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We present an exact solution in Einstein-Maxwell-dilaton gravity describing a spacetime with an
anisotropic Kasner-type singularity and Lifshitz asymptotics. This configuration can also be supported by a
phantom scalar while still satisfying the null energy condition. For certain parameters of this solution, null
geodesics can have an infinitely deep effective potential, thus trapping photons in a finite region along the
radial direction. Some examples of periodic null geodesics are obtained. A particularly interesting special
case of this solution is a regular, soliton-type metric that retains its Lifshitz scaling in the time coordinate.
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I. INTRODUCTION

The holographic correspondence provides a map
between a d-dimensional strongly coupled field theory
to a (dþ 1)-dimensional gravity with a negative cosmo-
logical constant. One of the earliest examples of this is
the well-known AdS/CFT correspondence, which maps a
d-dimensional conformal field theory (CFT) to a low
energy limit of string theory, which is an Einstein gravity
with a negative cosmological constant described by the
anti-de Sitter (AdS) spacetime in dþ 1 dimensions.
Since Maldacena’s original conjecture, there has been the

many proposed applications of this correspondence. One
recent area of interest is to study the holographic duals of
nonrelativistic field theories. In particular, asymptotically
Lifshitz spacetimes are dual to condensed matter systems
with Lifshitz fixed points [1,2]. (See also Refs. [3,4] and
references therein.) Such systems are considered nonrela-
tivistic as they scale anisotropically between the space and
time directions as

t → λzt; x⃗ → λx⃗; ð1Þ

for constants λ and z, where the latter is called the Lifshitz
exponent. There have since been many studies on various
aspects of asymptotically Lifshitz spacetimes and their
possible applications to their nonrelativistic duals [2,5–8].
Certain systems of interest also have anisotropies among

the spatial directions as well. For instance, Ref. [9] consid-
ered a system which requires a spatially anisotropic con-
figuration. Kachru et al. [10] considered the possible
geometries that allow a holographic renormalization-group
flow between an asymptotic Lifshitz spacetime and a
spatially anisotropic region. This anisotropic region is
described by Bianchi-attractor geometries of various types
[11,12]. Using the notation in our present paper, the holo-
graphic flow is parametrized by the Poincaré-type coordinate
0 < u < u0, where u → 0 refers to the boundary field theory

in the UV regime, and u ¼ u0 is typically referred to as the
deep-IR region of the bulk. In [13], approximate and
numerical solutions of spatially anisotropic solutions with
Lifshitz asymptotics have found.
A particular metric in the Bianchi Type I class is the

Kasner spacetime. In its original form, the Kasner metric is
a Ricci-flat cosmological solution with a singularity at the
initial time t ¼ 0. This solution also has a “radial” version,
where in D ¼ ðdþ 1Þ-dimensions is given by

ds2 ¼ −u2β0dt2 þ
XD−2

i¼1

u2βiðdxiÞ2 þ du2; ð2Þ

where the exponents are required to satisfy the Kasner
conditions

β0 þ
XD−2

i¼1

βi ¼ 1; ð3aÞ

β20 þ
XD−2

i¼1

β2i ¼ 1: ð3bÞ

In the radial version, the singularity is timelike and is
located at u ¼ 0. The Kasner, and more general singular-
ities have been studied by Belinskii, Khalatnikov, and
Lifshitz (and is thus known as BKL singularities) [14].
These singularities were recently studied in the context of
the AdS/CFT correspondence in [15–17].
Recently, Ref. [18] has obtained an exact solution where

the metric is asymptotic to AdS in the UV regime and has a
(radial) Kasner geometry in the IR limit. By varying the
exponents in Ren’s AdS-Kasner solution, one can inter-
polate between an AdS black hole and an AdS soliton [19].
In this paper, we shall present a generalization of Ren’s
solution to include Lifshitz asymptotics. The solution
derived below contains, as special cases, the Lifshitz black
hole [1,3,4,20], the AdS-scalar naked singularity [21–23],
as well as Ren’s AdS-Kasner solution. There is also a*phylyk@nus.edu.sg
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special case which we will interpret as the Lifshitz
soliton. This is a different version from the Lifshitz
soliton considered by Lu et al. [24], which was con-
structed by performing a double-Wick rotation on a
Lifshitz black hole. The soliton we obtain here retains
its Lifshitz asymptotics in the time coordinate, as no Wick
rotation is performed that turns it into a spatial one. In this
sense, our Lifshitz soliton falls within the class of ansatz
considered by [25] to obtain soliton solutions numeri-
cally.1 Similar to the Lifshitz soliton in [24], one has to
impose a periodicity on one of the spatial coordinates to
remove a conical singularity.
The Kasner-like solution presented in this paper modifies

one of the Kasner conditions, namely Eq. (3b) where the
right-hand side is replaced by free parameters related to the
gauge and scalar field strengths. While the addition of
matter to modify the Kasner conditions has been consid-
ered before in various contexts [28–31], the interesting
feature of our solution is that the combined presence of
the gauge and scalar fields allow the right-hand side to be
restored to 1. Additionally, we find a related result where
the configuration also allows the existence of a phantom
scalar field where the overall stress-energy tensor does not
violate the null energy condition.
It is well known that only radial null geodesics are able to

reach the boundary of Lifshitz spacetime [32], leading to
various subtleties in the treatment of holographic quantities
and must be dealt with care [33]. In any case, this is a
consequence of the spacetime being dual to non-relativistic
boundary by design, so that the speed of light is effectively
infinite there. In the language of effective potentials of the
geodesics, the photon encounters an infinite barrier at
u → 0. In the solution presented in this paper, we find
that for certain choices of the Kasner exponents, the photon
also encounters another infinite barrier at the IR singularity.
This also occurs for the case of the regular Lifshitz soliton.
In other words, classical null particles with nonzero trans-
verse momentum in these spacetimes are trapped in an
infinitely deep potential well.
The rest of this paper is organized as follows: The metric

and matter fields corresponding to our solution is presented
in Sec. II. The null energy condition for the solution is
investigated in Sec. III, followed by Sec. IV where we
obtain the geodesic equations of motion for test particles in
the spacetime. The specific case of the Lifshitz solitons is
considered in Sec. V. The parameter ranges of the solution
for the four-dimensional case is studied in Sec. VI. A brief
discussion and conclusion is given in Sec. VII. The
derivation of the solution is given in the Appendix.

II. EQUATIONS OF MOTION
AND THE SOLUTION

Our solution is obtained under Einstein-Maxwell-dilaton
gravity with a (negative) cosmological constant Λ and an
additional massless scalar ψ. We will show in Sec. III how
ψ is allowed to be a phantom scalar with the opposite sign
of the kinetic term in the Lagrangian. In any case, for the
present section let us write the Lagrangian for ψ with the
usual sign for the kinetic term.2 As such, the action for this
model is

I¼ 1

16πG

Z
dDx

ffiffiffiffiffiffi
−g

p ðR−2Λ−e−2αφF2−ð∇φÞ2−ð∇ψÞ2Þ;

ð4Þ

where F ¼ dA is the Maxwell 2-form arising form a gauge
potential A, and φ is the scalar dilaton coupled to the
Maxwell term via the coupling parameter α. While both φ
and ψ are clearly massless scalars in this model, for
expositional convenience we shall henceforth refer to φ
as the dilaton, and ψ as the scalar to distinguish between
the two.
Let us briefly motivate the choice of the action given in

Eq. (4). The AdS-Kasner solution provided by Ref. [18]
is a solution to pure Einstein gravity with a cosmological
constant. As mentioned in Sec. I, the inclusion of a
massless scalar was considered in [28–31], which modifies
one of the Kasner conditions. With the massless scalar, the
action is I ¼ 1

16πG

R
dDx

ffiffiffiffiffiffi−gp ðR − 2Λ − ð∇ψÞ2Þ. Motivated
by the holographic correspondence, exact and numerical
solutions to this action have been explored in [21,22],
where they tend to describe spacetimes with naked singu-
larities. If an appropriate potential for the scalar is included,
one may obtain black holes with AdS asymptotics [34,35].
If the kinetic term of the scalar carries an opposite sign, the
action corresponds to a model with a phantom scalar with
the action I ¼ 1

16πG

R
dDx

ffiffiffiffiffiffi−gp ðR − 2Λþ ð∇ ~ψÞ2Þ. Notable
solutions to this action include regular black holes [36]. If a
potential for ~ψ is included, its cosmological solutions are
well-known candidates to resolve the dark energy problem
[37]. This phantom model have also been explored in the
context of holography where its dual describe a high-
temperature superconductor [38]. With the rising interest of
nonrelativistic holography, it is desirable to generalize these
results to Lifshitz asymptotics. In order to support such
spacetimes, further matter fields are required. In this paper,
we shall consider a dilaton-Maxwell field.3 Taken together,
we have the action as given in Eq. (4).

1There is a different set of Lifshitz solitons, also known as
Lifshitz stars, which are localized objects with nonsingular
geometry and Lifshitz asymptotics, and are typically found as
numerical solutions [26,27].

2Alternatively, one can write the Lagrangian for ψ as L ¼
εð∇ψÞ2 and having ε ¼ �1, but we prefer not to clutter the
notation here.

3Alternatively, an Einstein-Maxwell gravity coupled to a
massive vector field may also support Lifshitz spacetimes [1,3].
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Extremizing the action gives the Einstein-Maxwell-
dilaton-scalar equations

Rμν ¼
2Λ

D − 2
gμν þ 2e−2αφFμλFν

λ −
1

D − 2
e−2αφF2gμν

þ∇μφ∇νφþ∇μψ∇νψ ; ð5aÞ

∇λðe−2αφFλνÞ ¼ 0; ð5bÞ

∇2φþ αe−2αφF2 ¼ 0; ð5cÞ

∇2ψ ¼ 0: ð5dÞ

In component form, the Maxwell field is given by Fμν ¼
∇μAν −∇νAμ and we denote F2 ¼ FμνFμν.
The solution to be explored in this paper is given by

ds2 ¼ l2

�
−
fβ0dt2

u2z
þ du2

u2f
þ 1

u2
XD−2

i¼1

fβiðdxiÞ2
�
;

f ¼ 1 −
�
u
u0

�
zþD−2

;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðz − 1Þ

2ðzþD − 2Þ

s
u−ðzþD−2Þdt;

φ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 1ÞðD − 2Þ

p
ln uþ 1 − β0

2

ffiffiffiffiffiffiffiffiffiffiffiffi
z − 1

D − 2

r
ln f;

ψ ¼ −
η

2
ln f;

l2 ¼ −
ðzþD − 2ÞðzþD − 3Þ

2Λ
;

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

z − 1

r
: ð6Þ

We show how this solution is derived in the Appendix. In
order to solve the field equations in (5), the exponents
ðβ0; β1;…; βD−2Þ, are required to satisfy a modified version
of Eq. (3),

β0 þ
XD−2

i¼1

βi ¼ 1; ð7aÞ

β20 þ
XD−2

i¼1

β2i ¼ 1 −
ðz − 1Þð1 − β0Þ2

D − 2
− η2; ð7bÞ

thus modifying the second Kasner condition by the
presence of z, β0, and η. Thus, we see that the constants
z, η, and (D − 3) out of the set fβ0; β1;…; βD−2g are
independent, giving (D − 1) free parameters to the solution.
When η ¼ 0 and z ¼ 1, they reduce to the usual Kasner
condition where both equations sum to unity. The modified

Kasner condition with η ≠ 0 is similar to the modification
in the spacelike version considered in [30].
Various special cases can be obtained by appropriate

choices of the parameters. The following are a few examples:
(i) The AdS-Kasner solution of [18] is recovered by

setting z ¼ 1 and η ¼ 0. This switches off all
the matter fields, leaving us with pure AdS gravity
with the negative cosmological constant Λ ¼
− 1

2
ðD − 1ÞðD − 2Þl−2.

(ii) The Lifshitz black hole is obtained by setting β0 ¼ 1
and η ¼ 0. By the Kasner conditions (7), this forces
all the βis to zero.

(iii) The planar AdS naked singularity [22] is the case
z ¼ 1, and the exponents at the spatial coordinates
are equal such that

β0¼
νðD−2Þþ1

D−1
; β1¼���¼βD−2¼

1−ν

D−1
; ð8Þ

where the exponents are now parametrized by a
single quantity ν ≤ 1. The scalar field is then
reparametrized to

ψ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2Þð1 − ν2Þ

D − 1

r
ln f; ð9Þ

producing the solution the form given by the author
in a previous paper [23].

To explore the IR geometry near u ∼ u0, we let
u ¼ u0 − ū2. To leading order in ū, and upon rescaling t
and xi accordingly, the metric behaves like a radial, Ricci-
flat Kasner geometry

ds2IR ∼ −ū2β0dt2 þ dū2 þ
X
i

ū2βiðdxiÞ2: ð10Þ

We see that the Kasner singularity will be absent if any one
of the exponents are equal to 1, making all others go to
zero. In particular if β0 ¼ 1 and β1 ¼ � � � ¼ βD−2 ¼ 0, this
corresponds to the case of the Lifshitz black hole and
Eq. (10) for these parameters is simply its near-horizon
geometry. If one of the spatial exponents βk ¼ 1 for some k,
this corresponds to the Lifshitz soliton which we will study
in further detail in Sec. V, and Eq. (10) is then the metric
expanded near the pole around the symmetry axis. On the
other hand, the UV region is probed by u ∼ 0. In this region,
we have f ∼ 1 and the geometry is indeed that of Lifshitz,

ds2UV ∼ l2

�
−
dt2

u2z
þ du2

u2
þ
X
i

ðdxiÞ2
u2

�
: ð11Þ

III. THE NULL ENERGY CONDITION

The null energy condition (NEC) requires that
Rμνkμkν ≥ 0 for any null vector kμ. Here, we find it
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convenient to work in “domain-wall” coordinate
ρ ¼ − ln u, in which the Ricci tensor components are
calculated in the Appendix, where the function f in this
coordinate is

f¼ e−2G; G¼−
1

2
lnð1−ce−ðzþD−2ÞρÞ; c¼ u−ðzþD−2Þ

0 :

ð12Þ

By using kμkμ ¼ 0, we find that

Rμνkμkν ¼
X
i

ðEtt−EiiÞe2ρ−2βiGðkiÞ2þðEtt−EρρÞe2GðkρÞ2;

ð13Þ

where Ett, Eii, and Eρρ are as given in Eq. (A11) in the
Appendix. Therefore, for the NEC to be satisfied, we
require Ett − Eii ≥ 0 and Ett − Eρρ ≥ 0. We first look at the
former, namely

Ett − Eii ¼ ðz − 1ÞðzþD − 2Þ
X
i

e2ρ−2βiG ≥ 0; ð14Þ

leading to the usual constraint for the Lifshitz exponent
where z ≥ 1. The second inequality requires

Ett − Eρρ ¼ ðz − 1ÞðD − 1Þe−2G − 2ðz − 1Þð1 − β0ÞG0

þ KG02 ≥ 0; ð15Þ

where

K ¼ ðz − 1Þð1 − β0Þ2
D − 2

þ η2: ð16Þ

note that −K correspond to the second and third terms
in the right-hand side of Eq. (7b), which appears upon
invoking the Kasner conditions in the calculation of Rρρ.
This inequality will be satisfied if each of the terms in
Eq. (15) above are positive. The first term will be positive
by z ≥ 1 as required by Eq. (14), while the second term
requires β0 ≤ 1, since G0 is negative for c ≥ 0.
The last term of Eq. (15) is particularly interesting as it

hints to us of the possibility of having a phantom scalar
field that still satisfies the NEC. For this last term to be
positive, we require K ≥ 0, or

η2 ≥ −
ðz − 1Þð1 − β0Þ2

D − 2
; ð17Þ

which is immediately satisfied if η is real. However,
Eq. (17) becomes nontrivial if η is complex, or equivalently,
ψ is a phantom scalar. This is easy to see by an analytical
continuation on ψ ,

ψ → i ~ψ : ð18Þ

This gives us a phantom scalar, as the kinetic term
of the action (4) is changed to ð∇ψÞ2→−ð∇ ~ψÞ2. This
only modifies the Einstein equation by ∇μψ∇νψ →
−∇μ ~ψ∇ν ~ψ , with the Maxwell, dilaton, and scalar equations
remain unchanged. Therefore, Eq. (6) still solves the new
Einstein equation if η is replaced by

η → i~η; ð19Þ

for a new real parameter ~η. It follows that Eq. (17) is
modified to

~η2 ≤
ðz − 1Þð1 − β0Þ2

D − 2
: ð20Þ

Thus, a phantom scalar supporting the solution (6) can obey
the NEC as long as its strength does not exceed the limit
in (20).
One of the main implications of this is that if ~η saturates

this condition, then Eqs. (7) reduces back to the original
Kasner conditions where K ¼ 0 and

β0 þ
X
i

βi ¼ β20 þ
X
i

β2i ¼ 1: ð21Þ

This will be the key ingredient in constructing the Lifshitz
soliton in Sec. V below.

IV. GEODESICS

The geodesic structure of different special cases of the
solution (6) have been studied in various works. For
instance, geodesics of asymptotically Lifshitz space-
times have been studied by [32,33]. The D ¼ 3 case
in particular have been considered in [39,40]. In the
asymptotically AdS case, the effective potential of
particles in the AdS-Kasner spacetime was analyzed
in Ref. [18]. The trajectories of particles in the AdS
soliton were explicitly obtained in [41]. In this section,
we shall study the geodesic structure of the full solution
given by our metric (6).
A geodesic is described by a trajectory xμðτÞ, where

τ is an appropriate parametrization along the curve. The
Lagrangian for the geodesic motion is given by the
invariant L ¼ 1

2
gμν _xμ _xν ≡ ϵ

2
, where overdots denote deriv-

atives with respect to τ. The equations of motion is then
determined from the Euler-Lagrange equations d

dτ
dL
d_xμ ¼ dL

dxμ.
For the metric described by (6), the Lagrangian is

L ¼ 1

2

�
−
fβ0 _t2

u2z
þ _u2

u2f
þ 1

u2
X
i

fβið_xiÞ2
�

¼ ϵ

2
: ð22Þ
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By appropriately rescaling parameter τ, we may fix the
magnitude of ϵ to be unity if it is nonzero. Therefore we
have the following cases

ϵ ¼
8<
:

−1; timelike geodesics;

0; null=photon geodesics;

þ1; spacelike geodesics:

ð23Þ

In this paper, we will primarily focus on null and timelike
geodesics.
As t and xi are cyclic variables of the Lagrangian, we

have the first integrals

_t ¼ Eu2z

fβ0
; _xi ¼ Piu2

fβi
; ð24Þ

where E and Pi are constants of motion which may be
interpreted as the energy and momenta of the test particle.
Applying the Euler-Lagrange equation for u gives us a

second-order differential equation,

ü ¼
�
1

u
þ f0

2f

�
_u2 −

�
β0f0

2f
−
z
u

�
E2 þ

X
i

�
βif0

2f
−
1

u

�
P2
i :

ð25Þ

However, by the invariance of ϵ ¼ gμν _xμ _xν, we can obtain a
first-order equation for u, which is

_u2 ¼ u2zþ2f1−β0ðE2 − V2
effÞ; ð26Þ

where we have used (24) to eliminate _t and _xi in favor of the
constants, and V2

eff is the effective potential

V2
eff ¼

1

u2z−2
X
i

fβ0−βiP2
i −

ϵfβ0

u2z
: ð27Þ

By inspection of the effective potential, null geodesics
with Pi ≠ 0 and z > 1 encounter an infinite potential
barrier at u → 0. As pointed out in previous literature
[32,33], this is the consequence of the nonrelativistic nature
of the boundary, where the speed of light effectively
becomes infinite. On the other hand, if Pi ≠ 0 for some
i, the behavior of the first term of (27) depends on the
exponent β0 − βi. Since f goes to zero for u → u0, the term
either diverges for βi > β0, or vanishes for βi < β0.
Therefore, in the former case, null geodesics will encounter
another infinite barrier at u → u0, or in the latter case, the
potential drops to zero. In the critical case βi ¼ β0, the
potential simply tends to V2

eff → P2
i =u

2z−2
0 .

An interesting situation arises if we combine the con-
ditions for infinite barriers on both sides, namely

z > 1; βi > β0; Pi ≠ 0; ð28Þ

for some direction i. Then the geodesics will experience an
infinitely deep potential well, implying that photons will be
be trapped in a finite region of along the u-direction.
In the case of D ¼ 4, our coordinates are ðt; x1; x2; uÞ.

The plots of the potentials for null geodesics in this case
are shown in Fig. 1 with u0 ¼ 1, β2 ¼ 0, and β1 ¼ 1 − β0.
In particular, we can see the u ¼ 0 barriers whenever
z > 1 (Figs. 1b, 1e, and 1f), and the u ¼ u0 barriers for
β1 < β0 (Figs. 1d and 1f). The P1 ¼ 1 and P1 ¼ 2 curves
in Fig. 1f are plotted with parameters that satisfy Eq. (28),
therefore we have an infinite potential well with barriers
on both u ¼ 0 and u ¼ u0. Photons with energy E and
momentum Pið≠ 0 for some iÞ are in a bound state oscil-
lating within the range u− ≤ u ≤ uþ, where u� are roots
of the equation E2 ¼ V2

eff , corresponding to the turning
points _u ¼ 0.
For timelike geodesics with ϵ ¼ −1, the nonzero second

term in (27) implies that there will always be an infinite
barrier at u → 0 for any z ≥ 1, hence this includes the
well-known AdS case. Similar to the null case, if the
particle has a nonzero transverse momentum in spacetimes
with βi > β0 for some i, there will be an infinite barrier at
u → u0 as well. Hence, the condition

βi > β0; Pi ≠ 0 ð29Þ

for some i will also lead to timelike particles being
trapped in an infinite potential well. Similar to the
description for the trapped photons, timelike particles
with energy E and some nonzero Pi will also oscillate
between the turning points E2 ¼ V2

eff . In the AdS case
where z ¼ 1, the condition (29) contains the AdS soliton
case β1 ¼ 1, thus includes the results of [41] as a
special case.
The potentials for timelike particles in D ¼ 4 are shown

in Fig. 2 for u0 ¼ 1, β2 ¼ 0, and β1 ¼ 1 − β0. Here we can
see that there is always a potential barrier at u ¼ 0, while
another barrier develops at u ¼ u0 for β1 > β0. As depicted
by examples in Fig. 2(d) and 2(f), this corresponds to a
potential well with infinite barriers on both sides.

V. LIFSHITZ SOLITON

The authors of [24] have studied holographic super-
conductivity in the background of a Lifshitz soliton,
which they have constructed by performing a double-
Wick rotation on a Lifshitz black hole. Thus, this can be
considered an analogue to the AdS soliton where the
metric, in the notation of the present paper, is [24]

ds2 ¼ l2

�
1

u2

�
−dτ2 þ du2

f
þ dx⃗2ðD−3Þ

�
þ fdσ2

u2z

�
;

f ¼ 1 −
�
u
u0

�
D−1

; ð30Þ
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where we have denoted dx⃗2ðD−3Þ ¼
P

D−2
i¼2 ðdxiÞ2. By the

Wick rotation, we see that the coordinate that carries the
Lifshitz scaling has turned into a spatial one. The cost of this
procedure is that the u → 0 boundary of this metric is no
longer has the nonrelativistic property in the sense that the
Lorentz invariance between space and time being broken.

A. The solution and removal of its conical singularity

In this section, we will obtain another analogue to the
AdS soliton which still preserves the Lifshitz scaling in the
time coordinate. Instead of performing a double-Wick
rotation, the solution is extracted as a special case of (6)
where ψ is turned into a phantom scalar by η → i~η.

FIG. 1. Plots of V2
eff vs u forD ¼ 4 and u0 ¼ 1, for null geodesics with ϵ ¼ 0. From the Kasner condition, β2 is determined by the first

Kasner condition, β2 ¼ 1 − β0 − β1.
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An obvious way to obtain the Lifshitz soliton from (6) is
by setting β0, and all but one of the βi’s to zero. Let us
single out β1 to remain nonzero, and have

β0 ¼ β2 ¼ … ¼ βD−2 ¼ 0; β1 ¼ 1; x1 ≡ σ: ð31Þ

The first Kasner condition is trivially satisfied, while the
second one is, with η → i~η,

~η2 ¼ z − 1

D − 2
: ð32Þ

FIG. 2. Plots of V2
eff vs u for D ¼ 4 and u0 ¼ 1 for time-like geodesics with ϵ ¼ −1. From the Kasner condition, β2 is determined by

the first Kasner condition, β2 ¼ 1 − β0 − β1.
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This value of ~η just saturates Eq. (20) with β0 ¼ 0, thus
the NEC is not violated. Writing out the metric for this
solution, we have

ds2 ¼ l2

�
−
dt2

u2z
þ 1

u2

�
dx⃗2ðD−3Þ þ

du2

f
þ fdσ2

��
;

f ¼ 1 −
�
u
u0

�
zþD−2

: ð33Þ

Just like the soliton limit of the AdS-Kasner solution, the
metric at u ¼ u0 is no longer a curvature singularity, nor
it is an event horizon. It is simply a conical singularity
which can be removed by imposing a periodicity on
coordinate σ by

σ ∼ σ þ 2π

κ
; ð34Þ

where κ is given by

κ ¼ 1

2

���� dfdu
����
u¼u0

¼ zþD − 2

2u0
: ð35Þ

Therefore, the location u ¼ u0 may be interpreted as a
pole representing the tip of a cigar-shaped geometry.

B. Bound photon orbits

Since the parameters of the Lifshitz soliton satisfy the
condition (28), photons with nonzero transverse momen-
tum in this spacetime will be bound within an infinitely
deep potential well. Bound photon orbits within a potential
well are comparatively novel, as it is more common for
most (especially asymptotically flat) spacetimes to only
have unstable circular photon orbits. In this subsection,
we shall explore the nature of these trajectories in further
detail. For the specific parameters of the Lifshitz soliton
(β0 ¼ β2 ¼ … ¼ βD−2 ¼ 0), we reproduce the geodesic
equations here for convenient reference:

_t ¼ Eu2z; _σ ¼ Pu2

f
; _xj ¼ pju2; j ¼ 2;…; D − 2;

_u2 ¼ u2zþ2fðE2 − V2
effÞ;

V2
eff ¼

P2

u2zþ2f
þ 1

u2zþ2

X
j

p2
j −

ϵ

u2z
; ð36Þ

where we have let P1¼P, and Pj ¼ pj for j ¼ 2;…; D − 2

to distinguish the momenta in the compactified x1 ¼ σ
direction. As mentioned in the previous subsection, the
location u ¼ u0 is simply interpreted as the pole at the tip
of a cigar-shaped geometry. In light of this, the infinite
potential barrier at u ¼ u0 can now be interpreted as a
behavior analogous to ordinary Keplerian motion, where

particles with nonzero angular momentum are not able to
reach the symmetry axis of the gravitating source.
As we are particularly interested in bound null geodesics,

we shall set ϵ ¼ 0, and, for simplicity, also set pj ¼ 0. If
the photon has P ≠ 0, then it satisfies the condition (28). As
seen in Fig. 3, the shape of the potential well is typically
asymmetric, where the u ¼ u0 barrier rises more sharply
than the u ¼ 0 side. Photon of fixed energy Ewill be bound
within the range u− ≤ u ≤ uþ where u� are the turning
points in the u-motion. From (36), they can be obtained as
roots of the equation E2 ¼ V2

eff . This photon is able to come
very close the pole where it attains very high “angular
velocity” in the sense that j _σj ¼ jPu2=fj is large due to the
fact that f is small near the pole. At the same time, _u very
quickly transitions from its highest value near the potential
minimum to its turning point _u ¼ 0 where E2 ¼ V2

eff . So it
is quickly bounced back outwards by the barrier. The
potential has a minimum at

u ¼ uc ¼ exp

2
64ðzþD − 2Þ ln u0 þ ln

�
2ðz−1Þ
3zþD−4

	
zþD − 2

3
75; ð37Þ

for which dðV2
effÞ

du ¼ 0 at u ¼ uc. Therefore, photons with
energy E2 ¼ V2

effðucÞ are in a stable “circular” orbit at
constant u. The effective potential a photon with P ¼ 1 is
plotted in Fig. 3, where a particle of energy E2 ¼ 18 can be
seen to be bound between u− ≤ u ≤ uþ, along with the
location of the potential minimum uc.
The trajectories can be obtained by numerical integration

of (36) to obtain the trajectory uðτÞ and σðτÞ.4 An intuitive

FIG. 3. Effective potential of null (ϵ ¼ 0) geodesics in the
Lifshitz soliton spacetime with D ¼ 4, u0 ¼ 1. The momentum
of the trajectory is P1 ≡ P ¼ 1, and P2 ≡ p2 ¼ 0. The horizontal
line indicates the particle energy E2 ¼ 18. For these parameters,
u− ¼ 0.23607, uþ ¼ 0.98538, and uc ¼ 0.75984.

4In practice, we obtained uðτÞ by integrating the equivalent
equation (25) using the fourth-order Runge-Kutta method.
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visualization of the orbits can be presented using Cartesian-
like coordinates,

X ¼ 1

u
cosðκσÞ; Y ¼ 1

u
sinðκσÞ; ð38Þ

where κ given by Eq. (35). Some examples are plotted in
these coordinates in Fig. 4.
We find that these trapped photons can be classified

using a scheme developed by Levin and Perez-Giz [42].
This scheme is based on Poincaré’s paradigm where an
understanding of a dynamical system can structured around
its periodic orbits. Following the methods of [42], a
periodic null orbit can be found in our present system
by considering the ratio of the frequencies in the u and σ
directions. This can be obtained by integrating the quantity
du
dσ. Using Eq. (36), the integration results in

Δσ ¼
Z

Δσ

0

dσ ¼ 2

Z
uþ

u−

Pdu

uz−1f3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − V2

eff

p : ð39Þ

The periodicity can be quantified by a number q defined by

q ¼ κ

2π
Δσ: ð40Þ

Periodic orbits correspond to those where q is a rational
number. Furthermore, for these periodic orbits, we can
write q ¼ V

Z for two integers V and Z. To briefly review the
scheme of [42], Z is the number of leaves traced out by
the periodic orbit, and V is the order in which the leaves
are traced while completing the cycle. Unlike the
Schwarzschild and Kerr orbits, the photon trajectories in
the Lifshitz soliton spacetime does not “whirl” near the
uþ limit before going out towards u− again. So the whirl
number for these photons are zero. Examples of periodic

FIG. 4. Plots of various photon trajectories in Cartesian-like coordinates (38) in the D ¼ 4 Lifshitz soliton spacetime with u0 ¼ 1. All
the trajectories have momentum P ¼ 1, while the energies are E2 ¼ 2.59808 for the circular orbit [Fig. 4(a)], E2 ¼ 50 for the generic
orbit [Fig. 4(b)], E2 ¼ 17.601 for the q ¼ 4

5
orbit [Fig. 4(c)], and E2 ¼ 127.98 for the q ¼ 2

3
orbit [Fig. 4(d)].
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orbits for q ¼ 4
5
and q ¼ 2

3
are shown in Figs. 4(c), and 4(d),

respectively.

VI. PARAMETER SPACE FOR D= 4

Let us now consider the parameter ranges of the full
solution in further detail. As we have seen in the previous
sections, the parameters of the solution are constrained by
the field equations and the NEC, which result in Eqs. (7)
and (17), or (20) if the scalar field is phantom. We will also
find it convenient to combine Eqs. (17) and (20) into a
single inequality

ξ ≥ ξ�; ξ� ≡ −
ðz − 1Þð1 − β0Þ2

D − 2
; ð41Þ

where

ξ ¼


η2; if ξ ≥ 0;

ði~ηÞ2 ¼ −~η2; if ξ < 0.
ð42Þ

Therefore we can let ξ run from positive to negative and
its sign indicating whether the scalar is nonphantom or
otherwise.
A deeper grasp of the ranges can be obtained by

considering the concrete case of D ¼ 4. In this case we
have three exponents ðβ0; β1; β2Þ. We can let β0 and β1 be
free parameters and have the first Kasner condition (7a) fix
β2 ¼ 1 − β0 − β1. Combining the second Kasner condition
(7a) and our combined NEC inequality (41) gives

ξ − ξ� ¼ 1 − ½β20 þ β21 þ ð1 − β0 − β1Þ2� ≥ 0: ð43Þ

The range of ðβ0; β1Þ that satisfies this inequality is

1 − 2β0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β0 − 4β20

p
2

≤ β1 ≤
1 − 2β0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β0 − 4β20

p
2

; ð44aÞ

1 −
ffiffiffi
2

p

2
≤ β0 ≤

1þ ffiffiffi
2

p

2
: ð44bÞ

The allowed ranges of ðβ0; β1Þ is visualized in Fig. 5. In the
figure, the shaded regions correspond to the values of
ðβ0; β1Þ satisfying Eq. (44). Therefore the boundary of this
shaded region is where ξ ¼ ξ�. There are three special
points marking the values corresponding to metrics without
naked singularities. Namely, the square point (1,0) corre-
sponds to the Lifshitz black hole. (Or, if z ¼ 1, the AdS
black hole.) This point lies on the boundary curve because ξ
and ξ� are separately zero, corresponding to the trivial
saturation of (43). The two circular points correspond to the
regular Lifshitz (or AdS) solitons. The point (0,1) requires
x1 ¼ σ to be imposed with periodicity as shown in Eq. (34).

Thus x1 becomes orbits around the axis of the “cigar”
geometry. On the other hand, the point (0,0) implies β2 ¼ 1

instead. Therefore it is x2 that must be imposed with
the periodicity instead. Unless z ¼ 1, these two soliton
points require a nonzero ξ�, and hence it nontrivially
saturates ξ ≤ ξ�.
We can also see which parameter values require a

phantom scalar by checking if ξ is negative in Eq. (43).
In Fig. 6, we show an example for z ¼ 2 as plots of ξ
against β0 for various values of β1. The solid line in Fig. 6
correspond to the saturation ξ ¼ ξ�. Therefore, for a given
choice of β1 and z, the function ξðβ0Þ must lie above this
curve to satisfy the NEC. As in the previous figure, the
square and circular points mark the parameters for the black
hole and soliton, respectively. In particular, the β1 ¼ 0
curve intersects the ξ ¼ ξ� curve at a the black-hole and
soliton points, as the former has β0 ¼ 1, and the latter is at
β0 ¼ 0, thus implying the β2 ¼ 1 soliton represented by
(0,0) in Fig. 5. Thus, for β1 fixed at zero, varying β0

FIG. 5. Parameter ranges of the Kasner exponents ðβ0; β1Þ in
D ¼ 4. The shaded regions correspond to allowed values that
satisfy the NEC, and the boundary curve is where it NEC
inequality is saturated. The square point marks the value
β0 ¼ 1, corresponding to the (Lifshitz or AdS) black hole, and
the circular points mark the values for the (Lifshitz/AdS) soliton.

FIG. 6. Plot of ξ as a function of β0 for z ¼ 2 and various
choices of β1. The solid curve corresponds to the saturation
ξ ¼ ξ� and represents the lowest value of ξ that does not violate
the NEC.
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interpolates between the black hole and the soliton solution
without violating the NEC. (Recall that β2 accordingly
varies through the Kasner condition.) Furthermore, we see
that for β1 ¼ 0, the values of 1

5
≤ β0 ≤ 1 require ξ ≥ 0, thus

requiring a nonphantom scalar, while for 0 ≤ β0 <
1
5
a

phantom scalar with ξ < 0 is required to support this
metric. On the other hand, the β1 ¼ 1 curve is always less
than ξ�, except where it is equal to ξ� at the soliton
corresponding to the point (0,1) in Fig. 5.

VII. CONCLUSION

We have presented an exact solution in Einstein-
Maxwell-dilaton gravity corresponding to a spacetime
with a Kasner-type singularity with Lifshitz asymptotics.
This solution easily accommodates the addition of a new
massless scalar field. We can regard this as a generalization
of the AdS-Kasner solution [18] to include Lifshitz
asymptotics and contains various known solutions as
special cases.
This additional scalar field serves to modify the second

Kasner condition further. Analytical continuation of this
scalar essentially turns it onto a phantom scalar with an
opposite sign of the kinetic term. We have found that the
solution with a phantom scalar still satisfies the null energy
condition up to a certain limit of the field strength. Even
though the NEC is satisfied, there is the potentially
problematic issue in the quantum interpretation of the
phantom scalar; namely that the wrong-sign kinetic term
implies that the energy of the scalar is unbounded
from below.
We have also studied the geodesic structure of this

solution, where much of its qualitative aspects can be
gleaned from the effective potential. Timelike particles
encounter an infinite barrier at the boundary for any z,
including the AdS case z ¼ 1. This is a well-known
property where AdS acts as a confining potential for
massive particles. For z > 1, null geodesics with nonzero
transverse momentum also encounter an infinite barrier at
the boundary. This reflects the nonrelativistic nature of the
boundary where the speed of light is infinite. For space-
times with βi > β0 for some direction i, there is another
infinite barrier at u ¼ u0 for timelike and null particles.
This is reminiscent of geodesics in the Fisher/Janis-
Newman-Winicour spacetime where an infinite barrier
also appears to particles with nonzero angular momentum
if the scalar field supporting the solution is sufficiently
strong [43–46].
We have focused on geodesics in the Lifshitz soliton

spacetime, partly because this is an interesting case which
is free from curvature singularities, and thus seems more
physically relevant. Since it retains the asymptotically
Lifshitz property for u → 0, there is an infinite potential
barrier for photons there. The location u → u0 in the
Lifshitz soliton is no longer a curvature singularity, but

rather a conical singularity which can be removed by
imposing a periodicity on the coordinate x1 ¼ σ. Just as in
the AdS soliton solution, the location u ¼ u0 is now
interpreted as the pole representing the tip of a cigar-
shaped geometry. The interpretation potential barrier at
u ¼ u0 also becomes straightforward: It is the analogue to a
similar situation in ordinary Keplerian motion, where
particles with nonzero angular momentum are unable to
reach the symmetry axis of the gravitating source. Having
an effective potential with infinite barriers at both sides, we
explore the orbits of photon bound within this well. While a
full taxonomy classification of the orbits is not attempted
in this paper, we have demonstrated that periodic orbits
can analysed under the procedure developed by Levin and
Perez-Giz [42] for timelike particles around Kerr/
Schwarzschild black holes. One notable difference in our
case is that the photons do not tend to whirl near the
“center” of motion as relativistic timelike particles are wont
to do in Kerr/Schwarzschild geometry.
In this paper, we have treated the solution purely

within the context of D ¼ ðdþ 1Þ-dimensional Einstein-
Maxwell-dilaton classical gravity with an additional
massless, minimally-coupled scalar. As spacetimes with
Lifshitz asymptotics might be a useful tool to condensed
matter physics via the holographic correspondence, the
d-dimensional boundary dual quantities of this spacetime
might be of interest. Some of these quantities might
further constrain the parameters of the solution. For
instance, in the AdS-Kasner case, energy conditions
for the CFT dual stress tensor imposes an additional
constraint β0 > βi [18]. It might be worth checking
similar quantities for the solution (6) with Lifshitz
asymptotics, especially in light of subtleties involving
the boundary for these spacetimes [33].
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APPENDIX: DERIVATION OF THE SOLUTION

To derive the main solution presented in Sec. II, we
begin with a metric ansatz which contains (D − 1) orthogo-
nal Killing vectors. This is a special case of the class of
generalized Weyl metrics [47] and is written as

ds2 ¼ l2

 XD−2

a¼0

ϵae2UaðdxaÞ2 þ e2Gdρ2
!
; ðA1Þ

where we assume the functions U0;…; UD−2, and G
depend only on coordinate ρ. Here, ϵa ¼ �1 depending
on whether the Killing vector ∂a is timelike or spacelike.
Therefore, our natural convention for Lorentzian space-
times would be ϵ0 ¼ −1 and ϵi ¼ þ1 for i ¼ 1;…; D − 2.
The Ricci tensor components for this metric is given by
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Raa ¼ −ϵae2Ua−2G
�
U00

a þ U0
a

�XD−2

c¼0

U0
c −G0

��
;

a ¼ 0;…; D − 2; ðA2Þ

Rρρ ¼ −
XD−2

a¼0

ðU00
a þ U0

a
2 −G0U0

aÞ; ðA3Þ

where primes denote derivatives with respect to ρ.
In the following, we shall let x0 ¼ t, along with ϵ0 ¼ −1.

Our aim is to generalize the asymptotically AdS Kasner
singularity to include Lifshitz asymptotics. Therefore, a
natural choice which includes both metrics as special cases
would be

G ¼ −
1

2
lnð1 − ce−ðzþD−2ÞρÞ; U0 ¼ zρ − β0G;

Ui ¼ ρ − βiG; i ¼ 1;…; D − 2: ðA4Þ

We now seek the matter fields that supports a metric with
this choice (A4). We begin with the following ansatz for the
gauge field

A ¼ χdt; ðA5Þ

where χ is a function that depends only on ρ. If the scalar
fields φ and ψ take the form (also assuming they depend
only on ρ)

αφ ¼ ðD − 2Þρ − ð1 − β0ÞG; ψ ¼ ηG; ðA6Þ

for a constant η, the Maxwell and dilaton equations are
solved to give

χ ¼ le
zþD − 2

eðzþD−2Þρ;

ðzþD − 2ÞðD − 2Þ ¼ 2α2e2; ðA7Þ

where e is an integration constant. (We have neglected
the second integration constant which is a trivial additive
to χ.) With these results for φ and χ, the Einstein equations
reduce to

−Ett ¼
2Λl2 − 2ðD − 3Þe2

D − 2
; ðA8Þ

−Eii ¼
2Λl2 − 2ðD − 3Þe2

D − 2
; i ¼ 1;…; D − 2; ðA9Þ

−Eρρ ¼
2Λl2 − 2ðD − 3Þe2

D − 2
þ e−2Gðφ02 þ ψ 02Þ; ðA10Þ

where we have abbreviated

Ett ¼ e−2G
�
β0G00 þ ðz − β0G0Þ

�
zþD − 2

−
�
1þ β0 þ

X
i

βi

�
G0
��

; ðA11aÞ

Eii ¼ e−2G
�
βiG00 þ ð1 − βiG0Þ

�
zþD − 2

−
�
1þ β0 þ

X
i

βi

�
G0
��

; ðA11bÞ

Eρρ ¼ ½−β0G00 þ ðz − β0G0Þ2 −G0ðz − β0G0Þ�
þ
X
i

½−βiG00 þ ð1 − βiG0Þ2 −G0ð1 − βiG0Þ�:

ðA11cÞ

If the constants β0;…; βD−2 satisfies

β0 þ
XD−2

i¼1

βi ¼ 1; ðA12Þ

and G as given by (A4), Eqs. (A8) and (A9) will reduce to
equations identical to the equations of motion for the
Lifshitz black hole, namely

−zðzþD − 2Þ ¼ 2Λl2 − 2ðD − 3Þe2
D − 2

; ðA13Þ

−ðzþD − 2Þ ¼ 2Λl2 þ 2e2

D − 2
: ðA14Þ

These are easily solved to give

l2 ¼ −
ðzþD − 2ÞðzþD − 3Þ

2Λ
;

e ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðz − 1ÞðzþD − 2Þ

r
: ðA15Þ

If we further assume, for some constant K that

β20 þ
XD−2

i¼1

β2i ¼ 1 − K; ðA16Þ

and using (A12) and (A8) to eliminate
P

iβi, l, and e,
Eq. (A10) becomes

−e−2G½−G00 þ z2 þD − 2 − ð3zþD − 2ÞG0

þ 2G02 þ 2ð1 − β0Þðz − 1ÞG0 þ KG02�

¼ 2Λl2 − 2ðD − 3Þe2
D − 2

þ e−2Gðφ02 þ ψ 02Þ: ðA17Þ

Using (A6) and (A15), this equation reduces to
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�
K −

ðz − 1Þð1 − β0Þ2
D − 2

− η2
�
G02 ¼ 0: ðA18Þ

In choosing K so that this equation is satisfied, Eq. (A16) becomes

β20 þ
X
i

β2i ¼ 1 −
ðz − 1Þð1 − β0Þ2

D − 2
− η2: ðA19Þ

Our metric and fields are now completely determined. Collecting the results together, the solution is

ds2 ¼ l2

�
−e2zρ−2β0Gdt2 þ

XD−2

i¼1

e2ρ−2βiGðdxiÞ2 þ e2Gdρ2
�
;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðz − 1Þ

2ðzþD − 2Þ

s
eðzþD−2Þρdt; G ¼ −

1

2
lnð1 − ce−ðzþD−2ÞρÞ;

φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 1ÞðD − 2Þ

p
ρ − ð1 − β0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
z − 1

D − 2

r
G; ψ ¼ ηG;

l ¼ −
ðzþD − 2ÞðzþD − 3Þ

2Λ
; α ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

z − 1

r
;

β0 þ
XD−2

i¼1

βi ¼ 1; β20 þ
XD−2

i¼1

β2i ¼ 1 −
ðz − 1Þð1 − β0Þ2

D − 2
− η2: ðA20Þ

Upon transforming to Poincaré coordinates ρ ¼ − ln u and redefining c ¼ u−ðzþD−2Þ
0 , we obtain the metric in the form

written in (6).
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