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We demonstrate that the Vlasov equation describing collisionless self-gravitating matter may be solved
with the so-called Schrödinger method (ScM). With the ScM, one solves the Schrödinger-Poisson system
of equations for a complex wave function in d dimensions, rather than the Vlasov equation for a 2d-
dimensional phase space density. The ScM also allows calculating the d-dimensional cumulants directly
through quasilocal manipulations of the wave function, avoiding the complexity of 2d-dimensional phase
space. We perform for the first time a quantitative comparison of the ScM and a conventional Vlasov solver
in d ¼ 2 dimensions. Our numerical tests were carried out using two types of cold cosmological initial
conditions: the classic collapse of a sine wave and those of a Gaussian random field as commonly used in
cosmological cold dark matter N-body simulations. We compare the first three cumulants, that is, the
density, velocity and velocity dispersion, to those obtained by solving the Vlasov equation using the
publicly available code ColDICE. We find excellent qualitative and quantitative agreement between these
codes, demonstrating the feasibility and advantages of the ScM as an alternative to N-body simulations. We
discuss, the emergence of effective vorticity in the ScM through the winding number around the points
where the wave function vanishes. As an application we evaluate the background pressure induced by the
non-linearity of large scale structure formation, thereby estimating the magnitude of cosmological
backreaction. We find that it is negligibly small and has time dependence and magnitude compatible with
expectations from the effective field theory of large scale structure.
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I. INTRODUCTION

Cold dark matter (CDM) is one of the necessary
ingredients of the concordance model of modern cosmol-
ogy, the ΛCDM model. The CDM model explains the
amount of Large-Scale Structure (LSS) in the Universe and
the formation of halos where galaxies develop and evolve.
According to the ΛCDM model initially small density
perturbations evolve into bound structures, for instance
CDM halos, that are themselves distributed within the
cosmic web composed of superclusters, filaments and
sheets [1–3]. The morphology of the cosmic web and
the clustering of CDM depends sensitively on the cosmo-
logical parameters. Thus, accurate modeling and theoretical
understanding of the CDM dynamics is required to infer
these parameters from observations.
The microphysical nature of CDM is still unknown and it

is generally assumed to be composed of a particle species
(or perhaps many) which otherwise remains undetected at
the present time. In this article, we are interested in the
modeling of the dynamics of self-gravitating collisionless
(¼ dark) matter (DM), that may be used to describe a wide

variety of particle candidates. In particular, we are inter-
ested in cold DM (CDM), where “cold” from the point of
view of LSS formation simply means that a smooth density
nðxÞ and velocity uðxÞ field suffice to describe the initial
DMmatter phase space distribution fðx; pÞ. In other words,
fðx; pÞ is nonzero only on a three-dimensional sheet
defined by p ¼ muðxÞ, and moreover, uðxÞ is single valued.
This situation is usually referred to as the single stream
regime of CDM.
If cold initial conditions are used at an initial time when

linear perturbation theory still applies, the Poisson equation
approximates the Einstein equations on all scales relevant
for LSS and halo formation (see for instance [4,5])
justifying the usual use of Newtonian gravity and non-
relativistic equations in general. Furthermore, gravitational
two-body collisions are suppressed due to the presence of a
large number of particles in the systems of interest, so that
the phase space dynamics of the 1-particle distribution
function is collisionless [6]. Therefore, the time evolution
of the phase space density fðt; x; pÞ is governed by the
Vlasov (the collisionless Boltzmann) equation, also known
as Jeans equation [7].
A solution to the Vlasov equation is equivalent to a

solution of the coupled infinite hierarchy of equations for
the cumulants of the phase space density. In the linear
regime of LSS formation, before multistreaming occurs, the
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Boltzmann hierarchy of cumulants of the Vlasov equation
can be consistently truncated, so that the Vlasov system
may be solved by the dust model [1] where the curl part of
the velocity and all higher cumulants vanish identically.
The dust description breaks down soon after the density
contrast evolves into the non-linear regime, as this is
generally followed by caustic formation, that is, “shell-
crossing” singularities. Consequently, multiple streams
occur, vorticity and higher cumulants are generated, and
solving the full Vlasov equation is warranted from that
point onwards. A popular way of providing approximate
solutions to the Vlasov equation, and thus, determining the
non-linear evolution of CDM, is through the use of N-body
simulations, see for instance [2,8–12].
In most applications, one is not interested in the fine-

grained distribution of particles, or the fine details of the
distribution function, but rather at the lowest cumulants:
density, velocity and velocity dispersion (perhaps even
higher cumulants could be of interest). The route to the
cumulants via the high-dimensional phase space seems,
however, unavoidable if the hierarchy cannot be truncated.
Fortunately, this is unnecessary if a different method of
solving the Vlasov equation is used, as we describe below
in more detail.
The Schrödinger method (ScM), originally proposed in

the context of plasma physics in [13] and later independ-
ently in the context of gravity by Widrow and Kaiser
[14,15], is a numerical technique for approximating sol-
utions to the Vlasov equation while avoiding the difficulties
of dealing with phase space. With this method, CDM is
modelled as a complex scalar field obeying the coupled
Schrödinger-Poisson equations (SPE) [16–18], where ℏ is
treated as a free parameter determining the desired phase
space resolution. The ScM comprises two steps; (1) solving
the SPE with suitably chosen initial conditions and (2) con-
structing the cumulants of choice. The second step may be
performed in two mutually independent ways. Either (2a)
by taking the Husimi transform [19] in order to construct a
phase space distribution from the wave function and use it
to calculate the cumulants. Or, (2b) construct the cumulants
directly through quasilocal manipulations of the wave
function, avoiding the complexity of 2d-dimensional phase
space. In this work, we follow the second route, that is (2b).
The first three cumulants of a two-dimensional toy

cosmological simulation are shown in Fig. 1. From top
to bottom, we show the density, the two components of the
velocity vector field and the trace of the velocity dispersion
tensor. The correspondence between the Vlasov solver
ColDICE [20] and our implementation of the ScM is
depicted by the left and right column. The same initial
linear Gaussian random field at aini ¼ 1=51 was used in
both cases. The Vlasov solver evolves the two-dimensional
phase space sheet in four-dimensional phase space, and we
obtained the figures on the left column by subsequent
projection of that phase space sheet weighted by suitable

powers of u onto the two-dimensional Eulerian space,
followed by Gaussian smoothing. The figures on the
right column have been obtained by evolving a complex
wave function in two-dimensional Eulerian space and

FIG. 1. Time snapshots of a two-dimensional cosmological
simulation evolved to the present time a ¼ 1. Both codes were
started with the same single-stream initial conditions, set up using
the Zel’dovich approximation at aini ¼ 1=51. From top to
bottom: density, velocity divergence, velocity curl and trace of
the velocity dispersion tensor. The left column shows the
smoothed results of the two-dimensional version of the Vlasov
solver ColDICE [20]. The result of the Schrödinger method is
shown in the right column. The differences are barely visible by
eye. A quantitative comparison is presented in Sec. IV.
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subsequently constructing the corresponding coarse-
grained cumulants through simple spatial differentiation
of the wave function, again followed by spatial coarse
graining. Although these methods are vastly different both
in implementation and also conceptually, the results are
barely distinguishable by eye.

A. Objective

The main result of this article is the extension of all
previous one-dimensional tests of the ScM [14,15,21–24],1
to two-dimensional configurations, using a single smooth
wave function on a cosmological background with nearly
cold initial conditions, similarly to [23]. In contrast to [23],
we also quantitatively show that the resulting first three
cumulants—density, velocity and velocity dispersion—
are in good correspondence with the same quantities
extracted from a conventional state-of-the-art Vlasov code,
ColDICE [20]. This is highly non-trivial, since as outlined
in Table I, the Vlasov equation with cold initial conditions
requires 2d degrees of freedom (d.o.f.) to encode the phase
space sheet, whereas the ScM requires only two, indepen-
dent of the spatial dimension d. Therefore, while the
success of the ScM for d ¼ 1 might have been a coinci-
dence due to the matching numbers of d.o.f., its success in
d ¼ 2 gives strong evidence that the ScM will work for any
dimension d. Furthermore, we extend the work of [23] by
considering non-symmetric initial conditions, in particular,
a Gaussian random field akin to standard cosmological
simulations. This is another important milestone in show-
ing the generality of the ScM as a method for solving the
Vlasov equation. In addition, our work outlines an efficient
algorithm for determining moments and cumulants from
snapshots of the wave function at any desired time.

B. Outline

This article is organized as follows. In Sec. II, we
review the connection between the gravitational N-body
problem, the phase space description in terms of the
Vlasov equation and its connection to the dust fluid and
Lagrangian formulation of the Vlasov equation. We
review the connection between the Husimi distribution
and the coarse-grained Vlasov distribution function.
Furthermore we review the algorithm to directly construct
moments and cumulants that approximately satisfy the
Boltzmann hierarchy in a way that circumvents the full
phase space and is therefore easy to implement.
In Sec. III, we describe the numerical implementation

of our experimental two-dimensional Schrödinger code.
In Sec. IV, we investigate cosmological simulations of
two different types of initial conditions, a two-dimen-
sional pancake collapse as well as a more realistic
Gaussian random field, to provide further empirical
proof of the accuracy and feasibility of the ScM. We
quantitatively compare cumulants to the corresponding
quantities obtained with a state of the art Vlasov code
ColDICE.
In our discussion section, Sec. V, we explain how

vorticity arises in the ScM without the seemingly necessary
vortical degrees of freedom, a qualitative new phenomenon
in d ¼ 2 dimensions which goes beyond the previous one-
dimensional studies. We also demonstrate the advantage of
the ScM, with two applications. First, we evaluate the
dynamical pressure induced by the non-linear structure
formation—an easy task in the ScM—allowing an estimate
of the magnitude of backreaction on the background
cosmology. Second, we outline how to calculate the
entropy and the free energy. Since the phase space density
comes with a fixed coarse-graining scale, the entropy is
well defined and will shed new light on the nature of LSS
formation.
The reader may also find useful the appendices. In

Appendix A, we present Zel’dovich initial conditions.

TABLE I. Comparison between the Schrödinger method, and two other continuum formulations of CDM: the dust fluid that ceases to
describe CDM after shell-crossing and the Lagrangian formulation of the Vlasov equation with cold initial conditions, that can be seen
as the continuum definition of CDM. The mathematical correspondence of fH with cold initial conditions and the coarse-grained CDM
phase space density f̄c (18) is established by virtue of (29) and numerically verified in the two-dimensional case in Sec. IV.

ScM: fHðt; x;uÞ, Sec. II E Dust: fdðt; x; uÞ, Sec. II B CDM: fcðt; x; uÞ, Sec. II C
Degrees of freedom (d.o.f.) type 1 × C: ψðt; xÞ 2 × R: ndðt; xÞ;ϕdðt; xÞ 2 × Rd: Xðt; qÞ;Uðt; qÞ
Number of d.o.f. 2 2 2d
Equations of motion 1st order SPE (21) 1st order fluid equations (10) 1st order trajectories (12)
Singularity-free d.o. fs ✓ ✗ ✓
fðx;uÞ constructed from ψðxÞ, quasilocal (27) ndðxÞ;∇ϕdðxÞ, local (11) XðqÞ;UðqÞ, nonlocal (14)
MðnÞðxÞ constructed from ∂0≤m≤n

x ψðxÞ, quasilocal (34) ndðxÞ;∇ϕdðxÞ, local XðqÞ;UðqÞ, nonlocal (15)
Vlasov equation (4) solved Approximately (ℏ; σx) Exactly until shell-crossing Exactly
Multistreaming and virialization ✓ ✗ ✓
Initial conditions type Arbitrary, incl. cold (37) Cold (11) Cold (13)

1A method different from ScM where N wave functions are
coupled via the Poisson equation, was shown to accurately solve
the Vlasov equation in one-dimensional situations in [25] without
the necessity of coarse graining, see also [26,27] for a math-
ematical treatment.
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In Appendix B, we give some further details regarding
our numerical implementation. In Appendix C, we des-
cribe the one-dimensional continuum formulation of
CDM, as it is not readily available in the literature and pro-
pose an iterative improvement of the Zel’dovich approxi-
mation in the multistream regime. In Appendixes D and E,
we collect derivations and proofs, and in Appendix F,
we collect various results from [23] in order to assist the
reader.

II. MODELING COLD DARK MATTER

The reader already familiar with the ScM or not
interested in its details might want to skip this section.
For quick reference, the most important equations are
highlighted and a summary of the construction algorithm
of the phase space density is given at the end of Sec. II E 3,
and for moments and cumulants these can be found at the
end of Sec. II E 4. It is only the second approach that we
explicitly use in this article.

A. N-body to Vlasov

The gravitational N-body problem is defined by the
Hamiltonian system

EN ¼
XN
i¼1

�
u2i
2a2

−
mG
2a

XN
j¼1;j≠i

1

jxi − xjj
�

_xi ¼
∂EN

∂ui ; _ui ¼ −
∂EN

∂xi ð1Þ

where a is the scale factor, EN is the energy per particle
massm, xi is the comoving spatial coordinate of the particle
i with associated conjugate momentum pi ¼ mui.

2

Defining the exact microscopic, or Klimontovich, phase
space density,

fKðt; x; uÞ ¼
m
ρ0

XN
i¼1

δD½x − xiðtÞ�δD½u − uiðtÞ�; ð2Þ

using the three-dimensional Dirac delta function δD, the N
Hamiltonian equations (1) that determine the phase space
trajectories fxiðtÞ; uiðtÞg can be neatly expressed in form of
the Klimontovich equation [28]

∂tfK ¼ −
u
a2

· ∇xfK þ ∇xΦK · ∇ufK ð3aÞ

ΔΦK ¼ 4πGρ0
a

�Z
d3ufK − 1

�
; ð3bÞ

which has the simple interpretation that fK is con-
served along phase space trajectories, 0 ¼ DfK=dt ¼
ð∂tfK þ _x · ∇xfK þ _u · ∇ufKÞjx¼xi;u¼ui for all i.

3 This fol-
lows from the fact that for Hamiltonian systems the phase
space trajectories never cross.
For convenience we introduced the (constant) comoving

matter background density ρ0 ¼ mN=V, such that back-
ground, or spatial average value of fK over some large
volume V → ∞, is normalized hR d3ufKiV ¼ 1.
Although it is exactly (3) that N-body simulations solve,

it is not feasible to use values of N and m that we expect
from particle DM candidates. Even if DM were primordial
black holes with m≃ 15M⊙, possibly the largest m
encountered for DM in the literature, current cosmological
N-body simulations have particle masses that are 8 orders
larger than this value and therefore can only approximate
the physical N-body problem. The continuum limit
fðx; uÞ ¼ limN→∞fKðx; uÞ or ‘pulverization,’ where N →
∞ and m → 0 with ρ0 ¼ mN=V constant, although an
idealization, comes closer to modeling collisonless particle
DM. The such defined smooth phase space density satisfies
the Vlasov equation

∂tf ¼ −
u
a2

· ∇xf þ ∇xΦ · ∇uf ð4aÞ

ΔΦ ¼ 4πGρ0
a

�Z
d3uf − 1

�
; ð4bÞ

that is, the collisionless Boltzmann equation with a long
range gravitational force ∇xΦ determined by f itself. The
form of Klimontovich and Vlasov equations, (3) and (4), is
identical and therefore the Vlasov equation simply states
the conservation of the now continuous phase space density
along phase space trajectories of the continuum. While (3)
is in effect short-hand notation for the Newtonian equations
of motion of N particles, (4) is an evolution equation for a
smooth phase space distribution.
The Vlasov equation is often taken as the defining

equation of purely self-gravitating, and thus collisionless,
non-relativistic matter. It also has a straightforward rela-
tivistic generalization, see for instance [29] for a detailed
treatment. Although the Vlasov equation is a very useful
definition for collisionless DM in the context of LSS
formation, it is not sufficient when the discreteness matters,
as is the case for the internal dynamics of globular clusters
where the number N of particles4 is only a few thousand
[6]. In this case, a better continuum approximation to
the N-body dynamics (3) starts with a transformation
of (3) into the Bogoliubov-Born-Green-Kirkwood-Yvon

2For simplicity and without loss of much generality, we
assumed that the mass m is the same for all particles. It is
therefore convenient to use u instead of p as phase space
coordinate because many equations appear less cluttered.

3fK remains nonzero (the height of the six-dimensional δD)
along each particle’s phase space trajectory and vanishes every-
where else.

4For a globular cluster, the particles are stars such that
m≃ 1M⊙.
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(BBGKY) hierarchy for the n-particle distribution func-
tions using an appropriate ensemble average without taking
the limit N → ∞. A truncation of this hierarchy at lowest
order in 1=N gives the Vlasov equation, while the one at
second order contains a collision term that takes into
account some of the discreteness through the 2-particle
correlation function [6,30,31]. Note that cosmological
N-body simulations suffer from artificial discreteness
effects due to the relatively small N ≪ Nphys and therefore
may fail to approximate the Vlasov equation as well as the
physical N-body problem.
Moments and Cumulants Most applications of f in

cosmology involve only its first few (n ¼ 0, 1, 2) moments

MðnÞ
i1…in

ðxÞ≡
Z

d3u ui1 � � � uinfðx; uÞ: ð5Þ

In order to calculate the nth moment, it is convenient to
define the moment generating function,

Gðx; JÞ≡
Z

d3ueiu·Jfðx; uÞ; ð6Þ

such that moments and cumulants are given by

MðnÞ
i1���in ¼ ð−iÞn ∂nG

∂Ji1…∂Jin
����
J¼0

ð7aÞ

CðnÞ
i1���in ≔ ð−iÞn ∂n lnG

∂Ji1…∂Jin
����
J¼0

: ð7bÞ

Taking time derivatives of CðnÞ or MðnÞ and using the
Vlasov equation (4a) to eliminate ∂tf at the right-hand
side of (7), results in an infinite coupled collection of first
order time evolution equations for the CðnÞ or MðnÞ, the
Boltzmann hierachy, see [23] for details. The first 3
moments are

Mð0Þ ¼ n; ð8aÞ

Mð1Þ
i ≕ nui ð8bÞ

Mð2Þ
ij ≕ nuiuj þ nΣij; ð8cÞ

and the resulting cumulants are then determined by them as

Cð0Þ ¼ ln n ð8dÞ

Cð1Þ
i ¼ ui ð8eÞ

Cð2Þ
ij ¼ Σij: ð8fÞ

The physical interpretation is as follows. The scalar
field nðt; xÞ is the density, the vector field uiðt; xÞ is the

mass-weighted velocity related to the peculiar velocity as
vi ¼ ui=a and the tensor field Σijðt; xÞ is the mass-
weighted velocity dispersion.
The physical significance of the moments Mð1Þ

and Mð2Þ becomes clear when we consider the four-
dimensional energy momentum tensor Tμν ¼ ρ0ffiffiffiffi−gp ×R du1du2du3

u0ðujÞ uμuνfðxα; uiÞ in the Newtonian limit. Its com-

ponents with respect to coordinates xα ¼ ðt; xÞ are

T00 ¼ ρ0Mð0Þ=a3 ð9aÞ

T0i ¼ −ρ0M
ð1Þ
i =a3 ð9bÞ

Tij ¼ ρ0M
ð2Þ
ij =a

3; ð9cÞ

where we have neglected any metric perturbations and
relativistic effects, such that g00 ¼ −1, g0i ¼ 0, gij ¼ a2δij
and u0 ¼ 1.5

B. Dust to Vlasov

The dust model is a pressureless perfect fluid with
density ndðt; xÞ and an irrotational velocity udðt; xÞ ¼
∇ϕdðt; xÞ6 satisfying the continuity, Euler and Poisson
equations

∂tnd ¼ −
1

a2
∇ · ðndudÞ; ð10aÞ

∂tud ¼ −
1

a2
ðud · ∇Þud − ∇Φd; ð10bÞ

∇ × ud ¼ 0 ð10cÞ

ΔΦd ¼
4πGρ0

a
ðnd − 1Þ: ð10dÞ

These equations describe cold collisionless DM (CDM) in
the so-called “single stream” regime. It is therefore often
used as the defining equation for CDM in many analytical
studies of LSS formation. The dust phase space density is
given by

fdðt; x; uÞ ¼ ndðt; xÞδD½u − ∇ϕdðt; xÞ� ð11Þ

and solves the Vlasov equation (4) automatically until the
appearance of so-called shell-crossing singularities or
caustics where nd diverges.7 For cold initial conditions,

5This is a good approximation in the Newtonian (or Poisson)
gauge for non-relativistic matter.

6We will drop very often the argument x from the velocity uðxÞ
and simply write u whenever it is clear from the context that u is
not a coordinate in phase space, but a vector field in real space.

7The different types of singularities in the Zel’dovich approxi-
mation have been classified in [32].
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where f initially has the form (11), these singularities
generically occur and are harmless in the Vlasov equa-
tion (4) but lead to the break-down of the dust fluid
description (10). This is because after shell crossing, f
can no longer be expressed as the product (11). The product
form of fd makes all the cumulants vanish with n > 1.
After shell-crossing, however, f generally produces non-
zero vorticity invalidating (10c), and non-zero velocity

dispersion Cð2Þ
ij thus modifying the Euler equation (10b).

The equation of motion for Cð2Þ
ij contains Cð3Þ

ijk , and so on,
such that a truncation of the Boltzmann hierarchy is no
longer possible, see [23,33].

C. CDM to Vlasov

A useful continuum definition of CDM is a phase space
density fc that is solution of the Vlasov equation (4) with
initial conditions of the form (11).
Although after shell crossing fc cannot be expressed

solely as function of x, it can still be expressed as function
of the Lagrangian coordinate q, the continuum generali-
zation of the particle label i. For this we introduce the
particle trajectories Xðt; qÞ which smoothly depend on the
initial positions q. The equations of motions for Xðt; qÞ and
Uðt; qÞ are in full analogy to (1) given by

a2 _XðqÞ ¼ UðqÞ
_UðqÞ ¼ Gρ0

a

Z
d3q0

XðqÞ − q0

jXðqÞ − q0j3 −
XðqÞ − Xðq0Þ
jXðqÞ − Xðq0Þj3 ;

ð12Þ

where we have assumed that

Xðq; t → 0Þ ¼ q; ð13Þ

corresponding to growing mode initial conditions
of (10). We explicitly wrote −∇xΦ in terms of XðqÞ to
make it manifest that shell-crossing infinities in the
density do not necessarily lead to divergencies in X and
U. See Appendix D for a derivation. Indeed, these
variables remain continuous and sufficiently smooth at
shell-crossings such that they can be numerically evolved
without problems.
Although a numerical implementation of (12) neces-

sarily discretizes Xðt; qÞ, the continuum formulation allows
to keep track of the phase space sheet, which then in turn
i) allows to refine the discretization at any time in a well
defined manner and ii) leads to much smoother moments
(15b) compared to conventional count-in-cells estimators.
This is done in codes like ColDICE [20] or the ones
presented in [34–37], but does not occur in conventional
N-body simulations. For illustration, we consider the one-
dimensional case of (12) in Appendix C.

The CDM phase space density fc is the continuum limit
of the Klimontovich phase space density (2). It can be
constructed from XðqÞ and UðqÞ as

fcðt; x; uÞ ¼
Z

d3q δD½x − XðqÞ�δD½u − UðqÞ� ð14aÞ

¼
X
q with
x¼Xðt;qÞ

δD½u − UðqÞ�
j det ∂qiX

jðqÞj ð14bÞ

and satisfies the Vlasov equation (4). Thus the Vlasov
equation for cold initial conditions may be solved with the
help of six degrees of freedom XðqÞ and UðqÞ (see
Appendix E for a derivation), while in the single stream
regime, two degrees of freedom, ndðxÞ and ϕdðxÞ, are
sufficient.
The moments Mc are trivially obtained from (14) as

McðnÞ
i1;…;in

ðxÞ ¼
Z

d3q δDðx − XðqÞÞUi1ðqÞ…UinðqÞ ð15aÞ

¼
X
qwith
x¼Xðt;qÞ

Ui1ðqÞ…UinðqÞ
j det ∂qiX

jðqÞj ð15bÞ

and are, like fc, nonlocal in q space. The second equalities
in (14) and (15), respectively, follow from the properties of
the Dirac δ function, δD.
These sum over streams8 have to be performed in Vlasov

solvers like ColDICE to obtain Mcð0Þ ¼ nc in order to
solve the Poisson equation at each time step. From (14b)
and (15b), it is clear that if there is only a single stream,
such that x ¼ Xðt; qÞ is invertible for q, the resulting fc is of
the product form (11). The assumed initial conditions (13)
thus guarantee that there is an early time where fc ¼ fd.
It is also worth mentioning that (12) makes it manifest

that the acceleration _UðqÞ of the stream at q is determined
by all streams with the same XðqÞ. This is not the case in
conventional treatments of the Lagrangian formulation of
CDM, where the invertibility of ∂qiX

jðqÞ is assumed and
used in reformulating (12) into an equation local in q.
Solutions of this transformed equation lead necessarily to
unphysical behavior after shell-crossing [39]. We discuss
this further in App. C.

8Due to the assumed initial conditions (13), the map Xðt; qÞ
belongs to the homotopy class of the identity, whose degree is
one. The degree of a function XðqÞ at a regular point x is the
natural number of points q for which x ¼ XðqÞ. In our case, this is
the number of streams. A point x is regular if it does not lie on a
shell-crossing caustic. Now, according to a theorem of differential
topology, see § 4 of [38], the parity of the degree is independent
of the regular point x and also independent of the representative
XðqÞ of the homotopy class. Therefore, the number of streams is
always finite and odd, excluding the zero-measure subset of x on
caustics.
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D. Coarse-grained Vlasov

1. General case

The coarse-grained phase space density

f̄ðt; x; uÞ ¼
Z

d3x0d3u0

ð2πσxσuÞ3
e
−ðx−x0Þ2

2σx2
−ðu−u0Þ2

2σu2 fðt; x0; u0Þ;

¼ e
σx2

2
Δxþσu2

2
Δuffg ð16Þ

is obtained from f through convolution with a Gaussian
filter with width σx and σu in x and u space. For notational
simplicity we will use a shorthand operator representation
of the Gaussian smoothing defined in the second line of
(16). The corresponding coarse-grained Vlasov equation
can be obtained by applying the smoothing operator on (4),
see [23,40].
The moments M̄ðnÞ of f̄ are simply obtained from the

moments of f as

M̄ð0Þ ¼ e
σx2

2
ΔxfMð0Þg ð17aÞ

M̄ð1Þ
i ¼ e

σx2

2
ΔxfMð1Þ

i g ð17bÞ

M̄ð2Þ
ij ¼ e

σx2

2
ΔxfMð2Þ

ij g þ σu
2M̄ð0Þδij: ð17cÞ

The cumulants C̄ðnÞ are obtained from the M̄ðnÞ in the
standard fashion according to (8) with all quantities

barred. Note that in particular ūi ≠ e
σx2

2
Δxfuig, and instead

ūi ¼ M̄ð1Þ
i =n̄. The second term in (17c) arises through the

spreading of the velocity distribution by the Gaussian with
variance σu. Note that the first two moments are not
affected by σu.
The coarse-grained phase space density f̄ has many

desirable features that f does not have. For instance f̄ is no
longer exactly conserved along phase space trajectories
which allows us to properly define phase mixing, virial-
ization and entropy production [40,41]. This also makes f̄
better behaved from a numerical point of view since f̄
cannot develop structures below the scales σx and σu, in
contrast to f which continues to develop ever smaller
structures over time.
Thus a method allowing direct computation of f̄ without

first computing f is of practical interest. Since f̄ can be
approximated by coarse graining fK directly without taking
the limit that brought us to the Vlasov equation (4), a
straightforward method to produce an approximation to f̄ is
to run a N-body simulation [2,8–12,20,37] and sample the
phase space density using the particles.9

2. CDM

The coarse-grained continuum limit of CDM (14) is
obtained by inserting (14a) into (16)

f̄cðt; x; uÞ ¼
1

ð2πÞ3σx3σu3
Z

d3qe
−½x−Xðt;qÞ�2

2σx2 e
−½u−Uðt;qÞ�2

2σu2 : ð18Þ

Similarly, inserting (15a) into (17) shows that the coarse-
grained CDM moments

M̄cð0Þ ¼ 1

ð2πÞ3=2σx3
Z

d3qe
−½x−Xðt;qÞ�2

2σx2 ð19aÞ

M̄cð1Þ
i ¼ 1

ð2πÞ3=2σx3
Z

d3qe
−½x−Xðt;qÞ�2

2σx2 Uiðt; qÞ ð19bÞ

M̄cð2Þ
ij ¼ 1

ð2πÞ3=2σx3
Z

d3qe
−½x−Xðt;qÞ�2

2σx2 Uiðt; qÞUjðt; qÞ

þ σu
2M̄cð0Þδij; ð19cÞ

involve XðqÞ and UðqÞ, just like f̄c, only in a three-
dimensional integral over Lagrangian space. Alternatively
one might chose not to simplify (16) and (17) and perform
the smoothing only after the sum over streams in (14b) and
(15b) has been calculated. It is the second method that we
will use in Sec. IV.

E. The Schrödinger method

The Schrödinger method is an alternative way to
approximate f̄. In the ScM, one constructs a phase space
distribution fHðt; x; uÞ at a given time from a smooth
complex field ψðt; xÞ that satisfies the Schrödinger-Poisson
equation. The function fHðt; x; uÞ is called the Husimi
distribution and is the absolute square of the Husimi-
representation of the wave function ψ . The transformation
ψ → fH is local in time, but involves one quasilocal
integral over Eulerian space. Thus, to evaluate fHðt; x; uÞ
at points x,u one only has to consider a single time snapshot
of ψðt; x0Þ and only points x0 in a small neighborhood
around x.
The phase space resolution of fH is constant in phase

space and time. In some applications of simulations of LSS
formation, for instance, the investigation of voids or ray-
tracing, a spatially and temporally fixed resolution might be
desirable.
The ScM offers a compact way to store the entire six-

dimensional phase space information in fHðx; uÞ in two,
three-dimensional degrees of freedom contained in ψðxÞ.
Although the phase space density fH can be easily
constructed from ψ , the most useful feature of the ScM
is that all moments and cumulants of the phase space
distribution, like the density, velocity and velocity
dispersion as well as the stress-energy-momentum tensor,
can be constructed directly from ψ and its spatial

9The actually achieved resolution σxσu is hard to estimate since
it strongly depends on the method and usually is not constant in
space and time.
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derivatives without the need to first construct the phase
space density and subsequent cumbersome projections in
velocity space. Constructing moments and cumulants
involves only taking spatial derivatives of ψ and using a
Gaussian filter, which is very efficient to calculate since
both processes are quasilocal in space.
This should be contrasted with the case of CDM, where

the dynamics of fðt; x; uÞ can be compressed into two
three-dimensional vector field Xðt; qÞ, Uðt; qÞ satisfying
first order differential equations. Therefore one needs to
take care of 6 degrees of freedom rather than 2. Similar to
ψðt; xÞ the phase space density fc and moments Mc can be
directly constructed from Xðt; qÞ by a single spatial
integration. The integration is, however, nonlocal, whereas
the construction of fH and MH is quasilocal. Lastly while
the reduction of degrees of freedom from fðt; x;uÞ to
Xðt; qÞ and Uðt; qÞ only works for dust initial conditions
(11), the ScM works for general initial fðtini; x; uÞ.

1. The Schrödinger-Poisson equation

The nonrelativistic Schrödinger-Poisson equation (SPE)
in a ΛCDM universe with scale factor a can be derived
from the following action

A½ψ̄ ;ψ � ¼ m
Z

dtd3xði ~ℏ ψ̄ðt; xÞ∂tψðt; xÞ − E½ψ �Þ ð20aÞ

E½t;ψ ; ψ̄ � ¼
~ℏ2

2a2
j∇xψðt; xÞj2

−
ρ0G
2a

Z
d3x0

jψðt; xÞj2jψðt; x0Þj2
jx − x0j ð20bÞ

upon variation with respect to ψ̄ and is given by

i ~ℏ∂tψ ¼ −
~ℏ2

2a2
Δψ þΦψψ ð21aÞ

ΔΦψ ¼ 4πGρ0
a

ðjψ j2 − 1Þ; ð21bÞ

see for instance [14,23,42]. We have defined

~ℏ≡ ℏ
m

ð22Þ

which simplifies the SPE and can be interpreted as the
phase space resolution in coordinates x and u. The SPE can
also be derived by observing that from the action (20a) it
follows that

E ¼
Z

d3x E½t;ψ ; i ~ℏ ψ̄ � ð23aÞ

is the Hamiltonian and iℏψ̄ is the canonically conjugate
momentum of ψ . Following the rules of Hamiltonian
mechanics the SPE is obtained as

d
dt

ψ ¼ fE;ψg ð23bÞ

where f…;…g is the Poisson bracket.10 This shows the
close analogy to the Hamiltonian system (1) of N-particles11

and is of practical use since E will be employed later to test
the accuracy of the numerical solution of the SPE (21).
The extra −1 in the Poisson equation (21b) implements

the cosmological boundary conditions and may be derived
if one starts with the action of general relativity and a real
Klein-Gordon field upon taking the nonrelativistic and
small-scale limit in the conformal Newtonian gauge,
see [43].12

2. Madelung representation: relation to the dust fluid

Using the so-called Madelung representation for the
wave function

ψðxÞ ≕
ffiffiffiffiffiffiffiffiffiffiffiffi
nψðxÞ

q
exp ðiϕðxÞ= ~ℏÞ ð24Þ

with nψ and ϕ real, and nψ ≠ 0 the SPE (21) can be
transformed into a set of fluidlike equations upon defining
uψ ≡ ∇ϕ, the Madelung-Poisson equation [44]

∂tnψ ¼ −
1

a2
∇x · ðnψuψÞ ð25aÞ

∂tuψ ¼ −
1

a2
ðuψ · ∇Þuψ − ∇Φψ þ

~ℏ2

2a2
∇
�Δ ffiffiffiffiffiffinψ

p
ffiffiffiffiffiffinψ

p
�

ð25bÞ

∇ × uψ ¼ 0 ð25cÞ

ΔΦψ ¼ 4πGρ0
a

ðnψ − 1Þ: ð25dÞ

Comparing them to the dust equations (10) it becomes
transparent that the only difference is the single extra term
in the Euler equation proportional to ~ℏ2, the so-called
“quantum pressure,”

Q≡ −
~ℏ2

2a2
Δ

ffiffiffi
n

p
ψffiffiffi

n
p

ψ
: ð26Þ

10fA; Bg≡ R
d3x δA

δ½i ~ℏ ψ̄ðxÞ�
δB

δψðxÞ −
δB

δ½i ~ℏ ψ̄ðxÞ�
δA

δψðxÞ. The time evolu-

tion of a general A ¼ A½t;ψ � is then given as dA=dt ¼ ∂tAþ
fE; Ag. For A ¼ ψðx0Þ and the rules of functional derivatives one
recovers (23b).

11Since Eðψ ; ψ̄Þ ¼ Eðψ̄ ;ψÞ the second Hamiltonian equation
for the canonical momentum iℏψ̄ is just the complex conjugate of
the SPE (23b), see [42].

12Note that our normalization of ψ is different from [43]. We
chose hjψ j2iV ¼ 1 for convenience rather than the more natural
hjψ j2iV ¼ ρ0a−3.
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Thus, if ∇Q is small compared to the other terms in (25b),
one can maintain nψ ¼ nd and ϕ ¼ ϕd to arbitrary pre-

cision during time evolution choosing ~ℏ sufficiently small.
The dynamics of the Madelung-Poisson equation is such

that sooner or later, barring fine-tuned initial conditions, Q
will become important, independent of the chosen ~ℏ. It
turns out that for initial conditions where the quantum
pressure can be neglected, the locations in time and space
where Q becomes large are close to those where shell
crossing happens in the dust fluid. Indeed, if Q becomes
large it signals the impending breakdown of the Madelung-
Poisson equation (25): for initial conditions that make Q
small, uψ diverges at nearly the same locations in space and
time where nd of the dust model diverges. It turns out that
uψ ¼ ∞ events are accompanied by nψ ¼ 0 and thus a
vanishing ψ .
This seemingly contrived situation poses no problems in

the SPE (21) which can be numerically evolved through
these events without any pathologies if one choses to split
ψ into real and imaginary parts,ℜðψÞ and ℑðψÞ, rather than
amplitude and phase. The phase is ill-defined when ψ ¼ 0
and the Madelung equations (25) no longer follow from
(21) if nψ ¼ 0.13 In Fig. 2, we show part of a simulation
snapshot of the same simulation shown in Fig. 1 but at an
earlier time. While our dynamical variables ℜðψÞ and
ℑðψÞ, shown in the upper panel, are perfectly smooth, the
phase ϕ= ~ℏ of ψ , shown in the lower right panel, has several
pointlike singularities which persist in time and which
coincide with locations where nψ ¼ 0. The phase has a
nonzero winding number around these singularities,
observed by following the color gradient around them.
This circulation is the analogue of microscopic vorticity in
the ScM and is discussed in more detail in Sec. VA.
We now present the definition of the ScM, that is, a

procedure to extract approximate solutions to the Vlasov
equation (4) from solutions of the SPE for the most general
case where f is allowed to exhibit shell-crossing and
mutlistreaming.

3. The Husimi distribution: relation to the
Vlasov equation

The so-called Husimi-representation ψHðx; uÞ of the
wave function ψðxÞ in terms of Gaussian wave packets
gives rise to the (manifestly non-negative) Husimi phase
space distribution [19]14

fHðt; x; uÞ ≔ jψHðt; x; uÞj2 ð27aÞ

ψHðt; x; uÞ ≔
Z

ddx0 KHðx; x0; uÞψðt; x0Þ ð27bÞ

KHðx; x0; uÞ ≔
exp ½− ðx−x0Þ2

4σx
2 − i

~ℏ
u · x0�

ð2π ~ℏÞd=2ð2πσx2Þd=4
: ð27cÞ

The spatial coarse graining scale σx is the second parameter
of the ScM. Together with ~ℏ, it determines the resolution

FIG. 2. A small region of width 0.75 Mpc (309 pixels) from a
20 Mpc (8192 pixels) wide simulation box (the units on the axis
are in Mpc). The wave function ψ has been evolved from linear
Gaussian random field initial conditions with nψ ¼ nd and ϕ ¼
ϕd into the deeply nonlinear regime, see Sec. IV B for details. The
top two panels show the dynamical variables ℜðψÞ and ℑðψÞ,
whereas the panels on the bottom show amplitude ffiffiffiffiffiffinψ

p and phase

ϕ= ~ℏ of ψ .

13It is known that Madelung and Schrödinger equations are not
necessarily equivalent [45], see also the discussion of Sec. II A in
[22]. We therefore recommend, in contrast to a comment in [46],
not to use the Madelung equations as a replacement for the
Schrödinger equation, since the Madelung equations might not
give all solutions, or even give wrong solutions [45]. The reason
is that even if the singularities [22,23] are dealt with, for instance,
by using the momentum current jψ ¼ nψuψ as the dynamical
variable rather than the velocity uψ, one still has to implement the
constraint (58) that ensures that uψ is the gradient of a phase, or in
other words that resulting ψ is a single valued complex function.
We thus expect that the applicability of a code based on the
Madelung equations, like [47], is limited to situations where
nodes do not develop, and therefore is applicable only when the
analogue of shell-crossing does not occur in the wave function.
See Chapter 15.3 of [48] for an introduction to problems and
possible solutions when one choses to stay close to the Madelung
equations.

14The function fH calculated this way is manifestly non-
negative. It may, however, be also obtained from the Wigner
quasiprobability distribution fW½ψ � by applying a Gaussian

filter with width σx and σu ¼ ~ℏ=ð2σxÞ such that fH ¼ e
σx2

2
Δxþ

σu
2

2
ΔuffW½ψ �g. This second route to fH is, however, numerically

inconvenient compared to (27), see [23].
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σx; σu ≡
~ℏ

2σx
ð28Þ

of the phase space density fH in x and u direction. It can be
shown that fH approximates f̄ in the sense that

∂tðfH − f̄Þ≃ −
~ℏ2

24
ð∂xi∂xj∂xkΦHÞð∂ui∂uj∂ukfHÞ; ð29Þ

where ΦH ≡ e
σx2

2
ΔfΦψg, with Φψ from (21b), see

[14,21,23] and App. F. Defining

SV ≡ −
u
a2

· ∇xfH þ ∇xΦH · ∇ufH ð30aÞ

ScgV ≡ −
σu

2

a2
∇x · ∇ufH þ σx

2ð∂xi∂xjΦHÞð∂xi∂ujfHÞ;
ð30bÞ

S ~ℏ ≡ −
~ℏ2

24
ð∂xi∂xj∂xkΦHÞð∂ui∂uj∂ukfHÞ ð30cÞ

we generally have that fH satisfies the Husimi equation

∂tfH ¼ SV þ ScgV þ S ~ℏ þOð ~ℏ2σx
2; ~ℏ4Þ; ð31Þ

but requiring that fH also solves the coarse-grained Vlasov
equation leads to ∂tfH ¼ SV þ ScgV, or even more opti-
mally the Vlasov equation ∂tfH ¼ SV. Thus we know (i)
that we can achieve fH ≃ f̄ only if quantum corrections to
the Vlasov equation are smaller than coarse graining effects

jS ~ℏj ≪ jScgVj; ð32aÞ
and (ii) that fH ≃ f, is possible if in addition to condition
(32a) the phase space smoothing scales σx and σu are much
smaller than the smallest features of fH, or more precisely

jScgVj ≪ jSVj: ð32bÞ
We present a derivation in App. F.
In practice, we are more concerned with achieving

fH ≃ f̄, or (32a) since it is anyway practically impossible
to determine f with sufficient spatial resolution for an
arbitrary long time due to phase mixing. Regions where
phase mixing occurs become increasingly better approxi-
mated over time by a coarse-grained distribution [41]. Thus
having fH merely agree with f̄ rather than f is not only
acceptable given the finiteness of computational resources,
but also from a physical point of view.
On small scales quantum effects can become important

as has been demonstrated and discussed in [46,49–51]. In
those studies, it was assumed that dark matter is an
axionlike particle in a Bose-Einstein condensate and that
in the Newtonian limit this situation can be described by the
SPE and ψ more accurately than with the Vlasov equation.

Independent of the physical interpretation of ψ , it was
shown in [49–51] that in halo centers, jψ j2 has a solitonic
profile that transitions around the solitonic core radius rc
into the Navarro-Frenk-White (NFW) profile. Thus outside
of rc, the wave function behaves like collisionless matter
and we expect fH ≃ f̄c which is consistent with the NFW
profile, while inside the solitonic radius we would expect
jS ~ℏj≃ jSVj such that fH ≠ f̄c. Since the soliton core size rc
scales as rc ∝ ~ℏ, see [50], the breakdown of the ScM is
under control.
Before we close the section on the Husimi distribution,

we want to point out the important difference between the
relation of fH to f̄ compared to the previously discussed
relation between nd, ϕd and nψ , ϕ in Sec. II E 2: the left-
hand side of (32) can be kept small even well after the first
shell crossing, deep in the multistream regime [14,21,23]
by choosing a sufficiently small ~ℏ and sufficiently large σx.
In contrast, the quantum pressure Q in (25b) automatically
becomes large once the density contrast nψ − 1 becomes
nonlinear and hence the mapping between nd, ϕd and nψ , ϕ
breaks down shortly before shell-crossing. A large Q does
not invalidate (32).
Summary for constructing the phase space density:

The ScM approximates solutions fðt; x; uÞ to the Vlasov
equation (4) by constructing the Husimi distribution
fHðt; x; uÞ at a given time t via (27), which involves a
spatial integral of the snapshot of a wave function ψðt; xÞ
that satisfies the SPE (21). Due to the form of KH the x0
integration is quasilocal and it is sufficient to use as
integration domain a ball centered around x with a radius
of a few σx. The accuracy of the ScM is controlled by the
two parameters ~ℏ and σx via (32).

4. Moments and cumulants

The extraordinary feature of the ScM is that it allows to
analytically evaluate the velocity space integral in (6)

GHðx; JÞ ¼
Z

ddu eiu·JfH

¼ e−
1
2
σu

2J2e
σx2

2
ΔfGWðx; JÞg

GWðx; JÞ ¼ ψ

�
xþ

~ℏ
2
J

�
ψ̄

�
x −

~ℏ
2
J

�
; ð33Þ

and that this expression is quasilocal in space and,
therefore, the resulting moments are efficiently evaluated
numerically. This has to be contrasted to CDM [see (14b)
and (15b)], where the moment generating function is
nonlocal in q space or involves a sum over streams.
Using (7a), the first three moments of the Husimi

distribution are easily obtained by first evaluating the
Wigner moments MWðn≤2Þ obtained from GW

MWð0Þ ¼ jψ j2; ð34aÞ
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MWð1Þ
i ¼ ~ℏℑfψ ;iψ̄g ð34bÞ

MWð2Þ
ij ¼

~ℏ2

2
ℜfψ ;iψ̄ ;j − ψ ;ijψ̄g ð34cÞ

and subsequent coarse graining

MHð0Þ ¼ e
σx2

2
ΔfMWð0Þg;≕ nH ð34dÞ

MHð1Þ
i ¼ e

σx2

2
ΔfMWð1Þ

i g ≕ nHuHi ð34eÞ

MHð2Þ
ij ¼ e

σx2

2
ΔfMWð2Þ

ij g þ σu
2MHð0Þδij ≕ nHuHi u

H
j þ nHΣH

ij;

ð34fÞ
where ℜ and ℑ denote real and imaginary part. Comparing
(34f) and (17c) we recognize the same structure and
therefore it is the first term of (34f) that should be compared

to e
σx2

2
ΔfMð2Þ

ij g. All higher moments can be similarly
calculated from (7a). They are always bilinear in the wave
function and its spatial derivatives with an overall spatial
Gaussian smoothing. This makes it very easy to evaluate

MðnÞ
H ðxÞ numerically from a time snapshot of ψðxÞ.
The n-th cumulant CðnÞ

H ðxÞ of the Husimi distribution can
be constructed from the first n moments according to (7b)

CHð0Þ ¼ ln nH ð34gÞ

CHð1Þ
i ¼ uHi ¼ MHð1Þ

i =nH ð34hÞ

CHð2Þ
ij ¼ ΣH

ij ¼ MHð2Þ
ij =nH − uHi u

H
j : ð34iÞ

All higher cumulants can be constructed in a similar
fashion. If ones chooses to work directly with the moments
and cumulants without constructing fH then one cannot test
the accuracy of the ScM using (32). We can however
calculate the moments of the expressions (30) entering the
Husimi equation. The first nonvanishing moment of S ~ℏ is
given by

R
d3uuiujukS ~ℏ, such that we consider

Sð3Þ
V ijk ¼ −

1

a2
∇mM

Hð4Þ
ijkm −∇ðiΦH ·MHð2Þ

jkÞ ð35aÞ

Sð3Þ
cgV ijk ¼ σu

2

a2
∇ðiM

Hð2Þ
jkÞ − σx

2∇m∇ðiΦH∇mM
Hð2Þ
jkÞ ð35bÞ

Sð3Þ~ℏ ijk ¼
~ℏ2

4
nH∇i∇j∇kΦH; ð35cÞ

where AðijkÞ ¼ Aijk þ Ajki þ Akij. The minimal require-
ment to satisfy the ScM condition (32a) thus is

jSð3Þ~ℏ ijk j ≪ jSð3Þ
cgVijk j; ð36aÞ

and similarly, a requirement for (32b) is

jSð3Þ
cgV ijk j ≪ jSð3Þ

V ijk j: ð36bÞ

Summary for constructing the moments and cumulants
The ScM allows the construction of moments MHðnÞðt; xÞ
and cumulants CHðnÞðt; xÞ using the generating function
(33) in (7), avoiding the cumbersome 2d-dimensional
phase space. The construction of the moments from
ψðt; xÞ at a given time t, see the results in (34), takes
place exclusively in d-dimensional position space and only
involves calculating products of the wave function and its
spatial derivates at that particular time t, as well as a final
Gaussian spatial filtering with variance σx

2. The spatial
derivatives as well as the filtering are quasilocal processes
and it is sufficient to perform the convolution in a
neighborhood of x of size of a few σx. The such constructed
moments and cumulants approximate those of f̄, see (17),
and therefore solve the full Boltzmann hierarchy of f̄
without any truncation by virtue of (36).

5. Cold initial conditions

The stress tensor Tij, (9c), of a pressureless perfect fluid
has the form Td

ij ¼ ρ0nda−3udi u
d
j . The resulting ScM stress

tensor TH
ij contains an additional contribution ΣH

ij which can
be interpreted, according to (34f) and (34i), as arising
solely from velocity dispersion by virtue of the correspon-
dence f̄ ≃ fH (29). One defining aspect of CDM, that it is
initially a pressureless perfect fluid with Σd

ij ¼ 0, is not
automatically implemented by the ScM. It can however be
easily achieved, remembering that if the quantum pressure
Q in (25b) is initially small the SPE approximates the dust
fluid (10) with arbitrarily precision. The observation that

∇iðnHΣH
ijÞ is proportional to e

σx2

2
Δfnψ∇jQg, see [23],

therefore shows us how to implement dustlike, and there-
fore nearly cold initial conditions. To implement cold initial
conditions, we thus choose

ψ iniðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ndðtini; xÞ

p
exp

�
i
~ℏ
ϕdðtini; xÞ

�
ð37aÞ

with ~ℏsuch that∇Qðtini; xÞ ≪ ∇Φψðtini; xÞ; ð37bÞ

where ndðtini; xÞ and ϕdðtini; xÞ are obtained via (10) before
shell-crossing and Qðtini; xÞ and Φψðtini; xÞ are obtained by
evaluating (26) and (25d) with ψ iniðxÞ. This choice of ~ℏ
guarantees that fHðtiniÞ≃ fðtiniÞ ¼ fdðtiniÞ.15 Note that
ScM does not force us to use cold initial conditions and
we leave it for the future to investigate ψ ini that correspond
to warm initial conditions. We summarize the main features

15If ∇Q ≪ ∇Φψ everywhere, then fH underestimates the
maximal achievable precision with which the SPE can model
the dust fluid (10), see [23]. In this case, fnaive ¼ nψ ðxÞδDðu −
∇ϕðxÞÞ is closer to fd than fH.
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of the ScM and compare them to two other models of CDM
in Table I.

III. NUMERICAL IMPLEMENTATION
OF THE 2D SCM

In this section, we describe the algorithms used to solve
the SPE (21) and the implementation of (34) for construct-
ing the Husimi cumulants by avoiding phase space. The
two-dimensional code can be interpreted to describe three-
dimensional dynamics in special situations where the wave
function is shift symmetric in the z-direction, where
x ¼ ðx; y; zÞ are the cartesian coordinates.

A. SPE

For the numerical implementation of the ScM we use a
as the time variable, where da ¼ aHdt andH is the Hubble
parameter, thus the Schrödinger equation (21a) takes the
following form

i ~ℏ∂aψ ¼ −
~ℏ2

2a3H
Δψ þ Φψ

aH
ψ : ð38Þ

Following [18,52,53], we use an alternating direction
implicit (ADI) method to discretize and split the single
two-dimensional SPE (38) into three equations:

e−
iλ ~ℏϵ
4Ha3

∂2
∂x2Sðx; yÞ ¼ e

iλ ~ℏϵ
4Ha3

∂2
∂x2ψða; x; yÞ ð39aÞ

e
− iλ ~ℏϵ
4Ha3

∂2
∂y2Tðx; yÞ ¼ e

iλ ~ℏϵ
4Ha3

∂2
∂y2Sðx; yÞ ð39bÞ

e
iλϵ

2 ~ℏHa
Φψ ψðaþ λϵ; x; yÞ ¼ e−

iλϵ
2 ~ℏHa

ΦψTðx; yÞ ð39cÞ

where ϵ is the spatial mesh width of the finite difference
mesh, da the temporal step and λ ¼ da=ϵ. Then, one can
use the central finite difference approximation of third
order accuracy

∂2fðx0Þ
∂x2 ≈

1

12ϵ2
½−fðx0 − 2ϵÞ þ 16fðx0 − ϵÞ − 30fðx0Þ

þ 16fðx0 þ ϵÞ − fðx0 þ 2ϵÞ� ð40Þ

to replace the second order derivatives in (39). By defining
the operator

δ̂xfðx0Þ≡ −fðx0 − 2ϵÞ þ 16fðx0 − ϵÞ
− 30fðx0Þ þ 16fðx0 þ ϵÞ − fðx0 þ 2ϵÞ; ð41Þ

expanding the exponentials to the lowest significant order
in ϵ and replacing the continuous variables with discretized
notation, we obtain

�
1 −

iλ ~ℏ
48ϵHa3

δ̂i

�
Sij ¼

�
1þ iλ ~ℏ

48ϵHa3
δ̂i

�
ψn
ij ð42aÞ

�
1 −

iλ ~ℏ
48ϵHa3

δ̂j

�
Tij ¼

�
1þ iλ ~ℏ

48ϵHa3
δ̂j

�
Sij ð42bÞ

�
1þ iλϵ

2~ℏHa
Φn

ψij

�
ψnþ1
ij ¼

�
1 −

iλϵ

2~ℏHa
Φn

ψij

�
Tij ð42cÞ

where:

ψn
ij ¼ ψða0 þ nλϵ; x0 þ iϵ; y0 þ jϵÞ ¼ ψða; x; yÞ: ð43Þ

These difference equations are in the Crank-Nicolson
form which guarantees that they are unconditionally stable
and they have an error of Oðλ2ϵ2Þ in time and Oðϵ4Þ in
space. Furthermore, the algorithm is manifestly unitary
[54], which means that like in a N-body simulation mass
conservation is automatic.
We implemented the SPE on a single Nvidia K20X GPU

(Kepler architecture) using CUDA C. Due to the memory
constraints of the K20X, that is 6GB of device memory, we
solved (42) with a maximum of 81922 points on a regular
grid with periodic boundary conditions. Finer resolution is
not possible without splitting the full simulation box into
regions and either simply copying parts of the simulation
box to CPU memory and back, or even more efficiently,
using multiple GPUs with appropriate communication
between them on region boundaries. Substantial speed
improvement over a single CPU was observed by ensuring
minimal communication between the host (CPU) and the
device (GPU), making sure that kernels had coalesced
access to global device memory and efficiently using the
device local memory. More detailed description of our
numerical implementation, as well as the study of
scaling with simulation size is left for a more dedicated
publication.
To advance the wave function ψn

ij → ψnþ1
ij a single time

step, we solved the set of cyclic penta-diagonal linear
systems (42) using the very efficient algorithm described in
[55]. Note that we did not use the first order accuracy
formula for the second order derivatives that was used in
[18]. From numerical tests, we found that it was not
sufficient to solve (42) accurately enough for our initial
conditions, in particular the Layzer-Irvine test, described in
the following subsection, failed at significantly earlier
times. We also did not use the midpoint value of the
potential, Φnþ1=2

ψ ;ij in (42), as suggested in [18], since in our
case the gravitational potential is very slowly evolving.
Indeed, although we solved the Poisson equation at every
time step, we found very good agreement even if Φn

ψij was
updated only every 20 time steps. To calculate the gravi-
tational potential, we solved the Poisson equation (21b) in
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Fourier space, using the CuFFT16 implementation of the
Fast Fourier Transform (FFT) method with periodic boun-
dary conditions on the same grid.
We remind the reader that the dynamical variables are the

real part ℜðΨÞ and imaginary part ℑðψÞ of the wave
function ψ . These functions are strongly oscillating but
otherwise well behaved, see the top panels of Fig. 2. While
the absolute value jψ j ¼ ffiffiffiffiffiffinψ

p is also a smooth function, the

phase ϕ= ~ℏ is not, see the lower panels of Fig. 2. The phase
has singular points precisely at locations at which nψ ¼ 0.
The meaning and importance of these phase singularities is
discussed in section VA.

B. Layzer-Irvine test of numerical accuracy

Since our numerical method is manifestly unitary [54],
testing whether the total mass

MðtÞ ¼ ρ0

Z
d3xjψðxÞj

is conserved at all times does not tell us how accurately we
solve the SPE. Instead, we consider the total energy per
mass (23)

EðtÞ ≕ K þW ð44aÞ

where we defined the kinetic K and potential W energy
through

KðtÞ ¼
~ℏ2

2a2

Z
d3xj∇xψðxÞj2 ð44bÞ

WðtÞ ¼ −
ρ0G
2a

Z
d3xd3x0

jψðxÞj2jψðx0Þj2
jx − x0j ð44cÞ

¼ 1

2

Z
d3xΦψðt; xÞjψðxÞj2 ð44dÞ

where Φψ is the Newtonian potential from (21b). Since E
depends explicitly on time through the scale factor a and
fE;Eg ¼ 0 we have

dE
dt

¼ ∂tE: ð45Þ

Inserting the expressions for K and W and taking into
account that partial time derivatives act only on the scale
factor aðtÞ, since ψðxÞ have to be interpreted as canonical
position variables we get

d
dt

ðK þWÞ ¼ −
_a
a
ð2K þWÞ: ð46Þ

This coincides with the Layzer-Irvine equation
[1,20,56,57] because we have the same explicit time
dependence in the Hamiltonians for N particles (1) and
the Schrödinger field (44). We can rewrite (46) as

d
da

½aE� ¼ −KðaÞ: ð47Þ

Since K ≥ 0 the energy E decays at least as a−1. We can
integrate (46) to define a total conserved energy

Etot ≔ EðtÞ þ EexpðtÞ;

Eexp ¼
Z

a

aini

2Kða0Þ þWða0Þ
a0

da0 ð48Þ

where we chose arbitrarliy EtotðainiÞ ¼ EðainiÞ. A useful
test for the accuracy of numerical integration is thus to
check that

δEtot
≡ EtotðaÞ

EðainiÞ
− 1 ð49Þ

remains close to zero.17 Because (48) requires to calculate
KðaÞ, WðaÞ at all times, we can alternatively test (47) by
numerically evaluating d

da ½aE� using a 9-point stencil, to
test that

δK ≡
d
da ½aE�
−KðaÞ − 1 ð50Þ

remains close to zero. Figure 3 shows δK for a
test simulation of a 2D pancake collapse detailed in
Sec. IVA. In the range of times where our comparisons
with ColDICE were performed (0.02 < a < 0.088), δK
does not deviate from 0 further than 0.1%. During later
times δK departs further from 0. This happens earlier with
decreasing spatial and temporal resolution. By experi-
menting with the spatial resolution, the derivative approxi-
mation scheme, and time resolution we found that spatial
resolution and the accuracy of the spatial derivative scheme
have the largest impact on the timewhen δK starts to deviate
from 0; see Fig. 3.
These findings indicate that the use of adaptive mesh

refinement (AMR) is imperative in order for a numerical
implementation of the ScM to function as a general-
purpose tool. We note that an efficient framework for
implementing AMR in three dimentions using GPUs is
publicly available.18 The authors of [49], have used a

16See http://docs.nvidia.com/cuda/cufft/index.html.

17If wanted the integral to contain only W, we could rewrite
(47) as d

da ½a2E� ¼ aWðaÞ which leads to F.17 in [20] taking into
account that EColDICE

k ¼ a2K, EColDICE
p ¼ a2W. Note that there

is a typo in F.20 which should read EColDICE
exp ¼ −

R
a
0

1
a0 Epða0Þda0.

18GAMER is available at http://iccs.lbl.gov/research/isaac/
GAMER_Framework.html.
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GAMER add-on called ELBDM (extremely light bosonic dark
matter) which solves the SpE, however, ELBDM is at
present not publicly available.

C. Moments

We use a 9-stencil finite difference method to calculate
the spatial gradients entering the expressions for MWðnÞ in
(34). To obtain the desired Husimi moments MHðnÞ, we
apply a Gaussian filter in an efficient way, described in
Appendix B.

D. The choice of ℏ

In order to determine the value of ~ℏ for cold initial
conditions, we used the condition (37b) and calculated the
~ℏ-independent number

~Q ¼ max
x

� j∇Qðtini; xÞj
~ℏ2j∇Φψðtini; xÞj

�
; ð51Þ

and chosen ~ℏ such that

~ℏ ≪ ~Q−1=2: ð52Þ

In practice, we cannot choose arbitrary small values of ~ℏ
due numerical limitations: spatial variations of the wave
function jψ j=j∇ψ j≃ ~ℏ=j∇ϕj need to be well resolved by
the spatial mesh width ϵ, such that we also require

~ℏ ≫ ϵmax
x

j∇ϕðtini; xÞj: ð53Þ

The closer one gets to violating these conditions, the
earlier during the time evolution will the quantity δK
deviate from 0, such that for a given problem the value
of ~ℏ has to be chosen carefully.

IV. TESTS OF THE SCM IN TWO DIMENSIONS

We study two-dimensional cosmological simulations. In
terms of three-dimensional space, these simulations can be
interpreted as having a phase space density that is shift
symmetric in the z direction, where x ¼ ðx; y; zÞ, and that
vanishes for uz ≠ 0, where u ¼ ðux; uy; uzÞ are the canoni-
cal phase space coordinates. Interpreted in three dimen-
sions, this initial condition leads to a filament that extends
indefinitely in z-direction. This restriction, although not of
much physical relevance, allows us to run two-dimensional
simulations with very high resolution with the goal to
disentangle any possible failure of the ScM from simple
possible numerical inaccuracies.
The theoretical limitation is twofold, while fc would

indefinitely produce ever smaller structures in the winding-
up phase space sheet, the ScM with a fixed value of ~ℏ is not
able to resolve structures below the phase space scale ~ℏ
even if the SPE were solved exactly. Secondly, even on
phase space scales larger than ~ℏ, the coarse-grained CDM
dynamics, namely that of f̄c, cannot exactly be described
by fH since due to (29)

∂tðfH − f̄cÞ≃
�

~ℏ
xtyputyp

�2 ΦHfH
xtyputyp

;

where typical scales, xtyp and utyp, are the scale on which
fH varies most strongly. Because xtyp continues to shrink
over time as smaller and smaller phase space structures
form, the right-hand side might become too large at which
point the ScM breaks down. It is this second point that
requires a numerical proof and for this we perform a
detailed comparison with the publicly available code
ColDICE which solves the Vlasov equation (4).
We considered two kinds of cosmological simulations

both in a ΛCDM universe where the Hubble parameter is

H2 ¼ H2
0ðΩma−3 þ 1 − ΩmÞ: ð54Þ
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FIG. 3. Left: Differential Layzer-Irvine test for the SPE solver for sine initial condition and two different spatial resolutions 4096 (left)
and 8192 (right) for three values of da as indicated in the legend (×8means that da is 8 times larger) and three different values of ~ℏ. The
value of A, (50), is calculated from the snapshots of the SPE presented in Sec. IVA. Right: Comparison of differential and integrated
energy test for the resolution of 8192.
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The first test is a sine wave collapse, which is a traditional
test for N-body codes [58] for which we set Ωm ¼ 1. The
second test uses a Gaussian random field to generate the
displacement field, and we chose the value Ωm ¼ 0.312.
The translation of the Zel’dovich displacements used to set
up the initial conditions in ColDICE into an initial wave
function ψ ini is detailed in Appendix A. We have chosen
units where H0 ¼ G ¼ c ¼ 1.19

A. Sine wave collapse

As we tested the ScM by comparing with ColDICE, we
found it convenient to use the same parameters for the
initial sine wave and initial integration redshift and units as
in the two-dimensional sine wave collapse presented in the
ColDICE article [20]. We checked that the initial con-
ditions for ColDICE and the SPE solver agree to better
than 0.025%.20 Therefore, an increasing deviation signals
inaccuracies in either of the two codes, or if this can be
excluded, fundamental limitations of the ScM. The initial
conditions are detailed in App. A 4.
We ran a number of simulations by changing the number

of grid points (either 40962 or 81922 for the same box size),
the value of ~ℏ ¼ f1 × 10−5; 2 × 10−5; 4 × 10−5g and the
temporal resolution da=dabase ¼ f1×; 4×; 8×g. From this
set,we performednumerical accuracy tests in order to decide
which simulation to use for our comparison, and at the same
time providing a justification. All simulations had the same
initial and final times, a ¼ f0.01; 0.3g respectively.

1. Accuracy considerations

To make sure our comparison does not suffer from
numerical inaccuracies, we employed the Layzer-Irvine test
(50) for deciding until which time the SPE solver may be
trusted. For the particular initial conditions chosen we may
observe in Fig. 3 that the numerical SPE solution may be
trusted until a ¼ 0.1 for the simulation with 40962 spatial
grid points and up to a ¼ 0.3 for the 81922 grid. In both
cases, only the simulations with the largest considered value
of ~ℏ are accurate enough, that is ~ℏ ¼ 4 × 10−5 Mpc.
Simulations with smaller values of ~ℏ would need finer
spatial resolution, that is, a larger grid of points. Hence, we
chose for our comparisons the simulation with ~ℏ ¼ 4 ×
10−5 Mpc and 81922 where the differential energy test (50)
is satisfied to better than 0.1% for a < 0.1. For this
simulation one can expect that any deviations between
the coarse-grained moments of ColDICE and the

corresponding ones from the ScM can be attributed to a
failure of the ScM due to (29), rather than numerical
inaccuracy and thus constitutes a test of the ScM. In the
right panel of Fig. 3, we show that the differential energy test
δK (50), that can be applied to single snapshots, is a good
indicator for the full energy test δEtot

(49), that requires
evaluation of K and W at each time step during numerical
integration of the SPE.
We used the publicly available code ColDICE to solve

the Vlasov equation (4) for fcðx; uÞ and to calculate

nðxÞ ¼ Mcð0ÞðxÞ, Mcð1Þ
i ðxÞ, and Mcð2Þ

ij ðxÞ from it.21 These
quantitieswere then coarse grained according to (17)with the
same values of σx and σu ¼ ~ℏ=ð2σxÞ used in the ScM and

then compared to nHðxÞ, MHð1Þ
i ðxÞ and MHð2Þ

ij ðxÞ, (27) and
(34),withψ satisfying theSPE (21).We ranColDICEwith a
precision setting for the invariant threshold22 ϵI ¼ 10−8, and
a force resolution grid with 10242 pixels, for which equa-
tion (48) is satisfied to better than 0.2%, see the thin jagged
curve Fig. 4. It it thus justified to take the output ofColDICE
to represent fc, (14) and its moments (15).
A comparison of K and W between ColDICE and our

SPE solver is shown in the upper panel of Fig. 4. The
agreement between the codes is better than 0.2% in the
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FIG. 4. Upper panel: Comparison of the kinetic (K) and
potential (W) energy as obtained by ColDICE and the SPE
solver with parameters as described in the text. Lower panel:
Comparison of the total energy test between ColDICE (thin
blue) and the SPE solver with settings as described in the text
(dashed), together with two other SPE solutions which differ only
be the choice of ~ℏ.

19Such that we measure length in units of H−1
0 c, time in units

of H−1
0 and mass in units of H−1

0 c3=G.
20In the sense that nðaini; x; yÞ=nψ ðaini; x; yÞ − 1,

uxðaini; x; yÞ=∂xϕðaini; x; yÞ − 1 as well as the y component of
the velocity agree better than 2.5 × 10−4. Note this test is
nontrivial as it involves the extraction of Mcð0Þ and Mcð1Þ from
the phase space sheet.

21To calculate Mcð1Þ
i ðxÞ and Mcð2Þ

ij ðxÞ from fcðx;uÞ we use an
add-on for ColDICE that has been kindly provided to us by T.
Sousbie.

22This number determines the refinement with which the phase
space sheet is sampled.
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range 0.01 < a < 0.09 for both variables. In the lower
panel, we compare the total energy conservation of
ColDICE and the SPE solver for three different values
of ~ℏ. We observe that Etot is conserved to a satisfactory
level for ~ℏ ¼ 4 × 10−5 and ~ℏ ¼ 6 × 10−5, but not so for
~ℏ ¼ 2 × 10−5, where numerical errors start to accumulate
too early in the evolution, causing δEtot

to change sign
around a ¼ 0.05. We conclude from Fig. 4 that the SPE is
solved with sufficient accuracy such that our subsequent
comparison of cumulants C̄cðnÞ and CHðnÞ is a test of the
ScM itself, in the sense that observed deviations between
C̄cðnÞ and CHðnÞ are not due to numerical inaccuracies in
either ColDICE or our SPE solver, but due quantum
artifacts discussed in Sec. II E 4.

2. Density

We coarse-grained the output snapshots of the density

field ncðxÞ from ColDICE to obtain n̄cðxÞ ¼ e
σx2

2
Δfncg.

We then compared this to nHðxÞ at various times during the
simulation. Based on our discussion in Sec. II E, we expect
these quantities to coincide provided we have chosen the
same σx in the calculation of nH and n̄c, chosen a
sufficiently small ~ℏ (37b) and constructed the initial wave
function according to (37a).
The top panel (top 3 × 4 matrix of figures) of Fig. 5

exhibits the results for three snapshots at times a ¼ 0.023,
a ¼ 0.033, and a ¼ 0.088, respectively. In the left column,
we show n̄cðxÞ of ColDICE, and in the second column
nHðxÞ, both with σx ¼ 0.0035. In the third and fourth
column, we show the fractional difference for σx ¼ 0.0035
and σx ¼ 0.006 respectively. The first snapshot at a ¼
0.023 is taken shortly after the first shell-crossing in the
y-direction. By a ¼ 0.033 the phase space sheet has
wounded round ten times. This process is fully resolved
by ColDICE with its adaptive mesh refinement. Although
the density is only the projection of the phase space density
one can get a feeling for its structure at a ¼ 0.088 where
several caustics are clearly visible as spherical shells and
lobes. The differences between the first and second
columns of Fig. 5, i.e. the coarse-grained result of the
Vlasov and the ScM solvers respectively, are impossible to
discern by eye.
The accuracy by which the ScM code agrees with the

coarse-grained Vlasov solver depends on ~ℏ and σx and the
integration time a − aini. For fixed ~ℏ the agreement
becomes better if σx is increased above a minimal value
that avoids interference fringes to become visible. The
value of σx ¼ 0.0035 is already slightly too small in order
to hide all quantum artifacts. Although they are not visible
by eye in the second column, they can be seen when
looking at the ratios n̄c=nH − 1 in the third column.
Increasing the coarse graining scale to σx ¼ 0.006, gives
a far better quantitative agreement, at the price of

sacrificing some of the small scale structures in the density
fields. The fractional difference in the smoothed density
field increases from the initial 0.035% to about 10% at
the final time for σx ¼ 0.006, or about twice that much for
the smaller smoothing scale σx ¼ 0.0035. This seems
to be mostly due to small offsets in the positions of high
density regions and might have partially a numerical
origin. We also tested the larger value ~ℏ ¼ 6 × 10−5 and
found a maximum deviation of 20% at the final time
for σx ¼ 0.006.
Since for larger ~ℏ the numerical accuracy is better, the loss

of agreement is likely due to the quantum artifacts of the
ScM which can be quantified through the magnitude of

hðSð3Þ~ℏijk
Þ2i1=2=hðSð3ÞcgVijkÞ2i1=2 to test the condition (36a). We

plot this quantity for i ¼ j ¼ k ¼ x in the bottom panel of
Fig. 7. Comparing this to the upper panel, showing themean
of n̄c=nH − 1, we see that there is good correspondence
between the scaling of hn̄c=nH − 1i with time and ~ℏ and the
corresponding scaling of our measure of quantum artifacts.
In order for the ScM to be in good correspondence with the

coarse-grained Vlasov equation, we require jSð3Þ~ℏ
j ≪ jSð3ÞcgVj.

We achieve for hðSð3Þ~ℏxxx
Þ2i1=2=hðSð3ÞcgVxxxÞ2i1=2 only about

10−2 for ~ℏ ¼ 4 × 10−5 and a factor 10 worse for ~ℏ ¼
6 × 10−5. Yet, as can be seen in the upper panel of Fig. 7,
for ~ℏ ¼ 4 × 10−5 and σx ≥ 0.0035, we find hn̄c=nH − 1i ≲
1% at all times, such that hðSð3Þ~ℏxxx

Þ2i1=2=hðSð3ÞcgVxxxÞ2i1=2 ≲
10−2 seems to indicate acceptable results and allows us to
judge whether we approximate the coarse-grained Vlasov
from within the ScM.
For even small values of ~ℏ < 4 × 10−5, the energy test

begins to fail, see the dashed curve in the lower panel of
Fig. 4. Thus smaller values cause our SPE solver to have
too large numerical inaccuracies, while larger values lead to
too large quantum artifacts and degrade the accuracy with
which the coarse grained Vlasov equation is solved, see the
top panel of Fig 7. Hence, for this particular initial
condition, SPE integrator and integration time interval,
the value ~ℏ≃ 4 × 10−5 is optimal.
Note that jS ~ℏj ≪ jScgVj only guarantees that the source

term for ∂tfHðtÞ − ∂tf̄ðtÞ is small. This implies that, in
principle, a nonzero yet small value for that source would
always accumulate errors through time evolution so that to
make the ScM fail at some point in time.

3. Velocity

We used a code provided to us by T. Sousbie that

calculates the first moment Mcð1Þ
i ðxÞ from the output phase

space density of ColDICE. We coarse-grained it,

M̄cð1Þ
i ðxÞ ¼ e

σx2

2
ΔfMcð1Þ

i g, and constructed the coarse

grained velocity field ūci ðxÞ ¼ M̄cð1Þ
i =n̄ from it. We split
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FIG. 5. Sine wave collapse: density (top panel) and velocity divergence (bottom panel) at three different times.
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FIG. 6. Sine wave collapse: velocity curl (top panel) and trace of the velocity dispersion (bottom panel) at three different times.
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the latter into a divergence ∇ · ūc and a rotation ∇ × ūc

component.
We compare the divergence ∇ · ūc obtained from the

Vlasov solver ColDICE to that obtained from the ScM in
the bottom panel of Fig. 5 for the same three snapshots as
with the density. In the left column, we show results of the
coarse grained Vlasov, in second that of ScM and in the
third and fourth column the difference for σx ¼ 0.0035 and
σx ¼ 0.006. The rotation ∇ × ūc has only a nonvanishing z
component which we plot in the top panel of Fig. 6. As was
the case for the density, we again observe an astonishing
visual agreement between the Vlasov code and the ScM for
both of these velocity components. Once more, the quan-
titative agreement for fixed ~ℏ may be improved by
increasing the amount of spatial smoothing as can be seen
in the 4th column that compares ScM to Vlasov for a coarse
graining scale of σx ¼ 0.006.
It is worth noticing that the wave function with its mere

two degrees of freedom is able produce “vorticity without
vorticity.”What we mean by this is that ∇ × uH is nonzero,
while the naive estimate of the velocity uψ ¼ ∇ϕ has
vanishing vorticity. This by itself might not seem surprising

as uH ¼ e
σx2

2
Δfnψuψg=nH is the mass-weighted uψ and thus

trivially has some vorticity. The remarkable aspect of this
vorticity is that no extra degree of freedom is necessary to
correctly describe the vortical degree of freedom of the
velocity field present in the CDM in two dimensions.

Although this has been anticipated from our theoretical
discussion, this is the first time that it has been actually
demonstrated. We discuss this and the microscopic origin
of vorticity in the ScM further in Sec. VA. In a similar
fashion, despite having only two degrees of freedom in the
ScM, all higher Husimi cumulants CHðnÞ will automatically
be present and should agree with their coarse grained
Vlasov counterparts C̄cðnÞ.

4. Velocity dispersion

In the bottom panel of Fig. 6, we compare the trace of the

velocity dispersion C̄cð2Þ
ii to CHð2Þ

ii . The asymmetry seen in

the ratios C̄cð2Þ
ii =CHð2Þ

ii is due to ColDICE. We tested that
our results are perfectly mirror-symmetric with respect to
the axes x ¼ 0 and y ¼ 0.

B. Gaussian random field

For this test we assumed that the primordial curvature
perturbation is a Gaussian random field with a power
spectrum generated with the publicly available Boltzmann
code CLASS, [59]. We smoothed the matter power spec-
trum with a Gaussian filter of width 1 Mpc in order to make
the numerical evolution better behaved. The erasure of
initial power on the smallest scales postpones the occur-
rence of shell crossings, reducing in turn the amount of
necessary refinements in ColDICE and allowing the
numerical solution of the SPE to be accurate over longer
time periods.
The relation between conventional initial conditions for

N-body simulations and the initial wave function ψ iniðxÞ is
described in App. A 3. The initial density Mcð0ÞðtiniÞ and

velocity fields Mcð1Þ
i =Mcð0ÞðtiniÞ constructed from the

ColDICE phase space sheet agree with nψðtiniÞ and
∇iϕðtiniÞ better than 0.01%.
We followed the evolution from aini ¼ 1=51≃ 0.0196 to

a ¼ 1. We present here the first snapshot at a ¼ 0.02
shortly after the start of the simulation and at a ¼ 1, the
final time. The results for ~ℏ ¼ 5 × 10−10 are shown in
Fig. 8. The maximal value of the fractional difference in the
smoothed density field increases from 0.01% to about 10%
at the final time for σx ¼ 0.006L, or about twice that for the
smaller smoothing scale σx ¼ 0.0035L. This seems to be
mostly due to small offsets in the positions of high density
regions and might partially have numerical origin.
We also tested the larger value ~ℏ ¼ 10−9 and found a

maximum deviation of 20% at the final time for
σx ¼ 0.006L. Since for larger ~ℏ the numerical accuracy
is better, the loss of agreement is due the degrading of the
ScM with increasing ~ℏ, reflected in an increased value of
quantum artifacts S ~ℏ=ScgV. For the Gaussian random field

we found values of hðSð3Þ~ℏxxx
Þ2i1=2=hðSð3ÞcgVxxxÞ2i1=2 ≃ 10−2

for ~ℏ ¼ 5 × 10−10 and about 0.05 for ~ℏ ¼ 1 × 10−9, which
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FIG. 7. Upper panel: Mean of the fractional difference of the
smoothed density fields n̄c and nH as obtained from ColDICE
and the ScM, respectively. Lower panel: Testing for quantum
artifacts using (36a) for the component i ¼ j ¼ k ¼ x for the
same parameters as for the top panel.
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FIG. 8. Gaussian random field collapse: Top two panels at a ¼ 0.02 shortly after initial time aini ¼ 1=51, lower panels at a ¼ 1.
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are very similar to the sine collapse. For smaller ~ℏ <
5 × 10−10 the energy test failed before the end of the
simulation so that the optimal value of ~ℏ is ∼5 × 10−10 for
this particular set of simulation parameters and initial
conditions. For this value and σx ≥ 0.0035L, we find
hn̄c=nH − 1i < 1% at all times.
We conclude that the ScM can be successfully used to

solve the coarse-grained Vlasov equation. The accuracy of

that solution is driven by ~ℏ. Joint optimization of jSð3Þ~ℏ
j ≪

jSð3ÞcgVj and jδEtot
j ≪ 1 lead to an optimal value of ~ℏ.

V. DISCUSSION

A. Vorticity without vorticity

Itmight appear surprising how the two degrees of freedom
contained in the wave function include vorticity. First of all,
vorticity is not associated with a new degree of freedom, in
contrast to CDMwhere vorticity is a degree of freedom that
cannot be constructed from density and velocity divergence,
since it is amultistreamphenomenon [60–62], andmoreover
satisfies its own equation of motion. Second, the coarse-
grained velocity uH ¼ e

1
2
σx

2Δfnψ∇ϕg=nH, has some trivial
vorticity due to the involved coarse graining which can be
seen by rewriting the smoothing as

nHuH ¼ nH exp ðσx2∇⃖x∇⃗xÞ∇ϕ̄; ð55Þ

where ϕ̄ ¼ e
1
2
σx

2Δϕ is the coarse-grained phase. Taylor
expanding ∇ × uH to leading order in σx

2 and using that

∇ × ð∇ϕÞ ¼ 0 ð56Þ
we find

ð∇ × uHÞi ¼ σ2x

�
∇
nH;i
nH

× ∇ϕ̄;i

�
; ð57Þ

suggesting that the vorticity is a purely smoothing related
byproduct in contrast to CDM where ∇ × uc has a compo-
nent that survives the limit σx → 0 given by the above
mentioned vortical degree of freedom. However it turns out
that the innocent looking (56) is in fact not the whole story
and there is indeed a microscopic seed for vorticity in the
ScM that survives the limit σx → 0.
The right-hand side of (56) does not vanish in general if

the phase has singular gradients ∇ϕ which is known to
generally appear during time evolution [23]. If a closed
curve C with unit tangent l encloses a singularity,23 the
circulation

1

2π ~ℏ

I
C
∇ϕ · dl ¼ m ð58Þ

is a nonzero integrer m [45,63]. In that case, the right-hand
side of (56) consists of a sum of Dirac delta functions
positioned at the singularities of the phase, which in two
dimensions is given by

∇ × ð∇ϕÞ ¼ ẑ2π ~ℏ
XNvort

i

miδDðxiÞ; ð59Þ

with ẑ the unit vector perpendicular to the two dimensional
surface [63]. Thus, this contributes to ∇ × uH even at zeroth
order in σx

∇ × uH ¼ ẑ2
σu
σx

XNvort

i

mie
ðx−xiÞ2
2σx2 þOðσx2Þ; ð60Þ

with the Oðσx2Þ part given by (57). In practice, it is not
necessary to keep track of the creation, motion and merging
of quantum vortices located at the xiðtÞ as well as the
varying of their total number NvortðtÞ and their individual
winding numbers miðtÞ: the real and imaginary part of ψ
encode these objects but the vortices are not independent
vortical degrees of freedom.
In Fig. 9, we show that vortices are identified with phase

singularities, which in turn are identified with zeros of the
amplitude. The first panel shows in dashed and dotted the
zeros of ℜðψÞ and ℑðψÞ. Points where both types of zeros
(zeros of ℜðψÞ and ℑðψÞ) cross are places where ψ is also
zero. We mark the zeros of ψ with ellipses. Drawing the
same ellipses on the right panel of Fig. 9, that is the plot of
the phase ϕ= ~ℏ, we observe that all these points carry
nonzero circulation with precisely jmj ¼ 1. Color and
orientation denote the sign of m, with blue/horizontal m ¼
−1 and red/vertical m ¼ 1.

FIG. 9. The solid curves show the zeros of ℜðψÞ and dashed
curves the zeros of ℑðψÞ. ℜðψÞ and ℑðψÞ are depicted in Fig. 2
upper panels. The zeros of ψ are the crossing of both types and
encircled by ellipses. The same ellipses are shown on to right
panel, which is a reproduction of Fig. 2 showing the phase ϕ= ~ℏ
the wave function. The color and orientation of the ellipses
correspond to the orientation of the circulation: blue/horizontal
(red/vertical) corresponds to negative (positive) winding number.

23In two dimensions, they are pointlike whereas in three
dimension they are linelike and thus a network of vortex lines
will form for d ¼ 3. In one dimension, although pointlike phase
gradient singularities arise, as shown in [23], they are not
persistent in the sense that they appear only at isolated points
in time at which the phase jumps by 2π.
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In Fig. 10, we overplot the vortices on the coarse-grained
vorticity obtained by the ScM. In the top panel, we use a
very small smoothing scale, which is clearly too small to be
in good correspondence with the CDM one shown on the
left. However, it clarifies that reducing σx to ever smaller
values makes ∇ × uH more and more dominated by the
vortices (57), whereas letting σx to flow to large enough
values that give good correspondence to the coarse-grained
CDM, the vortices are not visible and loose their apparent
correlation with ∇ × uH. This is yet another variation of our
general theme that CDM and ScM are very different UV-
completions of the dust fluid, but that once UV physics is
smeared out sufficiently, the two theories are in direct
correspondence with each other.

B. Pressure of CDM, EFTofLSS and backreaction

The stress tensor is given by Tij ¼ ρ0M̄
ð2Þ
ij =a

3 which
vanishes in linear perturbation theory Tij ¼ 0, such that we

can interpret Ti
i ¼ ρ0M

ð2Þ
ii =a

5 ¼ 2Peff as the effective
pressure Peff [64].

24

Furthermore, let us define the effective equation of state
as weff ≡ Peffa3=ρ0 such that, when applied to quantities
smoothed in phase space we get

w̄eff ¼ a−2ðM̄ð2Þ
ii − 2σu

2n̄Þ=2; ð61Þ
and analogously for wH

eff. We subtract the ‘trivial’ part given
by σu

2n̄, since the effective field theory of large scale
structure (EFTofLSS), usually involves only spatial aver-
ages. The cosmological average value hw̄effi that we
measure from the Vlasov and Schrödinger simulations as
a function of time gives us an estimate of backreaction on
the cosmological background using the second Friedmann
equation

3H2
eff þ 2 _Heff ¼ −8πGhPeffi þ Λ: ð62Þ

In Fig. 11, we show the time evolution of hweffi for a
ΛCDM and Einstein-de Sitter universe. We also compare in
both cases ScM (solid) with the direct Vlasov solution
(dotted), which agree extremely well. Furthermore we plot
in dashed const × ðfDaHÞ2, where f ¼ d lnD=d ln a and
D is the linear growth, which is the estimate for the time
dependence of this quantity from perturbation theory. The
constant has been fit to match hweffi for a < 0.1, where the
perturbation theory estimate should be valid.
In Fig. 12, we compare the result of integrating (62) with

and without hPeffi. We denote the result Heff when
including hPeffi and the standard ΛCDMHubble parameter
(54) by H which is a solution to (62) without hPeffi. We
find that the backreaction on the expansion is a small and a
likely a negligible effect.

FIG. 10. Coarse-grained vorticity. Upper panels are for
σx ¼ 0.001 × 20 Mpc ¼ 0.02 Mpc, lower panels for σx ¼
0.0035 × 20 Mpc ¼ 0.07 Mpc. Left panels show the results
of ColdDICE, right panels those of the ScM. Overplotted on
the right are the locations of the vortices identified in Fig. 9.
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FIG. 11. Effective CDM background equation of state (61).
Dotted curves show the result from the Vlasov solver, the solid
curve that of the ScM. The dashed curve shows the time
dependence suggested by simple perturbative estimates within
the EFTofLSS. The upper and lower panel show the result for
different cosmologies.

24In the effective stress tensor τij, (3.26) of [64], one should
replace ρvivj by Ti

j at the right-hand side, see footnote 15 of
[64]. The effective stress tensor τij contains also gradients
of the Newtonian potential. These terms cancel however in
the two-dimensional trace that we consider here, such that
τii ¼ Ti

i ¼ 2Peff .
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We observe in Fig. 11 that weff as calculated from the
UV complete Vlasov equation is the same as the one from
the UV complete ScM. This exemplifies once more that
the two degrees of freedom contained in the complex
wave function which in the IR are simply related to
those of the dust fluid can be used to derive parameters
entering an effective field theory of large scale structure
(EFTofLSS) based on the ScM. Hence such an EFTofLSS
based on the ScM will not require operators associated
with missing small scale physics and the field theory
itself can be used to measure or derive its EFT
parameters.

C. Entropy production in LSS formation

Lynden-Bell suggested in his seminal work [41] that the
entropy functional of the coarse-grained phase space
density f̄ can be used to understand the virialization
process as “violent relaxation” and the resulting states as
those maximizing the entropy functional. Since the ScM
offers an approximation to f̄ it is interesting to study the
entropy density sðxÞ and entropy S of fH, which can be
defined respectively as

sðxÞ ¼ −
1

σx
d

Z
ddufH ln ½fHσud�

S ¼
Z

ddxsðxÞ: ð63Þ

Another interesting quantity is the Massieu function [65]

J ¼ S −
δS
δE

E; ð64Þ

closely related to the free energy F ¼ −ðδSδEÞ−1J and
temperature T ≡ ðδSδEÞ−1 in thermal systems. We expect
S and J to increase until virialization ends when a
quasiequilibrium state is reached for which S and J
are extremized. There are no truly stationary states for

self-gravitating systems25 but only long-lived quasistation-
ary states [68]. The free energy functional was also used
in [68–70] to study nonequilibrium phase transitions in
systems with long range interactions like gravity. We leave
investigating the entropy functional for a future work.

VI. CONCLUSION AND PROSPECTS

We showed that the Schrödinger method (ScM) can be
used to solve the Vlasov equation in d ¼ 2 dimensions by
comparing our ScM code to the state of the art Vlasov code
ColDICE, see Figs. 5 and 6. We found excellent agree-
ment between the two methods in the cases where an
agreement was expected for the ScM to work.
The advantages of the ScM over standard methods of

solving the Vlasov equation are:
(i) the information about the phase space distribution in

2d dimensions is compressed in a complex wave
function in the d dimensions of Eulerian space.

(ii) The moments of the phase space density, which are
of direct relevance for observations, can be con-
structed from the wave function without dealing
with the complications of the 2d-dimensional
phase space.

This procedure is summarized in Sec II E 4 and comprises
the definition of the ScM as used in this article.
Another difference compared to conventional methods

that solve the Vlasov equation is that the ScM approximates
the coarse-grained Vlasov equation with fixed phase space
resolution. N-body simulations usually have phase space
resolutions that depend on time and position in the
simulation box as the phase space density is sampled by
the clustering particles. In particular, for applications
ranging from ray tracing through the simulations, meas-
urement of topological properties of the cosmic web,
evaluation of entropy density, or the extraction of metric
components, a constant spatial resolution could be a
desirable feature. Furthermore, for applications regarding
voids or warm initial conditions, which are naturally poorly
sampled by N-body simulations, the ScM with its constant
resolution might be advantageous.
Another attractive feature of the ScM is that the wave

function is a UV completion of the dust fluid [23], in the
sense that two degrees of freedom ndðt; xÞ;ϕdðt; xÞ that run
into infinities and thus cannot describe CDM in the UV, are
replaced by ψðt; xÞ, again 2 degrees of freedom that are
finite in the UV and contain all the physics. More
importantly, once the finite UV behavior is coarse grained
over, the ScM produces an approximate solution to the
Vlasov equation. This means that an effective field theory
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FIG. 12. Comparison of the time evolution ofHðaÞ andHeffðaÞ
for the different cosmologies shown in Fig. 11.

25There are stable configurations for the SPE [42,66,67], but
these are purely quantum pressure supported and deep in the
regime where the ScM and the right-hand side of (29) can no
longer be expanded in powers of ~ℏ, such that the correspondence
between f̄ and fH is lost.
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of large scale structure (EFTofLSS) based on
ndðt; xÞ;ϕdðt; xÞ has to introduce operators that take into
account the fact that ndðt; xÞ;ϕdðt; xÞ do not actually
describe physics in the UV [71]. On the other hand, since
ψðt; xÞ is UV complete, an EFTofLSS based on the ScM,
will only require operators that arise through integrating out
small scales; the type and number of degrees of freedom
does not change. We corroborated that claim in Sec. V B
where we measure one parameter of the EFTofLSS weff
within ScM which agrees with the same quantity measured
using the Vlasov solver.
We note that replacing the dust energy momentum tensor

Td
μν in the formalism explored in [72] by the ScM

counterpart TH
μν, using (9) and (34) allow a well defined

extraction of the non-Newtonian metric quantities like the
gravitational slip, vector and tensor perturbations. We leave
this for a future study. Further future tests of the ScM may
involve warm initial conditions, further investigating vor-
ticity, entropy built-up, extending the method to three-
dimensions and in addition implementing adaptive mesh
refinement.
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APPENDIX A: ZEL’DOVICH INITIAL
CONDITIONS

In this Appendix, we describe how we set up the initial
conditions for our comparison of ScM and ColDICE
described in Sec. IV. We use the so-called Zel’dovich
approximation (ZA), which is the first order within
Lagrangian Perturbation Theory (LPT). For the purpose
of comparing two Vlasov solvers, it does not matter that ZA
is not as accurate as 2LPT, the second order LPT solution
[73,74]. For future applications of the ScM in d ¼ 3
dimensions, we plan to use MUSIC [75], to set up initial
conditions with 2LPT.

1. Lagrangian formulation basics

For CDM in the single stream regime, there exists a
diffeomorphism between Lagrangian coordinate q of a
CDM particle (or dust fluid element) and its Eulerian
coordinates

x ¼ Xðt; qÞ ¼ qþ Ψ ðt; qÞ; ðA1Þ

where the trajectories Xðt; qÞ, or alternatively the displace-
ment field Ψ ðq; τÞ, are the integral curves of the Eulerian
velocity field

udðXÞ ¼ ∂ηjqΨ ðqÞ; ðA2Þ

where η is superconformal time a2dη ¼ adτ ¼ dt. The
Jacobian of the coordinate transformation is

Fij ¼
∂Xi

∂qj ¼ δij þ ∂qjΨ i;

JF ¼ det ½δij þ ∂qjΨ i�; ðA3Þ

and conservation equation (10a) can be integrated exactly
to give

ndðXÞ ¼ J−1F ðqÞ: ðA4Þ

In order to evaluate nd and ud at the Eulerian position x, one
has to invert (A1) and express q ¼ Qðt; xÞ and insert this
into J−1F and ∂ηjqΨ ðqÞ, respectively.

2. ZA: General initial conditions

In the Zel’dovich approximation, Ψ ðt; qÞ separates into

Ψ ¼ DðaÞPðqÞ ðA5aÞ

with a purely time-dependent linear growth function, with
Dða ¼ 0Þ ¼ 0 and Dða ¼ 1Þ ¼ 1, as well as a time-
independent gradient

PðqÞ ¼ ∇qϕPðqÞ ðA5bÞ

of some displacement potential ϕPðqÞ. First we explore the
consequences of (A5), without taking into account further
properties of ϕPðqÞ and DðaÞ, which will be the subject of
the following paragraphs. Relevant for us are expressions
for the Eulerian velocity potential ϕdðxÞ and density
ndðxÞ as they enter the initial wave function ψ iniðxÞ ¼ffiffiffiffiffiffiffi
ninid

q
expðiϕini

d = ~ℏÞ. In the remaining section, we approxi-

mate nd ¼ nZA and ϕd ¼ ϕZA, such that the dust solution is
initially given by

ndðt; xÞ ¼ fdet ½δij þDðaÞ∂qi∂qjϕPðqÞ�g−1jq¼Qðt;xÞ

ðA6aÞ

ϕdðt; xÞ ¼ a2HfD

�
ϕPðqÞ þ

1

2
DðaÞjPðqÞj2

�
jq¼Qðt;xÞ;

ðA6bÞ

where f ¼ d lnD=d ln a is the linear growth rate. The
derivation of nd simply follows by substitution of (A5)
into (A3). The Eulerian velocity potential ϕd, defined by
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ud ¼ ∇xϕd, is obtained by first writing the left-hand side of
(A2) with the help of (A3) as ∂xiϕd ¼ F−1

ij ∂qjϕd and then
multiplying both sides by Fki. Using again (A3) and
substituting for Ψ on the right-hand side (A5), the resulting
equation for ∂qkϕd is

∂qkϕd ¼ a2HfDðδik þD∂qkP
iðqÞÞ∂qiϕPðqÞ ðA7Þ

which is a total derivative and can be integrated to give
ϕdðqÞ in (A6). The necessary inversion of x ¼
qþDðaÞPðqÞ for Qðt; xÞ appearing in (A6) has to be
done numerically given the specific PðqÞ. We thus use, on
the one hand, the field ϕPðqÞ to create initial amplitude
ninid ðxÞ and phase ϕini

d ðxÞ of the wave function in Eulerian
space, and on the other hand we calculate its gradient (A5)
to obtain Ψ iniðqÞ to get the initial Lagrangian displacements
(A1) and velocities (A2). The latter are used as the initial
conditions for ColDICE and requires evaluation of Ψ iniðqÞ
on a regular q grid, whereas ninid ðxÞ and ϕini

d ðxÞ are
evaluated on regular x grid. The such created functions

can be turned into an initial wave function ψ iniðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ninid ðxÞ

q
eiϕ

ini
d ðxÞ= ~ℏ for any value of ~ℏ.

3. ZA: cosmological simulation initial conditions

In the Zel’dovich approximation, ∇q ·PðqÞ¼−δlinðx¼qÞ
where δlinðqÞ is the initial linear density field, linearly
extrapolated to a ¼ 1. From (10d), it then follows that the
velocity potential is a Gaussian random field with power
spectrum

PϕP
ðkÞ ¼ Plinðk; z ¼ 0Þ

k4
ðA8Þ

where Plinðk; z ¼ 0Þ is the linear matter power spectrum at
a ¼ 1. For cosmological simulations ϕPðqÞ is therefore a
Gaussian random field and can be easily generated from
Plin which in turn can obtained from Einstein-Boltzmann
codes like class. We choose the following parameters
and units

L ¼ 20 Mpc ðA9Þ

Ωm ¼ 0.312046 ðA10Þ

h ¼ 0.67556 ðA11Þ

aini ¼
1

51
ðA12Þ

Where L is the size of the periodic box. We also apply a
Gaussian filter with width R ¼ 1 Mpc to the linear power
spectrum P̄linðkÞ ¼ PlinðkÞe−R2k2 to prevent the formation
of structure on very small scales. In order to avoid sampling

a three-dimensional ϕPðqÞ and considering then only some
two-dimensional restriction ϕPðqx; qy; qz ¼ 0Þ relevant for
our two-dimensional simulations, we can directly sample
such a two-dimensional realization with the same statistics
if we use instead a two-dimensional version of that power
spectrum

P2D
ϕP
ðkÞ ¼ 2

Z
∞

0

dp
P̄linð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2

p
Þ

ðk2 þ p2Þ2 : ðA13Þ

4. ZA: Plane wave initial conditions

For numerical tests, we have assumed instead that PðqÞ
consists of three perpendicular sine waves with a perio-
dicity of 2L and constant amplitude A such that

ϕPðqÞ ¼
X3
i¼1

Ai
L2

π2
cos

�
qiπ
L

�
: ðA14Þ

The two-dimensional case studied in this article
then corresponds to A3 ¼ 0. With this definition (A6)
simplify to

ndðt; xÞ ¼
�Y3

i¼1

�
1 −DðaÞAi cos

�
qiπ
L

��	−1����
q¼Qðt;xÞ

ðA15Þ

ϕdðt; xÞ ¼ a2HfD
X3
i¼1

�
Ai

L2

π2
cos

�
qiπ
L

�

þ 1

2
DðaÞ

�
Ai

L
π
sin

�
qiπ
L

��
2
�����

q¼Qðt;xÞ
: ðA16Þ

For our two-dimensional setup, we have chosen

Ai ¼ ð30; 40; 0Þ ðA17Þ

L ¼ H−1
0 c ¼ 1 ðA18Þ

Ωm ¼ 1 ðA19Þ

DðaÞ ¼ a ðA20Þ

aini ¼ 0.01 ðA21Þ

to match initial conditions presented in [20].

APPENDIX B: GAUSSIAN FILTERING

A convolution of a function f with a filter WðdÞ

ðWðdÞ � fÞðxÞ ¼
Z
Ld
ddx xWðdÞðx − x0; σxÞfðx0Þ
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in n-dimensional space can be approximated by

ðWðdÞ � fÞðxÞ≃
Z
x�5σx

ddxWðdÞðx − x0; σxÞfðx0Þ

involving only a neighborhood of a few σx around the point
of interest x, if the filter has an effective support only in a
small region 5σx compared to the size L of the periodic
space. This makes the filtering process quasilocal and
allows a significant speed up by a factor 10σx

L in one
dimension. Furthermore, since we use an isotropic
Gaussian

WðdÞðxÞ ¼ 1

ð2πσx2Þd=2
exp

�
−

jxj2
2σx

2

�

that decomposes like

WðdÞðxÞ ¼ Wð1Þðx1Þ �… �Wð1ÞðxdÞ;

we can apply the one-dimensional filter sequentially which
again allows a significant speed up such that we reduce the
total operations per pixel from the a priori N to 10nσx

L N1=d,
where N is the total number of grid points. For our two-
dimensional case with σx=L ¼ 0.0035 and N ¼ 81922, we
reduce the number of computations by a factor 0.4 × 10−5.

APPENDIX C: ONE-DIMENSIONAL
PANCAKE COLLAPSE

In this section, we extend the analysis of Appendix B of
[23] for the one-dimensional pancake collapse [58,76–79].
In [23], the “Bohmian” trajectories, the closest analogy to
the concept of trajectories that exists in the ScM, was
compared only to ZA trajectories. Here we also compare it
to CDM. We also focus on the difference between ZA and
CDM, suggesting a straightforward algorithm to improve
the ZA beyond the occurrence of shell crossing.
For plane-parallel initial conditions

Xðt; qÞ ≕ ðXðt; qÞ; qy; qzÞ

and q ≕ ðq; qy; qzÞ. Without loss of generality we consider
the trajectories ðXðt; qÞ; 0; 0Þ such that (12) becomes

ẌðqÞ ¼ Gρ0a
Z

dq0dq0ydq0z

�
XðqÞ − q0

½ðXðqÞ − q0Þ2 þ q0y2 þ q0z2�3=2

−
XðqÞ − Xðq0Þ

½ðXðqÞ − Xðq0ÞÞ2 þ q0y2 þ q0z2�3=2
	
; ðC1Þ

where dη ¼ a2dt is superconformal time and the dot
denotes throughout this section a derivative with respect
to η rather than t. Performing the q0y and q0z integrals gives

ẌðqÞ ¼ 2πGρ0a
Z

dq0½sgnðXðqÞ − q0Þ

− sgnðXðqÞ − Xðq0ÞÞ�; ðC2Þ

where sgn is 1 if the argument is positive,−1 if it is negative
and 0 if the argument vanishes. The first integral can be
performed and we arrive at

ẌðqÞ ¼ 4πGρ0a

�
XðqÞ − 1

2

Z
dq0sgn½XðqÞ − Xðq0Þ�

	

ðC3Þ
Before shell-crossing, that is, before any q0 other than q
exists such that XðqÞ ¼ Xðq0Þ, the quantity sgnðXðqÞ −
Xðq0ÞÞ is constant in time and therefore equals sgnðq − q0Þ.
Then the second term can be integrated and we obtain

Ψ̈ZAðqÞ ¼ 4πGρ0aΨZAðqÞ; ðC4Þ
where we used the displacement field ΨðqÞ≡ XðqÞ − q
and attached the label ZA to make clear that the solution to
(C4) is the Zel’dovich approximation.26 We can rewrite
(C3) in terms of Ψ

Ψ̈ðqÞ ¼ 4πGρ0aðΨðqÞ þ g½Ψ�ðqÞÞÞ

g½Ψ�ðqÞ ¼ q −
1

2

Z
dq0sgnðXðqÞ − Xðq0ÞÞ ðC5Þ

which makes it manifest that before shell-crossing, when g
identically vanishes, we recover the ZA, but once CDM
undergoes shell-crossing and mixing, g becomes nonzero
and the ZA is no longer a solution to (C5).
We could have also arrived to (C4) following the

standard treatment of the Lagrangian formulation of
CDM that assumes the existence of the inverse of ∂qiX

j

and makes use of it, see i.e. App. B of [23] or [39]. Such an
assumption, however, does exclude the multistream regime
from the outset and is therefore useless for our purposes.
We thus see that the g-term missing in the Zel’dovich
approximation is the “glue” that distinguishes the dispers-
ing and physically wrong behavior of the ZA trajectories
(red dotted) from those of CDM (yellow thick) in the upper
panel of Fig. 13. To solve (C5) we discretized the equation
using 512 particles. An alternative method that relies on
piecewise analytic solutions has been proposed and
employed in one-dimensional simulations in [77–79].
In the lower panel, we reproduced Fig. 8 from [23]

showing the Bohmian trajectories, the integral curves of the
∇ϕðt; xÞ, overplotted with CDM trajectories. Note that
although the Bohmian trajectories approximate those of
the ZA before shell crossing and stick together in a similar

26It is an approximation to (12) in three dimensions and arises
in Lagrangian perturbation theory. Only before shell-crossing
ΨZAðqÞ is the exact solution in the one-dimensional case.
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fashion as CDM after shell crossing, these nonintersecting
Bohmian trajectories are not of any direct physical relevance
and in particular do not correspond to CDM trajectories after
shell-crossing. What the Bohmian trajectories reveal is that
the ScMproduces “shell-crossing without shell-crossing” in
a similar fashion as Newton’s cradle allows a ball to
apparently cross the center of the cradle.
Since very shortly after shell-crossing ΨZA and Ψ do not

deviate much from each other it is interesting to investigate
an iterated ZA (iZA) in which g½Ψ� in (C5) is replaced by
g½ΨZA�. This function can be precalculated and stored in an
interpolation table g½ΨZA�ðt; qÞ such that the now again
local equation

Ψ̈iZAðnÞðqÞ ¼ 4πGρ0aðΨiZAðnÞðqÞ þ g½ΨiZAðn−1Þ�ðqÞÞ;
ðC6Þ

where ΨiZAð0Þ ¼ ΨZA, can be solved for ΨiZA ð1stÞ. The such
obtained ΨiZA ð1stÞ could then be used to calculate ΨiZa ð2ndÞ,
leading to the hierarchy (C6). This iterative scheme to
improve the ZA has been suggested before [80], but to our
knowledge, has never been explicitly tested. A similar
scheme in one dimension has been proposed in [81] and
successfully tested [82].
We plot the first and fourth iteration of the iZA in Fig. 14.

Each iteration significantly delays the time at which iZA
trajectories deviate from CDM in the multistream regime,
such that this method indeed seems to converge to CDM. It
should be noted that this improvement of the ZA in one
dimension is completely independent from any perturbative
improvement of the ZA in three dimensions. Indeed, if we
expanded (C5) perturbatively, the g-term vanishes at each
order in perturbation theory. Nonperturbative corrections
mimicking the glue term g have been suggested to improve
mock simulations [83–85] and also to improve perturbation

theory [86–88]. It would be interesting to investigate
whether the iZA is a feasible approach to improve three-
dimensional mock simulations or Lagrangian perturbation
theory, and how this relates to other Lagrangian schemes
that improve the ZA beyond shell-crossing like COLA
[89,90] and PINOCCHIO [91,92]. Recently an approach to
calculate statistical quantities of the displacement field
based on the CDM (12) has been developed in [93] which
does neither assume invertibility of ∂qiX

j nor a Taylor
expansion in Ψ, and thus allows for a proper inclusion of
multistreaming effects.

APPENDIX D: DERIVATION OF (12)

The CDM potential is given by

ΦcðxÞ ¼ −
Gρ0
a

Z
d3x0

ncðx0Þ − 1

jx − x0j ðD1Þ

and its gradient is

∇xΦcðxÞ ¼
Gρ0
a

Z
d3x0½ncðx0Þ − 1� x − x0

jx − x0j3 : ðD2Þ

We then split the integral into two parts as

∇xΦcðxÞ¼
Gρ0
a

�Z
d3x0ncðx0Þ

x−x0

jx−x0j3−
Z

d3q0
x−q0

jx−q0j3
�
;

ðD3Þ

where we simply renamed the dummy variable x0 in the
second integrand to q0. Next, we switch to Lagrangian
coordinates in the first integral. One has to be very
careful with this variable transformation since it is not
a diffeomorphism, because we allow for multistreaming.
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FIG. 13. Upper panel: red dotted Zel’dovich trajectories (C4)
and thick yellow CDM trajectories (C5). Lower panel: blue
Bohmian trajectories (B2) of [23] thick yellow CDM trajectories
(C5).
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Upper panel:

FIG. 14. Red dot-dashed is the first iteration of the iZA, (C5)
solved with fixed g½ΨZA�. Lower panel: black dashed is fourth
iteration of the iZA, (C5) solved with fixed g½ΨiZa ð3rdÞ�. In both
panels are the thick yellow curves CDM trajectories of (C5).
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We assume that Eulerian space X ¼ ⋃M
μ¼1Xμ can be

decomposed into M subsets Xμ in each of which Xμ, the
restriction of X that takes values in Xμ, has a fixed number
of streams Nμ, neglecting the zero-measure subsets that
are the caustics between those regions. Furthermore,
the inverse image Qμ in Lagrangian space, defined by

XμðQμÞ ¼ Xμ decomposes into Qμ ¼ ⋃Nμ

αμ¼1Qαμ , such that

Xαμ , the restriction of Xμ that has inverse image Qαμ , is a
diffeomorphism for all αμ and μ. Therefore, the inverse of
XαμðqÞ exists and is denoted by QαμðxÞ.
We now consider the integral

Z
X
d3xncðxÞhðxÞ ðD4Þ

with some function hðxÞ and split it into the sum of M
Eulerian regions with fixed number of streams

XM
μ¼1

Z
Xμ

d3xncðxÞhðxÞ: ðD5Þ

Next we insert the expression of ncðxÞ in terms of sum over
streams, (15b), such that

XM
μ¼1

XNμ

αμ¼1

Z
Xμ

d3xhðxÞ 1

j det ∂qiX
j
αμðqÞj

����
q¼Qαμ ðxÞ

; ðD6Þ

where we pulled out of the integral the sum over streams.
Then we change coordinates from x to q in the integral. In
the Lagrangian region Qαμ , the volume element transforms

as d3x ¼ d3q det ð∂qiX
j
αμðqÞÞ, such that we are left with

XM
μ¼1

XNμ

αμ¼1

Z
Qαμ

d3qhðXαμðqÞÞsgnðdet ∂qiX
j
αμðqÞÞ: ðD7Þ

Next, we push the αμ-sum back into the integral

XM
μ¼1

Z
Qμ

d3qh½XμðqÞ�
XNμ

αμ¼1

sgnðdet ∂qiX
j
αμðqÞÞ; ðD8Þ

after which we pulled out of the sum h½XμðqÞ�, since h is a
function of x and therefore the same for all αμ. The function
sgn equals 1 if the argument is positive, −1 if it is negative
and 0 if the argument vanishes. Since Xðt; qÞ belongs to the
homotopy class of the identity as Xðt ¼ 0; qÞ ¼ q, the αμ-
sum in the integral is 1, see § 4 of [38]. We can finally
absorb the sum over μ to get the desired result

Z
X
d3xncðxÞhðxÞ ¼

Z
Q
d3qhðXðqÞÞ: ðD9Þ

Applying this result to the first term in (D3) we obtain

∇xΦcðxÞ ¼
Gρ0
a

Z
d3q0

�
x − Xðt; q0Þ
jx − Xðt; q0Þj3 −

x − q0

jx − q0j3
�
;

ðD10Þ
which leads to (12) upon evaluating the gravitational
acceleration −∇xΦc at x ¼ Xðt; qÞ.

APPENDIX E: PROOF THAT f c SATISFIES THE
VLASOV EQUATION

Multiply fcðt; x; uÞ, (14), by a smooth test function hðuÞ
and consider the time derivative of

R
d3ufcðt; x; uÞhðuÞ.

With the help of (D9) and (12) it is easy to see that fc
satisfies the Vlasov equation (4).

APPENDIX F: DIFFERENCES OF PHASE
SPACE DISTRIBUTIONS

Here we collect some results from [23] relevant for
testing within the ScM, how well the ScM is expected to
approximate the coarse-grained Vlasov or the Vlasov
equation. The coarse grained Vlasov equation is

∂tf̄ ¼ −
u
a2

∇xf̄ −
σu

2

a2
∇x∇uf̄ þ ∇xΦ̄ expðσx2∇⃖x∇⃗xÞ∇uf̄

ðF1aÞ
whereas evolution of the Husimi distribution is given by

∂tfH ¼ −
u
a2

∇xfH −
σu

2

a2
∇x∇ufH

þΦH expðσx2∇⃖x∇⃗xÞ
2

~ℏ
sin

�
~ℏ
2
∇⃖x∇⃗u

�
fH: ðF2aÞ

If initially fHðtiniÞ ¼ f̄ðtiniÞ, then
∂tðfH − f̄Þini ¼ ΦHðtiniÞ expðσx2∇⃖x∇⃗xÞ

×

�
2

~ℏ
sin

�
~ℏ
2
∇⃖x∇⃗u

�
− ∇⃖x∇⃗u

�
fHðtiniÞ

ðF3Þ

¼ −
~ℏ2

24
ΦHðtiniÞð∇⃖x∇⃗uÞ3fHðtiniÞ þOð ~ℏ2σx

2; ~ℏ4Þ ðF4Þ

which we assumed to also hold at later times in (29) leading
to the condition (32a). The smallest nonvanishing moment
of the right-hand side of (F4) is for n ¼ 3. Therefore, once
the simulation is in the multistream regime and condition
(37b) no longer applies, we can use the evolution equation
of the third moment as an indicator of the goodness of the
approximation of the coarse-grained Vlasov equation as in
Sec. II E 4. If this condition does not hold, then ∂tfH is
sourced by “quantum” corrections (F4) and the correspon-
dence with the coarse-grained Vlasov equation is lost.
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Similarly, from (4a) we see that

∂tðf̄ − fÞini ¼ −
σu

2

a2
∇x∇uf̄ðtiniÞ þ ∇xΦ̄ðtiniÞðexpðσx2∇⃖x∇⃗xÞ − 1Þ∇uf̄ðtiniÞ ðF5Þ

¼ −
σu

2

a2
∇x∇uf̄ðtiniÞ þ σx

2∇xi∇xjΦH∇xi∇uj f̄ðtiniÞ þOðσx4Þ ðF6Þ

leading to the condition (32b).
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