the
information has been transferred from the infalling matter
to the outgoing Hawking radiation. Both Hayden and
Preskill’s model and the Horowitz-Maldacena model effec-
tively consider the black hole close to its final state as a
mirror which does not take any information, but reflects all
the information, while accepting the infalling particles.
While naively, this would appear to lose the quantum
information, and take the outside pure state to a mixed
state, in fact, it can be shown (and will be discussed in detail
later in this paper) that the information is in fact reflected
from the black hole, leaving the quantum state pure.
We also note that even though the superconductor is able

to perform deterministic formation of entangled singlets,
there is no superluminal transfer of information happening
within the superconductor. The entangled pairs in Andreev
reflection are local; they are either interacting via the
pairing interaction within the superconducting condensate
(mediated by phonons) or via the tunneling interaction at
the interface. The limiting factor for information transfer
here is the pairing interaction within the superconductor;
the speed at which information gets transferred through the
condensate is roughly equal to the velocity of phonons in
the lattice.
This paper is composed as follows: In Sec. II, we present

the dynamics of the spin degree of freedom of electron
during Andreev reflection process as a deterministic
teleportation. We identify similarities between black hole
evaporation models and the analogous Andreev reflection
processes in Sec. III. We also discuss the analogy between a
traversable Einstein-Rosen bridge [36] and crossed
Andreev reflections (CAR) [37] in Sec. IV, and further
conjecture that the black hole final state in the Horowitz-
Maldacena model is the same as the BCS wave function for
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the superconductor [35] in Sec. V. We also relate the
thermodynamic properties of a black hole to that of a
superconducting condensate.

II. ANDREEV REFLECTION

In the conventional approaches, Andreev reflection is
studied as a scattering process which occurs when a
quasiparticle (electron or hole) from a normal metal—
having an energy E small compared to the superconducting
energy gap Δ—is incident on the superconductor [16–22].
The incident quasiparticle is retroreflected as the oppositely
charged quasiparticle into the normal metal, with a velocity
that is (approximately) opposite to the incident. This results
in a supercurrent through the interface transporting a net
charge of −2e, equivalent to one Cooper pair, across the
junction [see Fig. 2(a)]. Andreev reflections also provide a
mechanism to understand how the proximity effect operates
at a microscopic level [17,38]: in Andreev reflections,
metal electrons near the superconductor get converted to
Cooper pairs, extending the superconducting correlations
into the metal.
Here, we consider an electronlike quasiparticle incident

from the metal, in the state jϕei,

jϕei ¼
X
k;σ

hkσjϕeie†kσj0i ¼ ðae†k↑ þ be†k↓Þj0i; ð6Þ

where e†kσ denotes the creation operator for a free electron
with wave vector k and spin σ. The spin state of the electron
in jϕei is assumed to be a superposition state of ↑ spin and
↓ spin. We show that if the superconducting condensate is
spherically symmetric (s wave), it can accept this spin state
by retroreflecting a hole in the same spin state. The incident
quasiparticle mode (e) is assumed to have momentum
greater than the Fermi momentum (pe ¼ ℏk ¼ pF þ δp),
and excitation energy εe ¼ vF:δp, relative to the Fermi
energy [18]. The metal is otherwise described as a filled

Fermi sea jGi, where all electronic states are occupied up to
the Fermi level [39]:

jGi ¼
Y

jkj<kF

c†k↑c
†
k↓j0i: ð7Þ

Here j0i is the particle vacuum. The resonant interaction
between the metal electrons and the electrons in the
superconducting condensate at the interface is given byHC:

HC ¼
X
k;κ;σ

ðjk;κd†k;σcκ;σ þ H:c:Þ: ð8Þ

Here jk;κ is the coupling corresponding to the tunneling
interaction, which is Coulombic in nature and hence
assumed to be real. The operator d†kσ labels the electronic
states of superconductor, while c†κσ labels the electronic
states of the normal metal. Andreev reflection at the interface
can be studied by considering only the terms in HC that
correspond to k ¼ κ, as we will assume in the following
paragraphs [40]. The tunneling Hamiltonian creates spin
singlet electron-hole pairs from the Fermi level with one of
the particles falling into the superconductor. This can be seen
immediately by treating the tunneling interaction perturba-
tively. The first order term goes like HCjGi which gives us
singlet electron-hole pairs that have similar form to the
singlet pairs we describe in Appendix A. We take this
process to be the analogue of quantum fluctuations near a
black hole event horizon: particle-antiparticle pairs are
created and annihilated spontaneously, and the Hawking
radiation is caused by the antiparticles falling into the black
hole, before the pair annihilates. The creation and annihi-
lation of particle-antiparticle pairs in our analogy simply
means that the tunneling Hamiltonian creates resonances
across the interface where the electron tends to be at either
side of the interface. We can also find a stationary state of the
Hamiltonian for the interface in this sector, which is a
superposition of zero, one, and two excitations:

FIG. 2. (a) Direct Andreev reflection: an electron (hole) like quasiparticle incident on the superconductor (SC) interface from the metal
M, having an energy E lower than the superconducting energy gap Δ is retroreflected as a hole (electron) like quasiparticle into the same
metal. (b) Crossed Andreev reflection: An electron (hole) like quasiparticle incident from the metal M located at one side of a
superconductor—having a width comparable to the superconducting coherence length—can be converted to a hole (electron) like
quasiparticle in metal M’. The information encoded in the spin degree of freedom is preserved in Andreev reflections.
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�X
σ

ϵkðd†k;σdk;σ þ c†k;σck;σÞ þ jðd†k;σck;σ þ c†k;σdk;σÞ
�
½1þ ðd†k;↑ck;↑ þ d†k;↓ck;↓Þ þ d†k;↑ck;↑d

†
k;↓ck;↓�c†k↑c†k↓ � � � j0i

¼ 2ðϵk þ jÞ½1þ ðd†k;↑ck;↑ þ d†k;↓ck;↓Þ þ d†k;↑ck;↑d
†
k;↓ck;↓�c†k↑c†k↓ � � � j0i: ð9Þ

Here ϵk is the kinetic energy of the mode k, and j is the
coupling corresponding to the tunneling interaction. The
second term in the eigenstate describes a singlet excitation,
discussed in Appendix A. The last term is a second order
excitation, which describes the simultaneous excitation of
two quasielectrons, creating two holes in the Fermi sea. In
addition to being a second order process in perturbation
theory, the simultaneous creation of two holes in the Fermi
sea is suppressed by a Boltzmann’s factor of e−2βεh in the
steady state at temperature T, where εh is the excitation
energy of a hole, and β ¼ 1

kBT
. Here we restrict to first order

processes at the interface that create singlet electron-hole
pairs. Importantly, all excitations of the superconductor
have an energy gap Δ, so any particles incident on the
superconductor with energy E < Δ must either be reflected
or form another Cooper pair in the condensate. We write
the total Hamiltonian for the metal-superconductor junction
as a sum:

H ¼ HS þHM þHC ¼ H0 þHC: ð10Þ

Here HS is the BCS mean field Hamiltonian for the
superconductor [35]:

HS ¼
X
k;σ

ϵkd
†
k;σdk;σ þHΔ;

HΔ ¼
X
k

ðΔd†k;↑d†−k;↓ þ H:c:Þ;

Δ ¼ −jV0j2
X
k0
hd−k0↓dk0↑i; σ ¼ ↑;↓: ð11Þ

In the mean field description, the superconducting con-
densate behaves like a scatterer for the electron pairs
labeled with momentum k to momentum k0 via the mean
field interaction Hamiltonian HΔ, though in the mean
field approximation, various k0 contributions are summed
over in the definition of Δ. Here jV0j is the strength of
the attractive interaction considered in the BCS model
[41]. The metal has energy levels occupied up to the
Fermi level:

HM ¼
X
κ;σ

ϵκc
†
κ;σcκ;σ þ

X
k

UMNk↑Nk↓: ð12Þ

The last term in the Hamiltonian HM stands for the short-
range Coulomb interaction between the electrons in the
metal with number operator Nkσ ¼ c†kσckσ. In order to
simplify the tunneling problem, we restrict to the

subspace of a single electron incident from the metal,
an electron-hole pair at the interface, and a pair of
unoccupied electronic states in the superconductor. The
incident electron from the metal interacts with the
unoccupied electronic states within the superconductor
via the tunneling interaction H0

C:

H0
C ¼

X
σ

½jd†k;σek;σ þ H:c:�; such that H0
Cjϕei ¼ jjϕdi

and H0
Cjϕdi ¼ jjϕei; ð13Þ

We assume that the electronic states localized on the
metal are orthogonal to the ones localized on the super-
conductor, following the treatment in [40]. The different
modes nevertheless have the same energy, and this also
means that H0

C commutes with the kinetic term in the
Hamiltonian. Hence, up to global phase factors, the state
of the incoming mode after the interaction in the
Schrödinger picture is given by

jϕðτÞi ¼ e−i
τ
ℏH

0
C jϕei ¼ sin

�
jτ
ℏ

�
jϕdi þ cos

�
jτ
ℏ

�
jϕei:

ð14Þ

The duration of interaction τ is set by the smallest time
required to make a change in the quantum state, bounded
from below by the energy time uncertainty principle.
Here the uncertainty in energy, Δϵ is equal to j, since a
resonant interaction of the form H0

C splits the degeneracy
of orthogonal states with energy ϵ into nondegenerate
orthogonal states having energies ϵ� j. We assume
complete resonant transfer of the modes e†k;σ → d†k;σ
and hence the choice τ ≃ πℏ

2j is made which also satisfies

the energy time uncertainty principle, jτ > ℏ
2
. This

assumption is made also to be in accord with the
conventional treatments of Andreev reflections, where
it is not required to distinguish between the incoming
mode e†k;σ and the infalling mode d†k;σ; the superconductor
is considered as a scatterer, so the microscopic inter-
actions at the interface can be ignored while computing
the asymptotic scattering matrix [16]. Note that the
requirement for complete resonant transfer of modes
can be weakened without affecting the unitarity of the
process, as the above resonant interaction at the interface
is unitary for all time τ; this in general corresponds to
superposition states of the incoming electron and the
outgoing hole at the interface.
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Substituting the estimate for τ into the Eq. (14), we
obtain jϕðτÞi ¼ jϕdi. Hence the combined state jψi after
the interaction at the interface has the following form:

jψi ¼ jϕdi ⊗ ðd†q↑cq↑ þ d†q↓cq↓ÞjGi; ð15Þ

describing an electron incident from the metal and an
electron-hole pair at the interface. Here q ¼ −kF þ δk.
This corresponds to a momentum for the excited qua-
sielectron, p¼−pFþδp, and excitation energy ε¼
−vF:δp¼−εe [18]. From the electron-hole symmetry
argument, we can conclude that the holelike quasiparticle
has momentum ph ¼ −p and energy, εh ¼ −ε ¼ εe [18].
We can rewrite the state jψi in a form that allows us to
meet the boundary conditions from the superconducting
condensate:

jψi ¼ β̂þj0iðacq↑ þ bcq↓ÞjGi þ β̂−j0iðacq↑ − bcq↓ÞjGi
þ β̂0−j0iðacq↓ − bcq↑ÞjGi
þ β̂0þj0iðacq↓ þ bcq↑ÞjGi ð16Þ

¼ β̂þj0i ⊗ iσyjϕhi þ β̂−j0i ⊗ σxjϕhi − β̂0−j0i ⊗ jϕhi
− β̂0þj0i ⊗ σzjϕhi: ð17Þ

Here σα, α ¼ x, y, z, are the familiar Pauli matrices and
β̂�j0i; β̂0�j0i represent entangled electron pairs within the
superconductor, as described in Appendix B.

A. Applying boundary conditions at the interface

We are looking for solutions of the Andreev reflection
process with a given energy E < Δ, which reduces this to a
problem of solving the time independent Schrödinger
equation by requiring that all the boundary conditions
are met. For this purpose, we identify three regions in the
problem: the normal metal, the interface, and bulk of the
superconductor. Normal metal allows free propagating
electrons and holes as stationary solutions. The stationary
solution for the bulk of the superconducting condensate is
the BCS ground state wave function. We found that the
state of incoming modes at the interface can be written
as in Eq. (16), with the energy-time uncertainty principle
taken into account. Now applying the boundary con-
dition is made simple because each term in Eq. (16) has
different orthogonal spin symmetries while the s wave
superconducting ground state possess only the singlet spin
symmetry.
We can also describe the process dynamically, by taking

into consideration the pairing interaction within the super-
conducting condensate. The effective interaction from
phonons considered in the BCS theory takes the form of
a delta function in the real space [41],

V ¼ −jV0j2δðr1 − r2Þ; ð18Þ

where jV0j is the strength of the attractive interaction. The
electron pair states require nonzero amplitude when r1 ¼ r2
to feel the attractive interaction. This picks out the singlet
spin symmetry for the interior because only the singlet
electron pair has a spatial wave function which is sym-
metric, and feel the attractive interaction. More general
attractive interactions can be constructed which also per-
mits s wave symmetric ground states, such as the potentials
in electrostatics and gravity.
We further note that in the mean field approach to

Andreev reflections, the superconducting condensate is
assumed to act like a source and sink for pairs of electrons
with momentum k scattering into electrons with momen-
tum k0, where various k0 are summed over in the definition
of an effective interaction amplitude Δ as evident from
Eq. (11). The deviation δjψ 0i from the initial state jψi up to
the smallest order in Δ is

δjψ 0i ∝ HΔjψi: ð19Þ

The scattering interaction HΔ annihilates every other term
of jψi except the one term with β0− due to the singlet
symmetry of the Hamiltonian. This is another way of
saying that the s wave condensate only allows penetration
of singlet electron pairs into the condensate. We can impose
this boundary condition by requiring that the bulk of the
condensate applies a final state projection onto the super-
conducting ground state wave function [35],

jΨBCSi ¼
Y
k

ðuk þ vke−iχd
†
k↑d

†
−k↓Þj0i: ð20Þ

Partially projecting the quantum state in Eq. (16) onto this
final state in the subspace of the superconductor transfers
the quantum information in the incident electron to the hole
and also adds the extra phase factor eiχ which is the
superconducting phase of the condensate. We only focus on
the nonvanishing term:

h0jeN̂κeiχ jψi ∝ h0jeN̂κeiχ N̂†
κ j0i ⊗ jϕhi

¼ h0jð1þ eiχN̂κ þ e2iχN̂2
κ=2ÞN̂†

κ j0ijϕhi
¼ eiχ jϕhi: ð21Þ

Here N̂†
κ is the Cooper pair creation operator we discuss

in Appendices B and C. In reality, the electron and hole
amplitudes penetrate a finite distance into the super-
conductor before the final state projection, and hence the
retroreflected hole also acquires an extra phase factor of
arccosðε=ΔÞ in Andreev reflections due to this phase
delay [18]. Physically, the incoming electron forms a
Cooper pair singlet within the superconductor by taking
in a negative energy quasielectron from the Fermi sea,
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retroreflecting a positive energy hole. The quasiparticle
excitation with respect to the Fermi level are formed in
the singlet state, and the process of one quasiparticle
falling into the superconductor can be thought of as
breaking the entangled quasiparticle pair. This ensures
that the state of the outgoing hole is ðah†−q↑ þ bh†−q↓Þj0i,
which is exactly the spin state of the incoming electron.
This is a quantum teleportation of the spin state of the
incoming electron to the outgoing hole, with both the
shared entangled pair (the electron-hole pair with
momentum q) and the final entangled pair (the Cooper
pair) always spin singlets. Hence, the state of the
incoming electron is deterministically transferred to the
outgoing hole—a process called deterministic teleporta-
tion [4,23]. This happens with probability nearly equal to
one for ideal metal-superconductor interfaces, and hence
we restricted our study only to Andreev reflections
[16–22], while ignoring other physical processes due
to nonideality of the interface, such as the ordinary
reflections of electrons and holes from the interface.
The initially shared singlet could be formed on the same
metal from which the electron is incident (direct Andreev
reflection), or could be on a different metal coupled to
the superconductor (crossed Andreev reflection) as shown
in Fig. 2. The above process is particle-hole symmetric,
and hence the time reversal of this process (Andreev
reflection of a hole) is also physical. Note that the
scattering matrix which relates the asymptotic incoming
and outgoing modes in Andreev reflections is unitary,
since the information encoded in the incoming mode is
the same as the information encoded in the outgoing
mode.

III. ANDREEV PROCESSES ANALOGOUS TO
BLACK HOLE EVAPORATION MODELS

In this section, we propose the Andreev processes
analogous to two theoretical models for black hole evapo-
ration: the Horowitz-Maldacena mechanism, and Hayden
and Preskill’s information mirror model. Please see Figs. 1
and 4. We observe that these processes are analogous
to a superconductor-induced deterministic teleportation
and deterministic entanglement swapping respectively
[4,42–44], mediated by formation of Cooper pairs in the
superconducting ground state for a spherically symmetric
condensate. Appendix B of this paper gives a brief review
of quantum teleportation [43], and also describes how
replacing the Bell measurement device with a particular
physical system which can impose a final state boundary
condition can be used to achieve deterministic quantum
teleportation. It is straightforward to verify from the
linearity of the teleportation protocol that if the particle
being teleported is entangled with another particle, tele-
portation preserves the entanglement, via entanglement
swapping [42,44].

A. Andreev reflection and the Horowitz-Maldacena
mechanism for black hole evaporation

The Andreev reflection of a pure spin state at the
interface can be thought of as a deterministic teleportation
as we described in Sec. II and Appendix B. Here,
quasiparticle entangled pairs (excitations of the Fermi
sea) available in the junction act like the initially shared
entanglement. They are created due to the proximity with
the superconductor, as resonances between the electronic
states of the metal and the superconductor at the interface.
The infalling electron forms a Cooper pair within the
superconductor by retroreflecting a hole in the same spin
state as the incoming electron. The entire process is unitary
since the formation of a singlet pair inside the condensate is
not due to a Bell state measurement, but due to a pairing
interaction that creates only singlet states. The super-
conductor can also lose Cooper pairs and shrink in size
(evaporate) if the incident quasiparticle is a hole. In BCS
theory, holes just below the Fermi sea can form Cooper
pairs in the superconducting condensate similar to the
electrons just above the Fermi sea [41]. This explains
Andreev reflection by a hole where the retroreflected
quasiparticle is an electron.

(a) (b)

FIG. 3. (a) Information dynamics in Horowitz-Maldacena
model shown in the Penrose diagram [45] of a black hole
[1,4]: The infalling matter takes one Hawking quantum from
an entangled particle-antiparticle singlet available at the event
horizon. The remaining Hawking quantum escapes to infinity
carrying the information. The final state projection onto a singlet
inside the horizon ensures that the quantum information has been
transferred to the Hawking radiation like quantum teleportation.
The arrows indicate that the electron-positron pair at the event
horizon teleports the quantum information encoded in the
infalling matter to the exterior of the black hole. (b) Information
dynamics in Andreev reflection: An electron incident on the
metal-superconductor interface from the metal with an energy
E < Δ, the superconducting energy gap, can be Andreev reflected
as a hole in the metal. A Cooper pair singlet is formed in the
superconductor. The quantum information encoded in the in-
cident electron is dynamically transferred to the Andreev re-
flected hole in analogy with the Horowitz-Maldacena final state
projection model.
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This is exactly how the Horowitz-Maldacena model for
black hole evaporation works [1]. Particle/antiparticle
pairs are available in the spin-singlet state at the event
horizon, and one of them (which has the negative energy)
falls into the black hole with the infalling matter, while
the remaining quasiparticle (with positive energy) is
emitted towards infinity as the Hawking radiation. The
final state projection model proposed by Maldacena and
Horowitz ensures that the emitted quanta also carry away
the quantum information which was previously encoded
in the infalling matter. See Fig. 3 for a pictorial
representation of the information dynamics in Andreev
reflection as a final state projection model.

B. Superconductor as an information mirror:
Hayden and Preskill’s proposal

for black hole evaporation

Hayden and Preskill’s mechanism for black hole evapo-
ration assumes a slightly different model for the informa-
tion entering a black hole [2,4]: they consider an external
memory system maximally entangled with the particle
falling into the black hole. The black hole swaps the
correlations between the memory system and the infalling
particle to correlations between the memory system and the
outgoing Hawking radiation. This can happen in black
holes having a final state boundary condition in the
following manner [4]: Assume the infalling particle (i)
and the external memory system (m) are in a maximally
entangled Bell state [42]:

jβm;i
00 i ¼

j0m0ii þ j1m1iiffiffiffi
2

p : ð22Þ

Any other Bell state can be obtained by local operations on
the memory system (or the infalling qubit). The other
entanglement we consider is the entanglement at the event
horizon, between the two quasiparticles (Hawking quanta,
i: infalling, o: outgoing) spontaneously created out of
vacuum:

jβH11i ¼
j0i1oi − j1i0oiffiffiffi

2
p : ð23Þ

The joint initial state is

jΦini ¼ jβH11i ⊗ jβm;i
00 i: ð24Þ

As the infalling particle descends into the black hole, it also
pulls the infalling Hawking quantum along and forms a
singlet within the black hole. This is precisely an entan-
glement swapping [44], which causes the memory to be
entangled with the outgoing Hawking radiation:

jΦfi ¼ jβBH11 i ⊗ jβm;o
00 i: ð25Þ

In the sense of Hayden and Preskill, this means that the
Hawking radiation contains the information now, since
the outgoing radiation is maximally entangled with the
memory system as in Eq. (22). Please refer to Fig. 4 for a
pictorial representation of this process.
Now consider an electron falling into the supercon-

ductor, which is maximally entangled with an external
memory. The other shared entanglement here is between
the quasiparticle pairs available at the interface of the
normal metal and the superconductor created via the
tunneling interaction. The electron falling into the super-
conductor forms a Cooper pair by absorbing an electron-
like quasiparticle from the entangled electron-hole pair,
leaving the retroreflected hole maximally entangled with
the external memory. Hence, the superconductor behaves
like an information mirror similar to the black hole in
Hayden and Preskill’s description. We predict that such a
process does indeed happen in metal superconductor
interfaces at equilibrium: the tunneling interaction
between the electronic states of the metal and the
superconductor creates multiple electron-hole pairs at
the interface, while we can also introduce entangled
excitations externally using photons. The electronlike
quasiparticles may fall into the superconducting conden-
sate and pair up, leaving behind hole pairs in the metal
which are correlated, and vice versa. The initial state
consists of two electron-hole pairs,

jψ ii ¼ ðd†k↑cκ↑ þ d†k↓cκ↓Þðd†q↑cq↑ þ d†q↓cq↓ÞjGi ð26Þ

FIG. 4. Black hole as an information mirror [2,4]: Quantum
information may exist in the form of correlations with an
external memory system (Hayden and Preskill’s model), and
necessitating a final boundary condition for the black hole
(bulk of superconductor) will swap the correlations between the
infalling particle and the external memory to that between
outgoing Hawking radiation (Andreev reflected particle) and
the memory system. This process is known as entanglement
swapping [44].
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¼ ½β̂þðcq↑cκ↑ þ cq↓cκ↓Þ þ β̂−ðcq↑cκ↑ − cq↓cκ↓Þ
þ β̂0þðcq↓cκ↑ þ cq↑cκ↓Þ þ β̂0−ðcq↓cκ↑ − cq↑cκ↓Þ�jGi;

ð27Þ

where κ could be potentially different from k in the
infalling particle/ memory system depending on the
process that created the exciton pair. A spherically
symmetric superconductor necessitates the final state
projection onto the state eβ̂

0
−e−iχ j0i, leaving the quantum

state in the metal, jψfi ∝ ðcq↓cκ↑ − cq↑cκ↓ÞjGi, which
describes a pair of correlated holes in the normal metal.

IV. MODE CONVERSION IN CROSSED ANDREEV
REFLECTIONS (CAR): SUPERCONDUCTOR

AS AN EINSTEIN-ROSEN BRIDGE

An interesting microscopic description for an Einstein-
Rosen bridge [46] (wormhole, the name given by Wheeler)
is provided by Maldacena and Susskind where they treat
the wormhole as a system whose microstates exist as
entangled pairs of microstates of two black holes [47].
Here we argue that this picture of a wormhole is quite
similar to a superconductor sandwiched between two
metals, where metal one and metal two correspond to
the two different regions of spacetime external to the
wormhole mouths separated by two distinct event horizons.
In our analogy, Cooper pairs in the superconducting
condensate are the analogue of the microstates of a
wormhole in the model described by Maldacena and
Susskind [47].
Our analogy for the interior of a black hole to the

superconducting condensate also provides a mechanism
for wormhole travel of information via crossed Andreev
reflections. Similar to the “direct” Andreev reflections we
discussed in the previous section, Andreev reflections can
happen across a superconductor in metal-superconductor-
metal junctions where the incidence and retroreflection
could potentially happen at different interfaces. This
process, known as crossed Andreev reflection (CAR)
[37] has been studied extensively. A mathematical descrip-
tion of CAR in our model would be identical to the one
we provide in Sec. II, where the electron-hole pair exists at
the interface between the superconductor and metal two,
for electrons incident from metal one (see Fig. 2). The
formation of singlet quasiparticle excitations acts like the
shared singlet at the wormhole exit and the formation of a
Cooper pair in the superconducting bulk is the final state
projection to a singlet pair. The width of the superconduct-
ing layer should be of the order of the superconducting
coherence length for CAR to occur [37], which would need
to extend over the entire wormhole for this picture to apply
in the gravitational case. The information transfer via the
superconducting condensate is mediated by the formation
of Cooper pairs, and hence the speed at which information

transfer occurs through the condensate can be roughly
estimated to be the velocity of phonons in the medium.
Information transfer through the superconducting conden-
sate is thus distinctively different from conduction through
a normal metal, as the former involves a supercurrent.
Please see the analogy depicted in Figs. 5 and 6.
Our picture of wormhole travel is quite different from the

conventional picturing of wormhole travel as traveling
smoothly through a tunnel connecting two different valleys.
In this accounting, the traveler, upon entering the black
hole, will collide with the superfluid and immediately have

FIG. 5. A traversable Einstein-Rosen bridge (a wormhole):
electron entering the wormhole (blue dot) is nonlocally Andreev
reflected as holes into another universe (red dot). The quantum
information is preserved, since the hole carries the same spin state
as the original electron.

(a) (b)

FIG. 6. (a) Penrose diagram [45] of a traversable Einstein-
Rosen bridge: World lines starting in the universe U can end up in
universe U’. The dashed vertical line is the throat of the Einstein-
Rosen bridge. We use Lþð−Þ to represent the future (past) lightlike
infinity and Tþð−Þ to represent future (past) timelike infinity. S
represents spacelike infinity [48]. (b) Information dynamics in
crossed Andreev reflection: An electron incident on the metal-
superconductor interface from the metal M with an energy
E < Δ: the superconducting energy gap can be Andreev reflected
as a hole in metal M’, if the width of the superconducting region
is smaller than the superconducting coherence length. The
intermediate superconductor can be thought of as a traversable
Einstein-Rosen bridge for quantum information encoded in
electron spins, transferred between the two metals.
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all particles absorbed into the condensate formed by the
extreme gravitational attraction. However, rather than be
obliterated, the information contained in the particles of the
traveler will be teleported to the other end of the wormhole,
via the crossed Andreev reflection process, and be shot out
as antiparticles.
We stress that like in Andreev reflection for metal-

superconducting interfaces, there is no necessity for all the
information to be teleported across the wormhole. In
general, there will be a combination of regular Andreev
reflection and crossed Andreev reflection processed occur-
ring, unless special circumstances are taken into account.
For example, in the N-S interface, crossed Andreev
reflection can be promoted over normal Andreev reflection
if the metal on one side is also a ferromagnet [49].

V. THE FINAL QUANTUM STATE
OF A BLACK HOLE

The BCS theory for superconductivity is formulated
based on the observation that electrons above the Fermi sea
form a bound state when subjected to even weak attractive
interactions [41]. The attractive interaction in supercon-
ductivity is mediated by exchange of phonons which are
quantized vibrations of the lattice. In this section, we
conjecture that the quantum state of a black hole is achieved
similarly, where the attractive interaction is dominated by
the force of gravity. A black hole can be formed when the
gravitational force exceeds the fermionic degeneracy pres-
sure of the identical fermions that remain in a star, which is
proceeding towards the final stages of nuclear fusion
forming heavier elements. When the star is not massive
enough to gravitationally collapsing on itself prevailing the
fermionic degeneracy pressure, the final state is called
a neutron star. The idea that the strong attractive forces
within a neutron star can give rise to superfluidity was
proposed in the earlier days of superconductivity, even
before the first experimental detection of a neutron star
[50]. The analogue of an s wave superconductor would be
an isotropic neutron star, and they are known to form
singlet Cooper pairs [51,52]. A different kind of pairing is
also possible, such as the spin triplet pairing at higher
densities [52]. Recent studies based on observation of
cooling of a neutron star also suggest that superfluidity
from a BCS-like pairing of neutrons could play a crucial
role in explaining the star’s rapid cooling [53]. The fact that
the core of a neutron star is thought to be a superfluid gives
further support of this idea that black holes are perfect
superconductors (when charged) or superfluids, where all
fermions are paired. We conjecture that the final quantum
state of fermions that form a spherically symmetric black
hole is the same as the ground state of the superconductor
proposed by Bardeen, Cooper and Schrieffer (BCS) given
in Eq. (20) [35].
We assume that all fermions are paired up, and

the coherence length of the black hole is the entire

Schwarzschild radius. This state satisfies all the symmetry
requirements and also explains why black hole evaporation
is unitary. Notice that it also avoids sign ambiguities for
fermions since they appear as pairs of 2. In the cores of
neutron stars, the mechanism of pairing is attributed to
the strong nuclear forces as the analogue of phonons in
BCS theory [50,51,53]. Our conjecture is that gravity could
play a key role in the pairing mechanism within the black
holes: The microstates of a spherically symmetric black
hole exist as entangled pairs, mediated by gravity rather
than by phonons as in conventional superconductivity. The
theoretical appeal of this conjecture is that (1) it solves the
black hole information problem, (2) it gives a specific set of
predictions of how particle and antiparticles enter into black
holes, (3) it maps existing proposals of how to preserve
information entering black holes onto well understood
physics in a different context where quantitative experi-
ments can be performed under controlled conditions, and
(4) it gives a mechanism for wormhole transfer of infor-
mation with apparent loss of information in our world.
Further, it is known that extremal black holes (black

holes with the smallest possible mass for a given charge
and angular momentum) expel electric and magnetic
fields similar to a superconductor, and the phenomena is
called the Meissner effect in extremal black holes [54].
Geometrically, the throat lengths of extremal black holes
tend to infinity and hence the electromagnetic fields
originating from sources outside the horizon decay before
they make it to the horizon. A more contextual explanation
for the Meissner effect in black holes relates the phenomena
to entanglement [55]: Robert F. Penna has shown that the
two-point correlation function across the horizon in the
Hartle-Hawking vacuum vanishes as temperature is low-
ered, which is interpreted as the vanishing of the entangle-
ment between modes on either side of the event horizon.
We note that a similar vanishing of entanglement is also
true for the final state projection models we discussed in
this paper: the interior quantum state of a black hole is pure
in the final state projection models, and this final state is
achieved by breaking the entanglement between modes
across the event horizon [1,4].
The particular final state boundary condition we choose

for the interior of a black hole, which is the BCS ground
state wave function, also predicts the Meissner effect for
charged fermionic condensates [35]. The Meissner effect in
superconductors can be derived as a property of the BCS
ground state, from its off-diagonal long range order
[56,57]. In systems that maintain off-diagonal long range
order, the features of the many body quantum state are
extractable from the eigenstate of the reduced density
matrix for a single pair corresponding to the largest
eigenvalue, and in superconductivity, it can be related to
the Ginzburg-Landau wave function [57]. This would
suggest that the charged condensates at the interior of
extremal black holes can also contribute to the Meissner

SREENATH K. MANIKANDAN and ANDREW N. JORDAN PHYSICAL REVIEW D 96, 124011 (2017)

124011-10



effect just like a superconductor, for example, the extremal
charged black hole in Reissner-Nordstrom metric [55,58].
The unique quantum wave function for the final state of

black holes that we conjecture here is limited in the sense
that it considers fermions only. Gravitons are naively
included in our discussion as particles mediating the pairing
interaction, analogous to phonons in BCS theory. While
this consideration alone is interesting and shares a surpris-
ing amount of similarity to the quantum physics of a black
hole, we emphasize that a complete final state description
of black holes should prescribe final states for all kind of
particles, including bosons.

A. The entropy and temperature

The proposed BCS ground state wave function for the
black hole has interesting thermodynamic properties analo-
gous to a black hole. It was shown by Puspus et al. that the
entanglement entropy of the BCS ground state wave
function scales like area [59]. We show that this area
scaling of entropy is closely related to Andreev reflections
happening at the interface between a normal metal and the
superconductor: the pairs that contribute the largest to the
entropy are exactly those pairs that enter/leave the con-
densate during Andreev reflections. We also compare the
temperature of the BCS ground state to the temperature of a
black hole.
Area law for entanglement entropy of the BCS ground

state [59].—In the BCS state, Cooper pairs are formed
for all k vectors in the Debye shell εkϵ½εF − εD; εF þ εD�,
where εD is the Debye energy of the lattice. Puspus
et al. have shown that when the pairing energy Δ is
small compared to the Fermi energy, εF, the major
contribution to the entanglement entropy of the BCS
ground state comes from orbitals with εk ≃ εF. The
entanglement entropy in this case is proportional to the
number of states on the Fermi surface, which scales like
an area [59]. We notice that Andreev reflections provide
an interesting new perspective of looking at this result:
Andreev reflections from the interface can potentially
create the pairs that contribute the largest to the
entanglement entropy of the bulk of the superconducting
condensate, since the pairs which enter/leave the super-
conductor during Andreev reflections have momentum
closely equal to the Fermi momentum [16–22]. In other
words, the information contained in the BCS ground
state wave function, measured by the entanglement
entropy, corresponds to a physical process (Andreev
reflections) at the boundary which can be thought as the
microscopic origin of this entropy. This observation
further supports our analogy of Andreev reflections to
Hawking radiation in black holes, in that the latter is
conjectured to be the microscopic origin of entropy of
black holes [60–62].
Temperature of the BCS ground state [59].—Puspus

et al. computes the entanglement entropy of the BCS

ground state from the reduced density matrix, obtained by
tracing out the spin-down electrons. They have also noted
that this reduced density matrix for spin-up electrons can be
approximated to a canonical Gibbs ensemble with a
constant inverse temperature [59]:

1

TGe
¼ 2kB

Δ
coth−1

ffiffiffi
2

p
≃
1.7627kB

Δ
: ð28Þ

The canonical Gibbs ensemble and the associated
temperature TGe can be interpreted as the effective
thermodynamic description of the BCS ground state.
Further TGe is approximately equal to the inverse critical
temperature for the superconductor, 1

TC
¼ πe−γkB

Δ ¼ 1.7639kB
Δ ,

where γ is the Euler-Mascheroni constant [59]. We can
rewrite this temperature of the Gibbs ensemble, TGe (≃TC),
in terms of the coherence length of the superconductor
λ [41],

λ ¼ ℏvF
πΔ

; ð29Þ

where Δ is the superconducting energy gap and vF is the
Fermi velocity. The superconducting coherence length λ
is the length over which two electrons maintain the
coherence, and it also characterizes the typical size of a
Cooper pair bound state in BCS theory [41]. In terms
of λ,

TGe ¼
1

kB coth−1
ffiffiffi
2

p Δ
2
¼ 1

kB coth−1
ffiffiffi
2

p ℏvF
2πλ

≃ 1.1346
ℏvF
2πλkB

; ð30Þ

which is approximately equal to the superconductor’s
critical temperature, TC ≃ 1.1338 ℏvF

2πλkB
. We are now

able to make our analogy more precise by comparing
this with the expression for the temperature of a
Schwarzschild black hole [63–65],

TBH ¼ ℏc
4πrskB

; ð31Þ

where we notice that the Fermi velocity is analogous to
the speed of light c, and half the coherence length λ is the
analogue of the Schwarzschild radius, rs for the black
hole. We consider this mapping between the relevant
parameters of a black hole and a superconductor by
comparing the expressions for their respective temper-
atures as one of the important results of this paper, in that
it relates to the collective behavior of the microstates of
the system in the thermodynamic limit, as opposed to the
microscopic quantum physics of Andreev reflections we
discussed so far in our analogy.
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B. Negative specific heat of black holes: A
superconducting ground state perspective

A black hole in an asymptotically flat spacetime has a
negative specific heat. When mass (equivalent of energy) is
added to the black hole, its temperature decreases. Our
analogy suggests that the negative specific heat can be
understood as a purely local effect arising from the
particular final state of the black hole. To describe how
a superconducting condensate wave function can demon-
strate an equivalent of a negative specific heat, we consider
the analogous process of increasing the mass (number of
Cooper pairs) of a condensate. Let us consider an experi-
ment where the critical temperature decreases with the
increasing radius of a sphere. This can be done with
concentric spheres of materials having critical temperatures
TCi

that are arranged in the decreasing order of critical
temperatures, as depicted in Fig. 7. Note that our arrange-
ment is also in agreement with the inverse scaling of
temperature with the radius of the black hole as in Eq. (31).
As we cool this system down, the inner domains become
superconducting first, followed by the outer domains in the
order of their respective critical temperatures. We will see a
gradual increase in the number of Cooper pairs in the
superconducting condensate. Since the number of Cooper
pairs is a good estimate for the mass of the condensate, M
(analogous to the mass of a black hole), we draw the
conclusion that

CM ¼ dM
dT

< 0; ð32Þ

for the condensate. To be more precise, when we consider
the superconducting condensate as an isolated closed
system and ignore the environment completely, the con-
densate does indeed have a negative (mass) specific heat.

Put another way, injecting free electrons into the super-
conductor will form more Cooper pairs, effectively decreas-
ing the temperature of the superconductor as the mass of the
condensate (number of Cooper pairs) increases.
We now consider a relatively large condensate in

proximity to a normal metal. We can make the condensate
stable against Andreev reflections by introducing ordinary
reflectors as walls at the asymptotic regions of the normal
metal. The asymptotic walls prevent Andreev reflected
particles from escaping to infinity, and the superconducting
condensate exists in a canonical equilibrium with Andreev
reflected quasiparticles, where electron pairs get added to,
and removed from the condensate at the same rate. We
speculate that this can happen quite naturally in experi-
ments, as the neighboring metal electrodes have a fixed
temperature and chemical potential, and it is also possible
to electrically isolate the system by surrounding it with
insulators. Our idea is quite similar to Hawking’s original
idea, which was to place the Schwarzschild black hole in a
box in order to achieve equilibrium with the emitted
radiation [66]. A black hole in anti-de Sitter (AdS)
spacetime is a more physical realization of the proposal
by Hawking [67]; the gravitational potential tends to
infinity in the asymptotes of AdS spacetime, which
prevents Hawking radiation from escaping to infinity.
Hawking radiation is emitted and reabsorbed at the same
rate, and the black hole exists in canonical equilibrium with
the emitted radiation with a positive specific heat.

VI. CONCLUSIONS

This paper has given an analogy of the quantum physics
of superconductor/metal interfaces to that of black holes,
while there are obvious differences. We have proposed the
final quantum state of a black hole to be simply the BCS
ground state, where all fermions are paired and the
coherence length is the Schwarzschild radius. To support
this thesis, we have pointed out that several existing
proposals to preserve quantum information entering black
holes can be directly mapped to the case of the spin
information of electrons in a metal entering the super-
conductor, with the energy of the electron less than the
superconducting gap.
Using this analogy, we have made predictions for

quantum information in superconductors and in black
holes. In the superconducting case, we have shown that
quantum information cannot enter it, and that the Hayden
and Preskill [2] and Horowitz-Maldacena [1] information
mirror mechanisms are applicable [1,2,4]: Since the super-
conducting ground state consists of paired electrons in
singlet states, while the particle is permitted to enter the
superconductor, its spin information is reflected via an
Andreev reflection. This process can be viewed as a
deterministic quantum teleportation of information,
described by a scattering matrix which is unitary [1,4].
We have made several predictions of quantum gravity

FIG. 7. Different s wave (spherically symmetric, spin singlet)
superconducting domains arranged in the decreasing order of
critical temperature TC. The size (or mass) of the condensate
increases [decreases] as we gradually cool [heat] the system. We
conclude that the superconducting condensate, considered as an
isolated system, exhibits negative (mass) specific heat.
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experimentally accessible by mapping them to Andreev
reflection processes. The final state projection on the BCS
ground state resolves the information paradox, while being
able to directly apply the Horowitz andMaldacena methods
of information preservation via teleportation [1]. Our
proposal also gives a precise mechanism of apparent loss
of quantum information in a black hole by the process of
nonlocal Andreev reflection, transferring the quantum
information through a wormhole and into another universe.
In this process, the entering particles are absorbed into the
condensate, while their information is teleported across
the wormhole by the black hole coherently drawing in the
appropriately spin and momentum paired particle from the
other universe and ejecting the information nonlocally with
positrons from its event horizon. We have also shown how
the equivalent of black hole evaporation happens by the
loss of a Cooper pair in the Andreev reflection of a hole,
resulting in the shrinking of the superconductor.
We show that the area law for entanglement entropy of

the superconducting ground state is closely related to
Andreev reflections. We also make the connections
between the temperature of the black holes and the
critical temperature of the superconducting condensate,
and relate the Fermi velocity to the speed of light and the
coherence length of the superconductor analogous to
the Schwarzschild radius. The negative specific heat of
the black hole is explained in the context of a growing/
evaporating condensate, considered as an isolated closed
system. All of these phenomena point to our conclusion
that the final state of a black hole is just the BCS ground
state. We should stress that the mechanism of the pairing is
quite different—in the metallic superconductors, it is the
interactions of the electrons with the lattice that leads to the
effective attractive interaction. Here, it is the gravitational
force between particles in a curved space time that leads the
pairing mechanism to have a lower energy. We note that
while the BCS paired ground state is our conjectured final
state, the system is certainly strongly interacting, and will
likely go beyond the theory of weakly interacting fermions
by Bardeen, Cooper and Schrieffer (BCS) [35].
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APPENDIX A: EXCITATIONS OF
THE FERMI SEA

The Fermi sea is defined by [39]

jGi ¼
Y

jkj<kF

c†k↑c
†
k↓j0i: ðA1Þ

Here j0i is the particle vacuum. Excitations about the filled
Fermi sea represent electronlike and holelike quasipar-
ticles. An excitation could be thought of as a promotion of
an electron from a band k < kF to a level k0 > kF leaving
behind a vacancy (hole) in the Fermi sea. The electron
originally had a momentum ℏk. By promoting it to an
excited state, the total momentum of the Fermi sea changes
by a factor −ℏk. This is the momentum associated to the
hole. A similar argument can be used to identify the spin of
holes with respect to this redefined ground state. Consider a
total spin Sz of electrons in the Fermi sea along the z
direction. If the electron being promoted to an excited
state had a spin σ, the total spin along z in the Fermi sea
changes by −σ, which can be thought as the spin of the
hole. This is manifested in the particle-hole symmetry
relation h†k;σ ¼ e−k;−σ .

We are interested in the kind of excitations c†kþq;σck;σjGi
where summation over the spins σ is implied. Since we
work in a picture with a filled Fermi sea as equivalent to a
redefined vacuum, we can assume that the absence of
quasiparticle excitations corresponds to a vacuum with spin
zero. We would hence expect, from the conservation of
spin, that the quasiparticle excitation we considered is also
a spin singlet. To see this explicitly, we rewrite

c†kþq;σck;σjGi ¼ ðc†kþq;↑ck;↑ þ c†kþq;↓ck;↓ÞjGi ¼ ðc†kþq;↑ck;↑ þ c†kþq;↓ck;↓Þ
Y

jkj<kF

c†k;↑c
†
k;↓j0i ðA2Þ

¼ ½c†kþq;↑ð1 − c†k;↑ck;↑Þc†k;↓j0i þ c†kþq;↓ck;↓c
†
k;↑c

†
k;↓j0i� ⊗

Yκ≠k
jκj<kF

c†κ;↑c
†
κ;↓j0i ðA3Þ

¼ ½c†kþq;↑ð1 − c†k;↑ck;↑Þc†k;↓j0i − c†kþq;↓c
†
k;↑ð1 − c†k;↓ck;↓Þj0i� ⊗

Yκ≠k
jκj<kF

c†κ;↑c
†
κ;↓j0i ðA4Þ

¼ ðc†kþq;↑c
†
k;↓ − c†kþq;↓c

†
k;↑Þj0i ⊗

Yκ≠k
jκj<kF

c†κ;↑c
†
κ;↓j0i; ðA5Þ
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which is clearly a spin singlet state as expected. We can also write this state in the first quantized form to see this:

Ψðr1; r2Þ ¼ hr1; r2jðc†kþq;↑c
†
k;↓ − c†kþq;↓c

†
k;↑Þj0i ¼ ðeiðkþqÞr1eikr2 þ eikr1eiðkþqÞr2Þ

�j↑↓i − j↓↑iffiffiffi
2

p
�
: ðA6Þ

The missing of an electron from the Fermi sea is interpreted
as a hole as we discussed previously. The singlet exciton
state (here refers to a bound state of an electron and a hole
with total spin zero) is rotationally invariant. It hence
preserves the electron-hole correlations and thus better
explains why Andreev reflections in normal metals do not
have any preference for a spin direction.

APPENDIX B: TELEPORTATION OF
QUANTUM INFORMATION

Quantum teleportation uses shared entangled pairs and
the ability to communicate classically, in order to achieve
transfer of quantum information between two locations A
and B [43]. The locations A and B are equivalently
described as connected via a quantum channel (also known
as an Einstein-Podolsky-Rosen bridge/pair) which is the
shared entangled pair. We consider an entangled singlet
jβAB11 i to be the initially shared entangled pair,

jβAB11 i ¼
j↑↓i − j↓↑iffiffiffi

2
p : ðB1Þ

Any other maximally entangled state would work in a
similar way. Consider an arbitrary pure state jψCi which is
to be teleported from A → B,

jψCi ¼ aj↑i þ bj↓i: ðB2Þ

The advantage of quantum teleportation is that no infor-
mation about the parameters a and b is required to transfer
the quantum state. The joint initial state of the three
particles is

jψi ¼ jψCi ⊗ jβAB11 i; ðB3Þ

which can be written in the Bell basis of particles C and A
as

jψi ¼ ð−jβCA11 ijψBi − jβCA10 iσzjψBi þ jβCA01 iσxjψBi
þ ijβCA00 iσyjψBiÞ=2; ðB4Þ

where

jβabi ¼
j0ai þ ð−1Þbj1āiffiffiffi

2
p ; j0i ¼ j↑i; j1i ¼ j↓i:

ðB5Þ

ABell basis measurement on the two particlesC and A now
collapses this state into one of the four possibilities and in
conventional quantum teleportation, the protocol is com-
pleted by classically communicating the measurement
result from A → B and applying an appropriate unitary
to recover the original state. It is interesting to note that
statistically a quarter of the times the Bell measurement
gives the outcome jβCA11 i in which case no classical
communication is required. In other words, we can achieve
teleportation deterministically a quarter of the times if we
throw away the other Bell measurement outcomes and
postselect on the singlet state.
The situation is entirely different if there is some way we

can impose that the measuring device always gives the
singlet state as the measurement outcome. It was proposed
by Horowitz and Maldacena that if the Bell measurement
device is replaced by a physical system (a black hole in
their conjecture), the symmetry of the black hole state can
impose a particular pairing (singlet) and hence achieve
deterministic quantum teleportation without having to
throw away undesired measurement outcomes.
We note that the situation in Andreev reflection is quite

similar, where an s wave superconductor can impose a
singlet pairing to the incoming modes. Note that the state
jψi in Eq. (16) has a similar form to that in Eq. (B4):

jψi ¼ β̂þj0iðacq↑ þ bcq↓ÞjGi þ β̂−j0iðacq↑ − bcq↓ÞjGi
þ β̂0−j0iðacq↓ − bcq↑ÞjGi þ β̂0þj0iðacq↓ þ bcq↑ÞjGi

¼ β̂þj0i⊗ iσyjϕhi þ β̂−j0i⊗ σxjϕhi− β̂0−j0i
⊗ jϕhi− β̂0þj0i⊗ σzjϕhi: ðB6Þ

We have used the definition of the Fermi level jGi:
jGi ¼

Y
jkj<kF

c†k↑c
†
k↓j0i ¼ j1q↑1q↓ � � �i; ðB7Þ

and the following relations:

ðacq↑ þ bcq↓ÞjGi ¼ aj0q↑1q↓ � � �i − bj1q↑0q↓ � � �i; ðB8Þ

ðacq↑ − bcq↓ÞjGi ¼ aj0q↑1q↓ � � �i þ bj1q↑0q↓ � � �i; ðB9Þ

ðacq↓ − bcq↑ÞjGi ¼ −aj1q↑0q↓ � � �i − bj0q↑1q↓ � � �i;
ðB10Þ

ðacq↓ þ bcq↑ÞjGi ¼ −aj1q↑0q↓ � � �i þ bj0q↑1q↓ � � �i:
ðB11Þ
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The annihilation of an electron with momentum q and spin
σ can be thought of as the creation of a hole with
momentum −q and spin −σ with respect to the quasipar-
ticle vacuum j00i,

j0q↑1q↓ � � �i ¼ h†−q;↓j00i; j1q↑0q↓ � � �i ¼ h†−q;↑j00i:
ðB12Þ

We also defined

β̂� ¼ 1

2
ðd†k↑d†q↑ � d†k↓d

†
q↓Þ; ðB13Þ

β̂0� ¼ 1

2
ðd†k↑d†q↓ � d†k↓d

†
q↑Þ; ðB14Þ

to be the operators that correspond to entangled electron-
electron pairs in the condensate, and

jϕhi ¼ ah†−q↑j00i þ bh†−q↓j00i: ðB15Þ

Assuming that δk is along the z direction, we note that
the two electrons forming a spin singlet with opposite
momenta in the transverse direction are described by the
state β̂0−j0i, with the center of mass R moving along the
direction of δk [18]:

2hr1; r2jβ̂0−j0i ¼ e2iδkR
X
κ¼�kF

eiκðr1−r2Þ
1ffiffiffi
2

p ðj↑↓i − j↓↑iÞ

¼ hr1; r2je2iδkR
X
�κ

d†κ↑d
†
−κ↓j0i

¼ hr1; r2je2iδkRN̂†
κ j0i: ðB16Þ

The second equality follows from changing (κ → −κ) in the
sum term with the negative sign. We call the operator N̂†

κ a
Cooper pair creation operator, introduced in Appendix C. A
superconductor imposing the final state boundary condition
can hence, in principle, deterministically transfer the
quantum information from the incoming electron to the
outgoing hole. We stress here that there is no superluminal
transfer of quantum information happening inside the
superconductor, as the limiting factor for information
transfer within the superconductor is the velocity of
phonons that mediate the pairing interaction. The fact that
all the interactions involved are local, and the pairing
interaction within the superconductor only creates
entangled singlet pairs, makes Andreev reflections a unitary
process analogous to the final state projection models for

black hole evaporation [1,4]. This is clearly different from
methods of achieving deterministic transfer of quantum
information using ordinary teleportation, by first doing a
Bell measurement and then selecting out only the favorable
measurement outcomes via a postselection [68].

APPENDIX C: BCS GROUND STATE AS A
COHERENT STATE

Here, we review that the superconducting ground state
can be seen as a coherent state of a Cooper pair creation
operator that has a form identical to the one in Eq. (B16).
The phase of the coherent state is the same as the phase of
the BCS ground state. To see this, we rewrite the BCS
ground state [41],

jΨBCSi ¼
Y
k

ðuk þ vke−iχd
†
k↑d

†
−k↓Þj0i

¼
Y
k

uk

�
1þ vk

uk
e−iχd†k↑d

†
−k↓

�
j0i ðC1Þ

¼
Y
k

uke
vk
uk
e−iχd†k↑d

†
−k↓ j0i ðC2Þ

¼
�Y

k

uk

�
e
P

k

vk
uk
e−iχd†k↑d

†
−k↓ j0i ðC3Þ

¼ Ue

�P
k
N̂†

k

�
e−iχ j0i ¼ UeN̂

†e−iχ j0i: ðC4Þ

Here U is an overall normalization constant. The operator
N̂k

† is a Cooper pair creation operator:

N̂†j0i ¼
X
k

N̂†
kj0i ¼

X
k

vk
uk

d†k↑d
†
−k↓j0i

¼
X
k

gðkÞd†k↑d†−k↓j0i: ðC5Þ

Observe that N̂† creates a spin singlet state and gðkÞ is the
amplitude of the two particle wave function in the Fourier
space. For s wave superconductors gðkÞ is symmetric,
gðkÞ ¼ gðjkjÞ. We included the sum over both k and −k
pairs in the definition of the Cooper pair creation operator
N̂k—labeled by k—to make the spherical symmetry of
the condensate wave function explicit. Further, requiring
that a new pair of quasiparticles entering the condensate
also has this symmetry ensures that the symmetry remains
unchanged as the condensate grows/evaporates.
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[58] J. Bičák and L. Dvořák, Stationary electromagnetic fields
around black holes. iii. General solutions and the fields of

current loops near the Reissner-Nordström black hole,
Phys. Rev. D 22, 2933 (1980).

[59] X. M. Puspus, K. H. Villegas, and F. N. C. Paraan,
Entanglement spectrum and number fluctuations in the
spin-partitioned bcs ground state, Phys. Rev. B 90,
155123 (2014).

[60] M. Srednicki, Entropy and Area, Phys. Rev. Lett. 71, 666
(1993).

[61] S. Das, S. Shankaranarayanan, and S. Sur, Black hole
entropy from entanglement: A review, arXiv:0806.0402.

[62] L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, Quantum
source of entropy for black holes, Phys. Rev. D 34, 373
(1986).

[63] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7,
2333 (1973).

[64] J. D. Bekenstein, Generalized second law of thermody-
namics in black-hole physics, Phys. Rev. D 9, 3292
(1974).

[65] S. F. Ross, Black hole thermodynamics, arXiv:hep-th/
0502195.

[66] S.W. Hawking, Black holes and thermodynamics, Phys.
Rev. D 13, 191 (1976).

[67] S. W. Hawking and D. N. Page, Thermodynamics of black
holes in anti-de Sitter space, Commun. Math. Phys. 87, 577
(1983).

[68] S. Lloyd, L. Maccone, R. Garcia-Patron, V. Giovannetti,
Y. Shikano, S. Pirandola, L. A. Rozema, A. Darabi, Y.
Soudagar, L. K. Shalm et al., Closed Timelike Curves via
Postselection: Theory and Experimental Test of Consis-
tency, Phys. Rev. Lett. 106, 040403 (2011).

ANDREEV REFLECTIONS AND THE QUANTUM PHYSICS … PHYSICAL REVIEW D 96, 124011 (2017)

124011-17

https://doi.org/10.1002/prop.201300020
https://doi.org/10.1088/1367-2630/9/5/116
https://doi.org/10.1016/0029-5582(59)90264-0
https://doi.org/10.1016/S0375-9474(85)90103-4
http://arXiv.org/abs/1302.6626
https://doi.org/10.1103/PhysRevLett.106.081101
https://doi.org/10.1103/PhysRevLett.106.081101
https://doi.org/10.1103/PhysRevD.12.3037
https://doi.org/10.1103/PhysRevD.90.043003
https://doi.org/10.1016/0003-4916(67)90267-9
https://doi.org/10.1103/PhysRevB.51.3760
https://doi.org/10.1103/PhysRevB.51.3760
https://doi.org/10.1103/PhysRevD.22.2933
https://doi.org/10.1103/PhysRevB.90.155123
https://doi.org/10.1103/PhysRevB.90.155123
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevLett.71.666
http://arXiv.org/abs/0806.0402
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.9.3292
https://doi.org/10.1103/PhysRevD.9.3292
http://arXiv.org/abs/hep-th/0502195
http://arXiv.org/abs/hep-th/0502195
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/BF01208266
https://doi.org/10.1103/PhysRevLett.106.040403

