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We present an analytical waveform family describing gravitational waves (GWs) from the inspiral,
merger, and ringdown of nonspinning black-hole binaries including the effect of several nonquadrupole
modes [ðl ¼ 2; m ¼ �1Þ; ðl ¼ 3; m ¼ �3Þ; ðl ¼ 4; m ¼ �4Þ apart from ðl ¼ 2; m ¼ �2Þ]. We first
construct spin-weighted spherical harmonics modes of hybrid waveforms by matching numerical-relativity
simulations (with mass ratio 1–10) describing the late inspiral, merger, and ringdown of the binary with
post-Newtonian/effective-one-body waveforms describing the early inspiral. An analytical waveform
family is constructed in frequency domain by modeling the Fourier transform of the hybrid waveforms
making use of analytical functions inspired by perturbative calculations. The resulting highly accurate,
ready-to-use waveforms are highly faithful (unfaithfulness ≃10−4–10−2) for observation of GWs from
nonspinning black-hole binaries and are extremely inexpensive to generate.
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I. INTRODUCTION

LIGO’s recent observations of gravitational waves
(GWs) from coalescing binary black hole systems [1–3]
mark the beginning of a new branch of astronomy. Based
on the observed rate of GW signals, a large number of
merger events can be expected in upcoming observing runs
of Advanced LIGO and Virgo [4,5], providing us a unique
opportunity to constrain the mass and spin distribution of
binary black holes, to infer their astrophysical formation
channels, and to probe the true nature of extreme gravity.
The most sensitive GW detection pipelines use the

technique of matched filtering to detect GW signals from
binary black holes [6,7], which involves cross-correlating the
data with theoretical templates of expected signals. Post
detection, the physical and astrophysical properties of the
GW source are inferred by comparing the data with theo-
retical signal templates, by means of Bayesian inference [8].
Tests of general relativity (GR) using GWobservations also
involve comparing the data with GR templates to investigate
the consistency of the observation with the prediction of GR
[9]. Thus, accurate theoreticalmodels of the expected signals
are an essential input for GW astronomy.
Theoretical templates describing the gravitational wave-

forms from the inspiral, merger, and ringdown of binary
black holes have been computed in recent years by
combining perturbative calculations in GR with large-scale
numerical relativity simulations [10–25]. Most of these
waveform families aim to model only the leading (quadru-
pole; l ¼ 2; m ¼ �2) modes of the gravitational radiation.
Indeed, careful investigations suggest that the systematic

errors introduced by neglecting subdominant (nonquadru-
pole) modes in the parameter estimation of the LIGO events
are negligible [26]. Due to the near “face-on” orientations
of the binaries and moderate mass ratios, the effect
of subdominant modes was negligible in the observed
signals—the systematic errors introduced by neglecting the
subdominant modes were well within the statistical errors
[26]. However, for binaries with large mass ratios or high
inclination angles or large signal-to-noise ratios, the sys-
tematic errors can dominate the statistical errors, biasing
our inference of the physical and astrophysical properties of
the source (see, e.g., [27–29]). In addition, including the
effect of subdominant modes can improve the precision
with which source parameters can be extracted, due to the
increased information content in the templates (see, e.g.,
[30–37]), potentially improving the accuracy of various
observational tests of GR [38,39].
In this paper, we present an analytical waveform family

describing GW signals from the inspiral, merger and ring-
down of nonspinning black-hole binaries. These waveforms
are constructed by combining perturbative calculations in
GR with numerical-relativity (NR) waveforms in the “phe-
nomenological” approach presented in a series of papers
[20–25,40–42]. This frequency domain, closed form wave-
form family has excellent agreement (faithfulness >0.99)
with “target”waveforms, including subdominant modes, for
binaries with mass ratio up to 10. Target waveforms includ-
ing subdominant modes (with l ≤ 4, m ≠ 0) have been
constructed by matching NR simulations describing
the late inspiral, merger and ringdown of the binary
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with post-Newtonian (PN)/effective-one-body waveforms
describing the early inspiral. Our highly accurate, ready-
to-use, analytical waveforms are both effectual and faithful
for observation of GWs from nonspinning black-hole bina-
ries and are extremely inexpensive to generate.
This paper is organized as follows: Section II presents

the construction of the analytical inspiral, merger, ringdown
waveforms by combining numerical relativity with pertur-
bative calculations in general relativity. In particular,
Sec. II A describes the construction of hybrid waveforms
by matching the spherical harmonic modes of PN and NR
waveforms, while Sec. II B describes the construction of
the analytical waveform family approximating these hybrid
waveforms in the frequency domain. The faithfulness of the
new analytical waveforms to the original hybrids is studied
in Sec. II C. Section III presents some concluding remarks
and discusses our future work. Supplementary calculations
and information are presented in the Appendix.

II. THE WAVEFORM MODEL

The two polarizations hþðtÞ and h×ðtÞ of GWs can be
conveniently expressed as a complex waveform hðtÞ ≔
hþðtÞ − ih×ðtÞ. It is convenient to expand this in terms of
the spin −2 weighted spherical harmonics so that the
radiation along any direction ðι;φ0Þ in the source frame
can be expressed as

hðt; ι;φ0Þ ¼
X∞
l¼2

Xl
m¼−l

Y−2
lmðι;φ0ÞhlmðtÞ: ð2:1Þ

The spherical harmonic modes hlmðtÞ are purely func-
tions of the intrinsic parameters of the system (such as the
masses and spins of the binary), while all the angular
dependence is captured by the spherical harmonic basis
functions Y−2

lmðι;φ0Þ. Here, by convention, the polar angle ι
is measured with respect to the orbital angular momentum
of the binary. The leading contribution to hðt; ι;φ0Þ comes
from the quadrupolar (l ¼ 2; m ¼ �2) modes. The relative
contributions of various subdominant (nonquadrupole)
modes depend on the symmetries of the system. For
nonspinning binaries, it can be seen from the PN inspiral
waveforms that the three subdominant modes with the
largest amplitudes are ðl ¼ 3; m ¼ 3Þ; ðl ¼ 4; m ¼ 4Þ and
ðl ¼ 2; m ¼ 1Þ. This observation seems to hold through
the merger regime (described by NR waveforms) as well.
Thus, in this paper we focus on the modeling of these three
subdominant modes, apart from the dominant quadrupole
modes. Note that, due to the symmetry of nonspinning
binaries, where the orbital motion is fully restricted to a
fixed plane, the negative m modes are related to positive m
modes by a complex conjugation. That is hl−m ¼ ð−Þlh�lm
[43]. Also, them ¼ 0modes are comprised of the nonlinear
memory in the waveform, which has only negligible effect
in GW detection and parameter estimation. It is also
challenging to accurately extract this nonoscillatory signal

from NR simulations [44,45]. Thus, only m > 0 modes are
considered in this paper.

A. Construction of hybrid waveforms

In this paper, we construct an analytical waveform
family in the Fourier domain, that describes the three
subdominant modes ðlm ¼ 33; 44; 21Þ apart from the
dominant 22 mode of the GW polarizations from non-
spinning black-hole binaries. We start by constructing the
spherical harmonic modes of hybrid waveforms by com-
bining PN and NR waveforms in a region where both
calculations are believed to be accurate.
PN inspiral waveforms, scaled to unit total mass and unit

distance, can be written as

hPNlmðtÞ ¼ 2ηv2
ffiffiffiffiffiffiffiffi
16π

5

r
Hlme−imφorbðtÞ; ð2:2Þ

where η ¼ m1m2=M2 is the symmetric mass ratio andM ¼
m1 þm2 is the total mass of the binary, v ¼ ðMωorbÞ1=3 is
the PN expansion parameter, ωorb ¼ dφorb=dt is the orbital
frequency and φorb is the orbital phase. The PN mode
amplitudes Hlm are currently computed up to 3PN.1

accuracy by [43,47–49] while the 3.5PN orbital phase
φorbðtÞ can be computed in the adiabatic approximation
using inputs given in [50] and references therein.
In order to improve the accuracy of the inspiral wave-

forms, we compute the phase evolution of the inspiral part
from the 22 modes of the effective-one-body (EOB)
waveforms calibrated to NR simulations (SEOBNRv4
[13]). Hence, our inspiral waveforms are given by

hPNlmðtÞ ¼ 2ηv2
ffiffiffiffiffiffiffiffi
16π

5

r
Hlme−imφEOB22ðtÞ=2; ð2:3Þ

where φEOB22 is the phase of the 22 mode of the
SEOBNRv4 waveform. Note that, for m ¼ 2 modes,
Hlm contains imaginary terms at order 2.5PN and above,
which can be absorbed into the phase. However, since this
correction appears at order 5PN and above in the phase, we
neglect these corrections and use jHlmj instead of Hlm for
the m ¼ 2 modes.
Hybrid waveforms containing all the relevant modes

(l ≤ 4; 1 ≤ m ≤ l) are constructed by matching NRmodes
hNRlmðtÞ with PN modes hPNlmðtÞ with the same intrinsic
binary parameters. The PN waveforms are matched with
NR by a least square fit over two rotations2 on the NR

1The dominant, 22 mode inspiral model that we use here is
actually 3.5PN accurate [46].

2These two rotations are necessary due to the freedom in
choosing the frame with respect to which the NR and PN
waveforms are decomposed into spherical harmonics modes.
In general, three Euler rotations (ι;φ0;ψ) can be performed
between the two frames. However, one angle (ι) is fixed by the
choice of aligning the z axis along the direction of the total
angular momentum of the binary [27,51].
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waveform and the time-difference between NR and PN
waveforms over an appropriately chosen matching interval
ðt1; t2Þ, where the NR and PN calculations are believed to
be accurate.

mint0;φ0;ψ

Z
t2

t1

dt
X
l;m

jhNRlmðt− t0Þeiðmφ0þψÞ−hPNlmðtÞj: ð2:4Þ

The hybrid waveforms are constructed by combining the
NR waveform with the “best matched” PN waveform in the
following way,

hhyblm ðtÞ≡ τðtÞhNRlmðt − t00Þeiðmφ0
0
þψ 0Þ þ ½1 − τðtÞ�hPNlmðtÞ;

ð2:5Þ
where t00;φ0

0, and ψ 0 are the values of t0, φ0, and ψ that
minimizes the difference δ between PN and NRwaveforms.
Above, τðtÞ is a weighting function defined by

τðtÞ≡

8>><
>>:

0 if t < t1
t−t1
t2−t1

if t1 ≤ t < t2

1 if t2 ≤ t:

ð2:6Þ

Our hybrid waveforms include spherical harmonic modes
up to l ¼ 4 and m ¼ −l to l in this analysis, except the
m ¼ 0 modes. We use a subset of these hybrid waveforms
for constructing the analytical waveforms in the Fourier
domain and to test the faithfulness of the analytical wave-
forms. The NR waveforms that were used to construct the
hybrids are listed in Table I. Note that, although the
analytical waveforms only model the 22,33,44,21 modes,
their faithfulness is established by computing their mis-
matches with hybrids containing all the modes up to l ¼ 4,
except the m ¼ 0 modes.

B. Construction of the analytical waveform model

In this section, we construct an analytical model for the
Fourier transform hlmðfÞ of the real part of hlmðtÞ for
the 22, 33, 44, 21 modes. Due to the symmetry of the
nonspinning binaries, the Fourier transform of the imagi-
nary part of hlmðtÞ can be computed by adding a phase shift
of π=2 to hlmðfÞ (see Appendix C). Writing this in terms of
a Fourier domain amplitude and phase

hlmðfÞ ¼ AlmðfÞeiΨlmðfÞ; ð2:7Þ
our phenomenological model for the amplitude of each
mode is the following:

AlmðfÞ ¼
(
AIM
lmðfÞ; f < fAlm

ARD
lmðfÞ; f ≥ fAlm:

ð2:8Þ

The Fourier frequencies below the matching frequency fAlm
roughly correspond to the inspiral-merger stages of the

signal, while the frequencies above fAlm roughly corre-
sponds to the ringdown stage. The amplitude model for the
inspiral-merger part is given by

AIM
lmðfÞ ¼ APN

lmðfÞ
�
1þ

Xk¼1

k¼0

ðαk;lm þ αLk;lm ln vfÞvkþ8
f

�
;

ð2:9Þ
where vf ¼ ð2πMf=mÞ1=3 and APN

lmðfÞ is the Padé
resummed version of the 3.5 PN (3 PN) amplitude of 22
(33, 44, 21) mode in the Fourier domain (see Appendix A).
The Padé resummed version of the PN amplitude was
employed to provide a better agreement with the late inspiral
part of the hybrid amplitude. The inspiral-merger amplitude
is modeled as the product of a Padè resummed PN amplitude
and another function that mimics a PN-like expansion. Such
a form allows the resulting function to include significantly
higher-order terms, thus providing better fits to the late
inspiral and merger part of the hybrid amplitude3 Above,
αk;lm, αLk;lm and fAlm are phenomenological parameters
whose values are determined from fits with numerical
Fourier transforms of the hybrid waveforms.

TABLE I. Summary of the parameters of the NR waveforms
used in this paper: q≡m1=m2 is the mass ratio of the binary,
Mωorb is the orbital frequency after the junk radiation and e
is the residual eccentricity. The waveforms listed under the title
“Fitting” are used to produce the analytical fits described in
Sec. II B, while those listed under the title “Verification” are used
for assessing the faithfulness of the analytical model in Sec. II C.

Simulation ID q Mωorb e No of orbits

Fitting
SXS:BBH:0198 1.20 0.015 2.0 × 10−4 20.7
SXS:BBH:0201 2.32 0.016 1.4 × 10−4 20.0
SXS:BBH:0200 3.27 0.017 4.1 × 10−4 20.1
SXS:BBH:0182 4.00 0.020 6.8 × 10−5 15.6
SXS:BBH:0297 6.50 0.021 5.9 × 10−5 19.7
SXS:BBH:0063 8.00 0.019 2.8 × 10−4 25.8
SXS:BBH:0301 9.00 0.023 5.7 × 10−5 18.9
SXS:BBH:0185 9.99 0.021 2.9 × 10−4 24.9
Verification
SXS:BBH:0066 1.00 0.012 6.4 × 10−5 28.1
SXS:BBH:0184 2.00 0.018 7.6 × 10−5 15.6
SXS:BBH:0183 3.00 0.019 6.3 × 10−5 15.6
SXS:BBH:0182 4.00 0.020 6.8 × 10−5 15.6
SXS:BBH:0187 5.04 0.019 5.0 × 10−5 19.2
SXS:BBH:0181 6.00 0.017 7.9 × 10−5 26.5
SXS:BBH:0298 7.00 0.021 4.0 × 10−4 19.7
SXS:BBH:0063 8.00 0.019 2.8 × 10−4 25.8
SXS:BBH:0301 9.00 0.023 5.7 × 10−5 18.9
SXS:BBH:0185 9.99 0.021 2.9 × 10−4 24.9

3This idea is similar in spirit to the “factorized resummed
amplitude” for effective one-body waveforms proposed by [18].

ACCURATE INSPIRAL-MERGER-RINGDOWN … PHYSICAL REVIEW D 96, 124010 (2017)

124010-3



The ringdown amplitude is modeled from the Fourier
transform of a damped sinusoid, which is exponentially
damped to mimic the high-frequency fall of the NR wave-
forms in the Fourier domain. That is,

ARD
lmðfÞ ¼ wlme−λlm jBlmðfÞj; ð2:10Þ

where BlmðfÞ is the Fourier transform of the l; m; n ¼ 0
quasinormal mode of a Kerr black hole with mass Mf and
dimensionless spin af [52], determined from initial masses:

BlmðfÞ ¼
σlm − if

f2lm þ ðσlm − ifÞ2 : ð2:11Þ

The frequencies flm and σlm are the real and imaginary parts
of the l; m; n ¼ 0 quasinormal mode frequency Ωlm0 ¼
2πðflm þ iσlmÞ. The phenomenological parameters λlm in
Eq. (2.10) are determined from fits with numerical Fourier
transforms of the hybrid waveforms, while wlm is a nor-
malization constant tomake the amplitudes continuous at the
merger-ringdown matching frequency fAlm. The mass Mf

and spin af of the final black hole are computed from the
masses m1 and m2 of the initial black holes, using fitting
formulae calibrated to NR simulations. For this work, we use
the fitting formulas given by [15].
Our analytical model for the phase of the Fourier domain

waveform reads

ΨlmðfÞ ¼
�ΨIM

lmðfÞ; f < fPlm
ΨRD

lmðfÞ; f ≥ fPlm

where the phase model for the inspiral-merger part of each
mode takes the following form:

ΨIM
lmðfÞ ¼ ΨPN

lmðfÞ þ
Xk¼4

k¼0

ðβk;lm þ βLk;lm ln vf

þ βL2k;lmln
2vfÞvkþ8

f ; ð2:12Þ
whereΨPN

lmðfÞ is the PN phasing of the lmmode, while the
higher-order phenomenological coefficients βk;lm, βLk;lm,

FIG. 1. Comparison between the amplitude (top panels) and phase (bottom panels) of the hybrids and analytical waveforms for
selected mass ratios q ¼ 2.32 (left panels) and q ¼ 9.99 (right panels). In each plot, the solid lines correspond to hybrid waveforms for
different modes and the dashed lines correspond to the analytical waveforms for the same mode. The legends show the lm value
for different modes. The black dots show the transition frequency (fAlm and fPlm) from the inspiral-merger to the ringdown part of the
phenomenological amplitude and phase models.
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βL2k;lm are determined from fits against the phase of hybrid
waveforms. This particular phenomenological ansatz is
motivated from the PN expansion of the frequency domain
GW phasing of the inspiral waveforms in the test particle
limit (see, e.g., [53]).
For the ringdown part of the phase we simply attach the

phase of Fourier transform BlmðfÞ of the l; m; n ¼ 0

quasinormal mode at a transition frequency fPlm. Thus,
our ringdown phase model reads

ΨRD
lmðfÞ ¼ 2πftPlm þ ϕP

lm þ arctanBlmðfÞ; ð2:13Þ

where tPlm and ϕP
lm are computed by matching two phases

(ΨIM
lm and ΨRD

lm) and their first derivative at the matching

FIG. 2. The estimated values of the phenomenological parameters describing the analytical waveforms, plotted against the symmetric
mass ratio η. Different markers correspond to different modes. Also plotted are the fits given by Eqs. (2.14).
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frequency fPlm. Figure 1 provides a comparison of the
amplitude and phase of the numerical Fourier transform of
the hybrid waveforms, along with the analytical fits given
by Eqs. (2.8) and (2.12).
Finally, the phenomenological parameters describing the

analytical model are represented as quadratic functions of
the symmetric mass ratio η

αi;lm ¼ ai;lm þ bi;lmηþ ci;lmη2;

αLi;lm ¼ aLi;lm þ bLi;lmηþ cLi;lmη
2;

βk;lm ¼ ak;lm þ bk;lmηþ ck;lmη2;

βLk;lm ¼ aLk;lm þ bLk;lmηþ cLk;lmη
2;

βL2j;lm ¼ aL2j;lm þ bL2j;lmηþ cL2j;lmη
2;

λlm ¼ aλlm þ bλlmηþ cλlmη
2Þ;

fAlm ¼ aAlm þ bAlmηþ cAlmη
2Þ=M;

fPlm ¼ aPlm þ bPlmηþ cPlmη
2Þ=M: ð2:14Þ

where the index i runs from 0 to 1, k runs from 0 to 4 and j
is 0 except for 21 mode (j ¼ 0,1); see supplemental
material [60] for numerical values of the parameters.
Figure 2 shows the values of the phenomenological
parameters estimated from the hybrid waveforms, as well
as the fits described by Eq. (2.14).

C. Assessing the accuracy of the analytical model

Here we quantify the faithfulness of the analytical model
that we constructed by computing the mismatches of these
with the hybrid waveforms, which are assumed as our
fiducial waveforms. Indeed, relative contribution of differ-
ent modes depend on the orientation of the binary with
respect to the line of sight. Figure 3 shows some examples
of the hybrid waveforms for different orientations along
with the corresponding waveforms generated from our
analytical model (by taking the inverse Fourier transform).
Computation of these polarizations hþðtÞ and h×ðtÞ is
described in Appendix C. Polarizations of the hybrid
waveforms have been computed using all the modes up

FIG. 3. Comparison between hybrid waveforms and our analytical phenomenological waveforms for a binary with total mass M ¼
20M⊙ and mass ratio q ¼ 10. Hybrid waveforms are constructed using all the modes with l ≤ 4, except the m ¼ 0 modes.
Phenomenological waveforms are constructed by taking the (discrete) inverse Fourier transform of the analytical waveforms in the
Fourier domain. The left panel corresponds to a “face-on” binary (inclination angle i ¼ 0.00) while the right panel corresponds to an
“edge-on” binary (i ¼ 1.57).

FIG. 4. The unfaithfulness (mismatch) of the analytical waveform family towards hybrids for various inclination angles ι. The
horizontal axes report the total mass of the binary and different curves correspond to different mass ratios q (shown in the legend).
Horizontal black dashed lines correspond to a mismatch of 1%. The overlaps are computed assuming the design power spectrum of
Advanced LIGO (in the “high-power, zero-detuning” configuration [54]), assuming a low-frequency cutoff of 20 Hz.
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to l ¼ 4, except the m ¼ 0 modes, see Eq. (C1), while
the analytical phenomenological waveforms have been
computed using lm ¼ 22, 21, 33, 44 modes only, by
computing the inverse Fourier transform of the expression
Eq. (C7) numerically.
Since the relative contribution to the observed hðtÞ from

different modes depend on the relative orientation of the
binary, the mismatches of our analytical phenomenological
waveforms with the hybrids will be a function of the orien-
tation angles. Figure 4 shows the mismatches for different
orientations as a function of the total massM and mass ratio
q of the binary. Relative contribution from subdominant
modes are expected to be the smallest [largest] for binaries
with inclination angles ι ¼ 0 [ι ¼ π=2]. The figure shows
that the mismatches are less than 1% for all orientations,
illustrating the high faithfulness of our phenomenological
waveforms. Note that GW detectors have a strong selection
bias towards small inclination angles (ι → 0). Hence, the
mismatches averaged over all orientations are likely to be
comparable to the ones reported in the left panel of the
Figure (ι ¼ 0).

III. SUMMARY AND CONCLUSIONS

In this paper, we presented an analytical family of
frequency-domain waveforms describing the GW signals
from nonspinning black-hole binaries, including some of
the leading subdominant modes of the radiation ðlm ¼ 21;
33; 44Þ, apart from the dominant (lm ¼ 22) mode. The
construction of these analytical waveforms involves two
major steps: 1) the construction of a set of hybrid wave-
forms by combining the spherical harmonic modes of PN
and NR waveforms corresponding to a limited set of mass
ratios 1 ≤ q ≤ 10, 2) representing the numerical Fourier
transform of the hybrid waveforms by a suitable set of
analytical functions which allow us to interpolate these
waveforms smoothly over the parameter space. The ana-
lytical gravitational waveforms that are constructed in this
way are highly faithful (mismatch 0.01%–1%) to our target
hybrid waveforms that include all the modes up to l ¼ 4
(except the m ¼ 0 modes).
The Fourier domain amplitude of our phenomenological

waveforms contain a inspiral-merger part that is smoothly
matched to the ringdown part. The inspiral-merger ampli-
tude is modeled as the product of a Padè resummed version
of the Fourier domain PN amplitude and another function
that mimics a PN-like expansion whose coefficients are
determined by fitting against the Fourier-domain amplitude
of the hybrid waveforms. The ringdown part is modeled
as the Fourier transform of a time-symmetric damped
sinusoid, which is exponentially damped to mimic the
high-frequency fall of the NR waveforms in Fourier
domain. Similarly, the Fourier domain phase is modeled
as a PN-like series including the known coefficients from
PN theory till 3.5PN order, while the higher-order “pseudo-
PN” terms are determined by fitting against the hybrid

waveforms. The resulting waveforms are also computa-
tionally inexpensive to generate, allowing their direct
implementation in GW searches and parameter estimation.
A note on the limitations of this work: These waveforms

aim to model the GW signals from nonspinning black-hole
binaries in quasicircular orbits. Spin effects of black holes
are not considered. (We note that, an approximate phe-
nomenological model for spinning binaries, making use of
rescaled amplitudes and frequencies of the l ¼ m ¼ 2
mode for modeling the nonquadrupole modes has been
developed recently [42] and an EOB model is under
development [55]). Additionally, we consider only a subset
of the subdominant modes lm ¼ 21, 33, 44. Although the
subdominant modes that we neglect here makes no appre-
ciable contributions to the total signal for the mass ratios
that we consider, this may not be the case for even higher
mass ratios. Modeling of some of the subdominant modes
(e.g., lm ¼ 32, 43, etc.) that we neglect here could be
harder, due to the effect of “mode-mixing” [56]. There is
ongoing work that aims to include the spin effects, to model
the subdominant modes that are neglected here, and to
extend the validity of these waveforms making use of
numerical waveforms modeling binary black holes with
extreme mass ratios.
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APPENDIX A: PADÉ SUMMATION ON THE
POST-NEWTONIAN AMPLITUDE IN THE

FOURIER DOMAIN

The PN expression for various mode amplitudes have a
stationary point at high frequencies when higher-order PN
corrections are included. This makes it inconvenient to
model the amplitude of the phenomenological waveforms
as a factorized correction to the PN waveforms as shown in
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Eq. (2.9). In order to resolve this issue, and to generally
improve the agreement of PN amplitude with that of the
hybrid waveforms, we construct our inspiral amplitude
model by performing Padé summation of these expressions.
Padé summation of a given function involves finding a
suitable rational function whose Taylor expansion to a
given order matches exactly with the Taylor expression of
the original function to the same order. For instance, Padé
summation of a simple power series

P
n
k¼0 anx

n can be
written as

Pp
qðxÞ ¼

Pp
k¼0 bkx

kPq
k¼0 ckx

k ; ðA1Þ

where pþ q ¼ n. Each of these coefficients (bk and ck)
then can readily be obtained by demanding that a Taylor
expansion of the above to order n reproduces exactly the
first n terms the given power series. Such rational functions
are called Padé approximants (see Appendix A of Ref. [57]
for a related discussion).
After comparing various Padé approximants correspond-

ing to PN amplitude expressions for each mode we find
the most suitable (i.e., an approximant with no point of
inflection) approximant corresponds to the choice of
rational functions associated with p ¼ 0 and q ¼ n, i.e.,
P0
n. For instance for the l ¼ m ¼ 2 mode whose (normal-

ized) amplitude is given by the series,
P

7
k¼0 αkv

k, the Padé
approximant we find most suitable for our purposes is
given by

P0
7ðvÞ ¼

β0P
7
k¼0 γkv

k : ðA2Þ

Moreover by the virtue of the use of normalized amplitude
expressions in constructing the Padé approximants we can

choose (without any loss of generality), β0 ¼ γ0 ¼ 1,
which leads to the following simple expression

P0
7ðvÞ ¼

1

1þP
7
k¼1 γkv

k : ðA3Þ

Figure 5 shows a comparison of the standard Taylor
expanded 3.5 PN (3 PN) amplitude for 22 (21, 33, 44)
with our corresponding resummed Padé function as well as
the amplitude of the hybrid waveform in the Fourier
domain. Explicit expressions for Padé approximants for
modes we consider here are listed in Appendix B below.

APPENDIX B: PADÉ RESUMMED FREQUENCY
DOMAIN EXPRESSIONS FOR THE

INSPIRAL AMPLITUDE

As discussed above, occurrence of divergences in the PN
amplitudes when including higher PN terms motivates us to
find Padé resummed expressions of the PN amplitudes as
our inspiral amplitude model. Here we provide, analytical
expression for the complete inspiral model for each mode
in the frequency domain which are constructed using the
prescription listed in Ref. [58] and uses stationary phase
approximation. Resulting expression for each mode of the
gravitational wave polarizations in the frequency domain
take the following general form

~hlmðfÞ ¼
M2

DL
π

ffiffiffiffiffi
2η

3

r
v−7=2f e−imΨðvfÞHlmðvfÞ: ðB1Þ

Here,M and η again denote the total mass and symmetric
mass ratio parameter of the binary whereas DL is the
luminosity distance of the source. The quantity vf is given
by vf ≡ ð2πMf=mÞ1=3 and ΨðvfÞ represents the orbital

FIG. 5. Comparison of the Padé approximant of the PN inspiral amplitude (thin, solid lines) with regular Taylor expanded amplitude
(thin, dotted lines) and the amplitude of the hybrid waveform (thick, solid lines) for different modes lm ¼ 21, 22, 33, 44. The left panel
corresponds to mass ratio q ¼ 2.32 while the right panel corresponds to mass ratio q≃ 10.
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phase of the binary computed using stationary phase
approximation (see, for instance, Ref. [58] for a related
discussion). Finally,Hlm are the Padé resummed version of
the inspiral amplitudes and takes following form for the
modes whose complete models are presented in this study.
They read

H22 ¼ 22P0
7ðvfÞ ðB2aÞ

H21 ¼ i

ffiffiffi
2

p

3
δ½21P0

5ðvfÞ�vf ðB2bÞ

H33 ¼ −i
3

4

ffiffiffi
5

7

r
δ½33P0

5ðvfÞ�vf ðB2cÞ

H44 ¼ −
4

9

ffiffiffiffiffi
10

7

r
ð1 − 3ηÞ½44P0

4ðvfÞ�v2f ðB2dÞ

here, lmP0
nðvfÞ are Padé resummed expressions for

(normalized) inspiral amplitudes corresponding to p ¼ 0
and q ¼ n (see Appendix A for related discussions) and can
be expressed in the following general form:

lmP0
nðvÞ ¼

1

1þP
n
k¼1 γ

lm
k vk

; ðB3Þ

where γlm corresponding to each mode can be written in
the following form,

γ221 ¼ 0 ðB4aÞ

γ222 ¼ 323

224
−
451

168
η ðB4bÞ

γ223 ¼ 0 ðB4cÞ

γ224 ¼ 44213383

8128512
−
92437

48384
ηþ 483509

169344
η2 ðB4dÞ

γ225 ¼ 85π

64
þ
�
24 i −

85π

16

�
η ðB4eÞ

γ226 ¼ 40919017211

1226244096
−
428 iπ
105

þ
�
−
1906061676931

15021490176

þ205π2

48

�
ηþ6864704395

1251790848
η2−

48013667

34771968
η3 ðB4fÞ

γ227 ¼ 633281π

1161216
þ
�
2357 i
324

−
21367π

3456

�
η

þ
�
−
86519 i
945

þ 496409π

24192

�
η2 ðB4gÞ

γ211 ¼ 0 ðB4hÞ

γ212 ¼ −
335

672
−
117

56
η ðB4iÞ

γ213 ¼ i
2
þ π þ 2 i ln 2 ðB4jÞ

γ214 ¼ 2984407

8128512
þ 62659

12544
ηþ 96847

56448
η2 ðB4kÞ

γ215 ¼ −
335 i
1344

þ 1115π

1344
þ η

�
1255 i
112

−
885π

112
−
145

28
i ln 2

�

−
335

336
i ln 2 ðB4lÞ

γ331 ¼ 0 ðB4mÞ

γ332 ¼ 1945

672
−
27

8
η ðB4nÞ

γ333 ¼ 2 i
5
− π þ 6 i ln 2 − 6 i ln 3 ðB4oÞ

γ334 ¼ 4822859617

447068160
−
5571877

887040
ηþ 301321

63360
η2 ðB4pÞ

γ335 ¼ 389 i
32

−
2105π

1344
−
1945 i
112

lnð3=2Þ

þ η

�
33079 i
1944

−
23π

16
þ 93 i

4
lnð3=2Þ

�
ðB4qÞ

γ441 ¼ 0 ðB4rÞ

γ442 ¼ 1

1 − 3η

�
−
158383

36960
þ 128221

7392
η −

1063

88
η2
�

ðB4sÞ

γ443 ¼ 1

1 − 3η

�
−
42 i
5

þ 2π þ η

�
1193 i
40

− 6π − 24i ln 2

�

þ 8 i ln 2

�
ðB4tÞ

γ444 ¼ 1

ð1 − 3ηÞ2
�
5783159561419

319653734400
−
6510652977943

53275622400
η

þ 8854729392203

35517081600
η2 −

1326276157

8456448
η3

þ 63224063

1006720
η4
�
: ðB4uÞ

Finally, the orbital phase takes the following form in
Fourier domain

ΨðvfÞ ¼ 2πft0 − π=4þ 3

256ηv5f

�X7
k¼0

ψkvkf

�
; ðB5Þ
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where, t0 represents a reference time4 and ψk denote the PN
corrections to the leading-order orbital phase. These read

ψ0 ¼ 1; ðB6aÞ

ψ1 ¼ 0; ðB6bÞ

ψ2 ¼
3715

756
þ 55

9
η; ðB6cÞ

ψ3 ¼ −16π; ðB6dÞ

ψ4 ¼
15293365

508032
þ 27145

504
ηþ 3085

72
η2; ðB6eÞ

ψ5 ¼ π

�
38645

756
−
65

9
η

�
ð1þ 3 ln vfÞ; ðB6fÞ

ψ6 ¼
11583231236531

4694215680
−
6848γE
21

−
640π2

3

þ
�
−
15737765635

3048192
þ 2255π2

12

�
η

þ 76055

1728
η2 −

127825

1296
η3 −

6848

21
lnð4vfÞ; ðB6gÞ

ψ7 ¼
77096675π

254016
þ 378515π

1512
η −

74045π

756
η2; ðB6hÞ

where γE is the Euler’s constant.

APPENDIX C: COMPUTING THE + and ×
POLARIZATION WAVEFORMS FROM THE
SPHERICAL HARMONIC MODES IN THE

FREQUENCY DOMAIN

The complex time series, h ¼ hþ − ih×, can be decom-
posed into a sum of spherical harmonic modes as

hðtÞ ¼
Xþ∞

l¼2

Xl
m¼−l

hlmðtÞYlm
−2 ðι;φ0Þ; ðC1Þ

where Ylm
−2 ’s (the spin-weighted spherical harmonics of

weight −2) are functions of the spherical angles ðι;φ0Þ
defining the binary’s orientation and are given as

Ylm
−2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
dlm2 ðιÞeimφ0 ; ðC2Þ

and where dlm2 ðιÞ are the Wigner d functions (e.g., [59]).
The spherical harmonic modes of the waveform in time
domain have the following generic form:

hlmðtÞ ¼ AlmðtÞeiφlmðtÞ ðC3Þ

Further, m < 0 modes are related to m > 0 modes as
hl;−mðtÞ ¼ ð−Þlh�lmðtÞ [43]. Using Eq. (C2) and
Eq. (C3) in Eq. (C1) and making use of the above
property, we can write expressions for the real and
imaginary part as

hþðtÞ ¼
Xþ∞

l¼2

Xl
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
½ð−Þldl;−m2 ðιÞ þ dlm2 ðιÞ�AlmðtÞ cos½φlmðtÞ þmφ0�; ðC4aÞ

h×ðtÞ ¼
Xþ∞

l¼2

Xl
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
½ð−Þldl;−m2 ðιÞ − dlm2 ðιÞ�AlmðtÞ sin½φlmðtÞ þmφ0�: ðC4bÞ

The frequency domain þ and × waveforms can now be obtained simply by taking the Fourier transform of hþðtÞ and
h×ðtÞ, respectively,

~hþðfÞ ¼
Xþ∞

l¼2

Xl
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
½ð−Þldl;−m2 ðιÞ þ dlm2 ðιÞ�fcosðmφ0Þ ~hRlmðfÞ − sinðmφ0Þ ~hIlmðfÞg; ðC5aÞ

~h×ðfÞ ¼
Xþ∞

l¼2

Xl
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
½ð−Þldl;−m2 ðιÞ − dlm2 ðιÞ�fsinðmφ0Þ ~hRlmðfÞ þ cosðmφ0Þ ~hIlmðfÞg: ðC5bÞ

where ~hRlmðfÞ and ~hIlmðfÞ are the Fourier transforms of the real and imaginary parts of hlmðtÞ.

4Note that we have set the phase at reference time to zero, since phase shifts can be introduced on the waveform by the spherical
harmonic basis functions; see Eq. (C7).
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~hRlmðfÞ ¼
Z

∞

−∞
e2πiftAlmðtÞ cosφlmðtÞdt; ðC6aÞ

~hIlmðfÞ ¼
Z

∞

−∞
e2πiftAlmðtÞ sinφlmðtÞdt: ðC6bÞ

We know that for nonspinning binaries (as well as for
nonprecessing binaries), ~hIlmðfÞ ¼ −i ~hRlmðfÞ. This allows
us to write Eq. (C5) as

~hþðfÞ ¼
Xþ∞

l¼2

Xl
m¼1

�
ð−Þl d

l;−m
2 ðιÞ
dlm2 ðιÞ þ 1

�
Ylm
−2 ðι;φ0Þ ~hRlmðfÞ

ðC7aÞ

~h×ðfÞ ¼ −i
Xþ∞

l¼2

Xl
m¼1

�
ð−Þl d

l;−m
2 ðιÞ
dlm2 ðιÞ − 1

�
Ylm
−2 ðι;φ0Þ ~hRlmðfÞ:

ðC7bÞ

Note that ~hRlmðfÞ can be written as

~hRlmðfÞ ¼ AlmðfÞeiΨlmðfÞ: ðC8Þ

The phenomenological model for the frequency domain
amplitudes AlmðfÞ and phases ΨlmðfÞ are obtained by
fitting the FFT of hybrids.
The signal observed at a detector is a linear combination

of the two polarizations hþ and h×. The Fourier transform
of the observed signal can be written in terms of the Fourier
transform of the two polarizations as

~hðfÞ ¼ Fþðθ;ϕ;ψÞ ~hþðfÞ þ F×ðθ;ϕ;ψÞ ~h×ðfÞ; ðC9Þ

where the antenna pattern functions Fþðθ;ϕ;ψÞ and
F×ðθ;ϕ;ψÞ are functions of two angles ðθ;ϕÞ describing
the location of the binary in the sky and the polarization
angle ψ .
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