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We explore the quasistationary profile of a massive charged scalar field in a class of charged black holes
in de Rham-Gabadadze-Tolley (dRGT) massive gravity. We discuss how the linear term in the metric,
which is a unique character of the dRGT massive gravity, affects the structure of the spacetime. Numerical
calculations of the quasinormal modes are performed for a charged scalar field in the dRGT black hole
background. For an asymptotically de Sitter (dS) black hole, an improved asymptotic iteration method is
used to obtain the associated quasinormal frequencies. The unstable modes are found for the l ¼ 0 case,
and their corresponding real parts satisfy the superradiant condition. For l ¼ 2, the results show that all the
de Sitter black holes considered here are stable against a small perturbation. For an asymptotically dRGT
anti-de Sitter (AdS) black hole, unstable modes are found with the frequency satisfying the superradiant
condition. Effects of massive-gravity parameters are discussed. Analytic calculation reveals the unique
diffusive nature of quasinormal modes in the massive-gravity model with the linear term. Numerical results
confirm the existence of the characteristic diffusive modes in both the dS and AdS cases.
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I. INTRODUCTION

Massive gravity is a modified gravity theory in which
gravity is described by a massive spin-2 graviton, propa-
gating 5 degrees of freedom. Unlike general relativity in
which the graviton is massless, the gravitation in massive
gravity is essentially modified at the scale corresponding to
the graviton mass mg. In cosmological aspects, we might
expect this characteristic to be responsible for the cosmic
accelerating expansion given that the graviton mass is
of the same order as the Hubble parameter; mg ∼H ∼
10−33 eV [1]. On the other hand, the recent observation
from the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) on a binary black hole merger, GW150914,
has put an upper bound, mg ≤ 1.2 × 10−22 eV, on the
graviton mass [2] (see also Ref. [3] for graviton mass
bounds from other aspects). From a cosmological point
of view, massive gravity is still a viable model of the
Universe.

The very first model of massive gravity was realized as a
linear theory by Fierz and Pauli (FP) in 1939 [4]. The FP
massive gravity suffers from the van Dam-Veltman-
Zakharov (vDVZ) discontinuity in which the predictions
made by the FP theory do not coincide with those made by
general relativity when an appropriate limit (massless-
graviton limit) is taken [5,6]. After that, Vainshtein sug-
gested that because of the introduction of the graviton mass
the graviton mass introduces a new scale known as the
Vainshtein radius, outside which the FP theory works with
good accuracy [7]. For the massless limit, however, this
scale is pushed toward infinity so that the linear theory
cannot be trusted when being used for local systems, and
nonlinear effects should be included in order to cure the
vDVZ discontinuity [7]. (See, however, Ref. [8], in which
the vDVZ discontinuity can be evaded). It was found by
Boulware and Deser that generic nonlinear massive-gravity
theories always propagate 6 degrees of freedom instead of 5
and the additional degree of freedom unfortunately has
wrong-sign kinetic energy [known as a Boulware-Deser
(BD) ghost], causing an instability in the theories [9]. In
2010, de Rham, Gabadadze, and Tolley found that there
exists a class of nonlinear massive-gravity theory that does
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not possess the BD ghost, dubbed dRGT massive gravity
[10,11]. Since this theory is constructed successfully with-
out the well-known pathology, it actually gives rise to
various kinds of studies in massive gravity such as
cosmological solutions [12,13], cosmological perturbations
[14], black hole solutions and thermodynamics [15,16], and
even various generalizations of the dRGT theory, like the
quasidilaton theory [17,18]. Recently, a black hole solution
to dRGT massive gravity has been found [15,16], and the
solution is in agreement with the dRGT cosmology in that
the graviton mass effectively plays the role of cosmological
constant. It was also found that the solution can be stable in
the thermodynamics language [15,16].
A bosonic field can be used to extract rotational energy

and electric charge from a black hole via the so-called
superradiant scattering. The amplitude of the bosonic field
will be amplified if its frequency satisfies the following
condition (for asymptotically flat spacetime) [19]

ω < mΩH þ qΦH. ð1Þ

In the above condition, m is the azimuthal number; q is the
particle charge; and ΩH and ΦH are the angular velocity
and electrostatic potential at the black hole horizon,
respectively. The superradiant phenomena can often lead
to an instability of the spacetime background if the super-
radiant mode is confined near the black hole horizon. The
amplitude of the bosonic field will be amplified repeatedly,
causing a non-negligible backreaction on the exterior
geometry.
In standard general relativity, the complex scalar field

on the Reissner-Nordström (RN) background is known to
suffer from superradiant instability. For example, the
massive charged scalar field on RN enclosed with a
mirrorlike boundary condition experiences charged super-
radiant instability [20]. Time domain analysis [21] on this
system reveals that the unstable modes grow a lot faster
than in the rotating case. Moreover, a massless charged
scalar field on a small RN black hole in asymptotically anti-
de Sitter (AdS) spacetime is shown to be superradiantly
unstable [22]. Despite RN in asymptotically flat spacetime
being stable against spherically symmetric charged scalar
perturbations, however, an instability of the RN black hole
in asymptotically de Sitter spacetime has been surprisingly
discovered [23]. It is shown in Ref. [24] that instability
occurs when the scalar field’s frequency satisfies the
superradiant condition. It should be noted that not all the
superradiant modes are unstable; the instability holds only
for the spherical perturbation l ¼ 0 mode, while the
superradiant mode exists in higher l.
For the rotating case, superradiant instability of the

massless scalar field on the Kerr background enclosed
with a reflecting mirror is found [25]. For nonasymptoti-
cally flat spacetime, a scalar perturbation on Kerr-AdS is
also superradiantly unstable [26]. Later, this is extended to

gravitational perturbation where hydrodynamic modes,
quasinormal modes, and unstable superradiant modes are
discussed [27]. We would like to refer the readers to
Ref. [28] for an excellent review on superradiance and
superradiant instability.
A new class of exact spherically symmetric neutral/

charged black hole solutions in dRGT massive gravity was
found in Ref. [16]. The effective cosmological constant
naturally arises in the theory and can be written in terms of
the graviton mass. One could treat these black holes as
either modified Schwarzschild/Reissner-Nordström with a
positive or negative cosmological constant depending on
the choice of free parameters. In addition, scalar perturba-
tion on neutral/charged dRGT black holes and their
thermodynamic behavior are studied in Ref. [29]. A natural
question that one might ask is whether these dRGT black
holes experience superradiant phenomena. Could de Sitter
(dS) and AdS boundaries lead to an instability caused by
the superradiant effect? What is the effect of the massive
charged scalar field on the charged dRGT black holes in
asymptotically dS and AdS spacetimes?
Themain purpose of this paper is to study the perturbation

of the massive charged scalar field in the dRGT black hole
spacetime. This is equivalent to the study of quasinormal
modes (QNMs) of black holes in the scalar channel, with
extension to the complex scalar perturbations. In contrast to
the normal modes, QNMs decay/grow with complex
frequencies that are uniquely determined by black hole’s
physical parameters, i.e., mass, charge, and angular momen-
tum. The existence of the unique linear term in the metric of
the dRGT model inevitably alters the QNMs of the charged
scalar in such a background.We address such behavior in this
paper. In Sec. II, we introduce the basic setup for constructing
the charged black hole solution in dRGT massive gravity.
Most of the details discussed in this section originate from
the work done in Ref. [16]. Then, we discuss the effects of
linear term (γ), which is the unique character of the black
holes in dRGT massive gravity, in Sec. III. In Sec. IV, the
Klein-Gordon equation of themassive charged scalar field on
the dRGT black hole spacetime is derived. Then, the QNMs
of dRGT black holes with a positive cosmological constant
are explored in Sec. V. TheQNMs of dRGT black holes with
a negative cosmological constant are calculated in Sec. VI.
In Sec. VII, we provide an analytic calculation for the
diffusive modes (QNMs with a zero real part) of the dRGT
background. Our conclusions are presented in Sec. VIII.

II. FORMALISM

The dRGT massive gravity coupled with the massive
charged scalar field is described by the action [11] (with
c ¼ 8πG ¼ 1)

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþm2
gUðg;ϕaÞ þ Lm�; ð2Þ
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where the matter Lagrangian is

Lm ≡ LEM þ LΦ;

¼ −
1

2
FμνFμν − gμνD�

ðμΦ
�DνÞΦ −m2

sΦ�Φ: ð3Þ

Graviton mass and scalar field mass are denoted by mg and
ms, respectively. The symmetrized combination of indices is
defined as XðμνÞ ¼ 1

2
ðXμν þ XνμÞ. The field strength tensor

in the curved spacetime is given by Fμν ¼ Aν;μ − Aμ;ν, and
the covariant derivative in the presence of the gauge
symmetry is Dμ ¼ ∇μ − iqAμ, where Aμ is the electromag-
netic potential and q is the charge of the scalar field Φ.
The ghost-free massive graviton self-interacting poten-

tial is given by

Uðg;ϕaÞ ¼ U2 þ α3U3 þ α4U4; ð4Þ

where

α3 ¼
α − 1

3
; ð5Þ

α4 ¼
β

4
þ 1 − α

12
: ð6Þ

U2 ¼ ½K�2 − ½K2�; ð7Þ

U3 ¼ ½K�3 − 3½K�½K2� þ 2½K3�; ð8Þ

U4 ¼ ½K�4 − 6½K�2½K2� þ 8½K�½K3� þ 3½K2�2 − 6½K4�: ð9Þ

α and β are free parameters.Kμ
ν ¼ δμν −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμσfab∂σϕ

a∂νϕ
b

p
.

½K� ¼ Kμ
μ and ½Kn� ¼ ðKnÞμμ. We will work in the unitary

gauge for which the four Stückelberg fields take the form
ϕa ¼ xμδaμ. The fiducial metric is chosen to be
fab ¼ diagð0; 0; c2; c2sin2θÞ, where c is a constant.

A. Field equations

By varying (2), three equations of motions are obtained,

Rμν −
1

2
Rgμν ¼ −m2

gXμν þ ðTF
μν þ TΦ

μνÞ; ð10Þ

Fμν
;μ ¼ Jν; ð11Þ

DaDaΦ ¼ m2
sΦ; ð12Þ

where Xμν is given by [16]

Xμν ¼ Kμν −Kgμν − α

�
K2

μν −KKμν þ
½K�2 − ½K2�

2
gμν

�

þ 3β

�
K3

μν −KK2
μν þ

1

2
Kμνf½K�2 − ½K2�

�

−
1

6
gμνf½K�3 − 3½K�½K2� þ 2½K3�g

�
: ð13Þ

The energy-momentum tensors of the gauge and scalar
fields are

TF
μν ¼ FμγFν

γ −
1

4
gμνFγλFγλ ð14Þ

TΦ
μν ¼ D�

ðμΦ
�DνÞΦþ gμνLΦ: ð15Þ

Finally, the Noether current Jν of the scalar field is

Jν ¼ iq
2
ðΦ�DνΦ −ΦðDνΦÞ�Þ: ð16Þ

B. Black hole solutions

In the absence of a charged scalar field TΦ
μν ¼ 0, the

Einstein equations (10) admit a static spherically symmetric
solution in the form [16]

ds2 ¼ −fðrÞdt2 þ f−1dr2 þ r2dθ2 þ r2sin2θdφ2; ð17Þ

where

fðrÞ ¼ 1 −
2M
r

þQ2

r2
−
Λ
3
r2 þ γrþ ϵ; ð18Þ

Λ ¼ −3m2
gð1þ αþ βÞ; ð19Þ

γ ¼ −cm2
gð1þ 2αþ 3βÞ; ð20Þ

ϵ ¼ c2m2
gðαþ 3βÞ: ð21Þ

The mass and electric charge of the black hole are denoted
by M and Q, respectively, where ϵ is a constant.
If ð1þ αþ βÞ > 0, we obtain the modified Reissner-
Nordström-AdS solution, while ð1þ αþ βÞ < 0 yields
the modified dS-type solution. In the limit c → 0, which
sets γ ¼ ϵ ¼ 0, the metric (18) becomes the standard
Reissner-Nordström solution with a cosmological constant.
In addition, if the graviton mass is set to zero, we obtain the
asymptotically flat Reissner-Nordström solution.
Apart from the parameters α and β parametrizing cubic

and quartic graviton interactions, there are two main effects
of massive gravity in the dRGT model reflected in two
parameters: the graviton massmg and the parameter c in the
fiducial metric fab ¼ diagð0; 0; c2; c2sin2θÞ. After setting ϵ
to zero [30], all physical parameters in the metric (18)
depend on m2

g, but only γ, presenting a linear term in r,
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depends on c. The cosmological constant Λ, on the other
hand, does not depend on the fiducial metric parameter c.
The two quantities Λ and γ are thus independent. We can
have a massive-gravity model withmg ≠ 0 but vanishing c,
which will lead to only the cosmological constant term in
the metric, or we can have a massive-gravity model with
nonzero c resulting in the existence of linear term γr in the
metric in addition to the cosmological constant term.

III. EFFECTS OF γ PARAMETER

We will consider effects of the γ term unique in the
massive-gravity model in this section. It will be shown for
fixed physical parametersM,Q, Λ and ϵ ¼ 0 that varying γ
could lead to spacetime with differing properties starting
from regular spacetime to a black hole and extremal black
hole. This is unique to the spacetime in massive-gravity
theories. Since we expect flat spacetime with the usual
radial coordinate centered at r ¼ 0 due to spherical
symmetry, it is reasonable to set ϵ ¼ 0, implying
α ¼ −3β. We are thus left with two independent param-
eters, β and c. For a fixed value of graviton massm2

g, Λ and
γ given by (19) and (20) remain independent.

A. Positive Λ
In general, the metric function (18) has four roots. It is

possible that all the roots are real. More specifically, for the
dS-type solution, there will be three positive roots and one
negative root. All three positive roots will be treated as
Cauchy horizon rm, event horizon rh, and cosmological
horizon rc, where rm < rh < rc. The root structure of the
metric function (18) is shown in Fig. 1. In this plot, we fix
the black hole massM, chargeQ, cosmological constant Λ,
and ϵ to be M ¼ 1, Q ¼ 0.99, Λ ¼ 0.01, and 0, respec-
tively. The four curves represent four different values of γ.
With γ ¼ −0.1 and γ ¼ 0, these black holes have three real
positive roots as shown in Fig. 1. The innermost zero is the

black hole’s inner horizon, whereas the second and the third
(outermost) zeros are the black hole’s event horizon and
cosmological horizon, respectively. For γ ¼ 0.1, there is
only one horizon located at r ≈ 37.5. More interestingly,
with γ ¼ −0.2, outside the horizon, the metric function f
is always negative; hence, the spacetime structure outside
its horizon is similar to the inside spacetime structure of
the standard Schwarzschild black hole. One observes that
as γ increases the metric function develops its second and
third nodes. Therefore, we expect that an extremal case
ðf0ðrhÞ ¼ fðrhÞ ¼ 0Þ could exist at some point in the
interval 0 < γ < 0.1 as can be seen from Fig. 1.

B. Negative Λ
For negative cosmological constant Λ, the spacetime is

asymptotically AdS. To be specific, we set the mass, charge,
and cosmological constant term to beM ¼ 1,Q ¼ 0.99, and
Λ ¼ −0.01 and consider the effect of γ on the spacetime. As
shown in Fig. 2, changing γ to a large positive value could
turn a black hole spacetime into a regular spacetime with no
horizon but with naked singularity at r ¼ 0. At approx-
imately γ ¼ 0.0175, the black hole becomes extremal with
the inner regular spacetime behind the horizon due to the
charge contribution. For 0.0175 > γ > −0.1081, we have a
small black hole (with respect to

ffiffiffiffiffiffiffiffiffiffiffi
3=jΛjp

). At γ ¼ −0.1081,
the black hole becomes extremal again with the regular inner
region of spacetime behind the horizon. In contrast to the
extremal black hole in conventional gravity where the charge
contribution generates regular spacetime inside the horizon,
this regular inner spacetime region originates from the
massive-gravity negative γ contribution. For an even more
negative value of γ < −0.1081, the black hole becomes
large.

0 10 20 30 40 50 60
2

1

0

1

2

r

f
r

0.5 1 1.5 2

0.2

0

0.2

0.4

0.10.00.10.2

FIG. 1. The behavior of metric function fðrÞ plotted against
radius for various values of γ with fixed M ¼ 1; Q ¼ 0.99;
Λ ¼ 0.01; ϵ ¼ 0. A subplot shows the behavior of fðrÞ when
r is small.

FIG. 2. The metric function fðrÞ with differing values of γ.
For demonstration, we set M ¼ 1, Q ¼ 0.99, Λ ¼ −0.01, and
ϵ ¼ 0. For γ > 0.0175, the spacetime becomes regular with no
horizon. The spacetime contains an extremal black hole when
γ ¼ 0.0175;−0.1081. For 0.0175 > γ > −0.1081, we have non-
extremal black hole spacetime. When γ < −0.1081, the black
hole becomes large with rh >

ffiffiffiffiffiffiffiffiffiffiffi
3=jΛjp

.
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IV. LINEAR PERTURBATIONS IN
ELECTROVACUUM

We shall now consider the massive charged scalar field
propagating in the background (17). We assume there is no
backreaction of the scalar field onto the spacetime geom-
etry. The evolution of the charged scalar field can be
described by the Klein-Gordon equation (12). Using the
ansatz, Φ ¼ e−iωt ϕðrÞr Yðθ;φÞ with Yðθ;φÞ the spherical
harmonics and Aμ ¼ fA0; 0; 0; 0g, the scalar field equation
becomes separable between the radial and angular parts.
The radial wave equation reads

fϕ00 þ f0ϕ0 þ
�
1

f
ðωþ qA0Þ2 −

lðlþ 1Þ
r2

−
f0

r
−m2

s

�
ϕ¼ 0;

ð22Þ
where f0 ¼ df=dr and −lðlþ 1Þ is the eigenvalue of the
angular operator. This equation (22) can be recast into the
Schrödinger-like form

−
d2ϕ
dr2�

þ
�
−ðωþ qA0Þ2 þ f

�
m2

s þ
lðlþ 1Þ

r2
þ f0

r

��
ϕ¼ 0;

ð23Þ
where we have introduced the tortoise coordinate r�,

dr�
dr

¼ 1

f
: ð24Þ

If Λ < 0, the tortoise coordinate is defined in the range
−∞ < r� < C, where r� → −∞ near the event horizon and
at infinity r� → C, where C is a positive constant. For the
Λ > 0 case, r� → −∞;∞ as r approaches outer event
horizon rh and cosmological horizon rc, respectively.

V. QNMS OF CHARGED SCALAR
IN POSITIVE Λ SPACETIME

A. Boundary condition

In the vicinity of the event horizon and cosmological
horizon, the general solution of (23) can be written as

ϕin ∼
�
e−i ~ωr� ; as r → rh
C1e−iω̂r� þ C2eiω̂r� ; as r → rc:

; ð25Þ

where ~ω≡ ðωþ qAhÞ and ω̂≡ ðωþ qAcÞ for Ah ≡
A0ðrhÞ and Ac ≡ A0ðrcÞ. Near the event horizon, there is
no outgoing wave, whereas at the cosmic horizon, there are
both ingoing and outgoing modes. This is the standard
scattering problem in black hole physics.
For normal modes, the effective potential in (23) is real,

and we can construct another linearly independent solution
to (23) by taking the complex conjugate of (25). We thus
define ϕout ¼ ϕ�

in. Then, we compute the Wronskian of
these solutions by

Wðϕin;ϕoutÞ ¼ ϕin
dϕout

dr�
− ϕout

dϕin

dr�
: ð26Þ

Next, we obtain the following by evaluating the Wronskian
at the event horizon and cosmological horizon:

Wjr�¼−∞ ¼ 2i ~ω; ð27Þ

Wjr�¼∞ ¼ 2iω̂ðjC1j2 − jC2j2Þ: ð28Þ

Since theWronskian of linearly independent solutions must
be a constant, we thus have

~ω

ω̂
jTj2 ¼ 1 − jRj2; ð29Þ

where we have defined

C1 ¼
1

T
;

C2

C1

¼ R: ð30Þ

jTj2 and jRj2 are the transmission and reflection coeffi-
cients, respectively. One can see that if jRj > 1 then we
must have ~ω

ω̂ < 0. This implies

qQ
rc

< ω <
qQ
rh

; ð31Þ

where we choose A0 ¼ −Q=r. If the frequency of the scalar
field obeys this condition. then its reflection amplitude is
greater than unity, and we thus have the superradiance
effect. This result agrees with those found in Ref. [24], in
which superradiance of charged scalar field on RN dS is
investigated. Note that in the asymptotically flat limit, i.e.,
rc → ∞, this superradiant condition reduces to those in the
standard RN case [19].
We shall now consider the quasinormal boundary con-

dition. This is obtained by considering only the outgoing
mode at the cosmological horizon. Thus, we have

ϕin ∼
�
e−i ~ωr� ; as r → rh
eiω̂r� ; as r → rc:

; ð32Þ

The frequencies satisfying this boundary condition are
called quasinormal frequencies [24,31,32]. This boundary
condition implies that the frequencies ω are complex
numbers. The scalar perturbation will be stable if
ImðωÞ < 0 (decaying). However, if ImðωÞ > 0 (growing),
we have unstable modes.
For the dS-type solution, we shall use the asymptotic

iteration method (AIM) to compute the quasinormal modes.
AIM was first developed for obtaining the solution of the
second-order ordinary differential equations [33]. Also,
AIM is applied to compute the QNMs of Schwarzschild
and Schwarzschild-de Sitter black holes [34]. Recently, the
authors of Ref. [29] used AIM to study the QNMs of black
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holes in dRTG massive gravity. AIM is also used to study
the QNMs of a charged Lifshitz black hole in Ref. [35].

B. Computation of QNMs using AIM

To calculate the quasinormal frequencies using AIM,
it is convenient to make a change of variable r ¼ 1=x. The
radial part of the Klein-Gordon equation (22) becomes

ϕ00 þ p0

p
ϕ0 þ

�ðω − qQxÞ2
p2

−
1

p

�
lðlþ 1Þ þ 2Mx

− 2Q2x2 þ γ

x
−
2Λ
3x2

þm2
s

x2

��
ϕ ¼ 0; ð33Þ

where

p ¼ Q2x4 − 2Mx3 þ ð1þ ϵÞx2 þ γx −
Λ
3
: ð34Þ

In this section, 0 denotes a derivative with respect to x.
It would be convenient to introduce [29,34,36]

eiωr� ¼ ðx − x1Þ
iω
2κ1ðx − x2Þ

iω
2κ2ðx − x3Þ

iω
2κ3ðx − x4Þ

iω
2κ4 ; ð35Þ

where xi ¼ 1=ri for i ¼ 1, 2, 3, 4, which represent each of
the real roots of fðrÞ. The outer event horizon and
cosmological horizon will be denoted by x1 and x2,
whereas the inner event horizon and a negative real root
are x3 and x4, respectively. We have also introduced the
surface gravity, which is defined as

κi ¼
1

2

df
dr

				
r→ri

: ð36Þ

For example, the surface gravity at the event horizon is
denoted by κ1. To scale out the divergent behavior at the
cosmic horizon, we define

ϕðxÞ ¼ eiωr�uðxÞ: ð37Þ

The wave equation (33) therefore takes the following
form:

u00 þ ðp0 − 2iωÞ
p

u0 −
1

p

�
lðlþ 1Þ þ 2Mx − 2Q2x2

þ γ

x
−
2Λ
3x2

þm2
s

x2
þ qQx

p
ð2ω − qQxÞ

�
u: ð38Þ

In the absence of charge q and mass ms of the scalar field,
this equation becomes similar to that of Ref. [29]. At the
event horizon, the divergent behavior is scaled out by
taking

uðxÞ ¼ ðx − x1Þ−
iω
κ1χðxÞ: ð39Þ

Finally, the radial equation becomes

χ00ðxÞ ¼ λ0ðxÞχ0ðxÞ þ s0ðxÞχðxÞ; ð40Þ

with

λ0 ¼ −
4iω

Q2ðx − x1Þðx1 − x2Þðx1 − x3Þðx1 − x4Þ
−
p0 − 2iω

p
; ð41Þ

s0 ¼
lðlþ 1Þ þ 2xðM −Q2xÞ

p
þ 2m2

s þ 3γxþ 2Λ
3px2

þ qQxð2ω − qQxÞ
p2

−
2iωp0

pQ2ðx − x1Þðx1 − x2Þðx1 − x3Þðx1 − x4Þ
−

4ω2

pQ2ðx − x1Þðx1 − x2Þðx1 − x3Þðx1 − x4Þ

þ 4ω2

Q4ðx − x1Þ2ðx1 − x2Þ2ðx1 − x3Þ2ðx1 − x4Þ2
þ 2iω
Q2ðx − x1Þ2ðx1 − x2Þðx1 − x3Þðx1 − x4Þ

: ð42Þ

By differentiating the above equation with respect to x
for n times, we obtain [29]

χðnÞ ¼ λn−2χ
0 þ sn−2χ; ð43Þ

where the coefficients λn−2 and sn−2 form a recurrent
relation as

λn ¼ λ0n−1 þ λn−1λ0 þ sn−1; ð44Þ
sn ¼ s0n−1 þ s0λn−1: ð45Þ

For sufficiently large n, the asymptotic behavior implies

sn
λn

¼ sn−1
λn−1

≡ β; ð46Þ

where β is a constant. The quasinormal frequencies ω can
be found from the quantization condition [34]

λnðxÞsn−1ðxÞ ¼ λn−1ðxÞsnðxÞ: ð47Þ
To obtain the energy eigenvalues, each coefficient will be
constructed in terms of their previous iteration via (44)
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and (45). This means each derivative of λ and s will also be
determined. The quantization condition (47) will yield the
expression for the energy eigenvalues. However, this
becomes one of the main disadvantages of this method,
since at each step one must calculate the derivative of λ and
s of the previous iteration. This can be very time consuming
and also affects the precision of the numerical calculation
[29,34]. To avoid this problem, an improved version of
AIM has been proposed by the authors of Ref. [34]. The
improved AIM overcomes the need to take the derivative at
each iteration by expanding λn and sn in a Taylor series
around the point x̄,

λnðx̄Þ ¼
X∞
i¼0

cinðx − x̄Þi; ð48Þ

snðx̄Þ ¼
X∞
i¼0

dinðx − x̄Þi; ð49Þ

where cin and din are the ith Taylor coefficients of λn and sn.
Inserting these expressions into (44) and (45), we obtain

cin ¼ ðiþ 1Þciþ1
n−1 þ din−1 þ

Xi

k¼0

ck0c
i−k
n−1; ð50Þ

din ¼ ðiþ 1Þdiþ1
n−1 þ

Xi

k¼0

dk0c
i−k
n−1: ð51Þ

The quantization condition (47) can be now expressed in
terms of these new recursion relations:

d0nc0n−1 − d0n−1c
0
n ¼ 0: ð52Þ

Thus, the improved AIM does not need the derivative
operator. The quasinormal frequency can be obtained by
solving a set of recursion relations above. The computa-
tional steps are as follows. First, the coefficients cin and din
are computed via (50) and (51) starting from n ¼ 0 and
iterating up to nþ 1 until the desired number of recursions
is reached. Then, at each iteration n, the coefficients are
determined with i < N − n, where N is the maximum
number of iterations, since the quantization condition (52)
contains only i ¼ 0. In this paper, for the asymptotically de
Sitter solution, we will calculate the quasinormal mode of
the dRGT charged black hole using the improved AIM.

C. Results

The QNMs of the dRGT massive-gravity de Sitter black
hole are calculated by Mathematica’s notebook adopted
from Ref. [37]. In Table I, we calculate the QNMs for
massless charged scalar perturbation for various values of
γ. The location of the black hole event horizon x1 and the
cosmic horizon x2 change as γ is varied. In this table, we
show three sets of quasinormal frequencies ω distinguished
by the expansion point x̄. We display the three lowest
modes of the imaginary part for each fixed γ. In each case,
we find that the lowest mode becomes the normal mode,

TABLE I. The QNMs for massless charged scalar perturbations of a charged dRGT black hole for M ¼ 1, Q ¼ 0.5;
Λ ¼ 0.01; q ¼ 0.99; ϵ ¼ 0;l ¼ 0. Note that the number of iterations for the x̄ ¼ x1þx2

2
case is 180.

QNMs calculated by improved AIM (100 iterations)

γ ωðx̄ ¼ 0.3x1Þ ωðx̄ ¼ 0.9x1Þ ωðx̄ ¼ x1þx2
2

Þ qQ=rc qQ=rh

−0.10

0.027331þ 0.009470i

0.091427 0.182945
0.045713þ 5.52 × 10−14i 0.091473 − 7.06 × 10−15i 0.067230þ 0.013379i
0.045713 − 0.035508i 0.091473 − 0.064954i 0.046779þ 0.013992i
0.045713 − 0.071017i 0.091473 − 0.129908i 0.089034þ 0.017426i

0.125727þ 0.018862i

−0.05
0.025576 − 1.85 × 10−15i 0.115275 − 6.41 × 10−13i

0.049368þ 0.012092i
0.115124þ 0.036522i

0.051152 0.2305500.025576 − 0.046854i 0.115275 − 0.159514i
0.025576 − 0.093707i 0.115275 − 0.319028i

0.00
0.015253þ 4.96 × 10−15i 0.130935 − 1.07 × 10−12i

0.021209þ 0.010103i
0.106157þ 0.042381i

0.030505 0.2618690.015253 − 0.050350i 0.130935 − 0.236556i
0.015253 − 0.100700i 0.130935 − 0.473111i

0.05
0.009612þ 1.97 × 10−10i 0.143604þ 4.92 × 10−13i

0.007692þ 0.007593i
0.096506þ 0.043602i

0.019223 0.2872080.009612 − 0.059340i 0.143604 − 0.307075i
0.009612 − 0.118680i 0.143604 − 0.614150i

0.10
0.006619þ 1.93 × 10−6i 0.154574þ 5.68 × 10−13i

0.002261þ 0.086304i
0.086305þ 0.042360i

0.013178 0.3091480.006575 − 0.074538i 0.154574 − 0.373815i
0.006590 − 0.149093i 0.154574 − 0.747629i
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i.e., zero imaginary part, while the real part is nonzero.
Moreover, as the imaginary part increases (in magnitude),
the real part of ω remains unchanged. The step of change in
the imaginary part for the same real part is also found to be
constant. These modes are the diffusive QNMs of the
uncharged black hole being shifted by Coulomb energy
when the scalar charge q is turned on. We also observe that
as γ increases the real part of ω decreases, while the
imaginary part of ω increases (in magnitude) when
x̄ ¼ 0.3x1. For the near-horizon solution (x̄ ¼ 0.9x1), as
γ increases, both the real part and imaginary part increase.
For the expansion point x̄ ¼ 0.3x1, these modes live outside
the superradiant regime, while all the results from another
point (x̄ ¼ 0.9x1) satisfy the superradiant condition (31).
Since we have found only QNMs with ImðωÞ < 0, these
modes are stable.
However, unstable modes are found when the expansion

point is x̄ ¼ x1þx2
2

. Note that the unstable QNMs obtained
from the AIM converge relatively slowly when compared to
the stable one. It can be seen from Table I that for a given γ
only themost unstablemodes live in the superradiant regime.
Therefore, not all the unstable modes discovered here are
superradiant. For the QNMs of RN dS [23], only l ¼ 0
modes are unstable, and the nature of this instability is due to
the superradiance effect [24]. Moreover, even though all the
unstable modes found in Refs. [24] (for RN dS) are super-
radiant, not all the superradiant modes are unstable.
A remarkable aspect of the results is the existence of

three kinds of solutions categorized by x̄, the near-rh, the
near-rc, and the all-region solutions. The near-rhðrcÞ
solution uses x̄ close to the event horizon (cosmic horizon)
at x1ðx2Þ, and the all-region solution uses x̄ in the
intermediate region between the two horizons. In
Table I, the near-rh (rc) solution is given by AIM for
x̄ ¼ 0.9x1ð0.3x1Þ. Each near-horizon solution is separated
by the potential wall in the background, and they have
relatively smaller energies [denoted by ReðωÞ] than the
potential wall. They are thus confined within the near-
horizon regions with the wave function exponentially

suppressed in the intermediate region where the potential
wall dominates. These modes found in the near-horizon
regions have identical real parts determined by quantity
qQ=2rhðqQ=2rcÞ as shown in Table I. In fact, we observe
that all the real parts for the near-horizon solutions in
Tables II–IV are equal to these factors. We can understand
the shift in ReðωÞ (i.e., energy) for the charged QNMs of
these modes as the electric potential energy generated from
the Coulomb interaction between the charged scalar and the
charged black hole. Table III confirms this relationship; the
value of ReðωÞ is proportional to q for a fixed Q, and it is
equal to qQ=2rhðqQ=2rcÞ. Therefore, we can conclude
that these near-horizon modes correspond to the diffusive
QNMs of the uncharged black hole being shifted (in the
real parts) by the electric potential when the charge of the
scalar field is turned on.
On the other hand, the all-region solution has energy

higher than the potential wall, and thus the QNMs of the all-
region solution have much higher ReðωÞ as shown in
Tables II–IV (exceptions are the unstable modes found in
Table I, in which the energies could become relatively small
but still higher than the potential wall). These QNMs in all-
region solutions are to be compared with values from the
Wentzel-Kramers-Brillouin (WKB) method since WKB
finds the quantization condition from connecting solutions
from the two regions around the maximum of the potential.
The effect of cosmological constant Λ on the QNMs of

charged black holes is shown in Table II. For each fixed Λ,
we show the three lowest modes of the quasinormal
frequencies. With fixed Λ, we find a normal mode as the
lowest possible mode. For the expansion point far from
the black hole’s horizon x̄ ¼ 0.3x1, the real part and the
imaginary part of the quasinormal frequencies increase as
the cosmological constant increases. For the near-horizon
point x̄ ¼ 0.9x1, the real part and the imaginary part of ω
decrease as Λ increases. It is interesting that the imaginary
part of QNMs with the same real part at each Λ increases by
a constant step for each evaluating point x̄ ¼ 0.3x1; 0.9x1.
As discussed above, these QNMs are the diffusive modes of

TABLE II. The QNMs for charged scalar perturbations of a charged dRGT black hole for M ¼ 1, Q ¼ 0.9; γ ¼ 0.02;
q ¼ 0.1; ms ¼ 0.2;l ¼ 2; ϵ ¼ 0.

QNMs calculated by improved AIM (100 iterations)

Λ ωðx̄ ¼ 0.3x1Þ ωðx̄ ¼ 0.9x1Þ ωðx̄ ¼ x1þx2
2

Þ Third-order WKB (n ¼ 0)

0.01
0.002283þ 2.27 × 10−9i 0.032466 − 3.03 × 10−12i

0.662813 − 0.101124i 0.661603 − 0.102322i0.002283 − 0.053227i 0.032466 − 0.221712i
0.002289 − 0.106455i 0.032466 − 0.443424i

0.05
0.006169þ 5.63 × 10−13i 0.031029þ 2.94 × 10−12i

0.583884 − 0.089959i 0.582789 − 0.091289i0.006169 − 0.094880i 0.031029 − 0.195734i
0.006169 − 0.189760i 0.031029 − 0.391468i

0.1
0.009885 − 6.11 × 10−15i 0.028898 − 3.67 × 10−13i

0.469468 − 0.072041i 0.468375 − 0.073434i0.009885 − 0.102078i 0.028898 − 0.155973i
0.009885 − 0.204156i 0.028898 − 0.311945i
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the scalar field in uncharged black hole background being
shifted by the Coulomb energy when the scalar charge q is
turned on. We also compute the QNMs by using the
third-order WKB approximation (see Appendix for details).
The results fromWKB and AIM are compared, and we have
used another expansion point x̄ ¼ x1þx2

2
[38]. The results

from two methods agree quite well with the difference only
being about 0.1%. Similar to the results displayed in Table I,
we find that some of theses frequencies satisfy the super-
radiant condition (with x̄ ¼ 0.9x1). In addition, we find no
unstable mode since these modes exist with ImðωÞ < 0.
In Table III, the effect of the scalar field charge q on the

QNMs of charged black holes is shown. In this case, the
black hole event horizon is located at x1 ¼ 0.652566, and
the cosmological horizon is located at x2 ¼ 0.203419. For
both sets of quasinormal frequencies, the real part ReðωÞ
increases as the scalar charge q increases. However,
increasing q does not affect the imaginary part of the

quasinormal frequency. We notice that as q increases the
real part of quasinormal frequencies is shifted up with
the constant interval, which is 0.009154 for the first x̄ and
0.029365 for the second x̄. The Coulomb shifts are simply
qQ=2rh for x̄ near the event horizon and qQ=2rc for x̄ near
the cosmic horizon. For the all-region solutions using x̄ in
the intermediate region, WKB and AIM both give quasi-
normal frequencies that are in close agreement with each
other. Some of these frequencies, i.e., mode with x̄ ¼ 0.9x1,
live in the superradiant regime where this can be seen by
checking whether the real part of ω is satisfied by the
condition (31).
The QNMs for massive neutral scalar perturbations of a

charged black hole in massive-gravity background are
displayed in Table IV. We show the results by varying
the scalar field mass ms for 0, 0.25, and 0.50. As in all
previous tables, the QNMs are shown with three different
evaluating points. Note that the all-region solution is

TABLE IV. The QNMs for scalar perturbations of a charged dRGT black hole for M ¼ 1, Q ¼ 0.5; γ ¼ −0.8;Λ ¼ 0.08; q ¼ 0;
l ¼ 2; ϵ ¼ 1.984. The black hole event horizon is at x1 ¼ 1.501496, and the cosmic horizon is at x2 ¼ 0.386506. Note that the number
of iterations for the x̄ ¼ 0.9x1 case is 180.

QNMs calculated by improved AIM (100 iterations)

ms ωðx̄ ¼ 0.3x1Þ ωðx̄ ¼ 0.9x1Þ ω0ðx̄ ¼ 0.6x1Þ ω1ðx̄ ¼ 0.6x1Þ Third-order WKB (n¼0)

0.00
−1.06×10−18−0.341129i −3.08×10−6−0.996799i 2.43×10−17−0.725025i

1.597654−0.429275i 1.594307−0.429759i6.78×10−19−0.663874i 5.99×10−6−1.977313i −1.10×10−15−1.248286i
−1.27×10−18−1.035320i −0.000029−2.967228i −1.94×10−14−1.733901i

0.25
−2.26×10−18−0.346144i −2.93×10−6−0.997271i 4.18×10−17−0.778603i

1.604779−0.427158i 1.601012−0.427723i−1.42×10−18−0.677923i 4.88×10−6−1.976085i −1.62×10−15−1.268964i
−1.25×10−19−1.029516i −3.83×10−6−2.984651i −2.99×10−14−1.746501i

0.50
1.72×10−18−0.330507i −3.73×10−6−0.996825i 4.13×10−16−0.994794i

1.625617−0.421757i 1.621181−0.421667i8.38×10−18−0.622042i 0.000015−1.983883i −3.68×10−15−1.277465i
1.24×10−18−1.001285i −6.81×10−6−2.984021i −6.49×10−14−1.781237i

TABLE III. The QNMs for charged scalar perturbations of a charged dRGT black hole for M ¼ 1, Q ¼ 0.9; γ ¼ 0.02;Λ ¼ 0.09;
ms ¼ 0.2;l ¼ 2; ϵ ¼ 0. The black hole event horizon is at x1 ¼ 0.652566, and the cosmic horizon is at x2 ¼ 0.203419.

QNMs calculated by improved AIM (100 iterations)

q ωðx̄ ¼ 0.3x1Þ ωðx̄ ¼ 0.9x1Þ ωðx̄ ¼ x1þx2
2

Þ Third-order WKB (n ¼ 0)

0.1
0.009154þ 1.32 × 10−15i 0.029365 − 3.56 × 10−12i

0.494253 − 0.076035i 0.493193 − 0.077453i0.009154 − 0.102917i 0.029366 − 0.164779i
0.009153 − 0.205834i 0.029366 − 0.329558i

0.2
0.018308þ 1.77 × 10−15i 0.058731þ 1.39 × 10−8i

0.537927 − 0.077051i 0.535105 − 0.078125i0.018308 − 0.102917i 0.058734 − 0.164776i
0.018308 − 0.205834i 0.058505 − 0.329645i

0.3
0.027462þ 8.78 × 10−15i 0.088096 − 2.24 × 10−12i

0.581910 − 0.079698i 0.577703 − 0.078755i0.027462 − 0.102917i 0.088096 − 0.164779i
0.027462 − 0.205834i 0.088097 − 0.329558i

0.4
0.036615 − 3.00 × 10−15i 0.117462 − 1.57 × 10−12i

0.625336 − 0.083623i 0.620969 − 0.079346i0.036616 − 0.102917i 0.117462 − 0.164779i
0.036616 − 0.205834i 0.117462 − 0.329558i

CHARGED SCALAR PERTURBATIONS ON CHARGED BLACK … PHYSICAL REVIEW D 96, 124001 (2017)

124001-9



computed using x̄ ¼ 0.6x1 ≈
x1þx2

2
. One distinguished fea-

ture of this table is that at x̄ ¼ 0.6x1 we obtain two branches
of quasinormal frequencies. In the first branch ω0, we show
only three lowest modes of the quasinormal frequencies. In
this branch, the real part of ω is zero, which means that
these modes are purely decayed or growing. Moreover,
increasing the scalar field mass ms slightly increases the
imaginary part of ω. For another branch we dub as ω1, we
find only one converged result for each fixed ms. We see
that ω1 is in close agreement with the results obtained from
the WKB method. In this branch, as ms increases, the real
part of ω also increases monotonically, and the imaginary
part decreases. For the near-rhðrcÞ solution, the diffusive
modes are also obtained. We display the lowest possible
value of the real part for the near-rhðrcÞ solution. Despite
some of these real parts being not exactly zero, they are the
actual diffusive modes. These nonzero real parts could be
resolved by increasing the number of iterations. It should
not be surprising that some of these modes acquire a
negative real part. This is because when q ¼ 0 the equation
of motion (33) has a symmetry under ω → −ω. The effect
of the scalar field mass on an imaginary part of ω is not
straightforward for the near-rhðrcÞ solution. One final
remark is that we find that these diffusive modes are
shifted from the real axis when the scalar charge q is
switched on. The real parts will be shifted up with a factor
qQ=2rhðqQ=2rcÞ as we increase q in a way similar to that
found in Table III.

VI. QNMS OF CHARGED SCALAR
IN NEGATIVE Λ SPACETIME

In this section, we will consider the stability of the black
hole in the current massive-gravity model whenΛ < 0. The
boundary condition at the event horizon is the ingoing
waves and at spatial infinity is zero. In this case, Eq. (23)
reduces to

d2ϕ
dr2�

¼ −ðωþ qA0Þ2ϕ; ð53Þ

for fðrÞ ≈ 0 near the horizon r≃ rh. In this region, the
scalar field takes the form

ϕðrÞ ¼ Ae−iðωþqAhÞr� ≡ Ae−i ~ωr� ; ð54Þ
where Ah ¼ kþ V0=rh. Since

r� ¼
Z

f−1dr≃ 1

f0ðrhÞ
ln jr − rhj; ð55Þ

we can rewrite the field in the near-horizon region in the
form

ϕ¼fðrÞ−i ~ω=4πTða0þa1ðr−rhÞþa2ðr−rhÞ2þ���Þ; ð56Þ

where T is the Hawking temperature.
As we approach r → ∞, the equation of motion

becomes

d2ϕ
dr2�

¼
�
m2

s −
2Λ
3

�
Λr2

3
ϕ: ð57Þ

The solution of the scalar field in the far-away region is
thus

ϕðrÞ ¼ Brα; ð58Þ

where

α ¼ −
1

2

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 −

12m2
s

Λ

r �
: ð59Þ

Wewill choose only the plus sign since we need the field to
vanish at infinity. On the other hand, there is a class of
solution that also vanishes at infinity for the minus sign
choice of (59). It is simply required that m2

s=Λ > 2=3.
Interestingly, for Λ < 0, the possibility of negative mass
square m2

s < 0 is also allowed as long as it satisfies the
above requirement.
To solve for the QNMs of the charged scalar in the

massive-gravity background, we rewrite the equation of
motion (23) as

½ðwþμð1− zÞÞ2−fðzÞð−z3f0ðzÞþlðlþ1Þz2þ ~m2Þ�ϕðzÞ
fðzÞ

þ z2
∂
∂z

�
z2fðzÞ∂ϕðzÞ∂z

�
¼ 0; ð60Þ

where we define z ¼ rh=r; w ¼ ωrh; ~m ¼ msrh. With
respect to the new coordinate, the physical region is
z ∈ ½0; 1�, the infinity is at z ¼ 0, and the horizon is at
z ¼ 1. The electric potential is also expressed as

qA0 ¼ μ

�
1

rh
−
1

r

�
; ð61Þ

where μ ¼ qQ. With this choice of gauge, the potential is
set to ground at the horizon. To calculate the QNM
frequencies, we linearize the equation of motion with
respect to w by substituting [Eq. (62)] into (60) to obtain

ϕðzÞ ¼ e−iwr�SðzÞ; ð62Þ

½ð2μwð1−zÞþðμð1−zÞÞ2Þ−fðzÞð−z3f0ðzÞþlðlþ1Þz2þ ~m2Þ�SðzÞ
fðzÞ þz2

∂
∂z

�
z2fðzÞ∂SðzÞ∂z

�
þ2iwz2

∂SðzÞ
∂z ¼0: ð63Þ
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Alternatively, we can work in the Eddington-Finkelstein
coordinates v≡ tþ r� and obtain the equation of motion
for the scalar field,

− ð−z3f0ðzÞ þ lðlþ 1Þz2 þ ~m2 þ iμz2ÞΨðzÞ

þ z2
∂
∂z

�
z2fðzÞ ∂ΨðzÞ∂z

�
þ 2iz2ðμð1 − zÞ þ wÞ ∂ΨðzÞ∂z

¼ 0; ð64Þ

which is automatically linear in w. Equations (63) and (64)
are identical for μ ¼ 0. Generically, however, even when μ
is nonzero, we expect the quasinormal frequencies calcu-
lated from both equations to be the same. We have
numerically verified that the two equations of motion
indeed give the same quasinormal frequencies.
Expanding for positive integer N

SðzÞ ¼
XN
n¼0

bnTnð2z − 1Þ; ð65Þ

where Tn is the Chebyshev polynomials of the first kind,
we obtain the linear equation of coefficients bn. In the limit
N → ∞, the expansion will be exact due to the complete-
ness of the orthonormal Chebyshev polynomials in domain
½−1; 1�. To compute the quasinormal frequencies, we adopt
the spectral method by dividing the domain of interest
ð2z − 1Þ ∈ ½−1; 1� into a finite number of grid points and
solve the system of linear equations of coefficients bn. The
choice of grid points we adopt is the Gauss-Lobatto grid
points

zk ¼
1

2

�
1þ cos

�
kπ
N

��
; ð66Þ

where k ¼ 0; 1; ::; N. The resulting system of linear equa-
tions is a generalized eigenvalue problem that can be solved
to obtain the quasinormal frequencies w for a given N. The
Mathematica code we used is adopted from Yaffe’s method
in Ref. [39].

A. Small AdS black hole

We will start with the set of physical parameters that
gives the small AdS black hole. The parameter set we will
use is a near-extremal black hole in conventional grav-
ity, M ¼ 1; Q ¼ 0.99;Λ ¼ −0.01.
The QNMs of the massless neutral scalar are shown in

Fig. 3 for the angular momentum states l ¼ 0, 1, 2. Similar
to the QNMs of fluctuations in the black brane geometry,
the QNMs show approximate asymptotic linearity in
both real and imagniary parts (also previously shown in
Ref. [40]). For l ¼ 0, 1, there are “diffusive” or “hydro-
dynamic” modes with zero real parts, another characteristic
that is similar to the QNMs of the black brane spacetime.

The effect of the massive-gravity γ parameter is shown in
Fig. 4. For diffusive modes with only imaginary parts,
positive γ generates more diffusive quasinormal frequen-
cies with smaller values. Analytic calculation of these
modes is presented in Sec. VII. Smaller diffusive QNMs
imply a longer relaxation time due to the massive-gravity
paramater γ. For other QNMs with nonzero real parts,
positive γ slightly increases the slope of the asymptotic line,
i.e., reducing the corresponding energy of each QNM,
while keeping the imaginary part mostly unchanged.
Figure 5 shows unstable QNMs when the black hole has

charge opposite that of the scalar particle, i.e., μ ¼ qQ < 0,
as we can see from the positive imaginary parts of w for
positive energy ReðwÞ > 0. The massive-gravity parameter
γ does not affect the instability in a significant way as long
as it does not change the background spacetime as
mentioned above. It only lowers the energy of the scalar
in the unstable modes. Using results of Ref. [41], after
shifting the electric potential at the horizon by qQ=rh to

FIG. 3. The lowest QNMs w ¼ ωrh for M ¼ 1; Q ¼ 0.99;
Λ ¼ −0.01; γ ¼ 0; μ ¼ 0; ms ¼ 0;l ¼ 0, 1, 2. The red/black
(blue/black, green/black) dots are for l ¼ 0ð1; 2Þ when
N ¼ 200=300. The convergence of the results is excellent, as
we can see no distinctive differences in the values of QNMs
between N ¼ 200 and N ¼ 300.

FIG. 4. The lowest QNMs w ¼ ωrh for M ¼ 1; Q ¼ 0.99;
Λ ¼ −0.01; μ ¼ 0;l ¼ 0; ms ¼ 0 for γ ¼ 0, 0.0174.
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make ground voltage at the horizon, superradiant modes
are the QNMs with ReðωÞ < 0 for μ ¼ qQ > 0. This is
equivalent to the QNMs with ReðωÞ > 0 for μ < 0 since
the equation of motion (22) depends on ðωþ qAhÞ2 and
has thus a symmetry under ω ↔ −ω; q ↔ −q. Therefore,
we can conclude that the unstable QNMs found are
superradiant modes.
One possible interpretation of the unstable modes in the

bulk is that the scalar will condensate around the black
hole horizon, resulting in a superconducting layer outside
the horizon [42]. Holographically, this would correspond to
the superconducting phase of gauge theory on the AdS
boundary. From the viewpoint of holographic duality, the
electric potential at the AdS boundary can be identified
with the chemical potential of the dual gauge matter living
on the boundary. We found that sufficiently large jμj causes
instability of the bulk scalar profile. This could be inter-
preted as the instability of the boundary dual matter phase
to condensation. It is possible that this is the condensation
of scalar charged (quasi)particles on the boundary render-
ing a superconducting phase [42]. Interestingly, the dif-
fusive modes with zero real parts disappear once the
chemical potential μ is turned on.

B. Large AdS black hole

For a sufficiently large negative value of γ, e.g., γ <
−0.1081 with M ¼ 1; Q ¼ 0.99;Λ ¼ −0.01, the black
hole turns into a large AdS black hole with rh ≳ RAdS ¼ffiffiffiffiffiffiffiffiffiffiffi
3=jΛjp ¼ 17.32. Remarkably, the QNMs become almost

purely diffusive for the massless uncharged scalar
(ms ¼ 0; μ ¼ 0) for l ¼ 0, 1, 2 as shown in Table V.

Other modes with nonzero real parts are nonconverging at
least up to N ¼ 600. At γ ¼ −0.6, the AdS black hole has a
large size with rh=RAdS ¼ 10.3. The two lowest modes that
can be obtained with reliable convengence for N ¼ 600
appear to be on the imaginary axis with very small real
parts, and the imaginary parts are almost identical between
the states with l ¼ 0, 1, 2. The oscillations are damped
overcritically away with nearly zero frequencies. Turning
on the scalar charge, μ ≠ 0, does not change the results
much; the first diffusive modes shift slowly to smaller
imaginary values, while the second diffusive modes dis-
appear. The convergence becomes very slow even at
N ¼ 600. For the l ¼ 0 state, turning on μ shifts the
diffusive mode away from the imaginary axis.
It is curious that the QNMs of scalar perturbations in

the large black hole in asymptotically AdS background in
the massive-gravity model (sufficiently large negative γ)
become almost extinct with only few converging diffusive
modes remaining. This phenomenon is purely massive-
gravity effect. For a black hole in conventional gravity
with the same mass and charge (M ¼ 1, Q ¼ 0.99, γ ¼ 0;
Λ ¼ −0.01), the horizon radius given by rh ¼ 1.121 ≪
RAdS shows that it is a small AdS black hole. As shown in
Figs. 3 and 4, this small AdS black hole has series of QNMs
of scalar perturbations. Turning on massive-gravity param-
eter γ to a large negative value changes a small AdS black
hole into a large one. As a result, most QNMs disappear
with few diffusive modes surviving.
To complete the picture, we present QNMs of the scalar

field in the large AdS black hole spacetime in conventional
gravity without a massive graviton for M ¼ 100; Q ¼ 9;
Λ ¼ −0.01 in Table VI (we need to change the mass and
charge since in Einstein gravity the parameter set M ¼ 1,
Q ¼ 0.99 will always give a small AdS black hole or no
black hole for Λ < 0). The convergence is very slow, and
only a few reliably converging modes are found. In contrast
to a large AdS black hole in massive gravity, the lowest
QNMs have nonzero real parts, and there are no diffusive
modes found (at least for this set of parameters). QNMs of a
large AdS black hole in conventional gravity are intrinsi-
cally different from the QNMs of a large AdS black hole
induced by pure massive-gravity effects (from an otherwise
small AdS black hole in Einstein gravity).
It is possible that the very slow convergence of QNMs is

partially an artifact of the numerical method we are using in
this article. A different method, e.g., the Frobenius mothod
[43], might reveal more converging QNMs for a large AdS
black hole, even the one induced by massive-gravity effects

FIG. 5. The lowest QNMs w ¼ ωrh for M ¼ 1; Q ¼ 0.99;
Λ ¼ −0.01; μ ¼ −2;l ¼ 0; ms ¼ 0 for γ ¼ 0, 0.015.

TABLE V. The lowest QNMs w ¼ ωrh forM ¼ 1; Q ¼ 0.99;Λ ¼ −0.01; μ ¼ 0; ms ¼ 0 for γ ¼ −0.6 and l ¼ 0,
1, 2. The number of grid points is N ¼ 600. The black hole is large with rh=RAdS ¼ 10.3.

n l ¼ 0 l ¼ 1 l ¼ 2

1 2.28 × 10−8 − 78.571056i −3.51 × 10−8 − 79.138264i −2.42 × 10−8 − 80.283881i
2 −0.0667 − 139.779252i 0.039062 − 140.051228i 0.046945 − 140.4673596i
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under consideration. To check the converging aspect of our
codewith respect to the QNMs of a large AdS black hole, we
compare results with previous work [43,44]. By numerically
calculating the QNMs of scalar perturbation in a large AdS
black hole spacetime with M ¼ 100;Λ ¼ −0.01, and other
parameters equal to zero (this is a large AdS black hole with
rh=RAdS ¼ 2.11), we found only the first converging modes
(n ¼ 1; w ¼ �9.333909 − 11.918457i) and the slowly con-
verging second modes (n ¼ 2; w≃�15 − 22i) even at
N ¼ 600. This demonstrates a limitation on the converging
aspect of our codewhen applied to a largeAdSblack holewith
the full metric given by (18).

VII. ANALYTIC CALCULATION OF DIFFUSIVE
MODES IN MASSIVE-GRAVITY MODEL

In this section, we will show that the QNMs of charged
scalar field perturbation in the spacetime with nonzero Λ
and γ are purely imaginary for l ¼ 0. This is the result of
the boundary conditions on the scalar field at the far
region r ≫ 1.

A. AdS case

First, we will consider asymptotically AdS space with
Λ ¼ −3=L2. Start with the equation of motion (22) in the
far region of the radial part RðrÞ ¼ ϕðrÞ=r,

�
γrþ r2

L2

�
R00ðrÞ þ

�
3γ þ 4r

L2

�
R0ðrÞ

þ
�

ω2

ðγrþ r2

L2Þ
−
�
lðlþ 1Þ

r2
þm2

s

��
RðrÞ ¼ 0; ð67Þ

where we have approximated fðrÞ≃ γrþ r2=L2 in the far
region. In a new coordinate,

y≡ 1þ r
γL2

; ð68Þ

the equation of motion in the far region can be rewritten as

yð1 − yÞ d
2R
dy2

þ ð1 − 4yÞ dR
dy

þ
�
ω2=γ2

yð1 − yÞ þ
�

lðlþ 1Þ
γ2L2ð1 − yÞ2 þm2

sL2

��
: ð69Þ

To simplify the calculation, we set l ¼ 0; the equation then
has the solution

RðyÞ ¼ y−iω̄ð1 − yÞ−1þ
ffiffiffiffiffiffiffiffi
1−ω̄2

p
hðyÞ; ð70Þ

where

hðyÞ ¼ A2F1ða; b; c; yÞ þ Bð−yÞ2iω̄2F1ðω̄ → −ω̄Þ; ð71Þ
when 2F1ða; b; c; yÞ is the hypergeometric function with

a ¼ −iω̄þ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω̄2

p
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4m2

p
; ð72Þ

b ¼ −iω̄þ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω̄2

p
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4m2

p
; ð73Þ

and c ¼ 1–2iω̄. We have used dimensionless parameters
ω̄≡ ω=γ; m≡msL. A and B are constants to be deter-
mined by the boundary conditions. Note that the second
term on the rhs of (71) is exactly the symmetric ω̄ → −ω̄
of the first term. For consideration of the QNMs, it suffices
to consider only the first term of the solution.
In the far region r ≫ 1, we can use Euler’s trans-

formation on the hypergeometric function to obtain

RðyÞ ∼
�

r
γL2

�
−3
2
þ3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4m2=9

p
ΓðcÞΓðb − aÞ
ΓðbÞΓðc − aÞ ; ð74Þ

where we have used the identity

2F1ða; c − b; c; 1Þ ¼ ΓðcÞΓðb − aÞ
Γðc − aÞΓðbÞ :

For m2 < 0, the exponent of r=γL2 in (74) is negative, the
solution is vanishing at infinity, and there is no requirement
on the ω̄. For m2 ≥ 0, on the other hand, the exponent is
positive, and we need the poles of the Gamma function to
suppress the solution at infinity, i.e.,

−iω̄þ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω̄2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4m2

p
¼ −N; ð75Þ

where N is a non-negative integer. This leads to the QNMs

ω ¼ −iγ
ðN þ 1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4m2

p
ÞÞ2 − 1

2ðN þ 1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4m2

p
ÞÞ ; ð76Þ

TABLE VI. The lowest QNMs w ¼ ωrh for M ¼ 100; Q ¼ 9;Λ ¼ −0.01; μ ¼ 0; ms ¼ 0 for conventional
gravity with γ ¼ 0 and l ¼ 0, 1, 2. The number of grid points is N ¼ 600. The black hole is large with
rh=RAdS ¼ 2.1.

n l ¼ 0 l ¼ 1 l ¼ 2

1 �9.208525 − 11.853083i �9.928185 − 11.635843i �11.165467 − 11.293674i
2 −15.404565 − 21.206122i −16.178184 − 21.188500i −16.933504 − 20.997096i

16.722404 − 21.409218i 16.955786 − 21.151278i 16.369064 − 21.117862i
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for N ¼ 0; 1; 2;…. However, the QNMs also need to
satisfy the boundary condition at small r. By using Pfaff’s
transformation

2F1ða;b; c; zÞ ¼ ð1− zÞc−a−b2F1ðc− a;c− b;c; zÞ; ð77Þ

the far-region solution for small r can be expressed as

RðyÞ ∼
�

r
γL2

�
−1þ

ffiffiffiffiffiffiffiffi
1−ω̄2

p �
1þ r

γL2

�
−iω̄

×
�
−r
γL2

�
c−b−a

2F1ðc − a; c − b; c; yÞ;

∼
�

r
γL2

�
−1−

ffiffiffiffiffiffiffiffi
1−ω̄2

p
ΓðcÞΓð2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω̄2

p
Þ

ΓðaÞΓðbÞ : ð78Þ

For the solution to be vanishing, it is required that b ¼ −N
[a ¼ −N is not consistent with (76)], giving again the
condition (76). There is a distinct difference between an
asymptotically AdS space with and without the massive-
gravity effect γ. The QNMs we found here are diffusive in
nature with pure imaginary values that exist only when γ is
nonzero. Numerical analysis confirms these diffusive
modes as shown in Fig. 4. The existence of a small black
hole in the small-r region changes the values of these
diffusive QNMs by a small quantity, however, in addition to
generating other possible vibrating modes of the QNMs.
These other possible modes already exist in a small AdS
black hole in conventional Einstein gravity.

B. dS case

A similar calculation can be performed in the asymp-
totically dS case with Λ > 0. The equation of motion in the
new coordinate y≡ 1 − r=γL2 can be written as

yð1 − yÞ d
2R
dy2

þ ð1 − 4yÞ dR
dy

þ
�
ω2=γ2

yð1 − yÞ þ
�

lðlþ 1Þ
γ2L2ð1 − yÞ2 −m2

sL2

��
: ð79Þ

This is L2 → −L2 of (69), so it has exactly the same
solution as (70) and (71) withm2 → −m2. Certainly, the far
region is different since the spacetime boundary now
becomes the cosmic horizon at rc ¼ γL2. Similar to the
AdS case, the far-region solution for l ¼ 0 in the small-r
limit (y → 1) takes the forms

RðyÞ ∼
�

r
γL2

�
−1−

ffiffiffiffiffiffiffiffi
1−ω̄2

p

2F1ðc − a0; c − b0; c; 1Þ;

∼
�

r
γL2

�
−1−

ffiffiffiffiffiffiffiffi
1−ω̄2

p
ΓðcÞΓð2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω̄2

p
Þ

Γða0ÞΓðb0Þ ; ð80Þ

where a0 ¼ aðm2 → −m2Þ and b0 ¼ bðm2 → −m2Þ,
respectively. Therefore, we have the QNMs given by

ω ¼ −iγ
ðN þ 1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4m2

p
ÞÞ2 − 1

2ðN þ 1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4m2

p
ÞÞ

; ð81Þ

for N ¼ 0; 1; 2;… in order to make the far-region solution
vanish at small r.
The QNMs considered will certainly be modified by the

presence of a black hole, either by developing real parts and
new QNMs or shifting the imaginary values of the original
diffusive modes unique to the massive-gravity model. As is
argued in Ref. [22], turning on the electric potential at the
horizon should simply shift the real parts of QNMs by
qAh ¼ qQ=rh for the asymptotically AdS case. In the dS
case, the results in Tables I–III show that shifts of the real
parts of QNMs in the near-horizon regions are actually
qQ=2rhðqQ=2rcÞ for the near-rhðrcÞ solutions. In the
presence of massive-gravity parameter γ, shifts in the real
parts also depend on γ as shown in Table I.

VIII. CONCLUSIONS

In this paper, we have studied the effect of massive
charged scalar perturbations on charged black hole space-
time in dRGT massive gravity. Notable effects of massive
gravity are the generation of the cosmological constant
term and the linear term in the metric (18) from the
combination of massive graviton mass, cubic and quartic
graviton interactions, and the fiducial metric. Physically,
only the fiducial metric determines the linear γr term in the
sense that it will be zero if c is vanishing. A physical
interpretation of the fiducial metric is an extra-dimensional
pullback from the bulk metric [45] or from the second site
of the two-site theory [46]. We have explored the effect of
the γ term on the spacetime structure. It is found that the
spacetime structure is very sensitive to the value of γ. For
the dS case, the metric (18) has three positive real roots
associated with the Cauchy horizon, the event horizon, and
the cosmological horizon, respectively. At some fixed value
of γ, we obtain an extremal charged black hole where the
Cauchy and event horizon of black hole coincide. For the
AdS case, one can have a standard charged AdS black hole,
an extremal charged AdS black hole, or even regular
spacetime with no horizon depending on the value of γ.
In Sec. V, the QNMs of a black hole in asymptotically dS

space in the dRGT model are computed. The numerical
scheme called the asymptotic iteration method [33] is
applied for calculating the quasinormal frequencies. We
find unstable modes for the lowest angular harmonic index
l ¼ 0. Some of these unstable modes live in the super-
radiant regime. However, not all the superradiant modes are
unstable. On the other hand, we find no evidence of any
instabilities for l ¼ 2. All the dS black holes we investigate
in this case appear to be stable under small perturbation.
Since the perturbation decays with time, these scalar modes
do not suffer from the superradiant instability. The QNMs
for the all-region solutions are also computed via the
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third-order WKB approximation and are in good agreement
with the results obtained from the AIM. With q ¼ 0, the
quasinormal frequencies with a vanishing real part (the
diffusive mode) are discovered. We find that as q increases
the real part of ω is shifted up by qQ=2rhðqQ=2rcÞ for
these modes. They correspond to the near-event (cosmic)-
horizon solutions. In addition, when q is nonzero, the
normal mode with zero imaginary parts is found as the
lowest possible mode. Finally, it is found that the black
holes become more stable as γ gets larger.
In Sec. VI, the QNMs of a black hole in asymptotically

AdS space in dRGT massive gravity are explored. For a
small black hole in negative cosmological constant space-
time, the QNMs have asymptotic linear dependence on the
mode number n. This can be shown using the monodromy
method and other approximation schemes (see, e.g.,
Ref. [31] and references therein) for asymptotically AdS
space in conventional Einstein gravity. In the massive-
gravity model considered here, the linearity persists as long
as the massive-gravity effect does not regulate or alternate
the black hole spacetime. Charged perturbation of the scalar
field in the charged AdS black hole background could
become unstable with positive imaginary parts of QNMs
(Fig. 5). Massive-gravity effects reduce the energy of these
unstable modes but leave the characteristic time almost
unchanged. In a holographic viewpoint, the gauge theory
dual of these situations is possibly the condensation of
charged scalar (quasi)particles resulting in a superconduct-
ing phase.
Analytic calculation of the QNMs in the spacetime with

massive-gravity parameter γ in Sec. VII shows that the
QNMs form a diffusive tower with the size proportional to γ
for l ¼ 0. In contrast to empty AdS in which all the QNMs
are normal modes, the linear term γr in the metric induces a
pseudohorizon at r ¼ 0 in the asymptotically far region,
rendering all QNMs imaginary. Numerical results in both
dS and AdS cases confirm the existence of these modes,
albeit deformed by the presence of a black hole in the
background.
As a possible extension of this work, a time-domain

analysis of linear charged scalar perturbation on charged
dRGT black hole background is needed to confirm the
frequency-domain stability presented in this paper. Since
we have shown that the AdS black holes are superradiantly
unstable, therefore, it would be an interesting task to
investigate the end point of this instability. Many works
have suggested that a hairy black hole could be the end
point of superradiant instability [47–49]. A possible end
point of a black hole in the dRGT model could be a black
hole with massive graviton hair similar to the one studied
in Ref. [50].
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APPENDIX: WKB APPROXIMATION

To study QNMs of black holes, since the equation of
linear perturbation of a black hole can be recast into the
Schrödinger-like form, one may apply WKB approxima-
tion to estimate possible modes of a black hole. In
conventional quantum mechanics, the essence of the WKB
method involves considering approximate solutions to
each asymptotic region and matching them together to
obtain approximated QNMs of the black hole. The WKB
approach makes use of a Schrödinger-like differential
equation of the following form [51–54]:

d2ϕ
dr2�

þQðr�Þϕ ¼ 0: ðA1Þ

Comparing this with (23), we can find the correspondingQ:

Q ¼ ðωþ qA0Þ2 − f
�
m2

s þ
lðlþ 1Þ

r2
þ f0

r

�
: ðA2Þ

In the Schrödinger equation language, Q is equivalent to
2mðE − UÞ=ℏ2, wherem is the mass, E is the energy, andU
is the potential of a one-dimensional system. Despite the
probably complex form of Q, the property of Q around its
extremum r�0 can be approximated to be that of a parabola.
To this end, we can perform a Taylor expansion ofQ around
its extremum point as

Qðr�Þ ¼ Qðr�0Þ þ
1

2
Q00ðr�0Þðr� − r�0Þ2 þ � � � ;

Q0ðr�0Þ ¼ 0; ðA3Þ

where a prime denotes a derivative with respect to r�. From
now on, we will use the following shorthand notation:

Q0 ≡Qðr�0Þ; Q00
0 ≡Q00ðr�0Þ; and so on: ðA4Þ

Through this expansion, it is clear that we can estimate a
solution around r�0 to be that of a system of whichQ (or the
corresponding potential U) is a parabola. By requiring the
boundary condition for QNMs (the near-horizon field goes
into the black hole, and the field at r → ∞ goes outward to
∞), it is possible to obtain the matching condition from the
approximate solution,

iQ0ffiffiffiffiffiffiffiffiffi
2Q00

0

p − iΛ̄ −Ω ¼
�
nþ 1

2

�
; ðA5Þ
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where

Λ̄ ¼ 1

ð2Q00
0Þ1=2

�
1

8

�
Qð4Þ

0

Q00
0

��
1

4
þ α2

�

−
1

288

�
Q000

0

Q00
0

�
2

ð7þ 60α2Þ
�
; ðA6Þ

Ω ¼ α

2Q00
0

�
5

6912

�
Q000

0

Q00
0

�
4

ð77þ 188α2Þ

−
1

384

�
Q0002

0Q
ð4Þ
0

Q003
0

�
ð51þ 100α2Þ

þ 1

2304

�
Qð4Þ

0

Q00
0

�2

ð67þ 68α2Þ ðA7Þ

1

288

�
Q000

0 Q
ð5Þ
0

Q00
0
2

�
ð19þ 28α2Þ − 1

288

�
Qð6Þ

0

Q00
0

�
ð5þ 4α2Þ

�
;

ðA8Þ

α≡ nþ 1

2
; n ∈ f0; 1; 2;…g for ReðωÞ > 0: ðA9Þ

The fundamental mode is represented by n ¼ 0. Particularly,
the first term on the left-hand side of (A5) corresponds to the
first-order WKB approximation [51], and the second term
and the third term correspond to the second-order and third-
order WKB approximations, respectively [52,53].
In the Schwarzschild case, Q can be expressed as

Q ¼ ω2 − Vðr�Þ, and V is an ω-independent function,
which simply makes the evaluation of the second derivative
ofQ relatively easy. However, in general, each order of the
derivative of Q depends on ω, which makes the matching
condition cumbersome to deal with. In our study, we use
the following techniques. First, we rewrite (A5) as follows:

iQ0 ¼
ffiffiffiffiffiffiffiffiffi
2Q00

0

q �
iΛ̄þ Ωþ

�
nþ 1

2

��
: ðA10Þ

We then substitute Q0 by using (A2) as follows:

�
ðωþ qA0Þ2 − f

�
m2

s þ
lðlþ 1Þ

r2
þ f0

r

��				
r0

¼
ffiffiffiffiffiffiffiffiffi
2Q00

0

p
i

�
iΛ̄þΩþ

�
nþ 1

2

��
: ðA11Þ

To approximate the quasinormal frequencies, we will
perform an iteration using (A11). Given a random value
of ω0, we compute for r0ðω0Þ, which minimizes Qðω0Þ;
then, we find ω1 from the following:

ðω1 þ qA0ðr0ÞÞ2 −
�
f

�
m2

s þ
lðlþ 1Þ

r2
þ f0

r

��				
r0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q00

0ðr0;ω0Þ
p

i

�
iΛ̄ðr0;ω0Þ þΩðr0;ω0Þþðnþ 1

2

��
:

ðA12Þ

Furthermore, we find successive ωi iteratively via a similar
equation,

ðωiþ1 þ qA0ðr0ÞÞ2 −
�
f

�
m2

s þ
lðlþ 1Þ

r2
þ f0

r

��				
r0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q00

0ðr0;ωiÞ
p

i

�
iΛ̄ðr0;ωiÞþΩðr0;ωiÞþ

�
nþ 1

2

��
;

ðA13Þ

where r0 ¼ r0ðωiÞ in this case. The iteration is performed
until the difference between successive frequencies is less
than 1%, and we take the frequency from the last iteration
to be our approximate quasinormal frequency.
In spite of the simple procedures, the WKB approxima-

tion is said to yield satisfactory results when the azimuthal
number l is greater than n. Moreover, since we consider
two kinds of black hole solutions, dS and AdS black holes,
the matching condition used here only corresponds to the
dS case. In the dS case, the field at r → ∞ tends to
propagate outward as a plane wave, while this is not the
case in the AdS case. The matching techniques in
Refs. [51–53] only utilize the boundary condition of a
field propagating outward and thus correspond to the
property of the far-field limit in dS geometry.
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