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The collision of black holes and the emission of gravitational radiation in higher-dimensional spacetimes
are of interest in various research areas, including the gauge-gravity duality, the TeV gravity scenarios
evoked for the explanation of the hierarchy problem, and the large-dimensionality limit of general relativity.
We present numerical simulations of head-on collisions of nonspinning, unequal-mass black holes starting
from rest in general relativity with 4 ≤ D ≤ 10 spacetime dimensions. We compare the energy and linear
momentum radiated in gravitational waves with perturbative predictions in the extreme mass ratio limit,
demonstrating the strength and limitations of black-hole perturbation theory in this context.
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I. INTRODUCTION

The study of higher-dimensional spacetimes dates back
at least one hundred years to the seminal attempts by
Kaluza and Klein to unify gravitation and electromagnet-
ism. Higher dimensional arenas would resurface several
times over the next decades, either in the context of specific
physical theories, such as string theory, or theories which
can be embedded into it. One particularly intriguing
example is the class of TeV-scale gravity theories, which
propose to lower the fundamental Planck scale by diluting
gravity in a large number of dimensions [1,1–5]. These
proposals suggest that dynamical processes involving
higher-dimensional black holes (BHs) may be relevant
for understanding the physics under experimental scrutiny
at particle colliders, such as the Large Hadron Collider
(LHC). In these scenarios, BH production would become
possible at much lower energies than the four-dimensional
Planck scale 1019 GeV, a possibility that remains interest-
ing despite the robust constraints at current LHC energies
[6,7]. In this framework, the understanding of BH dynam-
ics and gravitational radiation emitted during high-energy
encounters is fundamental [8].
Higher-dimensional spacetimes have also been used

as a purely mathematical construct, where the number D
of spacetime dimensions is regarded as just one other
parameter to be varied. Emparan and collaborators
[9–12] have recently added an elegant twist to this aspect

of higher-dimensional spacetimes by focusing on the large-
D limit. They showed that the physics of four-dimensional
spacetimes can be recovered to good precision from a large-
D expansion, and that the large-D limit offers precious
physical insight into the nature of classical and quantum
gravity in arbitrary dimensions.
The purpose of this work is to extend previous results on

the low-energy collision of BHs to higher dimensions. This
effort was started a few years ago [13,14], but a combi-
nation of gauge issues and difficulties in the regularization
of variables in the dimensional reduction generated numeri-
cal instabilities, restricting all binary BH simulations
to D ≤ 6 spacetime dimensions. Building on earlier work
[15,16] on the so-called modified cartoon method,
Refs. [17,18] reported considerable progress in overcoming
stability limitations and in the numerical extraction of
gravitational waves (GWs) in higher-dimensional space-
times. Using the methods developed therein, we present
new results for the collision of unequal-mass BH binaries
in D ¼ 4; 5;…; 10 dimensions, and compare these with
perturbative predictions. We expect our results to also allow
for making contact with the large-D regime studied by
Emparan and collaborators.

II. MODELING FRAMEWORK

The physical scenario we consider in this work consists
of two D-dimensional, nonspinning BHs with masses M1

and M2 ≤ M1 initially at rest, which then collide head-on
under their gravitational attraction and merge into a single
BH. The gravitational radiation released during the encoun-
ter of the two BHs, and its total energy and momentum in
particular, is the key diagnostic quantity we wish to extract
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from our calculations. For this purpose, we employ two
techniques: (i) a perturbative point-particle (PP) approxi-
mation, and (ii) numerical relativity simulations assuming
SOðD − 3Þ isometry. In this section we review these two
methods in turn.

A. Point-particle calculations

The first attempt at understanding this process considers
a somewhat restricted parameter space: one of the BHs is
much more massive than the other, i.e. q≡M2=M1 ≪ 1 or

η≡ M1M2

ðM1 þM2Þ2
¼ q

ð1þ qÞ2 ≪ 1; ð1Þ

where η is the symmetric mass ratio. The smaller, lighter
BH is then approximated as a structureless PP, moving on a
geodesic of the background spacetime described by the
massive BH, while generating a stress-energy tensor which
perturbs it. This scheme is also sometimes known as the PP
approximation. In such a framework, the resulting equa-
tions to solve are just linearized versions of the Einstein
equations, expanded around a BH-background spacetime
[19–24]. When the massive BH is nonspinning, the
equations reduce to a single ordinary differential equation
sourced by the smaller BH (the PP). In this scheme, to
leading order, the total energy Erad ∝ q2. The exact coef-
ficient was computed in Refs. [21,23,24] for particles
falling radially into the BH.
Table I summarizes those results for different spacetime

dimensions. Note that the proportionality coefficient
increases with spacetime dimension at large D. An
extrapolation of these results suggests that the perturbative
PP calculation should cease to be valid at sufficiently large
D, since the radiation ultimately becomes too large and the
geodesic approximation breaks down: cf. the discussion
around Fig. 1 of [24]. Thus, even within the PP approxi-
mation, we identify the need to solve the full, nonlinear
Einstein equations at large D.

B. Numerical framework

The only presently known method to solve the Einstein
equations in the dynamic and fully nonlinear regime is
to use numerical tools on supercomputers: see e.g. [25–27].
In higher dimensions, however, the computational cost
increases rapidly withD. To achieve sufficient resolution of
all relevant scales, typical grid sizes in our simulations have

Oð102Þ grid points in each dimension, hence the computa-
tional cost increases approximately by this factor for each
increment in D, making it impractical to consider arbitrary
D − 1 dimensional spatial grids. Many physical scenarios
of current interest, however, involve degrees of symmetry
in the extra dimensions that facilitate a reduction of the
effective computational domain to three or fewer spatial
dimensions, as handled in traditional numerical relativity.
The physical effects of the extra dimensions are then
encapsulated in a set of additional fields on the effective
domain. Several approaches to achieve such a dimensional
reduction have been implemented in the literature: see e.g.
[15,28–30]. Here, we use the modified cartoon method in
the form detailed in [17], which describes a D-dimensional
spacetime with SOðD − 3Þ isometry.
Specifically, we use the LEAN code [31,32], originally

developed for BH simulations in D ¼ 4 dimensions
and upgraded to general D spacetime dimension with
SOðD − 3Þ isometry in [17,28]. We start our simulations
with the D dimensional generalization of Brill-Lindquist
[33] data in Cartesian coordinates XI (Capital Latin indices
I; J;… cover the range 1;…; D − 1, while lower case Latin
indices i; j;… cover the range 1, 2, 3),

γIJ ¼ ψ4=ðD−3ÞδIJ; KIJ ¼ 0;

ψ ¼ 1þ
X
N

μN
4½PKðXK − XK

N Þ2�ðD−3Þ=2 ; ð2Þ

where γIJ and KIJ are the spatial metric and extrinsic
curvature of the Arnowitt-Deser-Misner (ADM) [34] for-
malism and we set G ¼ c ¼ 1. The index N labels the
individual BHs and, in our case, always extends over
the range N ¼ 1, 2. These data are evolved in time with
the Baumgarte-Shapiro-Shibata-Nakamura [35,36] formu-
lation of the Einstein equations, combined with the moving
puncture [37,38] gauge and Berger-Oliger mesh refinement
provided by CARPET [39,40] as part of the CACTUS

computational toolkit [41,42]. In order to calculate the
GW signal, we compute the higher-dimensional Weyl
scalars, as detailed in [18,43,44]. For comparison and to
determine the contributions of the individual multipoles,
we also extract waveforms calculated with the perturbative
Kodama-Ishibashi approach [22,45] as detailed in [46].
Compared with previous simulations of BH collisions in

higher dimensions, we have implemented two changes we
find necessary to achieve accurate and stable evolutions.
First, we evolve the lapse function α according to

∂tα ¼ βi∂iα − c1αKc2 ; ð3Þ

where βi is the shift vector and K the trace of the extrinsic
curvature; the slicing condition typically used in moving
puncture simulations is recovered for c1 ¼ 2, c2 ¼ 1—
cf. Eq. (11) in [31]—but here we vary these parameters in
the ranges 2 ≤ c1 ≤ 10 and 1 ≤ c2 ≤ 1.5. The exact values

TABLE I. Energy radiated in GWs when a small BH of mass
qM1; q ≪ 1 falls from rest at infinity into aD-dimensional BH of
mass M1.

D 4 5 6 7 8
Erad
q2M

0.0104 0.0165 0.0202 0.0231 0.0292
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vary from configuration to configuration and have been
determined empirically. The second modification is an
approximately linear reduction of the Courant factor
Δt=Δx as a function of D from 0.5 in D ¼ 4 to 0.03
in D ¼ 10. We shall see in Fig. 2 and its discussion in
Sec. III B that the merger becomes an increasingly instan-
taneous event with an ever sharper burst in radiation as we
increase D. We believe the necessity of reducing the
Courant factor to arise from this increasing demand for
time resolution around merger.

III. RESULTS

In Schwarzschild coordinates, a nonrotating
D-dimensional BH with ADM mass M has a horizon or
Schwarzschild radius given by

RD−3
S ¼ 16πM

ðD − 2ÞAD−2
; ð4Þ

whereAD−2 ¼ 2πðD−1Þ=2=ΓðD−1
2
Þ. Note that RS is related to

the mass parameter μ of the single BH version of Eq. (2) by
μ ¼ RD−3

S . In consequence of Eq. (4), mass and length do
not have the same physical dimensions unless D ¼ 4.
Henceforth, we measure energy in units of the ADM mass
M of the spacetime under consideration, and we measure
length and time in units of the Schwarzschild radius RS
associated with this ADM mass according to Eq. (4).

A. Numerical uncertainties

Our numerical relativity results for the GW energy
released in head-on collisions of BHs are affected by the
following uncertainties:
Discretization error.—We estimate the error due to finite

grid resolution by studying a head-on collision of two BHs
in D ¼ 8 dimensions with mass ratio q ¼ 1=20. We use a
computational grid composed of 8 nested refinement levels,
2 inner boxes initially centered on the individual holes, and
6 outer levels centered on the origin. The grid spacing
around the BHs is h1 ¼ RS=113, h2 ¼ RS=129 and
h3 ¼ RS=145, respectively, in our three simulations for
checking convergence, and increases by a factor 2 on each
consecutive outer level. The radiated energy as a function
of time is extracted at 40 RS, where the grid resolution is
Hi ¼ 32hi for the three runs i ¼ 1, 2, 3. The difference
between the high and medium resolution runs is compared
with that between the medium and coarse resolution runs in
Fig. 1. Multiplying the former by a factor Q4 ¼ 1.88 (as
expected for the fourth-order discretization of the code)
yields good agreement between the two curves, and using
the according Richardson-extrapolated result gives an error
estimate of 3% for the medium resolution simulation,
which is closest to our set of production runs in terms
of resolution around the smaller BH and in the wave
extraction zone.

We have analyzed several other configurations (includ-
ing the collision in D ¼ 10 dimensions) and find the
discretization error to mildly increase with mass ratio
and dimensionality D, from about 1% for q ¼ 1, D ¼ 5,
6 to about 4% for q ¼ 1, D ¼ 10 and about 5% for
q ≪ 1, D ¼ 8.
Finite extraction radius.—The computational domain

used in our simulations is of finite extent, about 200 RS for
the runs analyzed here, so that we cannot extract the GW
signal at infinity. Instead we use finite radii and estimate the
uncertainty incurred through this process by fitting the total
radiated energy using a polynomial in 1=rex,

EradðrexÞ ¼ Erad þ
a
rex

þO
�

1

r2ex

�
; ð5Þ

where a is a parameter determined through fitting and Erad
is the estimate for the radiated energy extracted at infinity.
We then take the extrapolated value at infinity as our result,
and its difference from the largest numerical extraction
radius as the uncertainty estimate. Applying this procedure
yields a fractional error ranging from about 0.4% for all
equal-mass collisions to about 4% for configurations
with q ≪ 1.
Spurious waves.—Initial data of the type used here

typically contain a small amount of unphysical GWs
colloquially referred to as “junk radiation”. The amount
of unphysical radiation depends on the initial separation of
the BHs (vanishing in the limit of infinite distance) and on
the number of dimensions. As in Ref. [18], we find the
amount of spurious radiation to be orders of magnitude
below the errors due to discretization and extraction radius.
We attribute this to the rapid falloff of gravity in higher
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FIG. 1. Convergence plot for the radiated energy Erad extracted
from a q ¼ 1=20 head-on collision in D ¼ 8 at 40 RS as a
function of time for grid spacing h1 ¼ RS=113, h2 ¼ RS=129 and
h3 ¼ RS=145. The difference between the high and medium
resolution simulations has been scaled by a factor Q4 ¼ 1.88
expected for fourth-order convergence and agrees well with the
difference of the coarse and medium resolution energies.
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dimensions, so that the constituent BHs of the Brill-
Lindquist data are almost in isolation even for relatively
small coordinate separations. We have noticed, however,
that spurious radiation is more prominent in the Kodama-
Ishibashi modes as compared with the results based on the
Weyl scalars. We cannot account for the precise causes for
the seemingly superior behavior of the Weyl scalars, but
we note that similar findings have been reported for the
D ¼ 4 case in [47].
Initial separation.—The head-on collisions performed

here start from finite initial separation of the BHs, while the
idealized scenario considers twoBHs falling in from infinity.
By varying the initial separation for several collisions in
D ¼ 5 andD ¼ 6we estimated the difference in Erad due to
the initial separation and, as for the junk radiation above,
we found that the differences are well below the numerical
error budget. Again, we attribute this observation to the rapid
falloff of the gravitational attraction for largeD, leading to a
prolonged but nearly stationary infall phase followed by an
almost instantaneous merger that generates nearly all of the
radiation. In summary, our error is dominated by discretiza-
tion and use of finite extraction radii. It ranges from about
1.5% for comparable mass collisions in low D to about 9%
for q ≪ 1 in D ¼ 8. For the gravitational recoil, we find
similar significance of the individual error contributions,
but overall larger uncertainties by about a factor of 4. We
attribute these larger uncertainties to the fact that the recoil
arises from asymmetries in GWemission, and in this sense it
is a weaker, differential effect.

B. Equal-mass collisions

The collision of two equal-mass BHs has already been
studied in D ¼ 4, 5 [13], and D ¼ 6 [14] spacetime
dimensions. We have verified those results, extending them
to D ¼ 7, 8, 9, 10. For illustration, in Fig. 2 we plot a

normalized energy flux ðRS=MÞ _E for collisions in D ¼ 4,
6, 8 and 10 spacetime dimensions. AsD increases, the burst
of radiation becomes increasingly concentrated in time.
This concentration suggests that the burst may approach
a δ distribution in the large-D limit; it would be interesting
to see if this is borne out in the large-D limit formalism
of [9–12].
For further illustration, in Fig. 3 we plot the Kodama-

Ishibashi waveform _Φl0 [14,22,45,46] for D ¼ 10; the
qualitative features of the signal are the same for all other
D. The waveform consists of a precursor part with small
amplitude when the two BHs are widely separated, fol-
lowed by a smooth merger phase connecting to ringdown.
A perturbative calculation, using direct integration tech-
niques, yields the following two modes for gravitational-
type scalar perturbations: ωRS ¼ 1.2346 − 0.9329i and
ωRS ¼ 2.4564 − 0.9879i. These are the decoupling (or
saturating) and nondecoupling (or nonsaturating) modes
in the language of Refs. [48,49] (Ref. [50]). We find
agreement to the level of ∼0.1% or better with Ref. [50] and
very good agreement with the analytical, large-D estimates
of Ref. [48]. A one-mode fit of numerical waveforms yields
very poor agreement with any of the frequencies above.
However, a two-mode fit yields the following two frequen-
cies: ωRS ¼ 2.48 − 0.94i, 1.22 − 0.91i. Given the errors in
numerical simulations, this is a reasonable level of agree-
ment with linearized predictions, and it indicates that both
modes are excited to comparable amplitudes for this
particular simulation.
When plotted as a function of the number D of

dimensions (Fig. 4), the fraction of center-of-mass energy
radiated in GWs by equal-mass head-on collisions reaches
a maximum Erad=M ∼ 9.1 × 10−4 for D ¼ 5. Beyond this
value, we find the total radiation output to rapidly decrease
as a function of D. This suppression is consistent with the
fact that the spacetime is nearly flat outside the horizon: in
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FIG. 2. Normalized energy flux ðRS=MÞ _Erad as a function
of time for equal-mass collisions, with t ¼ 0 defined by the
maximum in _Erad. As D increases, the burst of radiation becomes
increasingly concentrated in time.
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waveforms from the collision of two equal-mass BHs in D ¼ 10.
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fact, the gravitational potential ðRS=rÞD−3 vanishes expo-
nentially with D [9]. Another intuitive explanation for this
rapid decay is that, as D increases, the energy is radiated
almost instantaneously (cf. Fig. 2): spacetime is flat except
extremely near the horizons, and bremsstrahlung radiation
is suppressed. These features have also been seen in zero-
frequency limit calculations [51]. Thus, at large D, radi-
ation is emitted in a burst precisely when the BHs collide,
but this is also the instant where one would expect common
horizon formation, and consequent absorption of a sizable
fraction of this energy. This is, of course, a very loose
description, unable to give us a quantitative estimate. The
results in Fig. 4 are (perhaps surprisingly) well described by
the following simple analytic expression,

Eq¼1
rad

M
¼ a0

ð2πÞβ
Γ½β� ; β ¼ D − a1

a2
; ð6Þ

where a0 ¼ 1.7288 × 10−6, a1 ¼ 1.5771, a2 ¼ 0.5497.
This fit reproduces our numerical results to within ∼1%
for all D ¼ 4;…; 10. It is tempting to relate this expression
to the area AD−2 ¼ 2πðD−1Þ=2

ΓðD−1
2
Þ of a (D − 2)-dimensional unit

sphere, but we do not see an evident connection as the
numerical factors do not match exactly.1

The results for the radiated energy are in stark contrast to
the predictions one would get by applying the PP results of
Table I to the equal-mass case q ¼ 1, where, instead of a
strong suppression of Erad at largeD, we see a mild increase
in the radiative efficiency. While the PP approximation is
by construction not expected to capture the equal-mass
limit with high precision, it is valuable to understand the
origin of this qualitative discrepancy. A tantalizing sug-
gestion in this context was made by Emparan and collab-
orators [9], who pointed out that—for large D—BH
spacetimes contain two scales L of interest for BH physics.
One scale can be parametrized by the areal radiusL ∼ RS of
the horizon. The other scale, absent at low D, is related
to the strong localization of the gravitational potential close
to the horizon: L ∼ RS=D. For equal-mass collisions the
excitation of the latter modes (and the radiation output) are
strongly suppressed at large D [9]. However, dynamical
processes are very sensitive to the dominant scale in higher
dimensions [9,51]. In the next section, we explore in more
detail unequal-mass collisions and indeed find that these
collisions can trigger the excitation of smaller-scale modes
even at the low energies considered in our simulations.

C. Unequal-mass collisions and the point-particle limit

The stark contrast between the PP results summarized in
Table I and the numerical relativity calculations of the
previous section strongly points towards a qualitatively
different behavior of the radiated energy as a function of D
for comparable-mass binaries (where Erad rapidly drops
beyond D ¼ 6) as compared with the high mass-ratio
regime (where Erad mildly increases with D). The question
we are now facing is: does the difference in the behavior
arise from the dominance of different physical mechanisms
in the respective regions of the parameter space, and where
does the crossover from one regime to the other occur? To
shed light on this issue, we have performed collisions
of unequal-mass, nonspinning BHs focusing on the range
q ¼ 1;…; 1=100 and D ¼ 4;…; 8. The GW energy and
linear momentum radiated in these collisions are summa-
rized in Figs. 5–7.
By analyzing the waveforms for the most extreme mass

ratios we find good agreement between the ringdown stage
and estimates from linearized perturbations. However, our
results indicate that only the high-frequency modes (the
“nonsaturating” modes) are excited. Since these modes
probe the small scales presumably excited by the smaller
BH [10,12], it is reassuring to find high-frequency
excitations.
Figure 5 shows the fractional center-of-mass energy

released as GWs when two BHs collide, with and without
normalization by (the square of) the kinematic, symmetric
mass ratio parameter η. Note that η is directly connected to
the reduced mass of the system and is known to yield a
very good rescaling of all quantities in four-dimensional
spacetimes (see for instance Refs. [52–54]). For low D
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FIG. 4. Fractional energy Erad=M radiated in GWs during
collisions of equal-mass, nonspinning BHs starting from rest,
in D spacetime dimensions. Crosses are numerical data points
and the solid red line is the fit (6). The blue dashed line shows a fit
obtained for the expression b02πβ=ΓðβÞ which resembles even
more closely the functional form of the surface area AD−2 ¼
2πðD−1Þ=2=Γ½ðD − 1Þ=2� of the D − 2 sphere, but does not match
the data points as well.

1The expression b02πβ=ΓðβÞ resembles even more closely that
of the surface area AD−2, but yields a less accurate fit to the data
points (cf. Fig. 4). It also does not establish a satisfactory relation
between AD−2 and the numerical parameters appearing in the fit
for β, now given by β ¼ ðD − 2.4772Þ=0.7671.
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(in particular for D ¼ 4, 5) the total radiated energy
Erad=ðMη2Þ is weakly dependent on η. At small mass
ratios q, or equivalently at small η, our results smoothly
approach the PP limit of Table I (shown in Fig. 5 as filled
data points at η ¼ 0).
For q≲ 1 and sufficiently large D, the radiated energy

decreases monotonically with D (left panel of Fig. 5). This
behavior would clearly contradict the PP results if it held
for arbitrarily small mass ratio. In fact, at small mass ratios
the behavior of the radiated energy changes. The maximum
of the radiated energy as a function of D shifts from D ¼ 5
to D ¼ 6 between q ¼ 1=4 and q ¼ 1=10. Results for even
smaller q indicate a further shift towards D ¼ 7, and
possibly yet higher D as we approach the PP limit.
Furthermore, we see from the right panel of Fig. 5 that
Erad=ðMη2Þ shows a steep increase for very small η and
large D. This behavior supports our interpretation that new
scales are being probed. If this is indeed the correct
interpretation, and if the new scale is of order RS=D,
one can estimate the mass ratio at which these new
scales are excited. By using Eq. (4), and recalling that
M2=M1 ¼ q, we get the scaling ðr2=RSÞD−3 ¼ q, with r2
the scale of the small BH andRS the scale of the large BH in
terms of coordinate quantities. If we equate the “small
scale” RS=D to the size r2 of the second colliding object we
find the threshold mass ratio

q ∼D3−D: ð7Þ

It seems sensible to understand the mass ratio dependence
by fixing the PP limit to be that of Table I. In other words,
we fit our results to the expression

Erad

Mη2
¼ b0 þ b1ηb2 ; ð8Þ

where b0 are the PP values listed in Table I. The exponents
b2 obtained by fitting our data are listed in Table II. These
numbers are consistent with the behavior shown in Fig. 5:
the dependence of the total radiated energy on η is more
complex for large D. In particular, at large D the expansion
of Erad in powers of η converges more slowly, and the
convergence of the PP results (a leading-order expansion in
mass ratio) is poor in the small-η regime. It would be
interesting to find an analytical prediction for the coef-
ficient b2.

D. Kicks

In Fig. 6, we show the gravitational recoil (or “kick”)
velocity of the postmerger BH as a function of D for fixed
values of the mass ratios q. As in the case of the radiated
energy (left panel of Fig. 5), we observe a shift in the
maximum kick towards higher D as the mass ratio
decreases. In particular, the maximum shifts from D ¼ 6
to D ¼ 7 as we change q from 1=4 to 1=10. In Fig. 7 we
show the same results, but now plotting the kick for fixedD
as a function of the symmetric mass ratio η.
The data in Figs. 6 and 7 are in good agreement with

PP recoil calculations [24,55,56]: for example, in D ¼ 4

the PP calculation yields Prad=M ¼ 8.33 × 10−4q2, or
vkick ¼ 250q2 km=s. This is in percent-level agreement
with the D ¼ 4, η ¼ 0.01 simulation, for which we get
vkick ¼ 0.026 km=s (for such small mass ratios, of course,
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FIG. 5. Left panel: fractional energy Erad=MADM radiated in GWs in collisions of nonspinning BHs starting from rest with mass ratio q
in D spacetime dimensions. Right panel: same data as in the left panel, but rescaled by η2 [i.e. we plot Erad=ðMη2Þ] in order to facilitate
the comparison with PP calculations of the radiated energy, which are shown as filled symbols at η ¼ 0.

TABLE II. Fitting coefficients of Eq. (8), describing the η
dependence of the total radiated energy.

D 4 5 6 7 8

−102b1 0.54 0.95 2.82 3.63 3.58
b2 0.72 1.18 0.83 0.44 0.19
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q≃ η ¼ 0.01). As D increases, the PP prediction becomes
less accurate: the relative error is 4% in D ¼ 4, 21% in
D ¼ 6 and 54% in D ¼ 7. This is consistent with the trend
observed for the radiated energy and with physical expect-
ations: according to Eq. (4), for a fixed q the less massive
black hole appears less and less like a PP. It is also possible
that some of this disagreement comes form the larger errors
in the high-D, small-mass ratio simulations.
Following previous work on unequal mass collisions in

D ¼ 4 dimensions [57] we first tried to fit the data using the
following mass ratio dependence (see e.g. the classic work
by Fitchett and Detweiler [58]):

vð1Þkick ¼ vDη2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
; ð9Þ

where the superscript (1) means that this is a one-parameter
fit. According to this simple formula, the maximum recoil

occurs when η ¼ 0.2 (q≃ 0.38) for all D. Note that for

η ¼ 0.2 we get vð1Þkick;max ≃ 0.018vD, so the parameter vD is
related to the maximum kick by a simple proportionality
relation.
However, our previous considerations suggest that the

mass ratio dependence of the radiated energy and of the
recoil velocity should vary with D. As a simple way to
investigate this D dependence we used a two-parameter
fitting function:

vð2Þkick ¼ ~vDη2ð1 − 4ηÞcD: ð10Þ
Assuming this dependence, the maximum kick vð2Þkick;max

will correspond to a D-dependent ηmax that can be obtained
by fitting the data.
The fitting coefficients and maximum kicks obtained

with these two expressions are listed in Table III. Note that
theD dependence of ηmax is very mild for all but the largest
D simulations. More accurate simulations may be needed
to resolve the issue of the D-dependence of ηmax and of the
maximum kick velocity. However, the following conclu-
sion is quite independent of the assumed functional
dependence: the maximum kick is ∼16.3 km=s, and it is
achieved for D ¼ 6 and ηmax ≃ 0.2.

IV. CONCLUSIONS

We have numerically simulated head-on collisions of
black holes in D ¼ 4;…; 10 dimensions, extracted the GW
signal and computed the energy and linear momentum
radiated in the collisions. Starting with the equal-mass
case, we find values for the radiated energy in agreement
with previously published results for D ¼ 5 and D ¼ 6
dimensions. The radiated energy, measured in units of the
ADM mass M, is maximal in D ¼ 5, where Erad=M ¼
9.1 × 10−4. For larger D we observe a strong reduction in
the radiated energy: the fit Erad=M ¼ ð2πÞβ=ΓðβÞ, β ¼
ðD − 1.5771Þ=ð0.5497Þ models our results to within 1%
for all D simulated. This functional dependence closely
resembles that of the surface area AD−2 ¼ 2πðD−1Þ=2=
Γ½ðD − 1Þ=2�, but the discrepancy in the numerical param-
eters in the argument suggests a more complicated relation
between the two quantities.
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 q=1/100

FIG. 6. Recoil due to asymmetric emission of GWs in the
collision of nonspinning BHs starting from rest with mass ratio q
in D spacetime dimensions. Note that the agreement with PP
predictions in the small-q limit is very good for D ¼ 4, and
degrades for higher D.
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FIG. 7. As Fig. 6 but here symbols denote the kick for fixed D
as a function of the symmetric mass ratio η. The lines are the
simple two-parameter fit of Eq. (10).

TABLE III. Fitting coefficients of Eqs. (9) and (10), describing
the η dependence of the kick velocity.

D 4 5 6 7 8

vD½km=s� 232.9 746.9 915.2 714.8 349.0

vð1Þkick;max½km=s� 4.166 13.361 16.372 12.787 6.244

~vD½km=s� 255.8 798.4 1034 989.9 630.7

cD 0.5629 0.5445 0.5821 0.7214 0.9110

ηmax 0.1951 0.1965 0.1936 0.1837 0.1718

vð2Þkick;max½km=s� 4.148 13.314 16.297 12.822 6.457
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The numerical results for the equal-mass case differ
strikingly from those obtained in the PP approximation,
which predicts a mild increase of Erad=ðq2MÞ with D when
a small BH of mass qM1; q ≪ 1 falls into a BH of massM1.
We reconcile these seemingly different predictions by
numerically simulating a wider set of BH collisions with
mass ratios ranging from q ¼ 1 to q ¼ 1=100 in up to
D ¼ 8 dimensions. In the right panel of Fig. 5 we observe
that the (symmetric mass ratio-normalized) energy
Erad=ðMη2Þ increases in the PP limit q → 0. This increase
becomes particularly steep for D ¼ 7 and D ¼ 8, and the
numerical data extrapolated to q ¼ 0 are in good agreement
with the PP predictions.
These findings can be understood by invoking the

presence of multiple length scales in the large-D limit,
as identified in [9]: Additionally to the length scale RS of
the Schwarzschild horizon, the large-D limit reveals a
shorter scale RS=D for the spatial variation of potential
terms in the equations governing BH perturbations. It is
natural then to assume that these shorter length scales will
be excited with much higher efficiency by a small object
falling into a BH, while they are largely insensitive to the
collision of two objects of size RS. The parameter regime in
between these two extremes, on the other hand, is char-
acterized by excitations of comparable magnitude on both
length scales.
Our intuitive interpretation is strengthened by the analy-

sis of the quasinormal mode frequencies: for q ¼ 1 (and
large D) the ringdown exhibits comparable contributions
from two frequencies, corresponding to the “saturating”
and “unsaturating”modes in the language of [50], while the
ringdown is dominated by the unsaturating modes for
q ≪ 1. For large D, the emission of gravitational waves
therefore appears to be sensitive to the properties of the two
BHs. It is interesting to contrast this observation with the
corresponding insensitivity of the collision dynamics in
high-energy collisions in D ¼ 4 [59,60]. This contrast
naturally raises the question which effect dominates in
high-energy, large-D collisions: sensitivity to structure due
to large D or universality due to high energy?
With regard to the large-D limit, we notice a further

connection in the shape of the energy flux as a function
of time. In units of the Schwarzschild horizon associated
with the ADM mass of the spacetime, the flux becomes
increasingly peaked in higher D and it appears to approach
the shape of a δ distribution, which is what one would
intuitively expect in the large-D limit, where the spacetime
exterior to a BH approaches Minkowski.
Finally, we analyze the gravitational recoil resulting from

the asymmetric emission of GWs in unequal-mass collisions.
We find the data to be well fitted by Fitchett’s [58] formula

commonly applied to the four-dimensional case, but we also
observe a mild indication that the mass ratio maximizing the
recoil varies with D at large D. The maximum kick due to
gravitational recoil (vkick;max ∼ 16.3 km=s) is achieved for
D ¼ 6, and for a symmetric mass ratio η ¼ ηmax ≃ 0.2
(q≃ 0.4). When regarding both energy or linear momentum
as a function ofD at fixed mass ratio q, we observe a shift in
the maximum towards higherD as we move from the equal-
mass case q ¼ 1 to the PP limit q ≪ 1. This observation
further confirms one of our main conclusions: the PP limit
provides exquisitely accurate predictions for small mass
ratios, but it must be taken with a grain of salt when
extrapolated to the comparable-mass regime in higher
dimensions.
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