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The relativistic generalization of the Newtonian Lagrangian perturbation theory is investigated. In
previous works, the perturbation and solution schemes that are generated by the spatially projected
gravitoelectric part of the Weyl tensor were given to any order of the perturbations, together with extensions
and applications for accessing the nonperturbative regime. We here discuss more in detail the general first-
order scheme within the Cartan formalism including and concentrating on the gravitational wave
propagation in matter. We provide master equations for all parts of Lagrangian-linearized perturbations
propagating in the perturbed spacetime, and we outline the solution procedure that allows one to find
general solutions. Particular emphasis is given to global properties of the Lagrangian perturbation fields by
employing results of Hodge–de Rham theory. We here discuss how the Hodge decomposition relates to the
standard scalar-vector-tensor decomposition. Finally, we demonstrate that we obtain the known linear
perturbation solutions of the standard relativistic perturbation scheme by performing two steps: first, by
restricting our solutions to perturbations that propagate on a flat unperturbed background spacetime and,
second, by transforming to Eulerian background coordinates with truncation of nonlinear terms.
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I. INTRODUCTION

In this series of papers we generalize the Lagrangian
perturbation theory to relativistic cosmology by employing
spatial Cartan coframes as the only perturbation variable. In
[1] we investigated 3þ 1 first-order solutions for the trace
and antisymmetric parts of perturbations of a dust fluid, and
we proposed an extrapolation in the spirit of Zel’dovich’s
approximation [2–4].1 In [10] the resulting nonperturbative
scheme of structure formation was then applied to quantify
average properties of inhomogeneous cosmologies in rela-
tion to the dark energy and dark matter problems. In [11] we
gave the general perturbation and solution schemes at any
order of the perturbations that cover the full hierarchy of the
Newtonian Lagrangian perturbation and solution schemes.
In this paper we proceed with a detailed discussion of the

general first-order scheme concentrating on the trace-free
symmetric parts of the perturbations and, thus, focusing
on gravitational waves propagating in continuous matter.

The recent detections of gravitational waves by the LIGO/
VIRGO teams [12] has heated up this research subject, and
we here provide further steps toward a nonlinear compre-
hension of the theory of gravitational waves; for a historical
account and references see [13]. As in previous work we
restrict our attention to irrotational dust continua for
simplicity. The generalization to more general matter
models and general foliations of spacetime is scheduled.
We recall the conceptual differences of our framework

compared with the standard approach in relativistic cosmol-
ogy (for a list of key references on the standard approach as
well as work that relates to our approach see [11]). We
choose the (spatially diffeomorphism invariant) Cartan
coframes as a single perturbation variable, not the metric;
we seek to describe the evolution of the perturbation fields
intrinsically, thus operating on the physical Riemannian
manifold, not on a global background manifold. As a
consequence, perturbations cannot be expressed in terms
of inertial (Eulerian) coordinates of the background, but in
terms of local coordinates in the tangent spaces at each point
of the physical manifold. These local coordinates take
the role of Lagrangian coordinates in a flow-orthogonal
(comoving) foliation of spacetime, adopted in this paper.
With this approachwe expect to capture nonlinear properties
of gravitational waves, since a perturbative solution of these
latter propagate in the perturbed spacetime, not in the
background spacetime. This holds true even for linearized
solutions for the Cartan coframes that we will consider

*Corresponding author.
buchert@ens-lyon.fr

1In Newtonian cosmology in its Lagrangian form [5,6] this
extrapolation is obtained by employing general functional ex-
pressions of the perturbed variable (see also the original proposal
[7] and the discussions in [8,9]; recall that a relativistic gener-
alization of Zel’dovich’s approximation can only be identified
with a Lagrangian perturbation solution, if the full system of
equations can be expressed in terms of a single variable [1]).
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throughout this paper. As for the gravitoelectric part of the
relativistic solutions, studied in [11], we here will also
demonstrate how the solutions of the gravitomagnetic part of
the standard perturbation approach are recovered. The
reader may consult the introduction to [11] for further
explanation of this approach.
This paper is structured as follows. Section II recalls the

basic system of equations and provides the general pertur-
bation scheme up to the first order; we rewrite this scheme
in a couple of steps by employing decompositions in terms
of symmetry and a split into gravitoelectric and gravito-
magnetic parts; we then summarize the equations for each
part in terms of master equations. Section III provides an
alternative global view on the perturbation scheme by
employing Hodge–de Rham theory. Section IV performs
a detailed comparison with the standard first-order
approach to gravitational waves. Section V discusses the
results with an outlook. In Appendix A we provide the
Lagrangian propagation equations for the gravitoelectric
and gravitomagnetic parts of the Weyl tensor.

II. FOUNDATIONS AND FIRST-ORDER
PERTURBATION SCHEME

First, we will provide a brief recapitulation of the basic
system of equations and the perturbation ansatz.

A. Foundations

As in previouswork, we employ a flow-orthogonal space-
time foliation admitting the following bilinear metric forms:

ð4Þg ¼ −dt ⊗ dtþ ð3Þg; with ð3Þg ¼ gijdXi ⊗ dXj;

ð1Þ
where we denote by Xi Gaussian normal (or Lagrangian)
coordinates. The spatial metric form is decomposed into
Cartan coframes,

ð3Þg ¼ Gabηa ⊗ ηb; ð2Þ
where GabðXÞ is Gram’s matrix that encodes the initial
metric perturbations [see Eq. (9) below]. The dynamical
variable is composed of a t parametrization of three spatial
one-form fields.2

The system of 3þ 1 coefficient equations for the
Einstein equations of an irrotational dust model, projected
on the exact cotangent basis dXi reads3

Gab _η
a
½iη

b
j� ¼ 0; ð3Þ

1

2J
ϵabcϵ

ikl∂tð_ηajηbkηclÞ ¼ −Ri
j þ ð4πGϱþ ΛÞδij; ð4Þ

1

2J
ϵabcϵ

mjk _ηam _η
b
jη
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k ¼ −

R
2
þ ð8πGϱþ ΛÞ; ð5Þ
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l
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∥i
¼

�
1

J
ϵabcϵ

ikl _ηaiη
b
kη
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l

�
jj
; ð6Þ

an overdot denotes a partial derivative with respect to the
coordinate time (being equivalent to the covariant time
derivative in the present setting); a double vertical slash
denotes the covariant spatial derivative with respect to the
3-metric, the connection is assumed to be Levi Cività; the
dust density is given by ϱ ¼ ϱiJ−1, J ≥ 0, where the index
i marks initial data; J defines the coefficient function of the
3-volume form, J ≡ ffiffiffi

g
p

=
ffiffiffiffi
G

p
, with

ffiffiffi
g

p
d3X the 3-volume

form on the exact basis, g ≔ detðgijðX; tÞÞ and G ≔
detðGijÞ ¼ detðgijðX; tiÞÞ; Rij denote the coefficients of
the spatial Ricci tensor, with R its trace; the constant Λ is
the cosmological constant.
The set of equations f(3)–(6)g is composed of 13

equations, where the first 9 equations are the needed
evolution equations for the 9 coefficient functions of the
3 Cartan coframe fields, while the remaining 4 equations
originate from the energy and momentum constraints.
A key insight underlying previous work is the possibility

of paraphrasing formalisms and results of the Newtonian
description in Lagrangian form [5,6,14] that allowed
construction of a part of the relativistic perturbation
solutions in [11].4 This insight is based on the formal
analogy between the Lagrange-Newton system of equa-
tions and the following set of 4 equations, in which the
Ricci curvature is eliminated. It is composed of the first
3 Eqs. (3), and Raychaudhuri’s equation [derived from the
trace of the equation of motion (4) combined with the
energy constraint (5)],5

Gabη̈
a
½iη

b
j� ¼ 0;

1

2J
ϵabcϵ

iklη̈aiη
b
kη

c
l ¼ Λ − 4πGϱ: ð7Þ

2Note that in place of orthonormal coframes we employ more
general adapted coframes; see [10,11] for more details. Restrict-
ing the orthonormal spatial coframes ηaon to exact forms ηaon ¼
dfa implies for the 3-metric a spatial diffeomorphism equiv-
alence with a Euclidean space. This statement is obvious for
orthonormal coframes, but it also remains true for our adapted
coframes and the requirement of being exact, as long as we
assume exactness for the orthonormal coframes: the reader may
consult Appendix A in [11] for the proof of equivalence of this
property for both types of coframes. Requiring exactness of the
coframes also implies that the counterindices (denoted by
a; b; c � � �) can then be used as coordinate indices (denoted by
i; j; k � � �); the functions fa then define coordinates xi ¼ fa→i.

3We here only give the equations in coordinate components;
for their representation in terms of differential forms the reader is
directed to [1,11].

4This part, however, completely covers all Newtonian solu-
tions at any order, whose explicit expressions in this representa-
tion were given up to the fourth order [15–19].

5Equations (3) imply Gabη̈
a
½iη

b
j� ¼ 0.
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For integrable coframe coefficients (or exact forms) the
above system is closed and equivalent to the Lagrange-
Newton system. A short discussion of the interrelation
between the Lagrange-Newton system and the above
gravitoelectric part of the Lagrange-Einstein system can
be found in [20].

B. Perturbation ansatz

We follow the prescription of [11] and decompose the
coframes into a Friedmann-Lemaître-Robertson-Walker
(FLRW) coframe and deviations thereof, the perturbations
being locally developed to a given order n,

ηa ¼ ηaidXi ¼ aðtÞ
�
δai þ

X
n

Pa
i
ðnÞ
�
dXi; ð8Þ

in the local basis dXi. We use the normalization
aðtiÞ≡ ai ¼ 1. The local metric coefficients are given by6

gij ¼ Gabη
a
iη

b
j; Gij ≔ gijðtiÞ; ð9Þ

with Gij ¼ Gabη
a
iðtiÞηbjðtiÞ ¼ Gabδ

a
iδ

b
j.

As the coframes are the only dynamical variables, we
are entitled to employ functional definitions of all other
variables such as the density, the metric, or the curvature in
terms of the deformation of the manifold at a given order.
The strategy followed in previous work of this series was
to inject the n-order coframes into these functional defi-
nitions without further truncation, furnishing nonperturba-
tive approximations that may improve iteratively by going
to higher order deformations. In this paper, however, we do
not exploit this strategy and concentrate on strictly linear-
ized equations.
The deformation coefficients Pa

i only appear summed
over the noncoordinate index in the equations, so we
introduce the following tensor coefficients and their trace:

Pi
j ≡ δa

iPa
j and P≡ Pk

k ¼ δa
kPa

k; ð10Þ

and we use this notation throughout this paper. Confining
ourselves to first-order deviations, we have for the coef-
ficients of the perturbation one-forms,

ηai ¼ aðtÞðδai þ Pa
iÞ; ð11Þ

and we have for the metric coefficients (9),7

gij ¼ a2ðtÞðGij þ 2PðijÞ þ PaiPa
jÞ; ð12Þ

we have defined

Pij ≔ GaiPa
j: ð13Þ

For further details, especially concerning the initial data,
the reader is directed to [11]. However, we here briefly
recall the notations for the general initial data set.
We have chosen to prescribe initial data (being consid-

ered, without loss of generality, first order) in terms of the 6
one-form fields Ua ¼ Ua

idXi and Wa ¼ Wa
idXi, being

nonintegrable generalizations of the Newtonian peculiar-
velocity and -acceleration gradients, and the initial values
of the perturbations [Pa

iðtiÞ ≕ Pa
i] together with their

time derivatives,8

8>><
>>:

Pa
i ¼ 0;

_Pa
i ¼ Ua

i; U½ij� ¼ 0;

P̈a
i ¼ Wa

i − 2HiUa
i;W½ij� ¼ 0;

ð14Þ

with the Hubble function H ¼ _a=a at initial time, Hi ¼ _ai
(we recall the normalization of the scale factor to be
ai ¼ 1). We use the abbreviations δkaUa

k ≕ U, δkaWa
k ≕

W for the trace expressions. The energy and momentum
constraints have to be obeyed for admissible initial data,

(
HiU ¼ −ℛ

4
−W;

ðUa
jδa

iÞ∥i ¼ ðUa
iδa

iÞjj;
ð15Þ

with the initial Ricci curvature as found from the equation
of motion (4),

Rð1Þ
ij ðtiÞ ≕ ℛij ¼ −ðWij þHiUijÞ − δijðW þHiUÞ:

ð16Þ

These initial data determine the problem completely: in our
3þ 1 split, the system of equations of motion for the
coframes f(3)–(6)g is composed of the 6 second-order
differential Eqs. (4). As Uij and Wij are symmetric
3-matrices [originating from Eqs. (3)], they provide the
12 initial conditions needed for the first and second
derivatives of the coframes. For both, the initial data and
the coframes there are 4 constraints.

C. First-order equations

The first-order Lagrange-Einstein system [the index (1)
is omitted for the perturbation fields but kept for the Ricci
curvature] read

_P½ij� ¼ U½ij�a−2 ¼ 0; ð17Þ
6Recall that with this ansatz we choose to perturb a zero-

curvature FLRW model, since it is possible to encode an initial
first-order constant curvature in the coefficient functionsGab [11].7Note that only the zero-order metric tensor will appear in the
linearized equations. 8 _Pa

i or P̈
a
i is a shorthand of _Pa

iðtiÞ or P̈a
iðtiÞ, respectively.
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P̈ij þ 3H _Pij ¼ −a−2
�
Rð1Þ

ij −
Rð1Þ

4
a2δij

�
; ð18Þ

H _Pþ 4πGϱHia−3P ¼ −
Rð1Þ

4
− a−3W; ð19Þ

_Pi
½ijj� ¼ 0: ð20Þ

A more transparent representation of these equations
decomposes the deformation fields into trace, trace-free
symmetric, and antisymmetric parts,

Pij ¼ PðijÞ þ P½ij� ¼
1

3
Pδij þ Πij þPij; ð21Þ

where we defined Πij ≔ PðijÞ − 1=3Pδij, Pij ≔ P½ij�, and
we introduce the trace-free symmetric part of the Ricci

tensor, τð1Þij ≔ Rð1Þ
ij − 1=3Rð1Þδij. The first-order system for

the deformation coefficients now reads

_Pij ¼ U½ij�a−2 ¼ 0; ð22Þ

P̈þ 3H _P ¼ −
Rð1Þ

4
; ð23Þ

Π̈ij þ 3H _Πij ¼ −a−2τð1Þij ; ð24Þ

H _Pþ 4πGϱHia−3P ¼ −
Rð1Þ

4
− a−3W; ð25Þ

1

3
_Pjj −

1

2
ð _Πi

jÞji ¼ 0: ð26Þ

In order to solve the first-order trace equation and the
traceless symmetric equation, it is necessary to express the
first-order scalar curvature and the traceless Ricci tensor
ð1Þτij. To do so, we inject the metric and its inverse,
truncated to first-order,

gij ¼ a2ðδij þGð1Þ
ij þ 2PðijÞÞ; ð27Þ

gij ¼ a−2ðδij −Gijð1Þ − 2PðijÞÞ; ð28Þ

into the definitions of the spatial Christoffel symbol and
spatial Ricci tensor, also making use of the momentum
constraints, to obtain

Γk
ij
ð1Þ ¼ 1

2
δkl

�
Gð1Þ

lijj þ Gð1Þ
ljji −Gð1Þ

ijjl
�

ð29Þ

þ δklðPðliÞjj þ PðljÞji − PðijÞjlÞ; ð30Þ

Rð1Þ
ij ¼ Gð1Þ

i½kjj�
jk þ Gkð1Þ½jjk�i þ Pi½kjj�jk þ Pj½kji�jk; ð31Þ

Rð1Þ ¼ 2a−2Glð1Þ
½kjl�

jk ≕
ℛ
a2

: ð32Þ

Using the split into parts with different symmetries, we also
express the curvature through the parts P and Πij. A further
manipulation, using again the momentum constraints,
allows one to rewrite some terms in the curvature to obtain

Rð1Þ
ij ¼ ℛij þ Pjij −

1

3
Pjkjkδij − Πij

jk
jk; ð33Þ

Rð1Þ ¼ a−2ℛ: ð34Þ

We can now write the first-order traceless part of the Ricci
curvature tensor as

τð1Þij ¼ T ij þ Pjij −
1

3
Pjkjkδij − Πij

jk
jk; ð35Þ

where we defined T ij ≔ τijðtiÞ ≔ ℛij − 1=3ℛδij. These
expressions for the intrinsic curvature show that first-order
perturbations only generate traceless curvature in the
course of time, while the trace is a conformal rescaling
of the initial scalar curvature.
Knowing the first-order scalar curvature and the trace-

less Ricci tensor, we can inject them into the first-order
system for the deformation coefficients (22)–(26). In this
step we also perform the time integration of the (trivial)
antisymmetric part and of the momentum constraints, and
apply the constraints on initial data (14) and (15),9

Pij ¼ PijðtiÞ; PijðtiÞ ¼ 0; ð36Þ

P̈þ 3H _P ¼ −
a−2ℛ
4

; ð37Þ

Π̈ij þ 3H _Πij − a−2Πij
jk
jk

¼ −a−2
�
T ij þ Pjij −

1

3
Pjkjkδij

�
; ð38Þ

H _Pþ 4πGϱHia−3P ¼ −
a−2ℛ
4

− a−3W; ð39Þ

2

3
Pjj ¼ Πk

jjk: ð40Þ

In the following subsection, we will separate the symmetric
traceless deformation field Πij into a part that is (through
the momentum constraints) determined to have the same
time dependence as the trace P, and a part that encodes free
gravitational waves.

9Note that there is no constant of integration appearing in
Eq. (40), because we chose our initial data in (14) such that
Pa ¼ 0.
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D. First-order master equations

In this subsection, evolution and constraint equations
will be combined into a set of equations for the symmetric
parts of the first-order perturbation fields (the antisymmet-
ric part is trivially solved). The result is a set of equations
that we will call master equations.

1. Master equations for the trace and traceless
symmetric parts

Inserting the energy constraint (39) into the evolution
Eq. (37) provides the master equation for the trace part
(Raychaudhuri’s equation),

P̈þ 2H _P − 4πGϱHia−3P ¼ a−3W: ð41Þ
For the example of an Einstein–de Sitter universe model
(EdS), the solution reads

P ¼ 3

5

��
Uti þ

3

2
Wti2

�
a−ðUti −Wti2Þa−3

2 −
5

2
Wti2

�
:

ð42Þ
In the same spirit, we combine the momentum constraints
(40) with the traceless part of the evolution Eq. (38). We
eliminate the initial traceless curvature via the initial data
set (16) and obtain the following master equation for the
traceless symmetric part:

Π̈ij þ 3H _Πij − a−2ðWtl
ij þHiUtl

ijÞ

¼ a−2
�
Πij

jk
jk þ

1

2
δijΠk

ljkjl −
3

2
Πk

jjki

�
; ð43Þ

with tl denoting the traceless part of the initial tensor fields.
We note that the trace and the traceless part of the
perturbation fields are coupled via the momentum con-
straints (40). Thus, their dynamics is not independent.
Understanding how they are coupled is in the focus of the
next subsection.

2. The gravitoelectric and gravitomagnetic parts

We now split the traceless symmetric part into a
component that is coupled to the trace, EΠij, and one that
is decoupled from it, HΠij. As was explicitly shown in [11],
EΠij can be obtained from a generalization of the
Newtonian trace solution. We will now show that it is
separable in space and time and has the same time
dependence as the trace P. Furthermore, we will show
that EΠij and HΠij are closely related to the gravitoelectric
and gravitomagnetic parts of the spatially projected Weyl
tensor (hence our index notations E and H).
From the momentum constraints (40) we infer that a

decoupling of HΠij from P implies that it must be
divergence-free. We write (40) as

2

3
Pjj ¼ Πk

jjk ≕ ðEΠk
jjk þ HΠk

jjkÞ; ð44Þ

which can then be divided into two separate constraints,

2

3
Pjj ¼ EΠk

jjk; HΠk
jjk ≔ 0: ð45Þ

We split the initial data accordingly,

Uij ≕ EUij þ HUij; Wij ≕ EWij þ HWij: ð46Þ
The initial traceless part of the Ricci curvature reads

Wtl
ij þHiUtl

ij ≕ ðEWtl
ij þHi

EUtl
ijÞ þ ðHWtl

ij þHi
HUtl

ijÞ:
ð47Þ

The propagation of the constraint Eqs. (44) guarantees the
preservation of the decomposition (45) in time.
This split can be carried through to the master Eq. (43).

Inserting the superposition Πij ¼ EΠij þ HΠij, we first
extract the divergence-free part, which obeys the master
equation for the gravitomagnetic part,

HΠ̈ij þ 3HH _Πij − a−2HΠij
jk
jk ¼ a−2ðHWtl

ij þHi
HUtl

ijÞ:
ð48Þ

This equation describes the propagation of gravitational
waves and has the form of d’Alembert’s equation with a
damping term due to expansion—note the important differ-
ence to the standard perturbation approach, discussed in
Sec. IV: this equation assumes this form in the local
coordinates of the tangent spaces at each point of the
manifold.
The gravitoelectric part EΠij is the solution of

EΠ̈ij þ 3HE _Πij − a−2ðEWtl
ij þHi

EUtl
ijÞ

¼ a−2
�

EΠij
jk
jk þ

1

2
δij

EΠk
ljkjl −

3

2
EΠk

jjki

�
: ð49Þ

As was explicitly shown in [11], and as can be obtained
from Eq. (45), EΠij has the same time dependence as the
trace part P. It is therefore the solution of the master
equation for the gravitoelectric part, which is formally
analogous to (37) [using (15)],

EΠ̈ij þ 3HE _Πij ¼ a−2ðEWtl
ij þHi

EUtl
ijÞ: ð50Þ

The equivalence of (49) and (50) implies with (45)

Δ0
EΠij ¼ DijP; ð51Þ

whereΔ0 denotes the ordinary Laplacian with respect to the
local Lagrangian coordinates. The traceless spatial double
derivative operator is defined as follows:

Dij ¼ ∂i∂j −
1

3
GijΔ0:
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(Here, Gij ≈ δij.) In the next subsection we are going to
discuss some important issues of interpretation of the
solutions to the above equations. In particular, we recall
the relation between the Newtonian Lagrangian perturba-
tion theory and the gravitoelectric part EΠij, we discuss the
role of the gravitomagnetic part HΠij for the dynamical
evolution of the traceless Ricci tensor, and we motivate the
need for global considerations.

E. Discussion

Interesting insights into the gravitoelectric part of the
perturbation field, denoted by EPij, can be obtained from a
formal analogy between the Lagrange-Newton system and
the gravitoelectric part of the Einstein equations—see [11].
This set of equations, which comprises (7) and which does
not explicitly involve the spatial Ricci curvature tensor, can
be expressed in terms of identities on the trace and the
antisymmetric part of the gravitoelectric part of the Weyl
tensor [cf. Eqs. (33) of [11]]. In the comoving synchronous
foliation of spacetime considered here, this nonclosed set
of equations becomes identical to the closed Lagrange-
Newton system after the execution of the “Minkowski
restriction” (MR). This mathematical operation sends
Cartan coframe fields ηa to exact forms dfa (the reader
may recall its definition in [11] and note that the perturba-
tion field EPij ¼ 1=3Pδij þ EΠij coincides with the grav-
itoelectric solution of [11]). Reverting the MR allows us to
build the relativistic counterpart of Newtonian solutions to
the Lagrangian perturbation theory,

dfi ¼ aðtÞðdXi þ dPiÞ → ηa ¼ aðtÞðdXa þ EPaÞ: ð52Þ

Although EPij features a Newtonian time behavior, the
spatial coefficient functions are a priori nonintegrable in
the relativistic case, so that its trace and its trace-free part
separately generate curvature. However, we emphasize a
subtle property of the gravitoelectric perturbation field: by
comparing Eqs. (49) and (50), leading to the constraint
(51), with the defining equation for the Ricci tensor (33),
we observe that the gravitoelectric part EΠij exactly
compensates the nonconstant part of the traceless Ricci
curvature generated by P. Thus, only the gravitomagnetic
perturbation HΠij encodes the dynamics of the Ricci
curvature or its traceless part (35), respectively.10

Furthermore, we point out that the master equations for
both perturbation fields require global conditions to be
solved, which leads us to consider the topology of the
spatial hypersurfaces. In the next section, we will therefore
adopt a global description of the spatial sections. Results of
the Hodge–de Rham theory will be used to investigate the
global properties of the Cartan coframes and to relate their
Hodge decomposition to the local decomposition Pij ¼
EPij þ HΠij. Local considerations do not fully determine
the physical content of EPij and HΠij, as the elliptic
equations we encounter need topological boundary con-
ditions to be solved.

III. GLOBAL CONSIDERATIONS: TOPOLOGY
AND HODGE–DE RHAM THEORY

In the last section we considered the projection of the
first-order equations on a local coordinate basis fdXig,
hence constraining the validity of the results to the regions
of the manifold that can be covered by a single coordinate
chart. Topological considerations enable us to specify the
boundary conditions needed to globally solve the gov-
erning equations. Note that the need for topological
considerations is not specific to the intrinsic description
of perturbation fields defined on perturbed spatial sections;
boundary conditions have to be specified too in standard
perturbation theory where the perturbation fields are
described to evolve on flat space sections. In this latter
case the topology usually adopted is that of a 3-torus
(periodic boundary conditions).
In the following subsection we will consider spatial

hypersurfaces that have a closed topology. Under this
assumption it is possible to apply the Hodge decomposition
of the Cartan coframes. As we will see, this decomposition
will provide a new understanding of the global properties of
perturbations.

A. Hodge theorem and Thurston’s
geometrization program

In order to set the stage for the Hodge decomposition of
forms, some additional formalism is necessary and sum-
marized in this subsection. For introductions into differ-
ential geometry and Hodge’s theorem [21], the reader may
refer to [22–25].

1. Laplace–de Rham operator and the Weizenböck
formula for a 1-form

LetM be a closed Riemannian n-dimensional manifold,
and let us introduce two p-forms α and β. We define a
global positive definite inner product,

ðα; βÞ ¼
Z
M

α ∧ �β; ð54Þ

where the dual of the form β in an n-dimensional space
is �β,

10This holds up to a global contribution of the gravitomagnetic
part that is generated by EΠij. To understand this latter remark we
note that the gravitomagnetic part generated by EPij solves the
following equation (cf. [11], Appendix C):

Δ0HijðEPijÞ ¼ 0; ð53Þ

i.e., there is in general a harmonic global part of the solution, an
issue that we will address in the next section.
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�β ¼ 1

ðn − pÞ! εν1���νp μ1���μn−pβ
jν1���νpjημ1 ∧ � � � ∧ ημn−p ;

ð55Þ
fηig, i ¼ 1 � � �n are the Cartan coframes defined on an
n-dimensional manifold M.
The Laplace–de Rham operator ΔdR is a mapping from

p-forms to p-forms; it generalizes the simple Laplacian
from flat to curved manifolds. It is defined by

ΔdR ≔ dd� þ d�d ¼ ðdþ d�Þ2; ð56Þ
where the codifferential operator δ ¼ d� acting on the
p-form β is defined, on closed Riemannian manifolds, as
follows:

d�β ¼ ð−1Þnðpþ1Þþ1 � d � β: ð57Þ
According to the Weizenböck formula,ΔdR applied to three
1-form fields ηa, which is the case of interest for the Cartan
coframes, yields in components, projected onto the exact
basis fdXig,

ðΔdRηaÞi ¼ ðΔηaÞi þ ηakRk
i; ð58Þ

where Rk
i are the 3-Ricci curvature tensor components.

The first term features the “rough Laplacian”,11 which
implicitly depends on the geometry through the covariant
derivatives, and the second term explicitly takes into
account the local geometry through the Ricci curvature.

2. The Hodge theorem

The Hodge theorem [21] asserts that on a closed,
oriented, and smooth Riemannian n-dimensional manifold,
equipped with a smooth metric, the vector space of
harmonic p-forms12 Hp is of finite dimension. The
generalized Poisson equation for p-forms αp and ρp on
a curved manifold,

ΔdRαp ¼ ρp; ð59Þ
has a solution αp if and only if ρp is orthogonal to Hp.
For any p-form γp there exists a p-form θp such that γp

can be Hodge-decomposed as follows:

γp ¼ dαp−1 þ d�βpþ1 þ hp; ð60Þ
where αp−1 ¼ d�θp, βpþ1 ¼ dθp, and hp is harmonic.
In other words, the vector space of p-forms can be
decomposed as

Λp ¼ dΛp−1⨁
⊥
d�Λpþ1⨁

⊥
Hp; ð61Þ

where dΛp−1, d�Λpþ1, and Hp are the p-dimensional
exact, coexact, and harmonic vector spaces.
In view of what follows, we remark that the manifold

need not be simply connected for employing the Hodge
decomposition.

3. Harmonic forms, and the geometry and topology
of the Universe

In order to apply the Hodge decomposition (60), we first
have to address the question of the harmonic part that, if
nonvanishing, would make a decomposition into exact and
coexact forms nonunique. In general relativity, for regular
Einstein flows, it is generally assumed that the topology of
spacetime is given by the topology of the initial (Cauchy)
hypersurface Σ, being conserved in time (hyperbolicity of
Einstein’s equations), Σ ×R. Hence, we have to specify the
topology of the Cauchy surface.
If this initial hypersurface is flat, then there is a simple

reasoning to remove the harmonic part [18]: in the case of a
flat space, the harmonic part is a vector field that obeys
the simple Laplace equation, Δha ¼ 0. Solutions of the
Poisson equation on a flat space are unique, if we impose
periodic boundary conditions, i.e., we impose a 3-torus
topology to close the spatial section. Harmonic vector fields
are then spatially constant, and this constant can be set to
zero without loss of generality by exploiting the transla-
tional invariance of the equations on a flat space (e.g.,
Newton’s equations have the same physical content if we
add to the velocity model a spatially constant, eventually
time-dependent vector field at each point).
For curved manifolds the vanishing of harmonic forms

cannot be based on simple arguments. There are theorems
(see, e.g., [22]) stating that, if the oriented closed
Riemannian manifold M has everywhere a positive
Ricci tensor, then a harmonic 1-form will vanish identi-
cally. This situation is, however, nongeneric in cosmology,
since the Ricci curvature will alternate between positive and
negative values. If generic inhomogeneities are present, one
may (in line with Thurston’s geometrization program [26],
see below, and also [27]) conceive the idea of using
regionally different backgrounds in our perturbative analy-
sis. Here, “regional background” refers to length scales set
by an average over a given region containing inhomoge-
neities governing the background; see [28]. Such a for-
mulation would allow us to construct a link to Thurston’s
geometrization program that asserts that every closed three-
dimensional manifold can be decomposed into a connected
sum of 3-manifolds modeled after the 8 model geometries
listed by Thurston. Thurston’s program was proven by
Perelman in 2003 using Ricci flow with surgery [29]. For
its realization one has to devise a way to match the different
“homogeneity patches,” a possibly difficult task. In such a
case we would have different situations for the harmonic

11We here denote by Δ the rough Laplacian (as the negative
Bochner Laplacian) whose action on the coframe components
can be written −ηai∥k∥k, where ∥ denotes the Lagrangian covariant
derivative with respect to the spatial metric.

12Since ðΔαp;αpÞ ¼ ∥d�α∥2 þ ∥dα∥2 ≥ 0, Δαp ¼ 0 if and
only if d�α ¼ 0 and dα ¼ 0. Harmonic forms are both closed and
coclosed.
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forms (depending on the regional background). Perelman’s
work also implies a proof of Poincaré’s conjecture:
Thurston’s geometrization program also asserts that closed
and simply connected 3-manifolds are homeomorphic to
the hypersphere S3. Since S3 admits the round metric
(which has positive Ricci curvature), it can be shown that
the only harmonic 1-form is the null-form.13

The assumption of simple connectivity has obvious
limitations. For instance, it is valid for a constant-curvature
space with positive curvature, or for infinite models with
constant curvature (and trivial fundamental groups), but
already for a toroidal model with zero curvature or negative
constant curvature spaces that are finite, it fails. An
alternating and inhomogeneous curvature is the generic
situation. Notwithstanding, we henceforth assume an S3

topology for the spatial sections, such that the harmonic
part vanishes. This assumption is to be considered as a
representative example of space forms for which the
vanishing of the harmonic part can be rigorously proved.
(Recall that the vanishing of the harmonic part on a curved
manifold generalizes the assumption made in Newtonian
cosmology or standard perturbation theory.)

B. Hodge decomposition of the Cartan coframes

As we have seen in the previous subsection, the Hodge
theorem allows us to decompose the Cartan coframes into
exact, coexact, and harmonic forms. In the case of a closed
and simply connected manifold, e.g., S3, the harmonic
1-form in this decomposition is set to zero. Furthermore,
since any closed three-dimensional manifold is paralleliz-
able, the Cartan coframes are continuously defined on the
manifold while the coordinate charts undergo singularities.
This case allows us to extend the definition of the coframes
globally and apply to them the Hodge decomposition.14

With these assumptions, the three Cartan coframes,
which are three 1-forms, can be decomposed as follows:

ηa ¼ dαa þ d�βa ¼ ΔdRγa; ð62Þ

where αa are three scalars, βa are three 2-forms, and γa are
three 1-forms.
For later reference we project Eq. (62) onto our local

Lagrangian basis fdXig, g ≔ detðgijÞ,

ηa ¼ αajj dXj þ ðβakmϵpkmgrp
ffiffiffi
g

p Þjlgjnϵnrl
ffiffiffi
g

p
dXj; ð63Þ

where the 2-form coefficient matrix βakm occurs in the
projection of the 2-form βa as βa ¼ βakmdXk ∧ dXm.
In three dimensions, each antisymmetric coefficient

matrix βakm has only three independent components.
Writing these components as Ba

v, we can choose to express
βakm by βakm ¼ 1=2gwv

ffiffiffi
g

p
ϵwkmBa

v. With this substitution
the coefficient form of ηa reads

ηa ¼ αajj dXj þ Ba
ujl

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p
gkjϵulkdXj: ð64Þ

1. Consequences for the intrinsic spatial curvature

The Hodge decomposition bears interesting conse-
quences in the context of our decomposition into gravito-
electric and gravitomagnetic parts. From (53) we conclude
that, for topologies with a null-dimensional harmonic space
of 1-forms, the gravitomagnetic part generated by EPa is
zero. For this we note that the structure coefficients
associated with the Cartan coframes,

dηa ¼ −
1

2
Ca

bcηb ∧ ηc; ð65Þ

are related, at first order, to the (spatially projected)
gravitomagnetic part of the Weyl tensor as follows:

Hi
j ¼

1

2
ϵj

kl _Ci
lk: ð66Þ

Since the gravitoelectric perturbation EPa generates only a
harmonic gravitomagnetic part (that vanishes according to
our global assumption), and since from (66) the structure
coefficients calculated from EPa are constant in time and
are initially zero [ηaðtiÞ ¼ dXa], we then conclude from
(65) that EPa represents the integrable part dαa of the
perturbation fields. This is in accord with our finding that
the curvatures generated separately by the trace and the
trace-free gravitoelectric parts exactly compensate each
other; see Sec. II E. Thus, this global consideration con-
firms that the only curvature-generating part of the pertur-
bation fields is HΠa (at first order).
Note that the scalar part of the curvature (32) is at first

order not part of the perturbation fields, but included in the

13This is a direct consequence of the theorem by de Rham
[30,31]: If v is a harmonic vector field on a compact Riemannian
manifold and if the Ricci curvature Ricðv; vÞ ≥ 0, then v is
parallel and Ricðv; vÞ ¼ 0. This in turn implies that there exists
no nonzero harmonic field on a compact Riemannian manifold of
positive Ricci curvature. Hence, since S3 admits the round metric,
the first de Rham cohomology group H1

dRðMÞ ¼ 0 [Hodge
theory indeed states that the space of the harmonic 1-forms
H1ðMÞ is isomorphic to the first de Rham cohomology
group H1

dRðMÞ] [32,33].
14The S3 topology is a known example in cosmology for finite

universe models with constant positive curvature such as the
classical Einstein or Eddington universe models. Speaking in
terms of constant-curvature template geometries for the Universe,
this assumption may be linked to observations [a marginally
spherical model [34] has been favored by Cosmic Microwave
Background measurements of a reported first Doppler peak that is
shifted by a few percent toward larger angular scales with respect
to the peak predicted by the standard cold dark matter model
[35]]. For the opposite case of a hyperbolic universe model with
small negative curvature, see [36], and for recent constraints on
the constant-curvature universe model from the Planck mission,
see [37].
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normalization of the coframes Gab. This defines the curved
reference space for our first-order perturbation fields. In
[11] we explicitly demonstrated that, with respect to this
space, the time evolution of the perturbations correspond to
the Newtonian solutions. With the decomposition (62) this
can now be made more rigorous: the exact part can, as in
the Newtonian case, be absorbed into a redefinition of
global coordinates, leaving us this time not with a repar-
ametrization of flat space, but rather of the initially
perturbed metric Gij ¼ gijðtiÞ. The additional component
in the nonexact part that had not been considered in [11]
encodes the nonintegrable geometrical deviations from the
zero-order solution, featuring gravitational waves.

2. Obtaining the Hodge fields from the
perturbed coframes

The Hodge decomposition of the Cartan coframes (62)
can equivalently be defined for the perturbation fields. In
our case these are taken to be of first order. Thus, we face
the decomposition (not changing the notation for αa and βa

for simplicity),

Pa ¼ dαa þ d�βa: ð67Þ

We project these fields onto the local Lagrangian basis
fdXig, and using again the fact that we work at first order,
we find

Pa
j ¼ αajj þ 2βakjjlδlk; ð68Þ

where αa are three scalar fields and βakj the three 2-form
coefficient matrices βa ¼ βakmdXk ∧ dXm. Note that we
used the fact that we work at first order and so Pa

j, αa, and
βakj are first-order quantities and gij ≈ a2δij. In three
dimensions, each antisymmetric coefficient matrix βakm
has only three independent components. Writing these
components as Ba

v, we can express the matrix by
βakm ¼ 1=2gwv

ffiffiffi
g

p
ϵwkmBa

v. With this substitution the coef-
ficient form of Pa

j reads

Pa
j ¼ αajj þ δrjϵ

ulrBa
u j l; ð69Þ

again at first order. Formally the coefficients Ba
v are

attributed to the 1-form fields Ba and related to βa through
the duality of 2- and 1-forms in three dimensions.
Since EPa encodes the integrable part of the perturbations,

EPa ¼ dαa, it is straightforwardly related to the scalar
modes of the standard perturbation approach (cf. Sec. IVA).
The complementary part, HΠa, is equal to δβa.
From (69) we conclude that the Hodge fields αi and Bij

can be obtained from the perturbation fields by solving
the following Poisson equations in local (Lagrangian)
coordinates:

Δ0αj ¼ Pij
ji; ð70Þ

Δ0Bij ¼ ϵj
mrPir jm; ð71Þ

where we have chosen the gauge condition on Bij to
be Bi

mjm ¼ 0.15

The spatial gravitomagnetic part of the Weyl tensor can
be expressed in terms of the expansion tensor [cf. Eq. (70)
of [1]],

Hi
j ¼ −

1

J
ϵiklΘjk∥l: ð72Þ

At first order, this yields

Hi
j ¼ −

1

a
ϵikl _Pjkjl and Hij ¼ −aϵikl _Pjkjl: ð73Þ

We conclude that the first-order gravitomagnetic part is
given by

Hij ¼ −aΔ0
_Bij: ð74Þ

IV. COMPARISON WITH THE STANDARD
PERTURBATION SCHEME

In this section we will explain the link between our
approach and the standard one that uses the scalar-vector-
tensor (S-V-T) decomposition of the perturbed metric. In
order to do so, we compare our results to the ones obtained
in the comoving synchronous gauge being the choice of
coordinates that initially coincides with the Lagrangian
coordinates in the 3þ 1 foliation we consider. (At places
where we refer to explicit solutions, we will adopt an EdS
background solution as an example, without further indi-
cation in the text.)

A. S-V-T decomposition in the comoving
synchronous gauge

In most of the literature, the perturbative approach is
applied to the metric instead of the coframes (as the more
elementary variable). The synchronous line element is
decomposed as

ds2 ¼ −dt2 þ a2ðtÞγijðx; tÞdxidxj: ð75Þ

The first-order corrections to a flat FLRW background are
then written as

15This gauge degree of freedom comes from the fact that the
physical content of Ba is determined by its relation to Pa, given
by Eq. (69). In other words, due to the Levi-Cività symbol, the
term Bi

mjm does not intervene in Eq. (69); we are free to choose
its value. Whatever the value of Bi

mjm, it will equally contribute
to Pa.
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γij ¼ δij þ γS ij: ð76Þ

In the standard perturbation framework, it is common to
split the perturbations into scalar, vector, and tensor
contributions, rather than to consider a split into gravito-
electric and gravitomagnetic parts. The perturbation to the
background can be decomposed as

γS ij ¼ −2ϕSδij þDij χ
∥
S þ ∂i χ

⊥
S j þ ∂j χ

⊥
S i þ χ⊤ij; ð77Þ

where we follow the notation of [38] and denote the
traceless derivative by Dij ¼ ∂i∂j − 1

3
Δδij, where Δ

denotes the ordinary flat-space Laplacian in Eulerian
background coordinates, and

∂iχ⊥S i ¼ 0; χ⊤i
i ¼ 0; ∂iχ⊤ij ¼ 0: ð78Þ

As we consider only first-order corrections to the metric in
this subsection, ϕS, χ

∥
S, χ

⊥
S j, and χ

⊤
ij are first-order quantities

as well.
The decomposition (77) simplifies for irrotational fluids.

In this case the vector perturbations represent gauge modes
that can be set to zero [38]. This result is in accord with the
simplification of our coframe decomposition (21). Note
that Eq. (21) does not contain any vector fields anyway, as
we have a local coordinate system (in the tangent space at a
point in the Riemannian manifold) in which vector fields
simply are not present in a flow-orthogonal foliation.
However, the part that corresponds to the vector perturba-
tions, the antisymmetric tensor part, also vanishes for the
irrotational case.
With the vectors removed, we only need the synchronous

gauge expressions for ϕS, Dijχ
∥
S, and χ⊤ij as given in [38].

Let us start with the tensor part. It satisfies the equation

χ̈⊤ij þ 3H _χ⊤ij −
1

a2
Δχ⊤ij ¼ 0: ð79Þ

This equation corresponds to our Eq. (48) in the sense
explained further below. The solution of (79) reads [38]

χ⊤ijðx; tÞ ¼
1

ð2πÞ3
Z

d3k expðik · xÞχσðk; tÞϵσijðk̂Þ; ð80Þ

with k̂ a normalized k-vector, and where ϵσijðk̂Þ introduces
the polarization tensor; σ is ranging over the polarization
components þ and ×. The χσðk; tÞ are the corresponding
amplitudes. The time evolution is obtained from (79) and
provides the solution in terms of the first spherical Bessel
function, j1ðxÞ ¼ sin x=x2 − cos x=x,

χσðk; tÞ ¼ AðkÞaσðkÞ
�
3j1ð3kti2=3t1=3Þ

3kti2=3t1=3

�
: ð81Þ

aσðkÞ denotes a zero mean random variable, and AðkÞ
encodes the form of the spectrum of primordial gravita-
tional waves.
Second, we turn to the scalar sector. The solutions given

in [38] are restricted to the growing mode only. In addition,
the authors use the residual gauge freedom of synchronous
gauge to fix χ∥S such thatΔχ

∥
Si ¼ −2δi. Then, their solutions

for the scalar sector are given by

Dij χ
∥
S ¼ −3ti2

�
t
ti

�2
3

�
∂ijφ −

1

3
δijΔφ

�
; ð82Þ

where φ is time independent and defined by its relation
to δi in the cosmological flat-space Poisson equation
ΔφðxÞ ¼ 2=ð3ti2ÞδiðxÞ, and the solution for the second
scalar mode

ϕSðx; tÞ ¼
5

3
φðxÞ þ 1

2
ti2

�
t
ti

�2
3

ΔφðxÞ: ð83Þ

B. Comparing the S-V-T decomposition
to the intrinsic perturbation fields

In our case, Pij as well as the initial metric Gij appear in
the decomposition of the metric perturbation that we can
formally compare,

γS ij ↔ Gij þ 2PðijÞ:

The relation between the two sets of perturbation fields can
be formally obtained by a replacement of the dependent
variables,

ϕS ↔ −
1

3

�
Pþ 1

2
G

�
;

1

2
ðDijχ

∥
S þ 2∂ðiχ⊥SjÞ þ χ⊤ijÞ ↔

�
Πij þ

1

2
Gtl

ij

�
:

Note, however, that this correspondence is formal in the
sense that the right-hand-side expressions are given in
terms of local (Lagrangian) coordinates on the manifold
that are constant along the solution, while the left-hand-
side expressions are given in terms of global (Eulerian)
background coordinates.
In order to better compare the standard results to ours, we

modify the restrictions imposed in [38]. First, we use a
different gauge choice, which isΔχ∥Si ¼ 0 instead ofΔχ∥Si ¼
−2δi. Second, we include the decaying mode. Then, the
potential is no longer independent of time and Δφðx; tÞ ¼
2=ð3ti2aÞδðx; tÞ. Therefore, φ now has two components φ1

and φ2 that are determined by Δφ1ðxÞ þ a−5=2Δφ2ðxÞ ¼
2=ð3ti2aÞδðx; tÞ. Finally, we include the prefactor on the
right-hand-side into the definition of a renormalized poten-
tial ψðx; tÞ ¼ ψ1ðxÞ þ a−5=2ψ2ðxÞ, which then satisfies
Δψ1ðxÞ þ a−5=2Δψ2ðxÞ ¼ −a−1δðx; tÞ.
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With these changes, the resulting metric perturbations
read

Dijχ
∥
S ¼ 2ððt=tiÞ23 − 1ÞDijψ1 þ 2ððt=tiÞ−1 − 1ÞDijψ2

and

ϕS ¼ −10=ð9ti2Þψ1 −
1

3
ððt=tiÞ23 − 1ÞΔψ1

−
1

3
ððt=tiÞ−1 − 1ÞΔψ2:

The scalar and tensor fields are formally linked, in the
comoving synchronous gauge, to the first-order metric and
intrinsic perturbation field components of EPa and HΠa,
providing a dictionary between our formalism and the
standard notation,

EPij ↔ ½ðt=tiÞ23 − 1�ψ1jij þ ½ðt=tiÞ−1 − 1�ψ2jij;

HΠij ↔
1

2
ðχ⊤ijðtÞ − χ⊤ijðtiÞÞ; ð84Þ

together with the correspondence with our initial data
fields,

Gij ↔
20

9ti2
ψ1δij þ χ⊤ijðtiÞ;

Uij ↔
2

3

1

ti
ψ1jij −

1

ti
ψ2jij þ

1

2
_χ⊤ijðtiÞ;

Wij ↔
2

3

1

ti2
½ψ1jij þ ψ2jij� þ

1

2
χ̈⊤ijðtiÞ þHi _χ

⊤
ijðtiÞ: ð85Þ

These three initial fields are not independent. Combining
Eq. (16) with Eq. (31) at t ¼ ti, gives a differential equation
that links Gij to Uij and Wij. We have checked that this
equation is consistent with the three relations (85). Taking
the trace of the third of Eqs. (85) and using Δψ1ðxÞ þ
Δψ2ðxÞ ¼ −δðx; tiÞ provide another consistency check.
We find Wk

k ↔ −ð3=2ÞHi
2δðx; tiÞ [which is Eq. (49)

in [11]].

C. Discussion of the difference between standard
(Eulerian) and the intrinsic (Lagrangian) approaches

Let us first illustrate the difference between a Lagrangian
and an Eulerian approach in a flat-space situation. We take
the example of inertial motion that, for a continuum, is
governed by the following evolution equations for the three
velocity field components va, indexed by the counter
a ¼ 1, 2, 3 (a comma denotes a partial derivative with
respect to time t or with respect to Eulerian coordinates xi,
respectively):

d
dt
va ¼ va;t þ

dxi

dt
va;xi ¼ 0;

dxi

dt
¼ vi: ð86Þ

d=dt denotes the total or Lagrangian time-derivative oper-
ator. The linearized version of this equation on the
Euclidean background va;t ¼ 0 is solved by a constant
velocity field in Eulerian coordinates, vaðxi; tÞ ¼ vaðxi; tiÞ.
Introducing Lagrangian coordinates that follow the solution
curves, dXi=dt ¼ 0, the total (Lagrangian) time derivative
reduces to a partial time derivative at fixed Lagrangian
coordinates, so that Eq. (86) reduces to a set of decoupled
ordinary and linear differential equations, va;tðXi; tÞ ¼ 0.
This allows us to find the general solution of the coupled set
of partial and nonlinear differential Eqs. (86) in Eulerian
space, as long as the mapping between the Eulerian and the
Lagrangian coordinates, provided by the Galilean solution
curves fa ≔ Xa þ vaðXi; tiÞðt − tiÞ, is invertible,

vaðXi; tÞ ¼ vaðXi; tiÞ; ð87Þ

⇒ vaðxi; tÞ ¼ vaðXi ¼ ðfaÞ−1½xi; t�; tiÞ: ð88Þ

We see in this example that the linearized Eulerian and the
linear Lagrangian equations have the same algebraic form,
but the solution of the latter includes Eulerian nonlinear-
ities, here the convective term. Thus, in the close vicinity of
the initial time, both solutions coincide, but the Lagrangian
solution moves away from the Eulerian solution, and this
motion is dictated by the solution itself. For the discussion
in the next subsection we note that these deviations have an
recursive structure [5],

vaðt; xiÞ ¼ vaðti; Xi þ ðt − tiÞvaðti; xi ¼ Xi þ � � �ÞÞ: ð89Þ

This example gives an intuition for the flat-space case.
Working on nonflat spaces with Cartan coframes, the local
coordinate representation of the coframes ηaðXi; tÞ exists as a
projection on the local cotangent spaces with exact basis
fdXig. Nonetheless, the diffeomorphism fa to the flat-space
coordinates xi ¼ fa¼i, as used above, does not exist, since the
coframes are not exact forms, ηa ≠ dfa. This is the reason
why we cannot map the standard solution to an intrinsic
solution by a coordinate transformation.Notwithstanding,we
can find a solution of the intrinsic equation as we are going to
outline in the following subsection.

D. How to find relativistic Lagrangian first-order
solutions for gravitational waves

In order to find explicit first-order Lagrangian solutions
of, e.g., the master equation for gravitational waves,
Eq. (48), we can exploit the algebraic similarity of the
standard linear equation and the Lagrangian master equa-
tion. To determine the solution of (48) on a curved manifold
we need to prescribe eigenfunctions other than flat-space
Fourier modes. This is possible for constant-curvature
spaces, but in general situations of an inhomogeneous
curvature the solution procedure is not obvious. In the cases
where an equation on flat space has algebraically the same
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form as an equation on a curved manifold, it is possible to
find a solution. In what follows, we outline the procedure of
how to find the general solution of the master Eq. (48),

HΠ̈ij þ 3HH _Πij − a−2HΠij
jk
jk ¼ a−2ðHWtl

ij þHi
HUtl

ijÞ:

(i) We employ the dictionary, i.e., the last equation of
(84), to redefine the dependent variable,

HΠij ↔
1

2
ðχ⊤ijðx; tÞ − χ⊤ijðx; tiÞÞ:

Equation (48) is then cast into the standard linear
propagation Eq. (79), except that the former is an
equation for functions of local (Lagrangian) coor-
dinates, and the latter is an equation for functions of
(Eulerian) background coordinates.

(ii) The linear propagation equation on flat space in the
standard perturbation theory, Eq. (79), can be
solved. The solution in the Fourier space is provided
by Eq. (81). From this we have to prescribe initial
data and perform the inverse Fourier transformation
to obtain the solution as a function of Eulerian
coordinates.

(iii) The fact that our master Eq. (48) is algebraically
identical (up to the redefinition of the dependent
variable) to the Eulerian linear Eq. (79) entitles us to
take this Eulerian solution and replace the back-
ground coordinates by Lagrangian ones. The result-
ing solution is transported along geodesics, which
are themselves solutions of this equation. They
therefore exhibit a nonlinear behavior when seen
from the background space reference frame. In
practice, we would prescribe the same initial data
in the Lagrangian solution, since, initially, the
Eulerian and Lagrangian coordinates coincide by
definition.

The above outlined solution procedure is not explicitly
carried out in examples. We shall return to similar equations
in the follow-up paper that includes pressure.

V. DISCUSSION AND OUTLOOK

As perturbations of space propagate in the perturbed
physical spacetime, the equations that describe their
dynamics are intrinsically recursive. The standard linear
solution for gravitational waves does not capture the
nonlinear nature of these perturbations; see the criticisms
advanced in [39] that provide arguments why the standard
linear solution is at odds with the physical phenomenon,
and see also [40]. The common way out is to go to second-
and higher-order solutions within the standard approach
[38,41,42]. However, as we discussed in the previous
section, the intrinsic Lagrangian approach enjoys more
generality, even if the equations were linearized. This fact

can be exploited to combine the simplicity of a linear
solution with the nonlinear character of the physical
problem at hand. Thanks to the present Lagrangian intrinsic
approach we are in the situation to uncover nonlinear
features of the gravitational waves. In other words, the
linear intrinsic solution contains components that would be
higher-order contributions in the standard linear approach.
In order to find out the wealth of information revealed by

the Lagrangian approach, we now explore some avenues
toward a more general solution than the one outlined in the
last section.

A. Extrapolation of the solution into the
nonperturbative regime

We can certainly go beyond the linear solution by
considering higher-order Lagrangian perturbations, as
done in the standard Eulerian approach. However, we
can already employ the linear solution supplemented by
extrapolation procedures in the spirit of the Newtonian
Zel’dovich approximation (see [1] for the discussion of the
relativistic generalization of this extrapolation idea).
We now discuss different possibilities to understand

nonperturbative properties of gravitational waves in terms
of different extrapolation strategies.

1. Functional extrapolation

The first strategy follows the line of thoughts in [1,10].
The idea is to insert the linear Lagrangian solution into
exact functionals of the fields of interest [1], and we may
then study their average properties [10]. With this strategy
we obtain nonperturbative expressions from a linear per-
turbation. Consider, as an example, the spatial metric. This
is a bilinear form of the Cartan coframes, and a linearization
of the metric would truncate a quadratic term, thus, leading
to a functional expression that is not the metric correspond-
ing to the Cartan coframe that describes the deformation to
a given order. The proposal is to keep this quadratic term,
since the basic system of equations is written in terms of the
coframes only and a consistent perturbation theory already
determines the approximation for the coframes to a given
order. Another example is the curvature that can be func-
tionally defined in terms of coframes. Looking at the
first-order deformation of the coframes, the correspo-
nding curvature is the full functional expression, not the
truncated one (see again [10] for an explicit demonstration).
(A related paper on averaging the gravitational wave tensor
part is [43].)

2. Iterative extrapolation

The second strategy notices that a strict linearization,
pursued in this paper, neglects essential physical properties
of gravitational waves propagating on a curved background.
For example, this linearization replaces the Laplace–
de Rham operator, Eq. (58), for the (curvature-generating;
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cf. Sec. III B 1) trace-free gravitomagnetic part HΠa by a
simple Laplacian in local coordinates,

ðΔdRHΠaÞi ¼ ðΔHΠaÞi þ HΠa
kRk

i ≈ −Δ0
HΠa

i
ð1Þ; ð90Þ

where the first-order Ricci tensor (33) does not contribute at
first order here. (At higher orders, the resulting curvature
correctionwould couple the gravitomagnetic part to the trace
and the gravitoelectric part of the perturbations.) It is clear
that a propagation of gravitational waves in a curved space
will in general imply a nontrivial Laplace–de Rham oper-
ator. A possible route toward the understanding of these
nonlinear properties consists in keeping the Lagrangian time
evolution at first order in the linearized master Eq. (48), but
considering the full Laplace–deRhamoperator of theCartan
coframes in the curved space section, i.e., by replacing the
local Laplacian in (48) by the Laplace–de Rham operator.
An iterative procedure to solve the resulting equation is
suggested: we calculate the perturbed Cartan deformation
for all parts according to the linearized scheme presented in
this paper, then evaluate the Laplace–de Rham operator for
this perturbed deformation (including the coupling to the
trace and gravitoelectric parts), and iterate the equation. An
intermediate step consists in just considering the rough
Laplacian, thus, avoiding the coupling to the trace and the
trace-free gravitoelectric solutions due to the curvature
correction. This intermediate step already renders themaster
equation for the perturbations (48) nonlinear in local
coordinates due to the presence of the covariant spatial
derivatives. Such an iteration may converge to a nonlinear
solution after a sufficient number of steps (see, however,
[44], and related iteration procedures for the Newtonian
problem [45,46]).
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APPENDIX A: PROPAGATION EQUATIONS
FROM THE MAXWELL-WEYL FORMALISM

In this appendix, we will derive Lagrangian propagation
equations for the gravitoelectric and gravitomagnetic spa-
tial parts of the Weyl tensor by employing the Maxwell-
Weyl formalism [47,48]. Related to this, the reader may
also consult [49–52].

1. Gravitoelectric and gravitomagnetic parts
of the Weyl tensor

The Riemann curvature tensor can be split into a trace
part, the Ricci tensor, that is linked to the matter content of
the Universe by the Einstein field equations, and a traceless
part, the Weyl tensor. This latter tensor, which encodes the
relativistic counterpart of the Newtonian tidal forces and
the gravitational waves, can be expressed through the
Riemann curvature tensor as follows:

Cμν
ϱσ ¼ ð4ÞRμν

ϱσ − 2δ½μ½ϱð4ÞRν�
σ� þ

1

3
δ½μ½ϱδν�σ�ð4ÞR: ðA1Þ

Let uμ be the 4-velocity of the fluid. TheWeyl tensor can be
split in an irreducible way into gravitoelectric and grav-
itomagnetic parts, Eμν and Hμν, respectively, defined as
follows:

Eμν ≔ Cμϱνσuϱuσ; ðA2Þ

Hμν ≔
1

2

ffiffiffiffiffiffiffiffiffi
jð4Þgj

q
ϵαβϱðμCαβ

νÞσuϱuσ; ðA3Þ

where ð4Þg represents the determinant of the 4-metric tensor
ð4Þg, and ϵϱμαβ is the four-dimensional Levi-Cività symbol.
As these parts are symmetric and traceless, they satisfy by
construction the following identities:

Eμ
μ ¼ 0; Eμν ¼ EðμνÞ; Eμνuμ ¼ 0;

Hμ
μ ¼ 0; Hμν ¼ HðμνÞ; Hμνuμ ¼ 0:

2. Propagation equations for gravitoelectric and
gravitomagnetic parts

Combining Bianchi identities with the Einstein field
equations we obtain

∇κCμνκλ ¼ 8πG
�
∇½μTν�λ þ

1

3
gλ½μ∇ν�Tκ

κ

�
: ðA4Þ

This equation can be turned into an equation for the
gravitoelectric and gravitomagnetic parts, as the Weyl
tensor can be expressed as follows:
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Cμνκλ ¼ ðgμναβgκλγδ − εμναβεκλγδÞuαuγEβδ

þ ðεμναβgκλγδ þ gμναβεκλγδÞuαuγHβδ; ðA5Þ

with gμναβ ≡ gμαgνβ − gμβgνα, and εμνκλ ¼
ffiffiffiffiffiffiffiffiffiffi
−ð4Þg

p
ϵμνκλ.

In the rest frame of the dust fluid without vorticity,
Eq. (A4) yields the following constraints and evolution
equations, e.g., [53]:

Ek
i∥k − gikεkmnΘmlHl

n ¼
8πG
3

ϱiji
J

; ðA6Þ

Hk
i∥k þ gikεkmnΘmlEl

n ¼ 0; ðA7Þ

_Eij þ 2ΘEij − 3ΘkðiEk
jÞ − Θk

lEl
kgij

¼ gmðiεmklHjÞl∥k − 4πG
ϱi
J

�
Θij −

1

3
Θgij

�
; ðA8Þ

_Hij þ 2ΘHij − 3ΘkðiHk
jÞ − Θk

lHl
kgij

¼ −gmðiεmklEjÞl∥k: ðA9Þ

Note that, in order to simplify (A9), we used the identity
ϱijkεmklgmðigjÞl ¼ 0, which stems from the antisymmetry of
the Levi-Cività symbol.
The expansion tensor can be split into its kinematical

parts (with the shear σij and the rate of expansion Θ, for
vanishing vorticity),

Θi
j ¼ σij þ

1

3
Θδij: ðA10Þ

The initial density field ϱi can be split into ðϱHÞi þ δϱi. At
first order, the perturbation of the background density δϱi
can be expressed through the trace of the nonintegrable
generalization of the Newtonian acceleration gradient Wa;
cf. Eq. (14), the generalization of the Poisson equa-
tion, W ¼ −4πGδϱi.
As Eij and Hij are symmetric and traceless tensors, at

first order the constraints and evolution equations reduce to
the following set:

Ek
ijk ¼ −

2

3a3
Wji; ðA11Þ

Hk
ijk ¼ 0; ðA12Þ

_Eij þ 3HEij −
1

a
ϵðiklHjÞljk ¼ −4πGϱHσij; ðA13Þ

_Hij þ 3HHij þ
1

a
ϵðiklEjÞljk ¼ 0; ðA14Þ

where ϱH ¼ ðϱHÞi=a3 denotes the homogeneous part of the
density field. In order to obtain a propagation equation for
the gravitoelectric spatial part of the Weyl tensor Eij, we
first multiply Eq. (A13) by a4ðtÞ and perform a time
derivative. Then, we inject Eq. (A14) and simplify the
product of the Levi-Cività symbols using the following
identity:

ϵklðiϵjÞmn ¼ δijδkmδln − δijδlmδkn − δkðiδjÞmδln þ δkðiδjÞnδlm
þ δlðiδjÞmδkn − δlðiδjÞnδkm: ðA15Þ

Finally, using Eq. (A11), we obtain the following second-
order propagation equation:

□0Eij − 7H _Eij − 4ð4πGϱH þ ΛÞEij

¼ −
1

a5
DijW þ 4πGHϱHσij; ðA16Þ

where □0Xij ≔ −Ẍij þ 1
a2 Δ0Xij denotes the Lagrangian

d’Alembertian applied to the tensor field Xij. To obtain the
previous equation, we used the Friedmann equations to
replace 3H2 þ ä=a by 20πGϱH=3þ 4Λ=3 (at order 0 the
curvature constant k is assumed null). Furthermore, we
used the compact notation DijW for Wjij − 1=3δijΔ0W.
The same logic applied to Hij leads to the following

second-order propagation equation:

□0Hij − 7H _Hij − 4ð5πGϱH þ ΛÞHij

¼ −
1

a
4πGϱHϵðiklσjÞljk: ðA17Þ

[The coefficients in front of the third terms in Eqs. (A16)
and (A17) differ, since the first equation features a
term ∝ _σij that can be replaced through _σij ¼ −Eij;
cf. Eq. (111) in [1], which changes the coefficient
5πGϱH þ Λ to 4πGϱH þ Λ.]

APPENDIX B: ERRATUM TO [11]

In view of the definition J ≡ ffiffi
g

pffiffiffi
G

p employed in this paper

as well as in [10,11], the momentum constraint equations
(27) of [11] must contain factors of 1

J, written correctly in
Eq. (6) (in [1] the definition J ≡ ffiffiffi

g
p

was used so that the
inclusion of the factors is not needed).
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