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We derive expressions for the total Hamiltonian energy of gravitating systems in higher-dimensional
theories in terms of the Riemann tensor, allowing a cosmological constant A € R. Our analysis covers
asymptotically anti-de Sitter spacetimes, asymptotically flat spacetimes, as well as Kaluza-Klein
asymptotically flat spacetimes. We show that the Komar mass equals the Arnowitt-Deser-Misner
(ADM) mass in stationary asymptotically flat spacetimes in all dimensions, generalizing the four-
dimensional result of Beig, and that this is no longer true with Kaluza-Klein asymptotics. We show that the
Hamiltonian mass does not necessarily coincide with the ADM mass in Kaluza-Klein asymptotically flat
spacetimes, and that the Witten positivity argument provides a lower bound for the Hamiltonian mass—and
not for the ADM mass—in terms of the electric charge. We illustrate our results on the five-dimensional
Rasheed metrics, which we study in some detail, pointing out restrictions that arise from the requirement of

regularity, which have gone seemingly unnoticed so far in the literature.
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I. INTRODUCTION

A key notion in any physical theory is that of total energy,
momentum, and similar global charges. The corresponding
definitions, and their properties, depend very much upon the
asymptotic conditions satisfied by the fields. There are
various possibilities here, dictated by the physical problem
at hand. For instance, the vanishing and the sign of the
cosmological constant play a crucial role. Next, one may find
it convenient to use direct coordinate methods [1-3] or
conformal methods [4,5], or else [6], to define the asymptotic
conditions and the objects at hand. Finally, one may want to
use definitions arising from Hamiltonian techniques [7,8], or
appeal to the Noether theorem [9], or use ad hoc conserved
currents [10—14]. See also Ref. [15] for an excellent review of
early work on the subject.

A natural class of asymptotic conditions arises when
considering isolated systems in Kaluza-Klein-type theories;
see Sec. I below. Much to our surprise, no systematic study of
the notion of energy in this context appears to exist in the
literature, and one of the aims of this work is to fill this gap. For
this, we derive new expressions for the total Hamiltonian
energy in higher dimensions in terms of the Riemann tensor, in
asymptotically flat, asymptotically Kaluza-Klein (KK), or
asymptotically anti—de Sitter (AdS) spacetimes. Our defini-
tions arise from a Hamiltonian analysis of the fields and invoke
direct coordinate- or tetrad-based asymptotic conditions. We
relate these integrals to Komar-type integrals. We use Witten’s
argument to derive global inequalities between the
Hamiltonian energy-momentum and the Kaluza-Klein
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charges. We test our energy expressions on the Rasheed family
of five-dimensional vacuum metrics, clarifying furthermore
some aspects of the global structure of these solutions.

This paper is organized as follows. In Sec. II we make
precise our notion of Kaluza-Klein asymptotic flatness. At
the beginning of Sec. III we review the definition of energy
within the Hamiltonian framework of Refs. [16,17]. In
Sec. IIT A we apply the framework to spacetimes which are
asymptotically flat in a Kaluza-Klein sense. In Sec. III B we
derive general formulas which apply for a large class of
asymptotic conditions. In Sec. IV we show how to rewrite
the formulas derived so far in terms of the curvature tensor.
This is done in Sec. IVA for KK-asymptotically flat
solutions, and in Sec. IV B for general backgrounds. The
formulas are then specialized in Sec. IV B 1 to asymptoti-
cally anti—de Sitter solutions, and in Sec. [V B 2 to a class
of Kaluza-Klein solutions with vanishing cosmolo-
gical constant which are not KK-asymptotically flat. In
Sec. IV C we rewrite some of our Riemann-integral energy
expressions in terms of a space-and-time decomposition of
the metric. In Sec. V we show how to establish Komar-type
expressions for energy in spacetimes with Killing vectors.
In Sec. VI we show how a Witten-type positivity argument
applies to obtaining global inequalities for KK-asymptoti-
cally flat metrics. Appendix A is devoted to a study of the
geometry of Rasheed’s Kaluza-Klein black holes, which
provide a nontrivial family of examples for which our
energy expressions can be explicitly calculated.

II. KALUZA-KLEIN ASYMPTOTICS

The starting point for our notion of Kaluza-Klein
asymptotics is initial data surfaces in an (n+ K+ 1)-
dimensional spacetime containing asymptotic ends of the
form

© 2017 American Physical Society
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Sext = (R"™\B(0,R)) x §' x---x 8" = (R"\B(0,R)) x T*,

K factors

(2.1)

where S' is the unit circle. We will say that the metric is
KK-asymptotically flat if g has the following asymptotic
form along S = {x° = 0}:

Napdx*dx? + Sppdxdx® + o(r=?),
::nu:(zd‘dx"

—a-ly, (2.2)

9

aﬂgl//) = O(r
where Greek indices run from O to n + K, uppercase Latin
indices from the beginning of the alphabet run from n + 1
to n + K, lowercase Latin indices from the beginning of
alphabet run from O to n, and lowercase Latin indices from
the middle of alphabet run from 1 to n. Finally, uppercase
latin indices from the middle of the alphabet run from 1 to
n + K. Summarizing:

(x) = (X0, x, x4) = (x4, x) = (1%, x).  (2.3)

Last but not least,

ri= \/()cl)2 4o (x7)%

The exponent a will be chosen to be the optimal one for the
purpose of a well-posed definition of the total energy,
namely,

(2.4)

where, as in Eq. (2.1), n is the space dimension without
counting the Kaluza-Klein directions.

In Kaluza-Klein theories it is often assumed that the
vector fields 0, are Killing vectors, but we will not make
this assumption unless explicitly indicated otherwise.

ITII. HAMILTONIAN CHARGES

In this section we adapt the Hamiltonian analysis of
Ref. [17] (based on Ref. [16], cf. Ref. [18]) to the asymp-
totically KK setting, which also provides convenient alter-
native expressions for the formulas for the Hamiltonians
derived there. We use a background metric g,,, which is
assumed to be asymptotically KK as defined in Sec. II, to
determine the asymptotic conditions. The metric g,,, should
be thought of as being the metric 7,, of Sec. II at large
distances, but it might be convenient in some situations to use
coordinate systems where g,, does not take an explicitly
flat form.

Every such metric g, determines a family of metrics g,
which asymptote to it in the sense of Eq. (2.2). We will
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denote by l_“"‘ﬂy the Christoffel symbols of the Levi-Civita
connection of g, .

Given a vector field X, the calculations in Ref. [17]
showed that the flow of X in the spacetime obtained by
evolving the initial data on S is Hamiltonian with respect to
a suitable symplectic structure, with a Hamiltonian H(X, S)
which, in vacuum, is given by the formula

HXS) = [ (e - XL)E, (1)
S

where

L= g;w |:(Fa0'/4 - Faay)(roab - Fgau)

- (Fa - Fayu)<r6aa - Fgaa) + R

nv

2
u m Ag,w]

2

1 _
—— J/Zaetgg* (R, - —=—Ag, ).
167 vV 99 < wTArK g””)

(3.2)

with Ruv being the Ricci tensor of the background metric
Juw» A the cosmological constant, d the dimension of the
physical spacetime, K the number of Kaluza-Klein dimen-
sions (possibly zero), and

1
Y —— \/— det gg"v
g 167 t9g
OL
39”",/1

— (T = 8,T%,) — (T = 5,T75,).

W o (u (3:3)

A
P =

Finally, the volume forms dZ, and dX,; are defined as

ATy =0, (dxX° A--- Ndx"K),  dS,;=04]d%,, (3.4)
where | denotes the contraction: for any vector field X and
skew-form a we have X|a(-,...) = a(X,...).

We note that the last two, g-independent “renormaliza-
tion” terms in Eq. (3.2) have been added for convergence of
the integrals at hand.

We will write det g = det(g,,) for the determinant of the
full metric tensor, and explicitly write det(g;;) for the
determinant of the metric g;;dx'dx’ induced on the level
sets of x°, etc., when the need arises.

We emphasize that the formal considerations in
Ref. [17] were quite general, and they apply regardless
of the asymptotic conditions and of dimensions. However,
the question of the convergence and well posedness of the
resulting formulas appears to require a case-by-case analy-
sis, once a set of asymptotic conditions has been imposed.

If X is a Killing vector field of g, and if the Einstein
equations with sources and with a cosmological constant A
are satisfied,
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1
R, —=Rg,, + Ag;w = 877.'TW,

. (3.5)

the integrand (3.1) can be rewritten as the divergence of a
“Freud-type superpotential,” up to source and renormali-
zation terms:

H”Ep/;ﬂﬁxga/j—

1
= 0,0 — /= det g, X" + -/~ det "
JT

X*L

_ 2
R —A 3.6
X < af— d+ K ga/i) ( )

with
U = U,xF — ; et glg¥5)V, (3.7)
2|detg =
= #gﬂyvx(ezgmg”“), (3.8)
| det g]

where V denotes the covariant derivative of the background
metric g,, and

(3.9)
In vacuum this leads to the formula

1
H(X,S) = Hy(X,S) = / (U —U),_)dS,,. (3.10)

where the subscript “b” on H, stands for “boundary.” For
vector fields X which are not necessarily Killing vector fields
of the background, the Hamiltonian might have some
supplementary volume terms, cf. Refs. [18,19]. In non-
vacuum Lagrangian diffeomorphism-invariant field theories,
this formula for the total Hamiltonian of the coupled system
of fields remains true after adding to H* a contribution from
the matter fields; cf., e.g., Refs. [16,19,20].

[UIM — [leﬂxﬂ
1

=~z (10 ) g+ o(r

NXP (71N = 01 00) 9° o+ G 1™ = g ™+ 17 g™ —
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A. Kaluza-Klein asymptotics

For Kaluza-Klein asymptotically flat field configurations
we have

DpGu = 0(r™71),
809}40 = O(F_a_l)'

9w = Nw + o(r—a)7

g/w :”ﬂu+0(r_a)v (311)

In particular, this implies

[y, =o(r).

First, let us assume that X is g-covariantly constant (and
hence also a Killing vector of the background metric g,,).
One then checks that in the coordinates of Eq. (3.11) the

vector field X has to be of the form

o(r %),

As A =0 in the current case, the convergence of the
boundary integrals in vacuum will be guaranteed if one
assumes, e.g.,

Xr =XV + 9,Xt =0.  (3.12)

/ 10, 905d" K x < 0. (3.13)
SN{r=R}

This follows immediately from Stokes’ theorem together
with Egs. (3.1)—(3.3) and (3.6), keeping in mind that A =
0 =R,, in the current context.

We note that Eq. (3.13) will hold if Eq. (2.4) is replaced
by a > (n—2)/2, which provides a sufficient but not a
necessary condition.

While we are mostly interested in vacuum solutions, the
analysis below applies to nonvacuum ones, provided that
one also has

=o(r™) and %:/S

Equations (3.13)—(3.14) will be assumed in the calculations
that follow.

Since the last term in Eq. (3.7) drops out when
VX, = 0, we obtain

uap

|T pld" ¥ x < o0.
N{r>R}

(3.14)

g o+ o(r 2]

1
= [(’Y/IKXD ’7DKX/1)’1,)(;9/)6,K + nDKn/)’ng.kXﬂ - nﬂK”/iygyy.KXﬁ + gyK,K}(/1 - gAK,KXD] + O(r—Za—l )

T

1
= 1, X (8358 — 510550 + 51548, — 51,5, + 5158 — 61643) + 0 (r7")

167

3 ) e
:gnéknﬁygyr X§5:5? ( 2a 1)'

(3.15)
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Plugging the result into Eq. (3.7) and renaming indices, in
the limit r — oo, we obtain the following form of
Eq. (3.10), which will be seen to be convenient in our
further considerations:

Hy(X, S) = —— lim

P y)
167 R Js gyt S XV 11,50, 97 dS g5,

(3.16)

where S(R) denotes a sphere of radius R in the R” factor of
Sexts and

S = 55,88

(3.17)
We see from Eq. (3.12) that H, (X, S) can be written as

Hy(X.S) = p,Xb. (3.18)
When K = 0, the coefficients p, are called the Arnowitt-
Deser-Misner (ADM) four-momentum of S [1].

If X = 0, we find a formula somewhat resembling the

usual one:

Po = Hb(a,,S)
1 n+K xi .
= 1' a L a —d”+ —
16;zR1_EI30/S<R) AK;( 19i1 ,QII)R H
= |—|]—K|p0,ADM
n+K 4
+Elgl—{§o/ [T Z (Oagia — i gAA) dm k=l

A=n+1

(3.19)

Here d""X=!4 is the measure induced on S(R) x TX by the
flat metric, | TX| denotes the volume of TX, and py apy is
the usual (total) ADM energy of the physical-space metric
gijdx'dx/. Perhaps not unexpectedly, the ADM energy
Do.apm does not coincide with the Hamiltonian generating
time translations in general.

Next, when X = 0, after using Stokes’ theorem in the
integral

/ 81(9105% - gLO(s{)aLJ (dxl ATRRA deﬂ) =0,
S(R)xTK
(3.20)

we obtain the formula

— lim P X dn+K 1
871'R R—co T«

Pr = Hb(al’

(3.21)
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Here, P;; is the usual canonical ADM momentum
Py = g"Mkmg — ki,

- 0190s +o(r—271),

1 1
J = EETg[J = E (00911 - 81901)

(3.22)

while £ denotes the Lie derivative in the direction of the
unit-timelike future-directed field 7" of normals to the level
sets of x.

As an example, we compute the above integrals for the
Rasheed metrics, described in Appendix A, with P = 0:

po = 27M, pa = 270.

pi =0, (3.23)
Equation (3.23) includes a 2z factor arising from a
normalization in which the Kaluza-Klein coordinate x*
in the Rasheed solutions runs over a circle of length 2z.

This should be compared with the ADM four-momen-
tum p, apm Of the n-dimensional space metric g,;dx'dx/,

which reads

>
Poapm = M — 7§ PiADM = 0. (3-24)

B. General backgrounds

As discussed in detail in Appendix A 3, the Rasheed
solutions with P # 0 are not KK-asymptotically flat in the
sense set forth above. To cover this case we need to
generalize the calculations so far to the case where the
background metric is not flat, with an asymptotic region
Sext C S diffeomorphic to
Sext ¥ E(Ry), where E(R) == (R"\B(R)) x KN/,  (3.25)
with some K-dimensional compact manifold XV, for some
Ry > 0. We therefore have an associated global coordinate
system x' on R"\B(R,), as well as the dilation vector
field Z = x'0; = r0, which will play a key role in some
calculations below.

Somewhat more generally, in order to be able to
include  general  “Birmingham-Kottler-Schwarzschild
anti-de Sitter” metrics, we will consider ends E(R)
equipped with a radial function r so that

Sed ¥ E(Ry). with E(R):={r>R}=[R ) xK,

(3.26)

where IC is a compact manifold. Here r is a coordinate
running along the [R, o) factor of S, and the dilation
vector Z is defined as Z := r0,.

For the wusual (n + 1)-dimensional Schwarzschild—
anti de Sitter metric the manifold /C will be an (n — 1)-
dimensional sphere, but it can be an arbitrary compact
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manifold admitting Einstein metrics in the case of metrics
(B1)—(B3) below.

Along S, we are given two Lorentzian metrics ¢ and g,
with g asymptotic to the background g in a sense which we
make precise now. Denoting by V the Levi-Civita con-
nection associated with g, we assume the existence of a g-
orthonormal frame {e;} defined along S such that
(decorating frame indices with hats)

>
ii

™

5) = Gap +o(r ),

g e;
p. (3.27)

= g(2;,
V; 95 0

(r

=

It seems that the specific values of @ and f as needed for our
mass formulas can only be chosen after a case-by-case study
of the background metric g; cf. Egs. (3.31)—(3.32) below.
In what follows we will use the following convention:
given two tensor fields u# and v, we will write
u=uv+o(re (3.28)

if the frame components of u — v, within the class of g-ON
frames chosen, decay as o(r~*). If &; is orthogonal to Sy,

(which will often be assumed) then, if we denote by
|
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Js = g;ydx'dx’ the Riemannian metric induced by g on
Sext> and by | - |5 the associated norm, we have, e.g.,

=o(r ) e |ugs| + |u0,dx1|gs + |u”dx1dxj|f =o(r ).

Assuming again that X is g-covariantly constant, the
second term of Eq. (3.7) vanishes and for the first term we
have the same expression as in the KK-asymptotically flat
case, with the difference that instead of 17, we have g, and
instead of partial derivatives we have covariant derivatives

of the background metric, i.e.,

[Ul//l — [Ul/}ugxf
3 _ = o
~ (ot X T+ o(X1) ) [t
(3.29)
where
|X|2 — Z(Xﬁ)Q' (3.30)

u

In order to control the error terms appearing in Eq. (3.29)
we will assume that

a and f are such that the subleading terms o(|X|r~*7) in Eq. (IIL.29) give

a vanishing contribution to the boundary integrals after passing to the limit.

This will be the case, e.g., for all Rasheed metrics when
a=(n—-2)/2 as in Eq. 2.4), f = a+ 1, with X asymp-
totic to J, in coordinates as in Eq. (A33).

Similarly, Eq. (3.31) will be satisfied for asymptotically
anti—de Sitter metrics with

a=p=n/2, (3.32)
where r is the area coordinate for the anti—de Sitter metric.

Note that in this case we have |X| = O(r).
Instead of Eq. (3.16) we now obtain

Hy(X, S) = —— lim

aﬂ}’ v
XV g HdS 5,
T . 77555V 9" dSup

(3.33)

where the two-forms dS,; in d + K=n+ 1+ K space-
time dimensions take the form

1
B = meaﬂ51~‘f"+l(—ldx§1 A s A dxtnsa
= 04]04] /| detgldx® A -+ A dx"K, (3.34)
=:d/'4_q

(3.31)

We can now compute the Hamiltonian charges for this
general case. We have

Py gl/}/xbgipgyavpggﬂ dSa/J’

161
= —— (88 + 518, + 87 8L X 7 ds,
167 (/1# + 124 + vA ) gJ’G /’gd ap
=i (X"55,,V ,g7"dS;, + X'V ,g?*dS,,
+ X*5%9,,V,9°7dS,;). (3.35)

To continue, it is best to use a g-orthonormal frame é;
with &; orthogonal to S and e; tangent to OE(R). Then
only the forms dS: give a nonvanishing contribution to the
boundary integral. In the calculations that follow we will
write “n.c.” for the sum of those terms which do not
contribute to the integral either because of the integration
domain, or by Stokes’ theorem, or by passage to the limit.

If X = 0y, and assuming that

8y = X, (3.36)

one finds, using frame indices throughout the calculation,
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3 . L=
Wéjfz//xygipgy(fv/)gaﬂdsaﬂ
3 aArssa = .
= 8—X05;?%9'1p9]ﬁvﬁ9””d5612
1 .
_Fxo[vk(gng ) Vig'*ldog +n.c.. (3.37)
where
dd; = dS();
=¢;leq) (/| detgldx® A - A dx"TK)
=& (\/|detgyldxt Ao Adx"K) +ne. (3.38)

Hence, we obtain the following generalization of the ADM
energy:

=—lim X()Wi(gmgm) - ngji}d" (3.39)

The existence of the limit in Eq. (3.39) will be guaranteed
if, instead of Egs. (3.13)—(3.14), one now assumes, e.g.,

X V.42 . U)
/ o |<Z s (=T

pap a/)’
(3.40)

a [)’

X dpg, < o0,

where dug, is the (n + K)-dimensional Riemannian mea-
sure induced on S by g. A condition on the metric and the
energy-momentum tensor of matter fields naturally asso-
ciated with Eq. (3.40) is

(U - U]

| —

PHYSICAL REVIEW D 96, 124002 (2017)
gijfgolxl\aE(RﬂTﬁa =0,

1im [X][0E(R)||All¢" (9, — 5,0)| = 0. (3.41)
where |OE(R)| denotes the area of OE(R); cf. Eq. (3.14).
This will be assumed whenever relevant.

As an example, we consider the Rasheed metrics of
Appendix A with P # 0, which are vacuum. The g-Killing
vector X = 0, is g-covariantly constant so that Eq. (3.39)
applies. The asymptotic behavior of the metric coefficients
in the frame (A39) coincides with the asymptotic behavior
of the metric coefficients in manifestly asymptotically
Minkowskian coordinates we have seen in the case
P =0, and is given by Eq. (A33). One obtains

po = 4nPM, (3.42)

where the extra factor 4P, as compared to Eq. (3.23), is due
to the 8P periodicity of the coordinate x* [cf. Eq. (A37)],
as enforced by the requirement of the smoothness of the
metric. Note that the formulas (3.24) for the ADM four-
momentum remain unchanged.

We emphasize that the calculations above are done at
fixed P, since every P defines its own class of asymptotic
backgrounds. As a result, the phase space of all configu-
rations considered above splits into sectors parametrized by
P. It would be interesting to investigate the question of the
existence of a Hamiltonian in a phase space where P is
allowed to vary. We leave this question to future work.

If X is not g-covariantly constant, the second term of
Eq. (3.7) does not vanish. Thus, disregarding those terms
which do not involve the forms d%;, we obtain (keeping in
mind that X is a Killing vector field of g)

1 1 -

- —5;'f§XVgiﬂgy,, Sy ——— (\/ [detg|ge — \/[det §|gﬂ[“) Y, XPdS,; + n.c.

38,7 X 55,5V ,g* — (g"[o — 'OV, X1)Ndo; +n.c.

8( Ay

Here we have used dS;, = Ndo;, where N is the
lapse function of the foliation by the level sets of f,
defined by writing the metric as ¢g= —N’df* +
g17(dx! + N'dr)(dx’ + N’dr). We conclude that

.
Hy(X.5) :g,%l_{& IE(R)

— (gﬂ[o — e_lg/‘[o)

(352/?;)(”.@@.@;/6?/)96”

V, X1)Ndo;. (3.43)

We can apply the last formula to the background Killing
vectors 0; and 0O for Rasheed metrics with P # 0.
A calculation gives

pi =0, psy = 4zPQ. (3.44)
Here one can note that 0, is g-covariantly constant so that
the last term in Eq. (3.43) certainly does not contribute,

while p, = p, =0 follows from the axisymmetry of the

Rasheed metrics. [In fact, VX = O(r~2) or better for these
Killing vectors so that the last term never contributes in the
current case.]

Equation (3.43) applies for completely general background
metrics g, assuming that Egs. (3.40) and (3.31) hold, for a large
class of field equations. In particular, it applies to asymptoti-
cally Kottler (“anti—de Sitter”’) metrics, cf. Refs. [19,21-23].
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IV. ENERGY-MOMENTUM AND THE
CURVATURE TENSOR

For our further purposes it is convenient to rewrite
Eq. (3.10) in terms of the Christoffel symbols. As a first
step towards this we note the following consequence of
Eq. (3.34):

1 1
p
leds g ’ (I’l + K- 2) ! Copvey &k

/\dx§| A e

dx’

A dxniir, (4.1)

A. KK-asymptotic flatness

We assume again that X is g-covariantly constant; of

course, it would suffice to assume that VX falls off fast
enough to provide a vanishing contribution to the integral
defining the Hamiltonian in the limit.

In the KK-asymptotically flat case, Eq. (3.16) can be
rewritten as

(_1)n+K—1
—————— lim
167‘[(1’1 =+ K — 2) | R>0 A(R)x'[l’” 61//”’51 Entk—2
x XVgPTH, dx5 A -

PuXso =

A dxfrs2 A dx?. (4.2)

In the standard asymptotically flat case, without Kaluza-
Klein directions, Eq. (4.2) can be used to obtain an
expression for the ADM energy-momentum in terms of
the Riemann tensor, generalizing a similar formula derived
by Ashtekar and Hansen in spacetime dimension four [5]
(cf. Refs. [4,24]), as follows. We can write

Expwey oty L X GPTHpdXE1 A o A dxo2 A dx!
= d(€e,..e XX GPTH, dX2 A - A dx2 A dxY)
— ()" epue, e, X g xS dXR A -
A (0,Typpdx® A dx?) +n.c.

A dxr=
(4.3)

=%R“ poydx® Ndx"
J

e 2nglborﬂ pdxrfl/\...
(d+ K -3)!
—Wemm, Lag_3A .. Ag
. (d+ K —3)!
(d—-2){(N-1)!
_(d+K-3)
~ (d-3)N!
_(d+K—3)!
(d—3)IN!
(d+K-3)!
(d=2)(N-1)!
(d+ K —3)!
_—(d—z)!(N—1)!61””“"““‘

Eope, ..

€bcfay...azsA;.. AKXf

+

ngbercaedxal A
P M a

| l;wal AgrAy. Ak 1X gA F dx N

b

(€bcfa1...ad,3A1...AKan ercae

be aldrc
A

d(elﬂual.‘.ad_zA]...AK_]X”ﬂ pF”Aanldxaz VANER

VpAp -a
d ZAI--~AK—IX n’x ldFﬂA/I A
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Inserting this into Eq. (4.2) and applying Stokes’ theorem,
one obtains

1
w oL : ”
P = 32zn(n — 'R—m/ €1e, by rip X X I RA

X dx& A - A dxér A dx® A dx?

_leiz . »5”_257;”‘ s

1
=—— lim X*x'R,,,,dS", 4.4
16(n—2)x R1—>oo/ ¥ Rwpo (4.4)

which is the desired new formula.

Let us now pass to a derivation of a version of Eq. (4.4)
relevant for Kaluza-Klein asymptotically flat spacetimes. In
this case we will be integrating the integrand of Eq. (4.2)
over

Sl x TK = §9-2 x TX,
So only those forms in the sum which contain a dx? A
- A dx? =1 factor will survive integration. We will use
the following symbols:
(1) R%,s denotes the Riemann tensor of the (d + K)-
dimensional metric g, dx"dx".

(2) R%,.; denotes the Riemann tensor of the d-
dimensional metric g,,dx“dx".

(3) R!,k. denotes the Riemann tensor of the (n + K)-
dimensional metric g;;dx!dx’.

4) R"jkf denotes the Riemann tensor of the n-
dimensional metric g;;dx'dx’.

No distinction between g,,dxdx” and g,,dx"dx"
will be made when K = 0. Keeping in mind that n.c.
denotes the sum of those terms which do not contribute
to the integral either because of the integration domain,
or by Stokes’ theorem, or by passage to the limit,
we find

A dxbark=3 A dx?

A dxAc A dx®

A dxer A dxA
xUdx® A A dxA dx?)
- A dxAx A dx®

A dx k-1 A dx?)

<A dxAt A dx® +n.c.
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= %ehdalmad3A].__AKXfx”1Rh"adla“dx“d1 Adx® A - A dxA% A dx%a-2
+%qﬂmlmammmhIX”x"lR’lﬂadlAdx“dl Adx® Ao AdxA A dxd +ne. (4.5)
Using
Chuvar..ap A, . A XA dx®? Ao A dxAer A dx =3(N —1)1(=1)4HE! /1;’,/” abay...ay,dX4T A dX2 N -
A dx®2 A dxTUA oA dxdTK
after some reordering of indices one obtains
pﬂX’éo 232(;)" lim / / xM[(n— 1)ealaz,..an_zach“Rb"an_]an
a(n—1)1R=c Jgpg) Jyx
—€aayaap(AXRPA, L +2XARD, ]dx®2 A Adx Adx®TA - AdxITK (4.6)
(*)
Using
dx® A - Adx A dxBUA A dxdTK = —%e“z"'“"edeef (4.7)
and
R, =R — R,
one obtains for the first term of the Hamiltonian integral [where in the fourth line below we use Eq. (C3)]
Cayara, rabe X X R, dx® Ao A dx A dxTE A A dxTE
= —%€a,az»--un,zub&“”'“"efX“'XaRbcan,lunngf
- %(—1)"-1 (n—3)1415 il xn xaRbe,  dS,
=2(=1)""(n = 3) " X (R, + 65 R, — 45 RIS,
— 2(=1)"1 (0 = )X [RY  , + 55/u(RY, — RA,) — 4(51 RV, — 6 RIA, ]S, . (4.8)

Now, recall that finiteness of the total energy of matter
fields together with the dominant energy condition
requires, essentially, that

T, =

o(r ™), (4.9)
cf. Eq. (3.14). This, together with the Einstein equations,
implies that the Ricci-tensor contribution to the integrals

2)!5ﬂnefxa| (2xaRbA
2) x4 (86 8] + 8 S0

6(=1)"(n -

2(=1)"(n -

2(=1)"(n -
(

+ XA X anRe]fa"A _l_ x[eRf]ana"A _l_ x[fRan]e

|
will vanish in the limit R — oo. Nevertheless, we will keep
the Ricci tensor terms for future reference.

Using

1
~€arapa, ab€2 e dS,p = 3(—

a,ef
_2 )'6 dSefa

ajab

1)"(n -

the terms involving (%) in Eq. (4.6) can be manipulated as

+XAR“”anA)dSef
+ 841165) (2X R,
2)![2(xlm xIRSA A+x[eXf]R“n

4 XARabanA
A + _x[fXan]ReAa"A)
a,,A)}dSef'

)dS,
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Renaming the indices, rearranging terms, and plugging the results into the integral, one obtains our final expression

PuXbo =

_2n—2

n—

16(n — 2)m R—co

- 327r R—»oo/ AK{ ~2xPX[RY y, + 85 (RS, = R ) — 4(55;Rf]a] - 5{ZRﬂAa]A)]

: 2(2xPXIRA, ) + xXTRP ) + 3XAx RSP 4]} dS ¢

1
:—hm / / (X“ R, + 4xleXIRS, — xX/RE,
TK

1
n—1

Some special cases are of interest:
(1) Suppose that X* = §j; thus, X has only a time
component. At x = 0 we have

1
Poz

X hm/ / [xJROJO’—l— x'(R/; —R%)
R—o0 TK

1
—.XJRI 71—1(2 IROAO —X]R >:|dS0i,
(4.11)

where the terms involving the Ricci tensor give a
vanishing contribution in view of Eq. (4.9) [and
similarly for Eq. (4.12) below].

(2) Suppose that XA = 0; thus, X has only spacetime
components. Then

1
Xl =
Pate =16(n-2)x
x lim / / <X“x”Ra;,ef + 4xleX9IRS,
R—o00 S(R) TK
. 1 :
—xX/R. —— 0 [(n=3)x*X/R,,

+ dxle xel RanA]> dS,;. (4.12)

We will see below that the first term on the right-
hand side is related to the Komar integral. It is not
clear whether or not the remaining terms vanish in
general. However, when X = 0, at t = 0 the third
term in the integrand gives a vanishing contribution,
so that the generators of space translations read

Xl = Xix kR 0j
Pif o n—2)77,'R—>oo/ [TK[ ik

. 2
+ 2xli xJ] <n—1 R, + R°,~> } dSy,.

(4.13)

[(n = 3)x¢X/RP,, + dxleXIR/A , +3(n - 2)XAxebebA]> dS,;.

(4.10)

We also note that when K = 1 the contribution of the

fourth term in the integrand in Eq. (4.12) always

vanishes because then, denoting by x* the Kaluza-

Klein coordinate,
R, =R, =RM 4, =RY = o(r™),
which gives a zero contribution in the limit.

(iii) Suppose instead that X¢ = 0; thus, X has only
components tangential to the Kaluza-Klein fibers.
Then, again at x° = 0,

A _ AxeR ,, fb
PaXe 16 n—l]z’R—>oo/ AKX Rp""dS,s

— XAyiR, 984
16 n—ln’R—»oo/ [T’( AB SO!’

(4.14)

where the decay o(r™) of the Ricci tensor of the
(n + K + 1)-dimensional metric has been used.

B. General case

For general background metrics, still assuming a
covariantly-constant g-Killing vector, we start by rewriting
Eq. (3.33) as

( 1 n+K-1
(X S) 1671'(]1 + K — 'R—>oo [)E Copvey &k
X ngipépt x§' A A dx§1r+l(—2 A dx?,
(4.15)
where
F6a/}y = Fa/}y — l:‘a/}y — o(r_/’), (4.16)

with the last equality following from Eq. (3.27).

In order to obtain a version of Eq. (4.3) suitable to the
current setting. we will assume that there exists a vector
field Z with Z4 = 0 and a real number y > 0 such that
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V,Zb =8+ 0(r7) mod (8,.8,). (4.17)

Here we write “mod (6}, 8},)” for a tensor which has the

form 5;&.“ + 0,p... for some tensor fields a and p. That is
to say, if X is a vector field tangent to the submanifolds
of constant #, r, and if “u, =0 mod (5,,6,),” then
Xtu, =0.

We show in Appendix B that the vector field defined in
appropriate coordinates as

Z = ro, (4.18)

terms o(|X|r=*7F),

to boundary integrals at fixed rand ¢, after passing to the limitr — co.

PHYSICAL REVIEW D 96, 124002 (2017)

satisfies Eq. (4.17) for a) asymptotically anti—de Sitter
metrics and b) general Rasheed metrics, in both cases
without the error term O(r77); equivalently, the exponent y
can be taken as large as desired. We have introduced the
O(r77) term for possible future generalizations.
We further assume that

V. X" = 0(|X|r?) mod (8,.8,).  (4.19)
which will certainly be the case if X is g-covariantly
constant. Last but not least, we replace Eq. (3.31) by the
requirement that

o(|Z]|X|r=?#),and o (]X|r=7) give a vanishing contribution

(4.20)

Now, the identity that we are about to derive will be integrated on submanifolds of fixed r and ¢, so that any forms
containing a factor dr or dt will give zero integral. Assuming that there are no Kaluza-Klein directions (K = 0), we find

d(e,lm,g]_..5’172X”Z‘31g’1ﬂ51“”7,,dx52 VAN

n.c.

+ €, e, X GPOTH, NV ZEdx A dx® A -
dx¥1+4n.c.
(1) g g, XU GPZAdRE N -

= €, zxvgﬂ/)grﬂmdx-fl A -

+ (=1

This identity replaces Eq. (4.3) in the current setting. One
can now repeat the remaining calculations of Sec. IV A by
replacing every occurrence of the Christoffel symbols by
the difference of those of ¢ and g, every occurrence of the
Riemann tensor by the difference of the Riemann tensors of
g and g, and every occurrence of an undifferentiated x* by
Z*. Some care must be taken when generalizing Eq. (4.10)
when passing from the background Riemann tensor to the
background Ricci tensor, because in Eq. (C1) all indices
are lowered and raised with g. Thus, Eq. (C1) is now
replaced by

3167 (RY = R¥ 0 )7
(Ra/)’ _ R[a e g/)']p R R igp/l) (1/’
— 48R, +257¢"R,), - 2R, . (422)

eiﬂl/-fl £y ZXDglp(SR” Z{f] dxfz N -

A dxb= A dxT)

=V, (/| detgl€ue, e, X Z5 g T4, )dx" A dx A - -
= Z§1 6,1/“,51_,,E’I_ZQA”SF”WVGX”dx" A dxéZ AR

A dxb-2 A dx?

A dxén2 A dx?

A dxEr A dx?

A dxé2 A (V,oThdx® A dx?) +n.c.

=8RGy +0(r=))dx” ndx?

A dxé2 A dx?

“ A dx5 A dx® A dXT +nee. (4.21)

[
The simplest situation is obtained when K = 0 so that
KN/ is reduced to a point, and Eq. (3.43) becomes

Hb (X7S) {Xyzg(ROivé - R[Oplegi]ﬂ)

)
=————Iim
8(n—2)mR-o [gr)
+X°ZN(R-R,,¢"") +2X*ZR,
_ zzvx[ORi]y + (Zyx[Ogi]p _ sz[Ogi]p)RW)
_ X[vzi]RO Mgo/l + X[uzO] > ipﬁygpﬁ

—(n=2)(¢"" - e 'g*)V,X1)}Ndo,;. (4.23)

1. A#0

We wish to analyze Eq. (4.23) for metrics g which
asymptote a maximally symmetric background g with
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A # 0. This case requires separate attention as then the
background curvature tensor does not approach zero as we
recede to infinity. We note that the calculations in this
section are formally correct independently of the sign of A,
|

1
Ra/}}/é = Wa/}yé +—— (Raygﬁ5 - Raﬁgﬁy + R/}zsgay

d=2

PHYSICAL REVIEW D 96, 124002 (2017)

but to the best of our knowledge they are only relevant in
the case A < 0.

It is useful to decompose the Riemann tensor into its
irreducible components,

R
— Rp,9us) — (d=D)(d=2) (9p59ay — 9y 9as)

1 R
= Waﬂy& +-— (Paygﬁ5 - Paég/iy + Pﬁégay - Pﬁygaé) + d(T—l) (g/fégay - gﬁygaé),

d-2

where W 5,5 is the Weyl tensor and P, is the trace-free part of the Ricci tensor,
R
Pﬂl/ = R/uz - Eg/w’

This leads to the following rewriting of Eq. (4.23):

1 .
) gyt

2R . 2R

XHZS WOi —W[O ilp 5PN — 5[0_ ilp
aE(R){ < vé Pl/fg +I’l(l’l+1) [y §] n(n+1) [ygf]pg

+ XOZ(R - R,,0"*) + 2X*ZOR, — 27" XIOR1, + (2 X0 — X*ZI0g")R,,

2R

2R (X200, - X285, -

n(n+1) [

(n=2)(¢"° — e 'g°)V X1} Ndo;. (4.24)

Assuming that the background Weyl tensor falls off sufficiently fast so that it does not contribute to the integrals (e.g.,
vanishes, when the background is a space-form such as the anti—de Sitter metric), that both the energy-momentum tensor of
matter and e — 1 decay fast enough [cf. Eq. (3.41)], and setting

AMY = g;w _ g/w’

we obtain

1 . 2R
Hy(X.S8) = g0 =gy 4m
2R
n(n+1)

(X1Z089,3,, = X798, 00" = (n = 2) A0, X1 }Nda,»,

XvzE( woi, - —= 505 Al’1ﬂ> — XOZIIR , A0+ (/XA — xvZOA )R,
0E<R){ < T a(n 1 1) 9ép pi ( )Ry,

(4.25)

where we have also used the hypothesis (3.31) that terms such as |X||Z|A*A ,, and |X||Z|g,, A" fall off fast enough so that
they give no contribution to the integral in the limit. With some further work, one gets

1
H, (X,8)=——1i
ol ) 8(n— Z)ﬂRl‘{r’}O JE(R)

To continue, we assume the Birmingham-Kottler form
(B1)-(B3) of the background metric g. If X is the g-Killing
vector field O, then, writing momentarily X, for g,, X",
V,X,dx* @ dx* = W[JX,,] dx® @ dx* = 0, X, )dx° @ dx*

1
= a[agu]odxa ® dx¥ = Earf]oodx’ A dx°

1 _ _
= Ear‘(_]()o@] VAN @0.

{X"waol‘yg + (n —2)Ar0 {

- (x, 7" -7 x1 =V, X . 4.2
ST 7 = 2X0) = 9,0 fNdai. (820

Using this, one checks that all terms linear in A in
Eq. (4.26) cancel out, leading to the elegant formulas

1 A
H,(X,8)=—1i XvZEWY .Ndo;
1
lim XVZEW edS 5, (4.27)

which, at this stage, hold for all X belonging to the (n + 1)-
dimensional family of Killing vectors of the anti—de Sitter
background which are normal to {¢ = 0}.
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If X = 0,, then we have

_ _ |
V X, dx" ® dx* = V[{;XD]dx" ® dx¥ = 5

PHYSICAL REVIEW D 96, 124002 (2017)

1 1
05Gypdx® A dx¥ = E8,9,,,,/,511’ Adop + Eaggwde A do

=V Vsin0®' A @3 + cos00? A B3,

where we used the coframe of the background metric (B1) with the following cobasis:

) _ 1
0° = VVdt, 0! = —dr,
VV

Hence, in this coframe one obtains

v1X3 = \/Vsinﬁ = —ngi,

@ =rdo, @ = rsinfdg. (4.28)

vﬁXg =cosf = —ngi.

Therefore, the second term of the integrand in Eq. (4.26) vanishes for r — oo, since (keeping in mind that dSy; for i # 1

gives zero contribution to the integrals)

R A s

- 1 .ae 4 A g 1 s5e
——— AO(x, 7V — 7, XV) — MOV XY = S AR 7 - S AROV XT = S A0 Xy 2D - S AV
n(n+1) (X, WX " 2 2 : 2 NGV 2 S
=(G33+033)X°
l 2 1 AQ r—00
= (—§%+5\/V> sin@A30 "5 0.
|
Hence, Eq. (4.27) also holds for X = J,,. Since all Killing 2. A=0

vectors of AdS spacetime can be obtained as linear
combinations of images of these two vectors by isometries
preserving {¢ = 0}, we conclude that Eq. (4.27) holds for
all Killing vectors of the AdS metric.

Once this work was completed, we were informed that
Eq. (4.27) had already been observed in Ref. [25], follow-
ing up on the pioneering definitions in Refs. [26,27]. We
note that our conditions for the equality in Eq. (4.27) are
quite weaker than those in Ref. [25].
|

6,1”,,51“_&HHX”g’lf’ﬁl"”W,dx'f' A ool A dxbask=s A dx?

(d+K=3)!

©_be
= m€bcfa1‘..ad_3A1...AKng 61 4o

We pass to the case A = 0. We will impose conditions
which guarantee that all terms which are quadratic or higher
in g,, — g,, give zero contribution to the integrals in the
limit R — oco. Without these assumptions the final formulas
become unreasonably long. Hence, we assume Eqgs. (4.16),
(4.17), (4.19), and (4.20).

In the current context,
replaced by

the calculation (4.5) is

dx® A oo A dxAE A dx®

v, 2% dxh +n.c.:5;l dxgne.

(d+K—3)!
d-2)I(N=1)
(d+K-3)

'eﬂlwal..Aad,zAl..AAK,]XVgﬂ/)érﬂA/deal VANPTVAN dxA’(*l AN dxA

| _
=7 [Vh(ebcfal__.aHAl__'AKngbeﬂTagZ”‘)dxh Adx®™ A LA dxAK A dx?

(d-3)IN!

— €petar..ap i, VX gPeOT* (o Zdx" A dx® A oA dXAK A dxe

~—

n.c.

- ebcfal_”aHA]”_AKngbeZalvhc?l“”aedxh Adx® A L. Adx A dxd +n.c.

d+K—-3)
a2 =1

[vh(e/l;u/al...ad,zAl...AK,IXDgip5F”ApZaI)d'xh Adx®2 AN dXAK’l A dxA

_eiﬂyal...ad,zAl...AK,lvhxygﬂp5F”ApZaldxh Adx AL A dXAK’l AN dxA

~—

n.c.

= Ehay.ayat. A XOGPZON ST o dx A dx® A A dX A dx el
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(d+K -3)!
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— 2 Uepesar..ay ity X GPOOT (o Z01dx% A ... A dXPE A dx®)

(d—3)!N!
(d+ K —3)!
(d=2)(N-1)!
(d+ K -3)!
_mebcfal...agHA].
(d+ K -3)!

”Akxfxalgb65Rc

edq-1a4-2

d(€1ma, . apan,. A X GPTH 0, Z0dx" A dx® A oA dxs=r A dx?)

dx%-1 A dx® A - A dx A dx®a-2

_ _ A
e .y k. A XXOGPRE,dx A dx A LA dxAR A dxt 4 e,

2(d - 3)!N!

As before, in the last equality we have used the fact that the
first vh terms in the first expression in each of the square
brackets can be replaced by vﬂ, because each form
appearing in the first line above must already contain K
factors of the KK differentials dx*; otherwise, it will give
zero contribution to the integral.
In addition to all of the hypotheses so far, we will also
assume that the Riemann tensor decays at a rate o(r7#):
R, 5 = o(r7x),

Ra/}y{s = (r_ﬂk), (429)

with fp chosen so that

terms|X||Z|o(r~*~Pr) give no contribution to the integral

in the limit R — oo. (4.30)

All of these conditions are satisfied by the five-
dimensional Rasheed metrics, with o > 0 as close to one
as one wishes, f =1+ a, fr = 3, and with y as large as
desired.

In line with our previous notation, we will write
R%,5 — R"ﬁﬂs for the difference of Riemann tensors of
the (d + K)-dimensional metrics g, dx*dx" and g, dx*dx",
Ryq — Ry for that of the d-dimensional metrics
Gapdx?dx? and g,,dx?dx?, R!,;x; — Rk, for that of the
(n + K)-dimensional metrics g;;dx’dx’ and §;;dx'dx’, and
Riys—R'y, for that of the n-dimensional metrics
gijdx'dx’ and g;;dx'dx’.

With the above hypotheses, the derivation of the key
formula (4.10) follows closely the remaining calculations in
Sec. IVA, and leads to

1 o o
Hy(X.S) = ———— lim { /6 . <Xazb(Rab@f -R,,¢) +4zxI(R/, =R/ ,)

16(n — 2)7 R—co
1

- Z°X/ (R —R‘,) =
n —_—

30 = DX Ry = R Sy = (1-2) [ (- 0,005,
’ OE(R)

For Rasheed solutions, or more generally for solutions
which asymptote to the Rasheed backgrounds g given by
Eq. (A34) with the usual decay o(r~("2/2), with
T,,=o(r?), one has [cf. Eqs. (A43)-(A44)] R®,;,, =0,
R, =0(r), and R,, = O(r™*). Thus, for X =9,
and after passing to the limit R — oo, we obtain an
integrand which is formally identical to that for metrics
which are KK-asymptotically flat:

1 [(n=3)Z° X (RP 4, = RP,4) + 4ZIX (R = RIA )

(4.31)

1
Hy(X,S)=—— i
p(X.5) 16(n—2) 7R e Jsg)xs!

1

zilim/ X*x/R% Ndo;. (4.32
8(n—2)mR=o Js(r)xs' ! ( )

X*Z'RY,,dS

Some special cases, without necessarily assuming that g
asymptotes to the Rasheed background, are of interest:

124002-13



BARZEGAR, CHRUSCIEL, and HORZINGER PHYSICAL REVIEW D 96, 124002 (2017)

(1) Suppose that X* = &; thus, X has only a time component. Keeping in mind that Z° = 0 and 9E(R) c {x* = 0}, we
have

o N D L S

H,(00.8) = mg&{ﬁam (Z](ROJ‘O —R,") +5Z/(R/; - R% + R/; - R%) - Z/(R'; -R"))
1

2(n—1)

“(n-2) / (g0 e-lgﬂm)%xﬂdsm}
OE(R)

[ZI(R%, —R%,) — 2Zj<RiAjA - RiAjA)])dSOi

1 | T , o
=——1li Z7ZIRI. =R = Z/(R, 1 =R, i
8(n — Z)ﬂRl—I»Eo{[,E(R) (2 (R ) (Ry; ')
1 : . o _
C2(n—1) (2 (R% gy = R¥p) =22/ (R4 - RlAjA)]>dS0i
~(n-2) L . (¢ - e‘IQ”[O)W,,X"]dSOi}- (4.33)

(2) Suppose that X = 0; thus, X has only spacetime components. Then

1 _ i}
Hy(X,8) = ————li XZP (R = Rypel) 4 4z X4 (RS, — RS
b( ) 16(”—2)ﬂ'R1—{1010{/3E(R)< ( ab ab ) + ( a u)
_ 1 _ _
—-Z°X/ (R —R¢) - 1 [(n=3)Z X/ (RP,, = RP,,) + 4ZIEXU(RA 4 — RanA)])dSef
-2(n-2) / (g0 — ¢! gﬂ[o)%xﬂdso,}. (4.34)
OE(R)

We will see below that the first term on the right-hand side is related to the Komar integral. It is not clear whether or
not the remaining terms vanish in general. However, when X° = 0, at = 0 the third and fourth terms in the integrand
in Eq. (4.34) give a vanishing contribution so that the generators of space translations read

1 . T i )
Hy(X.8) = c——— i XiZK(R,Y — R,9) + Zlix]|—=— (R, —R% )+ RO — RO, 4
»(X.S) 8(n — 2>”RHE°{/DE(R)( (Ri i)+ [n 1 (R™4 ia) + RY; ,])dSoj
2 / (90 =g [OWuX”dSm}‘ (4.35)
OE(R)

(3) Suppose instead that X¢ = 0; thus, X has only components tangential to the Kaluza-Klein fibers. Then, again at
X0 =0,

_ 1 -
H,(X,S) = lim {4 / XAZ¢(Ryp'® — Ry, /*)dS,p — — / (g/‘[o—e‘lg”[o)VMX’]dSOi}. (4.36)
16( OE(R) 8n OE(R)

R— n—l)f[ .

C. (n+K) + 1-decomposition metric and of the extrinsic curvature tensor. For this

.. . i n— s 0 — i i
In a Cauchy-data context it is convenient to express W€ consider X* =gy and x"=0, ie., we consider

the global charges explicitly in terms of Cauchy data. Eq. (4.33). ) ] o

Here one can use the Gauss-Codazzi-Mainardi embedding We start with the case of KK-asymptotically flat H}mal
equations to reexpress our spacetime-Riemann-tensor inte- ~ 9ata sets. Keeping in mind our convention that (x ) =
grals in terms of the Riemann tensor of the initial-data (x', x"), we canreplace R’ /¢, withthe (n + K)-dimensional
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Riemann tensor, which we denote by R’ ¢, , by means of the
Gauss-Codazzi relation

Rk = Rl g 4 o(r—272). (4.37)

Hence, from Eq. (4.11) we obtain

1 Yy 1 .
S IR, + ———< Rk
P 8(”_2)”R£I‘}° /S(R) ANX < ! +2(n— 1) <

1 .

We note that in the usual asymptotically flat case, K = 0, the
last integral is not present. Further, R¥; then becomes the
Ricci scalar of the initial data metric, with RF, = o(r=2%72)
because of the scalar constraint equation, and hence does not
contribute to the integral. Thus, the above reproduces the

well-known-by-now formula for the ADM mass in terms of
the Ricci tensor of the initial data metric [28—31] when the

PHYSICAL REVIEW D 96, 124002 (2017)

Egs. (B1)—(B3). Let k;; be the extrinsic curvature tensor of
the slices {x* = const}. If we assume that k;; satisfies

|k| := \/ g ¢ *Mky kyp = o(r™/?),

from Eq. (4.27) we obtain a formula first observed in
Ref. [30]:

(4.39)

1 . R._
H,(X =———1 X°Z/ (R, ——¢!
b( ,S) 16(}1—2)]1’1321010 DE(R) ( J n j>

x Ndo;., (4.40)

where in Eq. (4.40) we have assumed that X is a Killing
vector of the anti—de Sitter background which is normal to
the hypersurface {r = 0}.

Finally, consider general configurations as in Sec. IV B 2.
Under the hypothesis that

Ricci scalar decays fast enough, as we assumed here. |k|>|Z||OE(R)| = gr-o O, (4.41)
We pass now to the case covered in Sec. IV B 1, namely,
K =0 but A <0, with the background metric g as in  from Eq. (4.33) we find
|
Hy(09.8) = ———— 1im / LRI ) - (R — R
8(” - 2)71' R—c0 OE(R) 2 J J J J
1 4 _ - oo . _
S 2 (R = RA) = (R = ) = 223((R = ) = (R = R0)] Ve,
—(n—2) lim (g0 — ¢! gﬂ[o)vﬂxiwdai}. (4.42)
R—0 OE(R)

V. KOMAR INTEGRALS
If X% is a Killing vector field of both g and g, we have

XMRﬂde = VbVCXd, and XﬂRﬂbL‘d = vbvcxd. (51)

This allows us to express some of the integrals above as
Komar-type integrals.

lim XZP (R — R, )dS,; = lim
R=c JoE(R) R=co JoE(R)
= lim

R—00 OE(R)

I

We start with the setup of Sec. IV B 2; the KK-asymp-
totically flat case can be obtained directly from the
calculations here by setting Ra/j},g = 0. To make things
clear, we assume Eqs. (4.16)—(4.17) and (4.19)-(4.20),
together with Eqgs. (4.29)—(4.30), and recall that all these
hypotheses are satisfied under the corresponding hypoth-
eses made in the KK-asymptotically flat case.

The contribution from the first integrand in Eq. (4.31)
can be manipulated as [32]

KXLf;e];b _ X[f”e]”h)zb - XAZb(RA/,ef - RAhef)]dSef

{(n —1)(xlef] — xlelfT) — 3(X[e;fzb]);h + 3(X[€|Ifzb])”b

+2(R,,PVZ9 =R PV ZNX1dS,  — XAZP (R — Ry,¥7) }dS,

= lim {(n — 1)/ (X[a;ﬁ] — X[“”ﬁ])dSaﬁ + / [2XﬂZ€(bebﬂ _ l_{fbbu)
OE(R) OE(R)

R—0

- XAZV(Ry, S — RAbefﬂdsef},

(5.2)
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where the semicolon (;) denotes the covariant derivative of the metric g and the double bar (]|) denotes the covariant
derivative of the background metric g. Moreover, we used Gauss’ theorem, e.g.,

lim (XN ZP)) /| det g|d=,; = lim / (X1
— JHE(R)

R—o0 OE(R)

lf 8,/ | det gldZ,; = 0. (5.3)

Hence, under the hypotheses used in the derivation of Eq. (4.31), we can rewrite Eq. (4.31) as

1
X. L — 1) (Xep — xlelflyg
( S) 16(7’1 - 2)ﬂR1—I;I;lo{/8E(R) (n )( ) Saﬂ

" /aE<R> <2X”Ze(Rf Py = RIPy,) = XAZV (R = Ry ) + 4ZIEX9 (RS, — R7,)

_ 1
- ZeXf<RCc - Rcc) - —1 [(l’l -

+ 3(” - 2)XAZe(bebA - bebA)}) dSef - (n - 2) lim

3)Z¢X/ (RPA,,

— R, ) +4ZXA(RMA,, - R )

(gt — ! gﬂ[a)vﬂxb]dsab}. (5.4)

R— 00 OE(R)

The first integrand is the difference of the Komar integrands of g and g.
Specializing to the KK-asymptotically flat case for background-covariantly constant Killing vectors, this reads

1
Xt = 1 -1 X*Pds,
PiXe = 602 mm{ >/ AN s

+ / /EN <2X”X€bebll —_ XAxbRAbef _ m [(n _ 3)ngbeAbA + 4x[eXQ]RanA

+ 3(1’! - Z)XAxeRf”bA]>dSef}.

Thus, it appears that in general Komar-type integrals do
not coincide with the Hamiltonian generators. This is really
the case, as can be seen for the Rasheed solutions. Using
Eq. (A33), one readily finds for X = 0, (keeping in mind
that n = 3)

2r(M +%), P=0,
— lim / / XTS5 = Vi
87 R0 s! 8xP(M + %), P #0,

(5.6)

which does neither coincide with p, [cf. Eq. (3.23)] nor
with the ADM mass of the space metric g;;dx'dx/. Note that
the Komar integral of the spacetime metric g,,dx*dx" will
equal M + % regardless of the value of P.

Next, for X = 0, we obtain

40, P=0,
— lim / / XPdS,; =
87 R~ 5! 16zPQ, P #0,

which is twice the Hamiltonian charge p,.
As a simple application of Eq. (5.6), suppose that there
exists a Rasheed metric without a black-hole region. Since

(5.7)

1

(5.5)

|
the divergence of the Komar integrand is zero, we obtain
M = —X/+/3. But this is precisely one of the parameter
values excluded in the Rasheed metrics, cf. Eq. (A4) below.
We conclude that the regular metrics in the Rasheed family
must be black-hole solutions.

For the case of metrics which asymptote to a maximally
symmetric background g with A # 0, as in Sec. IV B 1, the
Komar integral resulting from Eq. (4.27) reads

1
Hy(X.S)=——— lim

XZEW cdS
16(n —2) k= Jorr) vt

n—1

= lim{—0w xlhlgs
RI—EEO{16(H—2)7T/QE(R) ab
A
- Xe7ZPds, } 5.8
Hn=2)(n— 1)nﬂ/0E(R) g (58)

VI. WITTEN’S POSITIVITY ARGUMENT

The Witten positive-energy  argument [33,34]
(cf. Ref. [35]) generalizes in an obvious manner to KK-
asymptotically flat metrics. Assuming that the initial data
hypersurface S is spin, we consider the Witten boundary
integral W defined as
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W(ds) = lim U'de;, (6.1)
R0 J5(R)xTK
U = ($p.D'¢p+y'D). (6.2)

where ¢ is a spinor field which asymptotes to a constant
spinor ¢, at an appropriate rate as one recedes to infinity in
the asymptotic end, and D := y’/ D, is the Dirac operator
on S. (Note that the asymptotic spinors ¢, might be
incompatible with the spin structure of S, in which case
the argument below of course does not apply; cf. Refs. [36—
38].) It is standard to show that in the natural spin frame
we have

n+K

1
Ul = ZZ(aLg[L - 6lgLL)|¢°o‘2 + 0(?‘_2(1_1).

L=1

(6.3)

Assuming a positive and suitably decaying energy density
on a maximal (i.e., ¢’/ K;; = 0) initial data hypersurface,
such that

Sis metrically complete and either is boundaryless

or has a trapped compact boundary, (6.4)
the proof of the existence of the desired solutions of the
Witten equation P¢ = 0 can be carried out along lines
identical to the usual asymptotically flat case, cf., e.g.,
Refs. [39,40]. Comparing with Eq. (3.19), we conclude that
the positivity of ¥V is equivalent to positivity of the
Hamiltonian mass:

p0>0.

It should be emphasized that p, does not necessarily
coincide with the ADM mass of g;;dx’dx’.

The above argument required the positivity of the scalar
curvature of g;,;dx’dx’. This is not needed if one replaces
the usual spinor covariant derivative in Eq. (6.2) by

1
DI —)D1+§K1J}/J}’0. (65)

The Witten quadratic form )V instead becomes

lim §  Uldo; = 4ap, (et ). (66
R—oo [g(R)xTK

and is non-negative for all ¢, when the dominant energy
condition is assumed on initial data hypersurfaces as in
Eq. (6.4). The positivity of WV is equivalent to the time-
likeness of the (n + K + 1)-vector p,. Equivalently,

n n+K
=Y pi> > pi=0. (6.7)
i=1 A=n+1
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The first inequality is saturated if and only if the initial data
set can be isometrically embedded in R x R" x TX
equipped with the flat Lorentzian metric (cf. Ref. [41]).
As an example, consider the Rasheed metrics with
P = 0. The corresponding domains of outer communica-
tions have the topology R x S' x (R*\B(R)), where the R
factor corresponds to the time variable, S! is the Kaluza-
Klein factor, and the R*\B(R) factor describes the space
topology of the black hole. It thus has the obvious spin
structure inherited from a flat R x S! x R3, together with
the obvious associated parallel spinors. Therefore the
Witten-type argument just described applies, leading to
M?* > 02, (6.8)
where the inequality is strict for black-hole solutions. If we
denote by M spy the ADM mass of the three-dimensional-
space part of the Rasheed metric, this can be equivalently
rewritten as

¥\ 2
<MADM + —) > Q% (6.9)

V3
cf. Ref. [42].

Note that Eq. (6.9) does not exclude the possibility of a
negative or vanishing Mpy (cf. Refs. [36,43,44]). We
have not attempted a systematic analysis of this issue, and
only checked that all Rasheed solutions with @ = 0 and
M = 0 have naked singularities outside of the horizon.

VII. SUMMARY

In this work we have considered families of metrics
asymptotic to various background metrics, and studied the
Hamiltonians associated with the flow of Killing vectors of
the background. We have derived several new formulas for
these Hamiltonians, generalizing previous work by
allowing a cosmological constant, or nonstandard back-
grounds, and allowing higher dimensions. In particular:

We have derived an ADM-type formula for Hamilto-
nians generating time translations for a wide class of
background metrics, cf. Eq. (3.39).

We have provided a formula for Hamiltonians generating
translations for KK-asymptotically flat metrics in terms of
the spacetime curvature tensor [Eq. (4.10)].

We have derived a formula for Hamiltonians associated
with generators of all background Killing fields for
asymptotically anti-de Sitter spacetimes in terms of the
spacetime curvature tensor [Eq. (4.27)].

Equation (4.31) provides a similar formula for a wide
class of backgrounds with A = 0.

Equations (4.40) and (4.42) provide space-and-time
decomposed versions of the last two Hamiltonians.

In Sec. V we have derived several Komar-type formulas
for the Hamiltonians above for vector fields X which are
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Killing vectors for both the background and the physical
metric.

In Sec. VI we have pointed out the consequences of a
Witten-type positivity argument for K K-asymptotically flat
spacetimes: instead of proving the positivity of the ADM
energy, the argument provides an inequality involving the
Kaluza-Klein charges and the energy. An explicit version of
the inequality has been established for KK-asymptotically
flat Rasheed metrics.

In addition to the above, we have carried out a careful
study of Rasheed metrics (see Appendix A) to obtain a
nontrivial family of metrics with singularity-free domains
of outer communications to which our formulas apply. We
have pointed out the restrictions (A20) and (A22) on the
parameters needed to guarantee the absence of naked
singularities in the metric. We have shown that all metrics
satisfying these conditions together with P =0 have a
stably causal domain of outer communications, and we
have given sufficient conditions for stable causality when
P # 0in Eq. (A24). In Appendix A 3 we point out that the
Rasheed metrics with P # 0 are not KK-asymptotically
flat, and describe their asymptotics. We have determined
their global charges, which are significantly different
according to whether or not P vanishes.

Last but perhaps not least, Eq. (C3) provides a useful
identity—which we have not seen in the literature—that is
satisfied by the Riemann tensor in any dimensions and
generalizing the usual double-dual identity valid in four
dimensions.
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APPENDIX A: AN EXAMPLE:
RASHEED’S SOLUTIONS

Rasheed [45] has constructed a family of stationary
axisymmetric solutions of the five-dimensional vacuum
Einstein equations which take the form

B A
dsiy) = 7 (dx* +24,dx)? + \/%ds@), (A1)

where a, M, P, Q, and X are real numbers satisfying

¢ ., P
S+MV3 E-MV3 3

(A2)

PHYSICAL REVIEW D 96, 124002 (2017)

M24+32—P2—Q2#0, (M+X/V3)?-0Q*#0,

(M =%/V3)" = P2 #0, (A3)
py
M+ —#0,
\/g#
SN (70 YA o5 (0 TRV e BN
M2 + 22 _ P2 _ Q2 ’
(A4)
and where
G vVAB
ds%4> = T (dt + a)0¢d¢)2 + A dr?
AVAB
+ VABd&* + G sin?(0)d¢?, (AS)
with
2Py
A= (r—-3/V3)* = ——"_ + d’cos*(0
(r=2/V3) = =t st (0)
2JPQ cos(6)
(M +%/V3) -0
20%%
B=(r+3/V3)*——"==_ 4 a%cos?(0
(r 4 B3 - ST aeos(6)
2JPQ cos(0)
(M —2%/V3)? =P’
G =1’ —=2Mr + P> + Q* — X% + a*cos*(6),
A=r’=2Mr+ P*+ Q*-3* + d%,
)
W) = 21%(9) r+ E],
J? = d’F?, (A6)
whereas E is given by
M>+3—P - Q)M +X

(M +2/V3) - @

The physical-space Maxwell potential is given by

C C
ZAMdX” = Edt + <a)5¢ + Ew%) d¢, (AS)

where
B 2PJ cos(0)(M + X//3)
C=20(r-%/V3) - BN (A9)
W= (A10)
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and

H:=2PAcos(0)

_20Jsin?(0)[r(M=%/V/3) + MZ/V/3+3* = P2 — 0]
[(M+2/V3)* - 0% '

(Al1)

The Rasheed metrics (Al) have been obtained by
applying a  solution-generating  technique  [45]
(cf. Ref. [46]) to the Kerr metrics. This guarantees that
these metrics solve the five-dimensional vacuum Einstein
equations when the constraint (A3) is satisfied. As the
procedure is somewhat involved, it appears useful to cross-
check the vanishing of the Ricci tensor using computer
algebra. We have been able to verify this in the P = 0 case
with SAGE (which required a week-long computation on a
personal computer), as well as for a set of samples for the
parameters (M,a,P,Q,%) in the P #0 case with
MATHEMATICA. We have, however, not been able to do
it for the full set of parameters.

Let us address the question of the global structure of the
metrics above. We have

det g = —A?sin?(0),

which shows that the metrics are smooth and Lorentzian
except possibly at the zeros of A, B, G, A, and sin(9).

After a suitable periodicity of ¢ (as in Sec. A 3 below)
has been imposed, regularity at the axes of rotation away
from the zeros of denominators follows from the factor-
izations

A D = a*sin*(0)
G  a’cos*(0) —2Mr + P? + Q% + 12 = X%’

(A12)
24y =2F %COS(H) - Sm;( 2 (H+2JTC[r+E]> (A13)
where
H = _2QJ[7'<M - Z/\/g) +M2/\/§+ 2 _ p2 _ QQ]

(M +2/V3)’ - Q%]
(A14)
It will be seen below that, after restricting the parameter

ranges as in Egs. (A20) and (A22), the location of Killing
horizons is determined by the zeros of

9w Gy 9
9pr Gpp  Gpa | = —Asin?(6), (A15)
94 Gap  Gaa
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and thus by the real roots r, > r_ of A, if any:

re=M+\/M*+32-P2 Q>4 (Al6)

1. Zeros of the denominators

The norms

B
= d gu=-
G and gy =~

w
AB
of the Killing vectors 0, and 0, are geometric invariants,
where W = —GA + C?. So zeros of A and AB correspond
to singularities in the five-dimensional geometry except if

(1) a zero of A is a joint zero of A, B, and W, or if
(2) a zero of B which is not a zero of A is also a zero

of W.
Setting
2JP
= g 2_ o2y’ (AL7)
a*(M+2/v3)* - 0%
one checks that if

22 2(1—|A]) =0, when|A|>2 or
e (A1
zM\/—+ =0, when |A] <2,

then A vanishes exactly at one point. Otherwise the set of
zeros of A forms a curve in the (r, §) plane. Let 6 — r ()
denote the curve (say, y) corresponding to the set of largest
zeros of A.

Note that W and A are polynomials in r, with A of second
order. If W/A is smooth, the remainder of the polynomial
division of W by r — r} must vanish on the part of y that
lies outside the horizon. One can calculate this remainder
with MATHEMATICA, obtaining a function of 6 which
vanishes at most at isolated points, if at all. It follows that
the division of W by A is singular on the closure of the
domain of outer communications (d.o.c.), i.e., the region
{r>r,}, if A has zeros there, except perhaps when
Eq. (A18) holds.

One can likewise exclude a joint zero of W and B in the
closure of the d.o.c. without a zero of A, except possibly for
the case where this zero is isolated for B as well, which
happens if

20 (1 —|B])=0. if[B]>2 or
Zz*gﬁf | (A19)
2oL =0, if Bl <2.

See Ref. [47] for a more detailed analysis of the border-
line cases.
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To summarize, a necessary condition for a black hole without obvious singularities in the closure of the domain of outer
communications is that all zeros of A lie under the outermost Killing horizon r = r, . One finds that this will be the case if

and only if

2P’%

- Z_Mﬁ—az(l—\A|)<0 or
>2 an
2
M+ M+ -P -0 -a* >+ e —a* (1= |A|),

or

2P*% 2A?

Z—M\/§+a4 <0, or
A=z and M+ VM>*+ 22— PP —Q?—a? > 5+ [F2E 4 oF 20

3 =-MV3 ’

except perhaps when Eq. (A18) holds.

An identical argument applies to the zeros of B, with the zeros of B lying on a curve unless Eq. (A19) holds. Ignoring this
last case, the zeros of B need to be similarly hidden behind the outermost Killing horizon. Setting

2JP
- ¢ (A21)
A(M—-x/\3)7 - P)
one finds that this will be the case if and only if
20 _ 2(1-|B|) <0, or
T+MV3
|B| >2 and s s
M+ M+ -P - Q*—a>> -1+ \/234@_“2(1 - 18)).
or
20°% a*B?
+ <0, or
Z+M\/3 4 ’
Bl<2 and QM e (A22)
2, s2_p2? 2_ 2 pa 2
M+ /M*+32-P - Q*-a® > -1+ /2+M¢§+”4 ’
except perhaps when Eq. (A19) holds. s EM +4q (A24)
While the above guarantees the lack of obvious singu- TS M4 E’
larities in the d.o.c. {r > r, }, there could still be causality
violations there. Ideally, the d.o.c. should be globally  which is sufficient but not necessary, where ¢ :=

hyperbolic, a question which we have not attempted to
address. Barring global hyperbolicity, a decent d.o.c.
should at least admit a time function, and the function ¢
provides an obvious candidate. In order to study the issue
we note the identity

o _ AJP[r+ E]*sin*() — ABA A3
7= ANG - (A%)
A MATHEMATICA calculation shows that the numerator
factorizes through G, so that ¢° extends smoothly through
the ergosphere. When P = 0, one can verify that g% is
negative on the d.o.c. For P # 0 one can find open sets of
parameters which guarantee that ¢° is strictly negative for
r > r, when A and B have no zeros there. An example is
given by the condition

P? 4+ Q? — 2% + a®>. We hope to return to the question of
causality violations in the future.

In Fig. 1 we show the locations of the zeros of A and B
for some specific sets of parameters satisfying, or violating,
the conditions above.

Another potential source of singularities of the metric
(A1) could be the zeros of G. It turns out that they are
irrelevant, which can be seen as follows. The relevant
metric coefficient is g4, which reads

B S5 +C 0 :
=—|\w —w
Gpp = 4\ P00 TP
AVAB

A G oy L2
§<_\/T_B(a) 8+ G sin (9)) (A25)

Taking into account a G~ factor in @, it follows that g,
can be written as a fraction (...)/ABG?. A MATHEMATICA

124002-20



ENERGY IN HIGHER DIMENSIONAL SPACETIMES

FIG. 1.

zeros of A, B. Left plot: M = 8,a = 32 Qz%,22—25—3,P=—

10°

— inner Killing horizon
— outer Killing horizon
—— ergosurface
— zero setof A
— zero set of B

PHYSICAL REVIEW D 96, 124002 (2017)

Two sample plots for the location of the ergosurface (zeros of G), the outer and inner Killing horizons (zeros of A), and the

W ~ —7.86, with zeros of A and B under both

horizons, consistently with Eq. (A20) and (A22). Rightplot: M = 1,a=1,0 =0,X = V6, P = /4 —2v/2 ~1.08; here, Eq. (A20)is

violated, while the zeros of B occur at negative r.

calculation shows that the denominator (...) factorizes
through AG?, which shows indeed that the zeros of G are
innocuous for the problem at hand.

Let us write ds(24) as g,,dx?dx". The factorization just
described works for g, but does not work for (4)g¢¢. From
what has been said we see that the quotient metric
#g,pdxdx” is always singular in the d.o.c., a fact which
seems to have been ignored, and unnoticed, in the literature
so far.

2. Regularity at the outer Killing horizon H ,

The location of the outer Killing horizon H, of the
Killing field

is given by the larger root r, of A, cf. Eq. (A16). The
condition that H, is a Killing horizon for k is that the
pullback of g, k” to H, vanishes. This, together with

Aly, =0, Gly, = —a’sin*(0), (A27)
yields

1 a®
Q) =—-—— — E)!,

P w0¢ ", 2] <r+ + )
2(A,0°, — A
Q, - (Ao ((/)) ¢)
()] ¢ H.

Q(=3Mr, —\/3MZ + 3P + 30% + /3rX — 33?)
(E + r,)(3M? +2v/3MX — 30% 4 3?) '
(A28)

After the coordinate transformation

b=¢-Qudt, T =x'-Qud1, (A29)
the metric (A1) becomes
dr? )
gzgs—l—T#—AUdt, (A30)

where gy is a smooth (0, 2) tensor, with U := g, /A
extending smoothly across A = (. Introducing a new time
coordinate by

t=t—ocln(r—r,) = dr=dt - dr, (A31)

r—r.

where ¢ is a constant to be determined, Eq. (A30) takes the
form

2 d2
g:gs+AU(dr+ d dr> + 2

r—rg A

2AU 1 AUc?
= g5 + AUdT? + == drdr + (— +—") dr

r—r, A (r—ry)?
2AU - 24 A22U
= gs + AUd7* + Gdrdr+(r re)+ 26 dr?
r—r, Alr—ry)
v
(A32)

In order to obtain a smooth metric in the domain of
outer communications the constant ¢ has to be chosen
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so that the numerator of V has a triple zero at r = r .
A MATHEMATICA computation gives an explicit formula
for the desired constant o, which is too lengthy to be
explicitly presented here. This establishes the smooth
extendibility of the metric in suitable coordinates across
r=r,.

It turns out that when P # 0, the Rasheed metrics do not
satisfy the KK-asymptotic flatness requirements anymore;
indeed, the phase space decomposes into sectors, labeled
by P € R, in which the metrics g asymptote to the back-
ground metric

g:= (dx* + 2P cos(0)dp)? — di* + dr* + r*do?

+ r2sin?(0)dg?. (A34)

The metrics (A1) and (A34) are singular at sin(8) = 0.
This can be resolved by replacing x* by ¥* (respectively, by
x*) on the following coordinate patches:

0 €10,n),

0 (0.7]. (A35)

x* = x* = 2Pg,

{ = x* +2Pgp,
Indeed, the one-form
dx* + 2P cos(0)dg = dx* + 2P(cos(0) — 1)dg

=dx* -

2P
xdy — ydx
i+ o) (xdy — ydx)
is smooth for » > 0 on {6 € [0, x) }. Similarly the one-form

dx* + 2P cos(0)dg = dx* + 2P(cos(0) + 1)dg

=dx* +

- (xdy — ydx)

is smooth on {6 € (0, z], r > 0}. The smoothness of both ¢
and g in the d.o.c., under the constraints discussed above,
readily follows.

We note the relation

X =34 4 4Py, (A36)

My 2z 0 0
r 3r
2MxXE 2% 2Mxy
0 L 28 4 "
0 2Mxy 2My? _ 2y
3 pc 3r
0 2Mxz 2Myz
p ]
0 0 0
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3. Asymptotic behavior

When P =0 the Rasheed metrics satisfy the KK-
asymptotic flatness conditions. This can be seen by
introducing manifestly asymptotically-flat coordinates
(t,x,v,7) in the usual way. With some work one finds
that the metric takes the form

o ¥
2y 0
+1 e 0 +0(r ). (A33)
WE_Z 410
0 %+ 1

which implies a smooth geometry with periodic coordi-
nates ¥* and X* if and only if

both ¥* and x* are periodic with period 8Pz.  (A37)

From this perspective x* is not a coordinate anymore;

instead, the basic coordinates are x* for 6 € [0, ) and x*
for @ € (0, z], with dx* (but not x*) well defined away from
the axes of rotation {sin(@) = 0} as

dx4:{

a. Curvature of the asymptotic background

dx* — 2Pdyg,
dx* + 2Pdg,

0e|0,n),

0 € (0,n]. (A38)

We continue with a calculation of the curvature tensor of
the asymptotic background. It is convenient to work in the
coframe

@T = dx, @j =dy,
0% = dx* + 2P cos(0)dg.

@ = 4,

0 = dz, (A39)
which is manifestly smooth after replacing dx* as in
Eq. (A38). Using

. ] x!
d®* = —2Psin(0)dO A dp = —2PF8,-J (dx A dy A dz)

P RN ,
— e xidx! k
r3€ijk'de A dx",

(A40)

where 2;;. i € {0, j:l} denotes the usual epsilon symbol,
one finds connection

coefficients:

the following nonvanishing
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P o

A P o N =17 2
4 & - k@i
ot = ﬁen,}xf@ , @' = € 04, (A41)
where x' = x'. This leads to the curvature forms
Ol — P . k. .2 51} (:)% &4
;= Fez}k -5 XX + % A
2P2, o
i 7
—76;,n(k€})n2;x’”x"® A O,
o — Po i L5 \@7 A OF
3 Fe;}-]; 7 X/ x + 2 A
P2 o o A D =N -
~|—Fem}.€,;;3x’”xf®/ A 4 (A42)

and hence the following nonvanishing curvature tensor
components:

,
=i on o 2
4. JPTOR
R R Cem i€zt X
— 2P2 o o o o A A
A A A — N n A n A A A m .n
Rijkf T8 (eijﬁekfrh_*_eiﬁz[kef]jﬁ)x X" (A43)

The nonvanishing components of the Ricci tensor
read

_ 2P, -
A — A A AylaI
Rij T8 Crmi€iaX X
— on o >
e — L L
Rj; = 6 ChmiChizX X - (Ad4)

Subsequently, the Ricci scalar is R = —2P?/r.

4. Global charges: A summary

For ease of future reference, we summarize the global
charges of the Rasheed metrics. Let p,, be the Hamiltonian
momentum of the level sets of 7, and let p, spm be the
ADM four-momentum of the space metric g;;dx'dx’.
Then,

Piapm = Pi =0, Poapm = M — %»
27M, P =0, 2rQ, P =0,
Po= {4ﬂPM, pzo, 7 {SﬂPQ, P£0.
(A45)
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The Komar integrals associated with X = 9, are

2n(M + %), P =0,
 lim / / XS, = { v
87 R~co 5! 87P(M + ). P#0,
(A46)

The Komar integrals associated with X = 0, are

470, P =0,
— lim / / X*PdS,; = (A47)
87 R—oo sl 16zPQ, P #0.

APPENDIX B: THE VECTOR FIELD Z
Let

Z =r0,.

We wish to calculate W”Zy for the Kottler metrics and the
Rasheed metrics.

First, let g be the (n + 1)-dimensional anti—de Sitter
(Kottler) metric,

g=-Vvdr +Vv='dr* + r’h, (B1)
with
V =r+x, (B2)
where k € {0,£1} is a constant,
2A
A=) B3
nn—1) (B3)

and where & is an (r-independent) Einstein metric on an
(n — 1)-dimensional compact manifold K, with scalar
curvature (n — 1)(n — 2)k. It holds that (cf., e.g., Ref. [48])

R=—n(n+1)A (B4)

Further,
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_ 1
Vi Zydy' ® dx* = 5

N = N = N~

7N
3

Vi, Z,dx' @ dx* = 0),Z,dx" @ dx* =0. (B6)
Adding, we find
V,Z,dx* ® dx* =g mod (8..5), (B7)

which gives Eq. (4.17).
Next, for the Rasheed background metrics (A34) one
finds

LG = 2(dr* + r*dQ?),

d(GupZdx’) = d(rdr) =0, (B8)

and Eq. (4.17) without the o(r™") term readily follows.
|

0,V
o (=VdR) + 2= Vo, V)Vdr + 2r2ds22) ,

PHYSICAL REVIEW D 96, 124002 (2017)

EZ.Z] =5 (Zaaag;w + ayzagalx + ayzagay)dxﬂdxb

(F(0,(=V)d* + 0,(V-1)dr* + ,(?)dQ) + 2V~'dr?)

(BS)

APPENDIX C: AN IDENTITY FOR THE
RIEMANN TENSOR

We write 5%’ for 51" = L (508, — 8)5%), etc.

For completeness, we prove the following identity
satisfied by the Riemann tensor, which is valid in any
dimension, is clear in dimensions two and three, implies the
double-dual identity for the Weyl tensor in dimension four,
and is probably well known in higher dimensions as well:

" 1 a
T P

The above holds for any tensor field satisfying

AR 5 = 2[08(808)53 — 5)8183 + 858,80 — SX(Su5h5 — 5,5 + 858,57)
+ 83(34016% — 818,55 + 8,8,8%) — 55(8u6L8), — 85,5 + 5)5L60) [R5

= 2(28W 6055 — 465800 + 48,

= 4(SR" ;5 — 2800 RP? y + 2811 R%  + R,,)

— 4R, + SR 5 — 455Rﬂ1ry],).

If the sums are over all indices we obtain Eq. (C1). The
reader is warned, however, that in some of our calculations
the sums will be only over a subset of all possible indices,

Ra/}yﬁ = _R/}ayﬁ = Rﬂaﬁy' (CZ)
To prove Eq. (C1) one can calculate as follows:
828+ 284,883 R s
(C3)

I
in which case the last equation remains valid but the last
two terms in Eq. (C3) cannot be replaced by the Ricci
scalar and the Ricci tensor.
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