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We study a model of a cyclic, spatially homogeneous, anisotropic, “mixmaster” universe of Bianchi type
IX, containing a radiation field with noncomoving (“tilted” with respect to the tetrad frame of reference)
velocities and vorticity. We employ a combination of numerical and approximate analytic methods to
investigate the consequences of the second law of thermodynamics on the evolution. We model a smooth
cycle-to-cycle evolution of the mixmaster universe, bouncing at a finite minimum, by the device of adding a
comoving “ghost” field with negative energy density. In the absence of a cosmological constant, an increase
in entropy, injected at the start of each cycle, causes an increase in the volume maxima, increasing approach
to flatness, falling velocities and vorticities, and growing anisotropy at the expansion maxima of successive
cycles. We find that the velocities oscillate rapidly as they evolve and change logarithmically in time
relative to the expansion volume. When the conservation of momentum and angular momentum constraints
are imposed, the spatial components of these velocities fall to smaller values when the entropy density
increases, and vice versa. Isotropization is found to occur when a positive cosmological constant is added
because the sequence of oscillations ends and the dynamics expand forever, evolving towards a quasi–
de Sitter asymptote with constant velocity amplitudes. The case of a single cycle of evolution with a
negative cosmological constant added is also studied.
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I. INTRODUCTION

Cyclic models are popular alternatives to inflationary
paradigms as candidates for a viable theory of the early
universe that avoids or mitigates the singularities in the
simple Friedmann universes. For this to be a suitable
theory, it must reproduce some of the successes of inflation.
One of these is to produce a high degree of isotropy at late
times. In order to discuss the process of isotropization, we
will consider the most general spatially homogeneous
closed universe with a noncomoving velocity field. This
generalizes our earlier work without noncomoving veloc-
ities and will allow us to study the behavior of velocities
and dynamics of a general closed cyclic universe over many
cycles.
The simplest cyclic universes were constructed in dust-

filled or radiation-filled closed Friedmann universes [1].
Using these simple models, Tolman was able to show that
oscillating Friedmann universes with zero cosmological
constant displayed successive cycles of increasing maxi-
mum size and duration, see also Ref. [2] for a more general
result. Later, this study was generalized to show that, when
a positive cosmological constant is included, Tolman’s
cycles approach flatness but always come to an end: the
dynamics ends in a state of expansion evolving towards a
de Sitter universe [3]. If the entropy increase from cycle to
cycle is modest then his final state displays close proximity
to flatness with a slight domination by dark energy (the
cosmological constant stress) over cold dark matter (or
radiation).

These isotropic models are highly idealized, especially
near the initial and final singularities, or expansion minima,
of cyclic universes. We need to generalize them by studying
the shape evolution of the most general, closed, cyclic,
anisotropic universes. A start was made on this problem by
considering anisotropic Kantowski-Sachs closed universes
and Bianchi type I universes with a negative cosmological
constant in Ref. [3]. This was generalized to the
closed spatially homogeneous universe with comoving
fluid velocities, of Bianchi type IX, by the authors in
Ref. [4]. This “mixmaster” cosmological model contains
the closed Friedmann model as a special case but intro-
duces several new factors, including anisotropic expansion
rates (shear) and anisotropic 3-curvature, which can change
sign in the course of the evolution of the Universe. This
feature is intrinsically general relativistic and these models
have no Newtonian counterparts. They allow us to study the
evolution of anisotropy over a sequence of cosmological
cycles. In Ref. [4] we showed that this evolution displays
chaotic sensitivity to past conditions and successive
maxima of a closed universe with increasing entropy will
get larger and increasingly approach flatness, as in the
isotropic case, but they will become increasingly aniso-
tropic at these growing maxima with respect to their
expansion anisotropy (shear) and 3-curvature anisotropy.
In Ref. [4], we studied the behavior of a Bianchi IX

universe with comoving matter velocities. Here, we extend
this by introducing the last remaining physical generali-
zation available to this metric—the inclusion of matter
(or radiation) which moves with a 4-velocity that is not
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comoving with the tetrad frame. In the context of the
orthonormal frame formalism, the system contains shear,
anisotropic spatial curvature, and vorticity [5]. The non-
comoving fluid velocities are tilted with respect to normals
to the hypersurfaces of constant density [6].
There have been studies of noncomoving matter in other

Bianchi types, such as Bianchi type VII0, such as in [7–10],
but with a focus on the fate of primordial turbulence and the
effects of collisionless particles on vortices. There has also
been a study of the problem in a radiation-filled universe in
Ref. [11]. Here we extend these analyses, and those of
cyclic universes, to include a Bianchi IX (mixmaster)
universe with noncomoving radiation. We also include a
comoving null energy condition violating, or “ghost,” field
with p > ρ and ρ < 0 [12,13]. Its inclusion is simply a
device to produce a bounce at a finite minimum of each
cycle. It avoids the evolution falling into an open interval
around t ¼ 0 which will produce chaotic mixmaster oscil-
lations [14] and thus avoids the inclusion of infinite
mixmaster oscillations on approach to the expansion
minima. These oscillations are not likely to be physically
relevant in classical cosmological evolution: if the Universe
bounces at the Planck time (tpl ∼ 10−43 s) then only a few
mixmaster oscillations are permitted up to the present
(t0 ∼ 1060tpl) because they occur in log-log of the comov-
ing proper time. This makes our problem more tractable
from a numerical perspective. Our aim is study the effect of
noncomoving radiation in the case of a cyclic mixmaster
universe with thermal entropy growth, in the presence of
both zero, positive and negative cosmological constant.
In Sec. II, we set up the Einstein equations for the

problem, with a brief background to the tetrad formalism in
Bianchi IX models, and give the energy-momentum tensor
of the noncomoving radiation field that we are introducing.
We derive the equations of motion and the evolution
equation for the velocities that are normalized with the
appropriate power of the energy density of radiation. In
Sec. III, we discuss the qualitative effects of entropy
increase on the cycle to cycle evolution of closed isotropic
and anisotropic universes and identify a new effect of
entropy increase introduced by the presence of noncomov-
ing velocities. In Sec. IV, we provide some analytic analysis
of the type IX equations with velocities before presenting
our computational solutions of the Einstein equations with
and without a cosmological constant of either sign in
Sec. V, and give our conclusions in Sec. VI.

II. THE SETUP

A. The Einstein equations

For the purposes of studying the effect of noncomoving
velocities in anisotropic closed cyclic universes, we choose
the Bianchi IX universe. In general, when studying an
n-dimensional spatially homogeneous, anisotropic cosmol-
ogy, we consider a group of n linearly independent

differential forms which remain invariant under a group
of simply transitive motions following Refs. [15,16],

eaμðx0νÞdx0μ ¼ eaμðxνÞdxμ; ð1Þ
where x0μ and xν are the coordinates in the transformed and
the starting coordinate systems, respectively. We can then
write down an invariant metric,

ds2 ¼ γabeaμðx0Þebνðx0Þdx0μdx0ν¼ gμνðx0Þdx0μdx0ν: ð2Þ
As the line element itself remains invariant under these
transformations, we can also write

ds2 ¼ γabeaμðxÞebνðxÞdxμdxν ¼ gμνðxÞdxμdxν: ð3Þ
Considering the transformation between x0μ and xμ,

∂x0λ
∂xμ ¼ eλaðx0νÞeaμðxρÞ; ð4Þ

and using the fact that double differentiation must commute
under interchange of the indices μ and ν,

∂2x0λ

∂xμ∂xν −
∂2x0λ

∂xν∂xμ ¼ 0; ð5Þ

we can define the following commutation relation:

eμd;αe
α
c − eμc;αeαd ¼ Cf

cde
μ
f: ð6Þ

The Cf
cd are the structure constants of the Lie algebra, and

obey the Jacobi identities:

Cf
cdC

g
fe þ Cf

deC
g
fc þ Cf

ecC
g
fd ¼ 0: ð7Þ

We can choose to work in a system of coordinates that is
more suited to our purpose. We are dealing with spatially
homogeneous cosmologies and we are able to define
coordinates on the spatial hypersurface where t ¼ const
and the comoving proper time coordinate, t, will just
measure the distance between parallel hypersurfaces.
Thus we write the metric now as

ds2 ¼ dt2 − gikdxidxk: ð8Þ
The simply transitive group of motions that leaves the
differential forms invariant now acts on the three-spaces
where t ¼ const. We can then write out the Ricci tensor
components in terms of the metric:

R00 ¼ ðln ffiffiffiffiffiffi
−g

p Þ̈þ 1

4
glm _gmkgkj _gjl; ð9Þ

R0k ¼
1

2
glmð_glm;k − _glk;mÞ; ð10Þ

Rij ¼ R⋆
ij þ

1

2
̈gij −

1

2
_gimgmk _gkj þ

1

2
_gijðln

ffiffiffiffiffiffi
−g

p Þ: ð11Þ
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In our case we introduce the metric of the diagonal Bianchi
IX universe,

ds2 ¼ dt2 − γabeaμebνdxμdxν; ð12Þ

where

γab ¼ diag½aðtÞ2; bðtÞ2; cðtÞ2�: ð13Þ

Turning our attention now to the matter sector, we
introduce the energy-momentum tensor for a perfect field:

Tab ¼ ðρþ pÞuaub − pγab: ð14Þ

The 4-velocity of the perfect fluid with respect to our
chosen tetrad frame is

ua ¼ ðu0; u1; u2; u3Þ: ð15Þ

The relations of the components of the velocities with
respect to the universe frame are given by

ua ¼ eμaūμ; ð16Þ

where the ūμ are the components of the 4-velocity of the
fluid with respect to the universe frame. We shall be
working with the 4-velocity in the tetrad frame for con-
sistency with the Ricci tensor, which is also written in the
tetrad frame for the purposes of this computation. The
components of this 4-velocity obey the normalization,

u20 − u21 − u22 − u23 ¼ 1: ð17Þ

Referring to [5], we find the following conditions on the
energy-momentum tensor. The fluid vorticity ωab is zero if
and only if the spatial velocity components ui are zero.
Thus, for the general case of noncomoving fields, we do
indeed have vorticity in our system. Thus, with reference to
the orthonormal frame formalism, we have nonzero shear
σab, the curvature variables nab as well as vorticity ωab.
For the purposes of our computation, we consider

noninteracting perfect fluids, with ideal equation of state,

p ¼ ðγ − 1Þρ; ð18Þ

and we can add their energy-momentum tensors together in
the usual way. In our system, we include radiation with
γ ≡ γr ¼ 4=3 and an ultrastiff comoving ghost field with
equation of state γ ≡ γg ¼ 5, a value chosen simply for
convenience in effecting a bounce. The densities and the
pressures of the radiation and the ghost field are given by
ρr, pr and ρg and pg. The radiation field has velocities
which are not comoving in the tetrad frame of reference.
We normalize the 4-velocity of the radiation field so that
the normalized velocity components are related to the

velocity vector by va ¼ ðρr þ prÞ1=γ−1=2ua, and denote
the normalized velocity vector by

v ¼ ðv0; v1; v2; v3Þ: ð19Þ

In our case, for black body radiation, γr ¼ 4=3 and the
normalized velocity components are therefore given by
va ¼ ðρr þ prÞ1=4ua. Considering energy-momentum con-
servation in the tetrad frame, we get the conservation of
particle current,

1ffiffiffiffiffiffi−gp ∂
∂xi ð

ffiffiffiffiffiffi
−g

p
suiÞ ¼ 0; ð20Þ

where s is the entropy density. For radiation, s ∝ ρ3=4, this
yields the conservation law,

v20a
2b2c2ðρr þ prÞ ¼ const≡ L3; ð21Þ

where we have labeled the constant L3 for consistency
with Ref. [11].
The second constraint equation for the components of

velocity of the radiation field is

v21 þ v22 þ v23 ¼ Lδ: ð22Þ

The constant L has the dimensions of length and the
constant δ is dimensionless. Close to isotropy, when the
spatial components of the velocity 4-vector are negligible,
we have δ ≪ 1. For the case of small velocities in a near-
Friedmann radiation-dominated universe, we see that their
spatial components are constant. For the dust-dominated
universe, the spatial components of the velocities fall as
1=awhere aðtÞ is the scale factor of the Friedmann universe
and t is the comoving proper time.
We have a further hydrodynamic equation of motion

(∇aTab ¼ 0), and 4-velocity normalization [17] to employ
in what follows:

ðpþ ρÞuk
�∂ui
∂xk −

1

2
ul
∂gkl
∂xi

�
¼ −

∂p
∂xi − uiuk

∂p
∂xk ð23Þ

uiui ¼ 1: ð24Þ

B. Noncomoving velocities in a Bianchi
type IX universe

We now ask what happens in anisotropic, spatially
homogeneous universes, with scale factors a, b, c, when
there are noncomoving velocities and vorticities. Suppose
we first take the background expansion of the scale factors
to have the same form as in the type IX universe without
noncomoving velocities, that we studied in Ref. [4]. In our
earlier study without velocities we found a long period of
evolution during the radiation era (before the curvature
creates a slow-down of the expansion near the volume
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maximum) where, far from the expansion maximum, the
scale factors evolve to a good approximation in a quasiax-
isymmetric manner, as

aðtÞ ¼ a0t1=2½lnðtÞ�−1=2; bðtÞ ¼ b0t1=2½lnðtÞ�−1=2;
cðtÞ ¼ c0t1=2 lnðtÞ: ð25Þ
Note that the volume, abc ∝ t3=2, evolves like the

Friedmann model [11]. The logarithmic corrections are
familiar in the study of anisotropic universes with aniso-
tropic 3-curvatures, trace-free radiation stresses in the
presence of isotropic radiation, or long-wavelength gravi-
tational waves [18]. They reflect the presence of a zero
eigenvalue when we perturb around the shear variables
around the isotropic model whereas the volume has a
negative real eigenvalue.
More generally, the effects of the velocities in the

type IX radiation universe can be treated as test motions
on an expanding radiation background governed by
Eqs. (20) and (21):

aðtÞ ¼ a0t1=2lnλðtÞ; bðtÞ ¼ b0t1=2lnμðtÞ;
cðtÞ ¼ c0t1=2lnνðtÞ; ð26aÞ

λþ μþ ν ¼ 0; and λ; μ; ν constants; ð26bÞ

abc ∝ t3=2; ð26cÞ
where (26a) reduces to the particular case (25) when λ ¼
μ ¼ −1=2 and ν ¼ 1.
Ignoring spatial gradients with respect to time variations,

and taking the diagonal scale factors to be aðtÞ, bðtÞ,and
cðtÞ, for a radiation-dominated universe (p ¼ ρ=3), these
equations specialize to [17]

abcu0ρ3=4 ¼ t3=2u0ρ3=4 ¼ const; ð27Þ

uαρ1=4 ¼ const; α ¼ 1; 2; 3: ð28Þ
If we solve them as t → ∞ with λ < μ < ν, then the

dominant component of uα is u1 ¼ u1=a2,which gives
u20 ≃ u1u1 ¼ ðu1Þ2t−1 ln−2λðtÞ, and we get the dominant
late-time behaviors from (27)–(28):

ρ ∝
ln2λðtÞ
t2

; u1u1 ∝
1

ln3λðtÞ ; ð29Þ

T1
1 ≃ ρu1u1 ∝

1

t2lnλðtÞ ∝ T0
0 ð30Þ

T2
2 ≃ ρu2u2 ∝

lnλ−2μðtÞ
t2

ð31Þ

T3
3 ≃ ρu3u3 ∝

lnλ−2νðtÞ
t2

: ð32Þ

The corrections to the case with comoving velocities and
zero vorticity are therefore only logarithmic in time during
the radiation era. The scalar 3-velocity, has dominant
asymptotic form

V ≡ ffiffiffiffiffiffiffiffiffiffi
uαuα

p ≃ ln−3λðtÞ: ð33Þ

For the quasiaxisymmetric radiation-dominated phase of
the type IX evolution, we take λ ¼ μ ¼ −1=2 and ν ¼ 1
and we see that the stresses induced by the velocities grow
logarithmically in time compared to the other terms in the
field equations [of order Oð1=t2Þ] present when the
velocities are comoving. We see that the diagonal stress-
tensor components T0

0 ∝ T1
1 ∝ T2

2 ∝ t−2 ln1=2ðtÞ fall off
slower than t−2 as t → ∞, while T3

3 ∝ t−2 ln−3=2ðtÞ falls
off faster than t−2. We can see explicitly that the 3-velocity,
V, is expected to grow as ln3=2ðtÞ in our approximation,
which holds so long as the velocities are small enough for
the perturbations not to disrupt the assumed (velocity-free)
metric evolution (26a) and we are far from the expansion
maximum. If there is an expansion maximum, then these
asymptotic forms will be cut off when the approximate
solution (25) breaks down and we need a numerical
analysis to determine the detailed evolution in this regime,
and from cycle to cycle. However, we expect the presence
of noncomoving velocities to introduce changes to the
analysis that was made for type IX cyclic universes in our
work [4].
If we repeat this analysis in an isotropic de Sitter

background with late-time scale factor evolution approach-
ing a ¼ b ¼ c ¼ eHot before the volume maximum, then
the asymptotic behavior of radiation is uαuα ¼ const,
u0 ¼ const, ρr ∝ e−4H0t, and the new terms induced in
the field equations by the noncomoving velocities do not
grow at late times. However, we note that the velocities
produce a constant tilt relative to the normals to the
surfaces of homogeneity and the asymptotic form at late
times approaches de Sitter with a constant velocity field tilt
(as also is seen in Ref. [19]). In general, when the
cosmological constant, Λ≡ 3H2

0, is positive it will end
the sequence of increasing oscillations in a cyclic closed
universe, no matter how small its value, because the size of
the Universe will eventually become large enough for Λ to
dominate before a maximum is reached in some future
cycle [3].

C. Equations of motion

In the type IX universe, the evolution equations for the
velocities are as follows (where overdot is d=dt):

_v1þ
v3v2
v0

�
1

c2
−
1

b2

��
1þ2L3w−1=2 a4−b2c2

ða2−b2Þðc2−a2Þ
�
¼0;

ð34Þ
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_v2þ
v1v3
v0

�
1

a2
−
1

c2

��
1þ2L3w−1=2 b4−c2a2

ðb2−c2Þða2−b2Þ
�
¼0;

ð35Þ

_v3þ
v2v1
v0

�
1

b2
−
1

a2

��
1þ2L3w−1=2 c4−a2b2

ðc2−a2Þðb2−c2Þ
�
¼0;

ð36Þ

where w≡ ðρr þ prÞ. The evolution equations for the scale
factors in cosmological time then become

ðln aÞ̈ þ 3Hðln aÞ_þ 1

2

�
a2

b2c2
−

b2

c2a2
−

c2

a2b2

�
þ 1

a2

þ 2L3

�
a2 þ c2

b2ðc2 − a2Þ3 v
2
2 −

a2 þ b2

c2ða2 − b2Þ3 v
2
3

�

¼ 2

�
w1=2 v

2
1

a2
þ ρr − pr

2
−
ρg þ pg

2

�
ð37Þ

ðln bÞ̈ þ 3Hðln bÞ_þ 1

2

�
b2

c2a2
−

a2

b2c2
−

c2

a2b2

�
þ 1

b2

þ 2L3

�
b2 þ a2

c2ðb2 − a2Þ3 v
2
3 −

b2 þ c2

a2ðb2 − c2Þ3 v
2
1

�

¼ 2

�
w1=2 v

2
2

b2
þ ρr − pr

2
−
ρg þ pg

2

�
ð38Þ

ðln cÞ̈ þ 3Hðln cÞ_þ 1

2

�
c2

a2b2
−

a2

b2c2
−

b2

a2c2

�
þ 1

c2

þ 2L3

�
c2 þ b2

a2ðb2 − c2Þ3 v
2
1 −

c2 þ a2

b2ðc2 − a2Þ3 v
2
2

�

¼ 2

�
w1=2 v

2
3

c2
þ ρr − pr

2
−
ρg þ pg

2

�
: ð39Þ

These equations include a comoving ghost field (ρg) and
the noncomoving radiation field (ρr). We give an approxi-
mate analysis of the solutions to these equations during the
radiation era, far from expansion minima and maxima in
the Appendix. We show there that the velocity components
are constant up to logarithmic oscillatory factors during the
era when the expansion dynamics are well approximated
by (26a).

III. INTRODUCING ENTROPY INCREASE

We want to investigate the effect of the noncomoving
velocities on a closed cyclic type IX universe when its
radiation entropy increases from cycle to cycle, mirroring
Tolman’s classic analysis [1]. The radiation entropy density
is s ∝ ρ3=4. As in the earlier analysis made in Ref. [4], we
first consider a closed Bianchi IX universe containing
radiation, dust, and a ghost field but no cosmological
constant. The ghost field has negative density and is
dominant when the singularity is approached but dynami-
cally irrelevant far from the initial and final singularities in
each large cycle. It is included only to create a bounce at
finite volume. This avoids evolution into the open interval
of time around a curvature singularity at t ¼ 0 during

(a) (b)

FIG. 1. Evolution of (a) the volume scale factor, and (b) the individual scale factors (left to right) with the increase in entropy
with time t in a Bianchi IX universe where the radiation is not comoving with the tetrad frame, as well as a comoving dust field,
and a comoving ghost field to facilitate the bounce. The blue starred, red dotted, and green lines correspond to the principal values of the
3-metric in the tetrad frame, scale factors aðtÞ, bðtÞ and cðtÞ respectively.

EVOLUTION OF CYCLIC MIXMASTER UNIVERSES WITH … PHYSICAL REVIEW D 96, 123534 (2017)

123534-5



which the dynamics will be chaotic [14,16,20,21]. For
realistic choices of T1 ≈ 10−43 s as the start of classical
cosmology, there will be less than about 12 mixmaster
oscillations even if they continued all the way from T1 up to
the present day [2,22]. This is because the overall expan-
sion scale changes rapidly with the number of scale factor
oscillations, which occur in log-log time.

A. Effects of entropy increase

The effects of an increase in entropy from cycle to cycle
of an isotropic oscillating closed universe were first

considered by Tolman [1]. He showed that there would
be an increase in expansion volume maxima and cycle
length from cycle to cycle as a consequence of the second
law of thermodynamics. The total energy of the Universe is
zero in each cycle and successive oscillations drive the
Universe closer and closer to flatness.
If the dynamics are allowed to be anisotropic then we

showed that, with Λ ¼ 0, increasing entropy leads to the
increase of volume maxima and cycle length in successive
cycles but the anisotropy grows from cycle to cycle in a
manner that displays sensitive dependence on “initial”
conditions. We investigated this development in the context

(a) (b)

(c) (d)

FIG. 2. Evolution of the squares of velocities of noncomoving radiation with the increase in entropy with time t in a Bianchi IX
universe containing noncomoving radiation, as well as comoving dust and the ghost fields, the latter to facilitate the bounce. The velocity
constraint (22) has been imposed. An increase in entropy(energy density) causes a decrease in the velocities and vice versa.
Where necessary in the last two figures, the figure has been magnified to capture the rapidly oscillating features of the plot.
From left, clockwise, the entropy density (s ∝ ρ3=4), the square of the spatial components of the velocities, u21; u

2
3 and u22

are shown.
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of the Bianchi type IX universe with comoving fluid
velocities—the most general closed spatially homogeneous
universe containing an isotropic Friedmann universe as a
particular case [4]. The addition of Λ > 0 eventually
terminates these oscillations, as in the isotropically expand-
ing case.
In this paper we add an extra generalization, the addition

of noncomoving velocities to the most general anisotropic
closed universe evolution with entropy increase. According
to (20), the entropy increase from cycle to cycle should lead
to a new effect: the reduction of the velocity from cycle to
cycle. However, it is important to keep in mind that the
constant on the right-hand side of the conservation equation
resulting from (20), that is Eq. (22), does not remain
constant from cycle to cycle. Close to isotropy, the energy
density ρ ∼ L3ðabcÞ−4=3, and the entropy density s ∝ ρ3=4

for radiation. Increasing the entropy density from cycle to
cycle, means that L remains constant only per cycle but
jumps to a higher value in the next cycle. Thus, the
constraint equation (22) is valid in each cycle with the
right-hand side being equal to a new, larger constant in
subsequent cycles if there is entropy increase. A way of
modeling this problem is to ensure that the constraint is
imposed simultaneously with the injection of entropy at
each minima. Thus, if we increase the entropy, or in our
case the energy density (as s ∝ ρ3=4) by a factor Δ, then the
normalized velocities vi ¼ ρ1=4ui must be multiplied by a
factor Δ−1=4 to keep the constraint equation (22)
unchanged. Thus we see that when the entropy increases,
the velocities decrease as the evolution proceeds from
cycle to cycle in accord with the second law of
thermodynamics.
The sum of the square of the normalized velocities,

ðρþ pÞ1=4uα, oscillates initially but eventually settles down
to a nearly constant value with small oscillations around
this value even as oscillations proceed to higher and higher
expansion maxima. In Fig. 3, we show the constancy of this
sum over one cycle. We have modeled the effects of
radiation entropy, s, increased during a cycle of a closed
universe by creating a sudden entropy increase at the start
of each cycle.1 This produces the increase in the expansion
maximum of successive cycles, first discovered by
Tolman [1].
We identify a new feature of isotropic, oscillating

radiation universes: any noncomoving velocities and vor-
ticities will diminish from cycle to cycle as the expansion
maxima increase and flatness is approached in accord with
the second law of thermodynamics. For the anisotropic

case, the overall trend in velocity evolution is oscillatory
and is made more complicated. This is because we have
shown that flatness is approached with an increase in
expansion maxima and the inclusion of noncomoving
velocities changes the dependence of the energy density
and hence of the entropy on the scale factors from the
isotropic case (and the anisotropic case in the absence of
these noncomoving velocities) [4]. Thus we can only
observe a increase/decrease in the velocities with a corre-
sponding decrease/increase in the entropy. Aside from this
effect, the evolutionary impact of the noncomoving veloc-
ities on the evolution in a cyclic radiation universe found in
case with comoving velocities is only asymptotically
logarithmic in time [4].

B. Evolution with noncomoving velocities

To study the behavior of this model under the influence
of noncomoving matter we assume that only the radiation
field possesses noncomoving velocities (i.e. the ghost field
is comoving). In the case of Bianchi IX, we find that the
scale factors do undergo a bouncing behavior, see Fig. 1(a),
as in the case without the noncomoving velocities. The
volume scale factor, abc, mimics the behavior of cube of
the scale factor in the isotropic Friedmann case and shows
an increase in height of its expansion maxima as the
entropy of the constituents is increased from cycle to
cycle. The individual scale factors oscillate out of phase
with each other and with different expansion maxima,
similar to their behavior without the noncomoving veloc-
ities, see Fig. 1(b). However, the period of the volume
oscillations is greater than in the comoving velocities case.
Thus, the model takes longer to recollapse on average than
in the comoving case, making each cycle last longer in
comoving proper t time.

FIG. 3. The evolution of (22), the velocity constraint equation,
over one cycle.

1We assume that the additional radiation entropy is at
rest relative to the comoving frame so that we are not adding
angular momentum. The situation is analogous to the effect of
quantum created particle at the Planck epoch on vortical motions,
where the increase in inertia of created particles causes velocities
to drop [23].
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(a)

(b) (c)

FIG. 5. (a), (b), and (c): Evolution of the squares of the 3-velocity components of noncomoving radiation with the increase in entropy
in time t in a Bianchi IX universe consisting of noncomoving radiation, as well as comoving dust and the ghost fields, the latter to
facilitate the bounce. Unlike in Figs. 2(b), 2(c) and 2(d), the velocity constraint equation (22) has not been explicitly imposed. The
evolution of u2ðtÞ2 and u3ðtÞ2 is highly oscillatory especially in the second cycle with very small time periods of oscillation, and to show
this behavior clearly, the plots are magnified and partly inset.

(a) (b)

FIG. 4. Evolution of (a) the 3-curvature and (b) the shear with the increase of entropy with time t in a Bianchi IX universe where the
radiation is not comoving with the tetrad frame, also containing a comoving dust field and a comoving ghost field to facilitate the bounce.
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The shear and the 3-curvature undergo oscillations
which increase in amplitude and frequency near the minima
and do not appear to fall to smaller and smaller values, see
Figs. 4(a) and 4(b).
The velocity components themselves show oscillatory

behavior, see Figs. 5(a), 5(b) and 5(c). However, the
amplitude of their oscillations undergoes cyclic behavior.
The amplitudes of oscillations fall to their smallest values
at the expansion minima of the scale factors. After the
first oscillation, one of the velocity components starts

undergoing very small oscillations around a nearly constant
value. We give an approximate analytic analysis of this
evolution in the Appendix.

IV. THE EFFECTS OF A COSMOLOGICAL
CONSTANT

A. Positive cosmological constant (Λ > 0)

Now we add a cosmological constant to the model. The
effect of cosmological constant domination in the case of

(a) (b)

FIG. 6. Evolution of (a) the shear, and (b) the 3-curvature (left to right) and the individual scale factors with the increase in entropy
with time t in a Bianchi IX universe where the radiation is not comoving with the tetrad frame, containing a comoving dust field and a
comoving ghost field to facilitate the bounce, together with a positive cosmological constant.

(a) (b)

FIG. 7. Evolution of (a) the volume scale factor, and (b) the individual directional Hubble rates (left to right) with the increase in
entropy, and a positive cosmological constant, with time t in a Bianchi IX universe where the radiation is not comoving with the tetrad
frame, also containing a comoving dust field and a comoving ghost field to facilitate the bounce. The blue starred, red dotted, and solid
green lines correspond to derivatives of the principal values of the 3-metric in the tetrad frame, Hubble rates _a=a, _b=b and _c=c
respectively. The model undergoes approach to de Sitter expansion when the cosmological constant eventually dominates the dynamics
after cycles become large enough to ensure this.
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comoving velocities was to cause the model to change from
a cyclical behavior to asymptotically de-Sitter-like expan-
sion [4] (note that the cosmic no hair theorems [24,25] do
not cover the type IX case because the 3-curvature scalar
can be positive).
As in case with comoving velocities, the model is able to

undergo cyclical behavior until the maxima grow large
enough for the cosmological constant to dominate at late
times and then the dynamics approach a phase of quasi–
de Sitter expansion, see Fig. 7(a). The individual expansion
rates oscillate while the model is still undergoing cyclical
behavior but approach a constant value H0 ¼

ffiffiffiffiffiffiffiffiffi
Λ=3

p
signalling the onset of isotropic de Sitter behavior, see
Fig. 7(b).

In the de Sitter phase the shear and the curvature are
diluted by expansion, as expected, and fall exponentially
rapidly to very small values, see Figs. 6(a) and 6(b). The
3-curvature can be seen to change sign from negative values
(when the dynamics are far from isotropy) to positive
values (when the dynamics are close to isotropy). Positive
3-curvature is necessary for a volume maximum to occur.
The velocities themselves oscillate rapidly in each cycle,

while the amplitudes of the oscillations rise or fall accord-
ing to the growth or regression of the scale factors, see
Figs. 8(a), 8(b) and 8(c). The amplitudes of the oscillations
of the velocities in two of the directions grow with the
exponential expansion of the scale factors. As the scale
factors expand further, the time period of the oscillations of
the velocities also increases.

(a) (b)

(c)

FIG. 8. Evolution of the squares of velocity components of noncomoving radiation with the increase in entropy with time t in a
Bianchi IX universe consisting of noncomoving radiation, as well as a comoving dust field and a comoving ghost field to facilitate the
bounce, and a positive cosmological constant. The graphs (a), (b) and (c) plot the squares of the spatial components of the 4-velocity in
the tetrad frame, u1ðtÞ2,u2ðtÞ2, and u3ðtÞ2, respectively.
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B. Negative cosmological constant (Λ < 0)

Adding a negative cosmological constant results in the
Universe always recollapsing [26], as this is just another null
energy condition violating field. For the behavior of the
volume and individual scale factors, see Figs. 10(a) and10(b).
The ghost field allows the model to undergo more cycles

of oscillation. As we are not introducing an increase in
entropy and all the cycles are of equal size, we shall focus
on one cycle. The velocities all oscillate and increase with
the volume of the Universe. One of the velocities [u1ðtÞ2]

also oscillates but with smaller amplitude around a constant
value. Only at the end of each cycle does this velocity
component show an increase in the amplitude of oscilla-
tions, see Figs. 11(a), 11(b) and 11(c).
The shear and the 3-curvature undergo oscillations,

falling to their smallest values at the moments when the
volume of the Universe is at its highest, see Figs. 9(a) and
9(b). Again, we see the 3-curvature taking on negative
values when the dynamics are significantly anisotropic and
positive values when close to isotropy.

(a) (b)

FIG. 10. Evolution of (a) the volume scale factor and (b) the individual scale factors with t in the presence of a negative cosmological
constant in a Bianchi IX universe where the radiation is not comoving with the tetrad frame, and containing a comoving dust field and a
comoving ghost field to facilitate the bounce. The blue starred, red dotted and green solid lines correspond to the principal values of the
3-metric in the tetrad frame, scale factors aðtÞ, bðtÞ and cðtÞ, respectively.

(a) (b)

FIG. 9. Evolution of (a) the shear, and (b) the 3-curvature with the increase of entropy with time t in a Bianchi IX universe where the
radiation is not comoving with the tetrad frame, as well as comoving dust and ghost field, the latter to facilitate the bounce, in the
presence of a negative cosmological constant.
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V. CONCLUSIONS

To complete the analysis of the shape of cyclic closed
anisotropic universes, it is important to include the effects
of noncomoving matter. In the current analysis, we have
extended the results of [4] by including a radiation field that
is not comoving with the reference tetrad frame. This tilted
velocity field introduces vorticity, in addition to the shear
and 3-curvature anisotropies, into the Universe.
We found that, as in the comoving case, the expansion

maxima increases with increasing entropy of the constitu-
ents from cycle to cycle, while the individual scale factors
oscillate out of phase with each other. The overall dynamics
approach flatness over many cycles but they become
increasingly anisotropic. We find a new effect in oscillating
universes with noncomoving velocities and vorticity. Over

successive cycles of entropy increase the conservation of
momentum and angular momentum ensures that there is a
decrease in the magnitude of the velocities and vorticities in
response to the increase of entropy. We modeled entropy
increase per cycle by adding entropy at the start of each
cycle of a closed universe. We also included a comoving
ghost field with negative energy density in order to create a
bounce at finite expansion minima and avoid the chaotic
mixmaster regime as t → 0—it is not relevant in practice to
post-Planck time evolution.
Our numerical study shows that the velocities oscillate

many times and around an almost constant value per
cycle, and the amplitude of the oscillations increases with
the increase in expansion volume. The velocity in one of
the directions tends to a constant value after initially

(a) (b)

(c)

FIG. 11. Evolution of the squares of the velocities of noncomoving radiation with time t in a Bianchi IX universe consisting of
noncomoving radiation, as well as comoving dust and ghost fields, the latter to facilitate the bounce, and a negative cosmological
constant. Plots (a), (b) and (c) show the squares of the spatial components of the 4-velocity in the tetrad frame, u1ðtÞ2,u2ðtÞ2, and u3ðtÞ2,
respectively. The highly oscillatory behavior of the velocity components with very short time period is captured by the magnified insets
in each of the plots.
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undergoing several oscillations. On explicitly imposing the
constraint equation arising out of particle number con-
servation, see Eq. (22), we find that an increase in entropy
density (and hence energy density as for radiation s ∝ ρ3=4)
produces a corresponding decrease in the components of
the noncomoving velocity, and vice versa.
When we add a positive cosmological constant to a

model containing radiation and a ghost field we confirm
that the oscillations are sustained until the cosmological
constant dominates the dynamics, after which the scale
factors enter a period of quasi–de Sitter expansion. The
velocities oscillate with amplitude increasing with increas-
ing scale factor as before, but after cosmological constant
domination, the time period of oscillations starts increasing,
and they oscillate less rapidly, around a constant value. The
asymptotic state is de Sitter with a constant velocity field.
When we add a negative cosmological constant we find

there is always collapse, as expected. Studying one cycle
we see that the scale factors oscillate out of phase with each
other. The velocities in two directions oscillate with
increasing amplitude as the volume increases but decrease
again with decreasing volume. The velocity in the third
direction, however, oscillates with very small amplitude
around a constant value, only increasing in oscillation
amplitude at the end of each cycle when the volume is its
smallest.
We conclude that the inclusion of noncomoving veloc-

ities has the effect of increasing the time period of the
oscillations of the model. The velocities oscillate rapidly
per cycle but with increasing amplitude as the volume of the
Universe increases, in at least two directions. In the third
direction, the velocity oscillates around a constant value
with very small amplitude, and hence remains nearly
constant per cycle. It only increases in amplitude when
the model collapses, before relapsing again to a nearly
constant value during the next cycle. Our analysis has
identified the principal ingredients of a general cyclic
closed universe in the case of spatial homogeneity. In a
future work we will explore the effects of inhomogeneities
on these conclusions.
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APPENDIX: APPROXIMATE ANALYSIS
OF THE RADIATION ERA

We seek an approximate solution of the velocity evolu-
tion equations in the type IX model during the radiation era.
In our earlier study [4] without velocities we found a long
period of evolution during the radiation era (before the

curvature creates slowdown of the expansion near the
volume maximum) with the scale factors evolving to a
good approximation in a quasiaxisymmetric manner during
the radiation era, as

aðtÞ ¼ a0t1=2½lnðtÞ�−1=2; bðtÞ ¼ b0t1=2½lnðtÞ�−1=2;
cðtÞ ¼ c0t1=2 lnðtÞ: ðA1Þ
When the effects of the velocities in the Bianchi type IX

radiation universe are small they can be treated as test
motions on an expanding radiation background governed
by Eqs. (20) and (21). We examine a typical case where we
choose

v3 ¼ const:

This is consistent with the velocity evolution equation for
v3 with 1=a2 ¼ 1=b2. In the approximation a ≫ b ≫ c and
b4 > a2c2 for large t from (34) and (35), the evolution
equations for v1 and v2 reduce to

_v1 þ
v2v3
v0c2

�
1 −

2L3

w1=2

�
¼ 0;

_v2 −
v1v3
v0c2

�
1þ 2L3b2

a2w1=2

�
¼ 0:

We assume nonrelativistic velocities, so take v0 ¼ 1, and
note that w ¼ ρr þ pr ¼ 4ρr=3. Since ρr∝ðabcÞ−4=3∝ t−2,
we write

w1=2 ¼ M
t
;

where M is a positive constant. Therefore the radiation
entropy, s, depends on M via

s ∝ ρ3=4r ∝ w3=4 ∝ M3=2:

Hence, we have approximately

_v1 þ
v2v3

c20t ln
2ðtÞ

�
1 −

2L3t
M

�
¼ 0; ðA2Þ

_v2 −
v1v3

c20t ln
2ðtÞ

�
1 −

2L3b20t
Ma20

�
¼ 0; ðA3Þ

where v3 is constant. At large times these equations are
(and scaling a0 ¼ b0)

_v1 ¼
2L3v3v2
Mc20ln

2ðtÞ≡
Dv2
ln2ðtÞ ; ðA4Þ

_v2 ¼ −
2L3v3b20v1
Mc20a

2
0 ln

2ðtÞ≡ −
Dv2
ln2ðtÞ ; ðA5Þ
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where

D ¼ 2L3v3
Mc20

is a constant. Hence, we see immediately that

v21 þ v22 ¼ E∶ E ¼ const: ðA6Þ

Since v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E − v22

p
, we have in (A4)

_v1 ¼ −v2 _v2ðE − v22Þ−1=2 ¼
Dv2
ln2ðtÞ ;

hence

Z
dv2ffiffiffiffiffiffiffiffiffiffiffiffiffi
E − v22

p ¼ −D
Z

dt
ln2ðtÞ :

Therefore,

v2 ¼
ffiffiffiffi
E

p
sin

�
−D

Z
dt

ln2ðtÞ
�
;

and so, by (A6), we have

v1 ¼
ffiffiffiffi
E

p
cos

�
−D

Z
dt

ln2ðtÞ
�
:

The components v1 and v2 therefore undergo bounded
oscillations while v3 remains constant.
We can get a better approx by keeping all the terms in

(A2) and (A3). If we write them as

_v1 þ
Av2

t ln2ðtÞ ð1 − BtÞ ¼ 0; ðA7Þ

_v2 −
Av1

t ln2ðtÞ ð1 − BtÞ ¼ 0; ðA8Þ

then v21 þ v22 ¼ E, and hence we find a second order
correction which confirms the oscillatory behavior of the
velocities with growing periods of oscillation:

v1 ¼ E1=2 cos

�
−

1

lnðtÞ − B
Z

dt
ln2ðtÞ

�

v2 ¼ E1=2 sin

�
−

1

lnðtÞ − B
Z

dt
ln2ðtÞ

�
:
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