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We derive the scalar potential in four spacetime dimensions from an eight-dimensional ðRþ γR4 −
2Λ − F2

4Þ gravity model in the presence of the 4-form F4, with the (modified gravity) coupling constant γ
and the cosmological constant Λ, by using the flux compactification of four extra dimensions on a 4-sphere
with the warp factor. The scalar potential depends upon two scalar fields: the scalaron and the 4-sphere
volume modulus. We demonstrate that it gives rise to a viable description of cosmological inflation in the
early universe, with the scalaron playing the role of inflaton and the volume modulus to be (almost)
stabilized at its minimum. We also speculate about a possibility of embedding our model in
eight dimensions into a modified eight-dimensional supergavity that, in its turn, arises from a modified
eleven-dimensional supergravity.
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I. INTRODUCTION

Extra dimensions appear in Kaluza-Klein (KK) field
theory and gravity, supersymmetry and supergravity, string
theory and brane world, mainly in the context of unification
of particles and fields. It is, therefore, natural to study
multidimensional cosmological models also, and relate
them to the observed universe. However, the progress in
this direction was limited in the literature, because the
observed universe is four-dimensional, so that any multi-
dimensional cosmological model has to end up with the
effective four-dimensional theory that fits the Friedmann-
Lemaitre-Robertson-Walker (FLRW) framework and is
consistent with observations. Extra dimensions unavoid-
ably lead to extra scalar fields (called moduli) that must be
stabilized. In addition, the mass hierarchy has to be satisfied
as follows:

Minf ≪ MKK ≪ MPl: ð1Þ
Moreover, extra dimensions usually open a lot of possibil-
ities that should be constrained both theoretically and
experimentally. This would imply interesting relations
between the four-dimensional cosmological quantities
and their higher dimensional counterparts, and offer a
possible multidimensional origin of our Universe.
One of the well-studied approaches in this direction is

based on the modified fðRÞ gravity actions in higher
dimensions with a warped product geometry, where R
stands for the Ricci scalar in D > 4 spacetime dimensions.

However, as was demonstrated in Refs. [1–4], the higher-
dimensional ðRþ γRn − 2ΛÞ gravity models together with
their spontaneous compactification to four dimensions do
not lead to a successful phenomenological description of
dark energy, because of a necessarily negative (induced)
cosmological constant in four dimensions. These models
also fail to describe the early universe inflation because of
low values of the scalar index ns and the e-foldings number
Ne. Adding extra (matter) p-form fields with a Freund-
Rubin-like compactification ansatz [5] can stabilize extra
dimensions for a certain range of parameters [2], but still
does not lead to a successful phenomenology. In particular,
the four-dimensional inflationary models based on the
compactified ðRþ γRn−2ΛÞ gravity in dimensions D<8
were found to be not viable [4]. It raises a question about
whether this situation can be improved by changing or
relaxing some of the assumptions used in Refs. [1–4]. It is
also important to get the constraints restricting the values of
a higher dimension D > 4, the power n of the scalar
curvature R in the modified gravity action, the value of the
higher-dimensional cosmological constant Λ, and the rank
p of a p-form field, if any.
In our paper [6], we proposed a derivation of the viable

inflaton scalar potential from the higher (D)-dimensional
ðRþ γRn − 2ΛÞ gravity, by giving up the condition of
spontaneous compactification of extra dimensions and
ignoring the moduli, i.e. just assuming that the compacti-
fication happened before inflation and it can be made
spontaneous by adding some more fields. As a result, the
inflaton scalar potential in four spacetime dimensions turns
out to be dependent upon the parameters ðγ;Λ; D; nÞ, while
the viable inflationary phenomenology requires
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n ¼ D=2; ð2Þ

with the dimension D being a multiple of four. The
condition (2) arises by demanding the existence of a
plateau with a positive height for the inflationary scalar
potential, as is apparently favored by the Planck mission
observations [7–9], and is the case in the famous
Starobinsky inflationary model [10] but is in contrast to
Refs. [1–4] where the scalar potential was demanded to
vanish before the onset of inflation. Our results were
significantly enhanced in Ref. [11] where a spontaneous
compactification and stabilization of the volume of extra
dimensions was achieved by adding a single (p − 1)-form
gauge field having a nonvanishing flux in compact dimen-
sions and obeying the condition

p ¼ n: ð3Þ

In this paper we extend this analysis in the first relevant
higher dimensionD ¼ 8, and consider an embedding of the
D ¼ 8 modified gravity model into a (modified) D ¼ 8
supergravity.
Our paper is organized as follows. Our modified gravity

model in D ¼ 8 is formulated in Sec. II. Also in Sec. II we
consider the Freund-Rubin-type compactification of our
model on a 4-sphere down to four spacetime dimensions,
derive the scalar potential, and stabilize the volume
modulus of the compact dimensions described by the
4-sphere. In Sec. III we apply our model to a description
of cosmological inflation in the early universe. In Sec. IV
we speculate about a possible embedding of our model into
a modified D ¼ 8 supergravity. Section V is our conclu-
sion. We collect all technical details into four appendixes:
Appendix A is devoted to the Legendre-Weyl transform
of the modified gravity model to the Einstein frame in
8 dimensions; Appendix B describes the Freund-Rubin-
type compactification of the transformed action to 4
dimensions on a 4-sphere, it includes a derivation of the
two-field scalar potential in four dimensions; Appendix C
is devoted to a detailed study of the scalar potential in
4 dimensions; Appendix D is devoted to a (partial)
derivation of the (modified and gauged) D ¼ 8 super-
gravity from a modified D ¼ 11 supergravity by compac-
tifying the latter on a 3-sphere.

II. THE D= 8 MODEL AND ITS
D= 4 COMPACTIFICATION

The fðRÞ gravity in four spacetime dimensions is the
standard theoretical approach in modern cosmology,
capable of describing both cosmological inflation in the
early universe and dark energy in the present Universe—
see e.g., the reviews [12–16] and references therein. The
basic idea is to replace the scalar curvature R in the
Einstein-Hilbert (EH) gravity action by a function fðRÞ
obeying certain physical requirements in the relevant range

of its argument R, such as the absence of ghosts and
tachyons, in order to fit the (observed) accelerating
universe.
The distinguished property of fðRÞ gravity theories is

their classical equivalence (duality) to the scalar-tensor
gravity theories [17], which is known for the long time—
see e.g., Refs. [18–26]. The existence of this (Legendre-
Weyl) transformation relating these apparently different
gravity theories is guaranteed by the physical conditions on
the fðRÞ-function, namely, positivity of its first and second
derivatives (in the proper notation, and in the relevant range
of the scalar curvature values).
The simplest and, perhaps, most famous fðRÞ gravity

model of Starobinsky [10] is defined by the action1

SStarobinsky ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 1

6M2
R2

�
: ð4Þ

The Starobinsky model is known as an excellent model
of inflation, in very good agreement with the Planck
data [7–9]. On the one hand, any viable inflationary
model with fðRÞ ¼ Rþ ~fðRÞ gravity must be close
to the Starobinsky model (4) in the sense of having
~fðRÞ ¼ R2AðRÞ with a slowly varying function AðRÞ.
The Starobinsky model is also known as an attractor for
inflation [27]. On the other hand, any ðRþ γRnÞ gravity
model in D ¼ 4 with an integer power n higher than two
is not viable for inflation [28].2

The only real parameterM of the Starobinsky model can
be identified with the inflaton mass, whose value is fixed by
the observational cosmic microwave background (CMB)
data as M ¼ ð3.0 × 10−6Þð50Ne

Þ where Ne is the e-foldings
number. The corresponding scalar potential of the (canoni-
cally normalized) inflaton field ϕ (dubbed scalaron in the
given context) in the dual (scalar-tensor gravity) picture
reads [30]

VðϕÞ ¼ 3

4
M2

�
1 − e−

ffiffi
2
3

p
ϕ
�
2
: ð5Þ

This scalar potential is bounded from below, has a
Minkowski vacuum and a plateau of a positive height
for slow roll inflation. During the inflation the scalar
potential (5) is simplified to

VðϕÞ ≈ V0ð1 − 2e−αsϕÞ; ð6Þ

where we have kept only the leading (exponentially
small) correction to the emergent cosmological constant

V0 ¼ 3
4
M2, and have introduced the notation αs ¼

ffiffi
2
3

q
.

1We use the natural units ℏ ¼ c ¼ 1 with the reduced Planck
mass MPl ¼ 1, and the D ¼ 4 spacetime signature ð−;þ;þ;þÞ.

2Having n to be noninteger and close to 2 is still possible for
inflation in D ¼ 4 [29].
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It is the demand of having a plateau for the scalar
potential in higher D dimensions that results in the
condition (2) [6,22]. But it is still insufficient for moduli
stabilization that requires at least one p-form field obeying
the condition (3) [11].
Therefore, our minimal model in D ¼ 8 is defined by

the action

S ¼ M6
8

2

Z
d8X

ffiffiffiffiffiffiffiffi
−g8

p ½R8 þ γ8R4
8 − 2Λ8

− gA1B1gA2B2gA3B3gA4B4FA1A2A3A4
FB1B2B3B4

�: ð7Þ

It depends upon two fields, a metric gAB and a 3-form gauge
potential AABC, whose field strength 4-form is F ¼ dA, and
has three parameters: the gravitational mass scale M8, the
(modified gravity) coupling constant γ8 > 0 and the cos-
mological constant Λ8 > 0, all in D ¼ 8 dimensions—see
Appendix A for more details.
Applying the Legendre-Weyl transform to the action (7)

in D ¼ 8 results in the dual (classically equivalent) action
(see Appendix A for its derivation)

Sdual ¼
M6

8

2

Z
d8X

ffiffiffiffiffiffiffiffi
−~g8

p
½ ~R8 − 42~gAB∂Af∂Bf −M2

8
~VðfÞ

− ~gA1B1 ~gA2B2 ~gA3B3 ~gA4B4FA1A2A3A4
FB1B2B3B4

�; ð8Þ

depending upon three fields, the Weyl-transformed (new)
metric ~gAB, the 4-form F ¼ dA, and the real scalaron fðXÞ
having the scalar potential

~VðfÞ ¼ a−2ð1 − e−6fÞ43 þ 2e−8f ~Λ8; ð9Þ

in terms of the (dimensionless) coupling constants

γ8 ≡M−6
8 ~γ8; Λ8 ≡M2

8
~Λ8;

3

4

�
1

4~γ8

�1
3 ≡ a−2: ð10Þ

The dual action (8) has the standard form of Einstein’s
gravity coupled to the matter fields ðf; AÞ and having the
scalar potential (9) in D ¼ 8. This scalar potential has a
plateau of the positive height a−2 for large positive values
of f.
Let us consider a compactification of the D ¼ 8 theory

(8) on a 4-sphere S4 with the warp factor χ, down to four
spacetime dimensions, i.e. in a curved spacetime with the
local structure

M8 ¼ M4 × e2χS4: ð11Þ

The 8-dimensional coordinates ðXAÞ can then be decom-
posed into the 4-dimensional spacetime coordinates ðxαÞ
with α ¼ 0, 1, 2, 3, and the coordinates ðyaÞ of four
compact dimensions of S4, with a; b;… ¼ 1, 2, 3, 4. The
compactification ansatz reads

ds28 ¼ ~gABdXAdXB ¼ gαβdxαdxβ þ e2χgabdyadyb; ð12Þ

where gαβ ¼ gαβðxÞ, gab ¼ gabðyÞ and χ ¼ χðxÞ.
This compactification results in the following D ¼ 4

action (see Appendix B for its derivation):

S4½ĝAB; χ; f� ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R̂ − 12ĝαβ∂αχ∂βχ

− 42ĝαβ∂αf∂βf −M2
Plðe−4χ ~VðfÞ − 2e−6χ

− e−12χF2Þ�; ð13Þ

of three fields: a metric ĝαβðxÞ, the scalaron fðxÞ and the S4
(volume) modulus χðxÞ, with the scalar potential depending
upon the parameters ða; ~Λ8Þ and the 4-form gauge field
strength flux F defined by the integrationZ

d4y
ffiffiffiffiffi
gy

p
ga1b1 � � � ga4b4Fa1:::a4Fb1:::b4 ¼ M−2

8 F2 ð14Þ

over the S4. The full two-scalar potential in D ¼ 4 thus
reads

M−4
Pl Vðχ; fÞ ¼ ½a−2ð1 − e−6fÞ43 þ 2 ~Λ8e−8f�e−4χ

− 2e−6χ þ F2e−12χ : ð15Þ

We have restored the reduced Planck scaleMPl in Eqs. (13)
and (15) for reader’s convenience.
The scalar potential (15) is investigated in detail in

Appendix C. It has a stable Minkowski vacuum and a
plateau with a positive height provided that

1 < F2=ð16~γ8Þ≡ 1þ δ <

�
3

2

�
3

; ð16Þ

where the inequality on the right-hand side is also needed to
ensure a positive mass squared of the modulus χ at the onset
of inflation—see Eq. (C25).
For generic values of δ in Eq. (16) one gets a two-field

inflation. However, the modulus χ is strongly stabilized
when δ ≪ 1, which implies only a small shift of the
minimum of χ during inflation, from χc to χ0, as

0 < χc − χ0 ≈
1

12
δ ≪ 1; ð17Þ

and results in a single-field inflation driven by the inflaton
(scalaron) f in D ¼ 4.
The physical hierarchy of scales in Eq. (1) can be

satisfied provided that

F2 ≫ 1; ð18Þ

where we have used the KK scale
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MKK ≈ e−χ0MPl ð19Þ

with the warp factor due to the compactification ansatz (11)
and (12).
The mass condition mf̂0

< mχ̂0 implies F2=~γ8 < 72,
which is already satisfied due to (16). However, it is not
possible to get a stronger condition mf̂0

≪ mχ̂0 .
A profile of the scalar potential in D ¼ 4 is given in

Fig. 1. It should be mentioned that the cosmological
constant in D ¼ 8 is given by Eq. (C3), which implies

~Λ8 ¼
δ−1=3

2a2
; ð20Þ

where we have used Eq. (10) also. In particular, it means
that δ cannot vanish.

III. TOWARDS A SUPERGRAVITY
EMBEDDING OF OUR MODEL

In this section we explore a possibility of embedding our
8-dimensional model (7) into a D ¼ 8 supergravity. First,
supergravity may be the natural origin of the p-form field
because higher-dimensional supergravities usually include
such fields. Second, the supergravity extensions of modi-
fied gravity certainly exist in D ¼ 4 [15,31], and they
should also exist in higher dimensions D ≤ 11.
Unfortunately, to the best of our knowledge, no fully

supersymmetric extension of any ðRþ R4Þ gravity in
higher ð8 ≤ D ≤ 11Þ dimensions was ever derived, so that
our investigation in this section cannot be fully consistent
and compelling, unlike that in the previous sections.
Moreover, any standard (two-derivative) supergravity
theory does not allow a positive cosmological constant
in its action (it would break supersymmetry), so that the
origin of the cosmological constant in D ¼ 8 can only be
either due to a spontaneous supersymmetry breaking or/and

some nonperturbative effects. So, this section ends up with
a conjecture.
A good starting point of this investigation is the

maximally supersymmetric D ¼ 11 supergravity, because
of its uniqueness. It can be modified by the quartic scalar
curvature term and then compactified down to D ¼ 8 on a
compact manifold (3-sphere S3)—see Appendix D for
details. Moreover, the SOð3Þ non-Abelian isometries of
the S3 can be gauged, thus producing the non-Abelian
gauge fields and a scalar potential in D ¼ 8. Taken
together, it leads to the bosonic part of the (modified
and gauged) D ¼ 8 supergravity action, having the
form (D14),

S8 ¼
Z

d8x
e
2κ2

½Rþ ~γe2κϕR4 − κ2e2κϕFα
μνF

μν
α

− 2κ2∂μϕ∂μϕ − VðTÞ − PμijPμij

−
1

2
κ2e−4κϕ∂μB∂μB −

~κ2

12
e2κϕGμνρσGμνρσ

−
κ3

432
e−1εμ1:::μ8Gμ1:::μ4Gμ5:::μ8B� þ � � � ; ð21Þ

in terms of the followingD ¼ 8 fields: a metric gμν, dilaton
ϕ, the SOð3Þ gauge field strength Fα

μν, the vector fields Pμij,
the 4-form gauge field strength Gμνρσ and (5þ 1) scalars
ðT; BÞ whose scalar potential is

VðTÞ ¼ g2

4κ2
e−2κϕ

�
TijTij −

1

2
T2

�
: ð22Þ

The supergravity (21) has the required quartic scalar
curvature term and the gauge 3-form kinetic term given
by the gauge field strength 4-form squared, while the
Abelian vector fields Pμij are merely the spectators here.
Hence, (21) could be the supersymmetric extension of our
action (7) provided that (i) the dilaton ϕ is stabilized, and
(ii) a positive cosmological constant is generated. One
usually assumes in the literature that the dilaton potential is
generated by quantum nonperturbative corrections beyond
the supergravity level. And the cosmological constant may
be generated by the nonperturbative vacuum expectation
value

hκ2e2κϕFα
μνF

μν
α i ¼ 2Λ8: ð23Þ

Unfortunately, we do not have means to compute the
dilaton vacuum expectation value and the gluon condensate
(23) in D ¼ 8.

IV. INFLATION

Once the modulus χ is strongly stabilized (Sec. II), the
inflaton potential (15) takes the form (MPl ¼ 1)

FIG. 1. The profile of the scalar potential (15) for the numerical
input F2 ¼ 106, ~γ8 ¼ 6 × 104 and ~Λ8 ≈ 0.0174. The bottom line
shows the inflationary trajectory.
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e4χ0a2VðfÞ ¼ ð1 − e−6fÞ43 þ λe−8f − λð1þ λ3Þ−1
3; ð24Þ

with λ ¼ 2a2 ~Λ8 ¼ δ−1=3. This potential has the absolute
minimum at

f0 ¼
1

6
ln ð1þ λ3Þ; ð25Þ

where it vanishes in the Minkowski vacuum. A profile of
the scalar potential (24) is given in Fig. 2.
During inflationary slow roll along the plateau, the scalar

potential (24) can be approximated as

VðϕÞ ¼ V0 − V1e−αϕ; ð26Þ

with

α ¼
ffiffiffi
6

7

r
: ð27Þ

This value of α determines the key observational parameter
r related to primordial gravity waves and known as the
tensor-to-scalar ratio,

r ¼ 8

α2N2
e
¼ 28

3N2
e
: ð28Þ

The Planck data [8] sets the upper bound on r (with 95% of
C.L.) as r < 0.08. It implies

α >
10

Ne
¼ 0.2

�
50

Ne

�
; ð29Þ

while our result (27) is clearly above this bound.

As regards the other CMB spectral tilts (the inflationary
observables), the scalar spectral index ns and its running
dns=d ln k, their values derived from the potential (26) are

ns ≈ 1 −
2

Ne
and

dns
d ln k

≈ −
ð1 − nsÞ2

2
≈ −

2

N2
e
; ð30Þ

i.e. they are the same as in the Starobinsky model (4)
and (5).
The microscopic parameters of our model can be easily

tuned to get the same inflaton massM, so that our effective
inflationary model obtained from the higher (D ¼ 8)
dimensions is almost indistinguishable from the original
Starobinsky model having αs ¼

ffiffiffiffiffiffiffiffi
2=3

p
.

When a conventional matter action is added to our
gravity model, Weyl rescalings of the metric result
in the universal couplings (via the GR covariant deriva-
tives) of inflaton f to all matter fields with powers of
exp ð−ακ4fÞ. The value (27) of α derived from D ¼ 8
is only slightly different from the Starobinsky value
αs ¼

ffiffiffiffiffiffiffiffi
2=3

p
, while all the matter couplings to the scalaron

are suppressed by the Planck mass. Therefore, the impact of
higher dimensions on the inflationary observables and
reheating is negligible in our approach.

V. CONCLUSION

Our main results are summarized in the Abstract.
We used the Starobinsky inflationary model of the

ðRþ R2Þ gravity (4) in four dimensions as the prototype
for deriving the new inflationary models from higher
dimensions. Among the advantages of this approach are
(i) its geometrical nature, as only gravitational interactions

FIG. 2. The profile of the scalar potential (24) for λ ¼ 1 (green), λ ¼ 2 (red) and λ ¼ 2.88 (blue).
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are used, (ii) consistency with the current astronomical
observations of CMB, (iii) the clear physical nature of
inflaton (scalaron) as the spin-0 part of metric. In this paper
we focused on D ¼ 8 dimensions only. In our scenario,
the Universe was born multidimensional, and then four
spacetime dimensions became infinite, while the others
curled up by some unknown mechanism before inflation.
The inflation happened after the compactification and the
moduli stabilization.
In higher dimensions, it turned out to be necessary to

include a cosmological constant and a gauge (form) field,
with the strong conditions on the higher dimension, the
power n of the scalar curvature and the rank of the form,
see Eqs. (2) and (3). The moduli stabilization and the
scale hierarchy are also possible to achieve, while both
are nontrivial in the present context. It may also be possible
to embed our D ¼ 8 modified gravity model into the
modified D ¼ 8 supergravity and, ultimately, into the
modified D ¼ 11 supergravity.
As regards the observational predictions of our model, it

leads to the certain value (28) of the CMB tensor-to-scalar
ratio that is, however, only slightly different from that of the
original Starobinsky model.
Our results may be used for studying inflation and

moduli stabilization in more general frameworks, such as
unification of fields and forces, KK theories of gravity,
supergravity and superstrings, and braneworld.3
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APPENDIX A: LEGENDRE-WEYL
TRANSFORM IN D= 8

We denote spacetime vector indices in eight dimensions
by capital latin letters A;B;… ¼ 0; 1;…; 7, and use the
spacetime signature ð−;þ; � � � ;þÞ.
Let us begin with the following gravitational action in an

8-dimensional curved spacetime:

S8;grav ¼
1

2κ28

Z
d8X

ffiffiffiffiffiffiffiffi
−g8

p ðR8 þ γ8R4
8 − 2Λ8Þ; ðA1Þ

where we have introduced the gravitational coupling
constant κ8 of (mass) dimension ð−3Þ, the (modified

gravity) coupling constant γ8 > 0 of (mass) dimension
ð−6Þ, and the cosmological constant Λ8 > 0 of (mass)
dimension ðþ2Þ, all in 8 dimensions.4

The action (A1) can be rewritten to the form

S8;grav ¼
1

2κ28

Z
d8X

ffiffiffiffiffiffiffiffi
−g8

p �
ð1þ BÞR8 −

3

4

�
B4

4γ8

�1
3

− 2Λ8

�
;

ðA2Þ

where we have introduced the new scalar field B. The field
B enters the action (A2) algebraically, while its “equation
of motion” reads

B ¼ 4γ8R3
8: ðA3Þ

Substituting it back into the action (A2) yields the original
action (A1). Hence, the actions (A1) and (A2) are classi-
cally equivalent.
In order to transform the action (A2) to Einstein frame,

we apply a Weyl transformation of the metric with the
spacetime-dependent parameter ΩðXÞ in 8 dimensions,

gAB ¼ Ω−2 ~gAB;
ffiffiffiffiffiffiffiffi
−g8

p ¼ Ω−8
ffiffiffiffiffiffiffiffi
−~g8

p
; ðA4Þ

where we have introduced the new spacetime metric ~gAB.
As a result of this transformation, the (Ricci) scalar
curvature gets transformed as

R8 ¼ Ω2½ ~R8 þ 14e□8f − 42~gABfAfB�; ðA5Þ

where we have introduced the notation

f ¼ lnΩ; fA ¼ ∂AΩ
Ω

; ðA6Þ

and the covariant wave operator e□8 ¼ eDAeDA in 8
dimensions.
The Weyl-transformed [and also equivalent by the

field-redefinition (A4)] action reads

S8;grav ¼
1

2κ28

Z
d8X

ffiffiffiffiffiffiffiffi
−~g8

p
Ω−8

�
ð1þ BÞΩ2ð ~R8 þ 14e□8f

− 42~gABfAfBÞ −
3

4

�
B4

4γ8

�1
3

− 2Λ8

�
: ðA7Þ

Hence, the action in the Einstein frame is obtained by
choosing the local parameter Ω as

Ω6 ¼ e6f ¼ 1þ B: ðA8Þ
3In particular, as was found in [32], the modified ðRþ R2Þ

gravity in the Randall-Sundrum (RSII) braneworld [33] does not
destabilize the famous Randall-Sundrum solution to the hierarchy
problem in particle physics.

4The results of this appendix are obtained by specifying the
more general results (for any D and n) of Ref. [6] to D ¼ 8 and
n ¼ 4.
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After ignoring the total derivative in the Lagrangian, it
yields

S8;grav½~gAB; f� ¼
1

2κ28

Z
d8X

ffiffiffiffiffiffiffiffi
−~g8

p �
~R8 − 42~gAB∂Af∂Bf

−
3

4

�
1

4γ8

�1
3ð1 − e−6fÞ4=3 − 2e−8fΛ8

�
:

ðA9Þ
Let us redefine the coupling constants in 8 dimensions as

κ8 ≡M−3
8 ; γ8 ≡M−6

8 ~γ8;

Λ8 ≡M2
8
~Λ8;

3

4

�
1

4~γ8

�1
3 ≡ a−2; ðA10Þ

in terms of the new (mass) parameterM8 > 0 of dimension
ðþ1Þ, and the dimensionless parameters ~Λ8 and a > 0.
Then the action (A9) takes the form

S8;grav½~gAB; f� ¼
M6

8

2

Z
d8X

ffiffiffiffiffiffiffiffi
−~g8

p
½ ~R8 − 42~gAB∂Af∂Bf

−M2
8
~VðfÞ� ðA11Þ

with the (dimensionless) scalar potential

~VðfÞ ¼ a−2ð1 − e−6fÞ43 þ 2e−8f ~Λ8: ðA12Þ
Given an 8-dimensional action of the 4-form F (the

totally antisymmetric gauge field strength F ¼ dA of a
gauge 3-form potential A) in the form

S8½gAB; F4� ¼ −
M6

8

2

Z
d8X

ffiffiffiffiffiffiffiffi
−g8

p
gA1B1gA2B2gA3B3gA4B4

× FA1A2A3A4
FB1B2B3B4

; ðA13Þ
the F has (mass) dimension ðþ1Þ, and the A is
dimensionless.
Under the Weyl transform (A4), the Ω factors are

canceled against each other, so that the action (A13)
remains unchanged,

S8½~gAB; F4� ¼ −
M6

8

2

Z
d8X

ffiffiffiffiffiffiffiffi
−~g8

p
~gA1B1 � � � ~gA4B4

× FA1:::A4
FB1:::B4

: ðA14Þ
The action of our model in 8 dimensions is defined by

S8½~gAB; f; F4� ¼ S8;grav½~gAB; f� þ S8½~gAB; F4�: ðA15Þ

APPENDIX B: FREUND-RUBIN-TYPE
COMPACTIFICATION

In this appendix we consider the compactification of the
theory (A15) on a 4-sphere S4 with the warp factor χ, down

to 4 spacetime dimensions. We separate the 8-dimensional
coordinates ðXAÞ into the 4-dimensional spacetime coor-
dinates ðxαÞ with α ¼ 0, 1, 2, 3, and the coordinates ðyaÞ of
four extra (compact) dimensions with a; b;… ¼ 1, 2, 3, 4.5

We use the standard compactification ansatz

ds28 ¼ ~gABdXAdXB ¼ gαβdxαdxβ þ e2χgabdyadyb; ðB1Þ

where gαβ ¼ gαβðxÞ, gab ¼ gabðyÞ and χ ¼ χðxÞ, with the
normalization Z

d4y
ffiffiffiffiffi
gy

p ¼ M−4
8 : ðB2Þ

Taking into account the S4 Euler number equal to 2, yieldsZ
d4y

ffiffiffiffiffi
gy

p
Ry ¼ 2M−2

8 ; ðB3Þ

where Ry is the scalar curvature of the sphere S4. The
decomposition (B1) also impliesffiffiffiffiffiffiffiffi

−~g8
p

¼ e4χ
ffiffiffiffiffiffiffiffi
−g4

p ffiffiffiffiffi
gy

p ðB4Þ

and

~R8 ¼ Rþ e−2χRy − 8e−χ e□eχ − 12e−2χgαβ∂αeχ∂βeχ ;

ðB5Þ

where we have introduced the Ricci scalar R and the
generally covariant wave operator e□ ¼ gαβ∇α∇β in four
spacetime dimensions.
The volume V of four (compact) extra dimensions is

given by

V ¼
Z

d4y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðe2χgabÞ

q
¼ e4χM4

8; ðB6Þ

so that the warp factor χ can be identified with the volume
modulus of the sphere S4.
A substitution of Eqs. (B1), (B4) and (B5) into the action

(A11), and an integration over the compact dimensions by
using Eqs. (B2) and (B3), lead to the action

S4½gαβ; f; χ� ¼
M2

8e
4χ0

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
eχ

eχ0

�
4

½Rþ 2M2
8e

−2χ

þ 12gαβ∂αχ∂βχ − 42gαβ∂αf∂βf −M2
8
~VðfÞ�;
ðB7Þ

where we have introduced the vacuum expectation
value hχi0 ¼ χ0 ¼ const.

5Our results in this appendix fully agree with Ref. [11].
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The action (B7) is still in a Jordan frame, so that the
wrong sign of the kinetic term of the field χ is not
necessarily a problem. The Weyl transformation with the
parameter hðxÞ to the Einstein frame is given by

gαβ ¼ e−2hĝαβ; h ¼ 2ðχ − χ0Þ: ðB8Þ

It implies

gαβ ¼ e2hĝαβ;
ffiffiffiffiffiffi
−g

p ¼ e−4h
ffiffiffiffiffiffi
−ĝ

p
; ðB9Þ

and

R ¼ e2h½R̂þ 6ĝαβ∇α∇βh − 6ĝαβ∂αh∂βh�: ðB10Þ

Accordingly, the action (B7) gets transformed to

S4½ĝαβ; f; χ�

¼M2
8e

4χ0

2

Z
d4x

ffiffiffiffiffiffiffiffi
−ĝ4

p 	
R̂− 12ĝαβ∂αχ∂βχ

− 42ĝαβ∂αf∂βf −
�
eχ

eχ0

�
−4
M2

8½ ~VðfÞ− 2e−2χ �


; ðB11Þ

with the physical signs in front of all the kinetic terms. This
also fixes the four-dimensional (reduced) Planck mass as

M2
Pl ≡ κ−2 ¼ M2

8e
4χ0 : ðB12Þ

Therefore, we have

S4½ĝαβ; f; χ� ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−ĝ

p
½R̂ − 12ĝαβ∂αχ∂βχ

− 42ĝαβ∂αf∂βf − e−4χM2
Plð ~VðfÞ − 2e−2χÞ�:

ðB13Þ

Similarly, applying the compactification ansatz (B1) to
the 4-form action (A14) in 8 dimensions yields

S8;F½~gAB; F� ¼ −
M6

8

2

Z
d4x

ffiffiffiffiffiffi
−g

p

×
Z
d4y

ffiffiffiffiffi
gy

p
e−4χga1b1 � � � ga4b4Fa1…a4Fb1…b4 :

ðB14Þ

After defining the (dimensionless) flux parameter F2 asZ
d4y

ffiffiffiffiffi
gy

p
ga1b1 � � � ga4b4Fa1…a4Fb1…b4 ¼ M−2

8 F2 ¼ const;

ðB15Þ

and using the Weyl transformation (B8), the action (B14)
reduces to

S4;F½ĝAB; χ� ¼ −
M2

8e
4χ0

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
eχ

eχ0

�
4

e−8χM2
8F

2

¼ −
M2

8e
4χ0

2

Z
d4x

ffiffiffiffiffiffi
−ĝ

p
e−4h

�
eχ

eχ0

�
4

e−8χM2F2

¼ −
M4

Pl

2

Z
d4x

ffiffiffiffiffiffi
−ĝ

p
e−12χF2: ðB16Þ

The total action in 4 dimensions is given by a sum of
Eqs. (B13) and (B16),

S4½ĝAB; χ; f� ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
× ½R̂ − 12ĝαβ∂αχ∂βχ

− 42ĝαβ∂αf∂βf −M2
Plðe−4χ ~VðfÞ − 2e−6χ

− e−12χF2Þ�: ðB17Þ

The canonical scalar fields χ̂ and f̂ are thus given by

χ̂ ¼ 2
ffiffiffi
3

p
MPlχ and f̂ ¼

ffiffiffiffiffi
42

p
MPlf; ðB18Þ

and the two-scalar potential in 4 dimensions reads

M−4
Pl Vðχ; fÞ ¼ ½a−2ð1 − e−6fÞ43 þ 2 ~Λ8e−8f�e−4χ

− 2e−6χ þ F2e−12χ : ðB19Þ

APPENDIX C: STUDY OF THE
SCALAR POTENTIAL

In this appendix we investigate the scalar potential (B19)
in four dimensions. It depends upon two fields, the inflaton
f and the modulus χ, and has three parameters
ða−2; F2; ~Λ8Þ originating from eight dimensions (see
Appendixes A and B).6

The potential (B19) has a Minkowski vacuum ðf0; χ0Þ
defined by the equations

∂V
∂f

����
f¼f0

¼ ∂V
∂χ

����
χ¼χ0

¼ Vjf¼f0;χ¼χ0
¼ 0: ðC1Þ

The solution to these three equations is given by

e6f0 ¼ 1þ ð2 ~Λ8a2Þ3 and e6χ0 ¼ 2F2; ðC2Þ

together with a condition of the parameters,

2

3
~Λ8 ¼

�
1

16F2 − 256~γ8

�
1=3

; ðC3Þ

where we have used the third relation (A10) between ~γ8
and a.

6A partial analysis of generic potentials arising in the same
way from any dimension D ¼ 2n was done in Ref. [11]. We get
more results for D ¼ 8.
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The second derivatives of the scalar potential (B19) at the
critical point (C2) determine the masses of the canonically
normalized scalars (B18) as

m2
f̂0

¼ ∂2V
∂f2

����
f¼f0

1

42M2
Pl

¼ M2
Pl

56F2

�
F2

~γ8
− 16

�
; ðC4Þ

and

m2
χ̂0
¼ ∂2V

∂χ2
����
χ¼χ0

1

12M2
Pl

¼ M2
Pl

F2
; ðC5Þ

where we have used (C3) also. Equations (C3) and (C4)
imply the same condition

F2

~γ8
> 16 ðC6Þ

for both the existence of a Minkowski vacuum and its
stability, respectively.
At the onset of inflation (f ¼ þ∞), the scalar potential

of the modulus χ is given by

M−4
Pl VðχÞ ¼ a−2e−4χ − 2e−6χ þ F2e−12χ ðC7Þ

that only depends upon two (free) parameters ða−2; F2Þ.
The critical points of the potential (C7) are determined

by the condition

a−2 − 3e2χc þ 3F2e−8χc ¼ 0 ðC8Þ

that has the form of the depressed quartic equation

z4 þ qzþ r ¼ 0 ðC9Þ

in terms of

z ¼ e−2χc ; q ¼ −1
F2

< 0; r ¼ 1

3a2F2
> 0: ðC10Þ

The quartic discriminant is given by

Δ4

27 · 256
¼ ðr=3Þ3 − ðq=4Þ4; ðC11Þ

while writing down an explicit solution to (C9) depends
upon the sign of Δ4.
By using the auxiliary (Ferrari’s) resolvent cubic

equation

m3 − rm − q2=8 ¼ 0; ðC12Þ

we can factorize the left-hand side of the quartic
equation (C9) as

�
z2 þmþ

ffiffiffiffiffiffiffi
2m

p
z −

q

2
ffiffiffiffiffiffiffi
2m

p
�

×

�
z2 þm −

ffiffiffiffiffiffiffi
2m

p
zþ q

2
ffiffiffiffiffiffiffi
2m

p
�

¼ 0: ðC13Þ

Because each term in the first factor is positive in our case,
we get a quadratic equation from the vanishing second
factor whose two roots are given by

z1;2 ¼
ffiffiffiffi
m
2

r �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
m
−

ffiffiffiffiffiffiffi
2m

pr �
: ðC14Þ

These two roots precisely correspond to the existence of a
local (metastable) minimum and a local maximum of the
potential (C7), with −∞ < χmin < χmax < þ∞.
The cubic discriminant Δ3 ¼ 4r3 − 27ðq2=8Þ2 of

the depressed cubic equation (C12) is simply related
to Δ4 as

Δ3

4 · 27
¼ ðr=3Þ3 − ðq=4Þ4 ¼ Δ4

27 · 256
: ðC15Þ

When Δ3;4 ≥ 0, three real solutions to the cubic
equation (C12) are given by the Vieté formula

mk ¼ 2
ffiffiffiffiffiffiffi
r=3

p
cos θk; k ¼ 0; 1; 2; ðC16Þ

where

θk ¼
1

3
arccos

�
3q2

16r

ffiffiffiffiffiffiffi
3=r

p �
−
2πk
3

; ðC17Þ

while we should choose the highest (positive) root. The
condition Δ3;4 ≥ 0 implies

F2

~γ8
≥ 27: ðC18Þ

When Δ3;4 ≤ 0 or, equivalently, F2=~γ8 ≤ 27, the angle
(C17) does not exist. Instead, we should use the Vieté’s
substitution in Ferrari’s equation with

m ¼ wþ r
3w

; r > 0; ðC19Þ

that yields a quadratic equation for w3,

ðw3Þ2 − q2

8
w3 þ r3

27
¼ 0; ðC20Þ

whose roots are

w3
1;2 ¼ ðq=4Þ2

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðr=3Þ3
ðq=4Þ4

s #
: ðC21Þ
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Going back to the critical condition (C8) in the form

F2 ¼ e6χc
�
1 −

1

3
a−2e2χc

�
; ðC22Þ

and inserting it into the potential (C7) yields the height of
the inflationary potential Vplateau at the onset of inflation,

M−4
Pl Vplateau ¼ e−6χc

�
2

3
a−2e2χc − 1

�
: ðC23Þ

Demanding its positivity, Vplateau > 0, gives us the restric-
tion (C6) again.
The second derivative of the potential (C7) at the critical

point (C8) is given by

∂2V
∂χ2

����
χ¼χc

¼ 8e−6χcð9 − 4a−2e2χcÞ: ðC24Þ

Its positivity (stability) implies

F2

~γ8
< 54: ðC25Þ

Taken together with (C6) and (C18), this implies that the
values of the ratio F2=~γ8 have to be restricted as follows:

16 <
F2

~γ8
≤ 27; Δ3;4 ≤ 0; 27 ≤

F2

~γ8
< 54; Δ3;4 ≥ 0:

ðC26Þ

Because of 1 < F2=ð16~γ8Þ≡ 1þ δ < ð3
2
Þ3, it is instruc-

tive to investigate the case of 0 < δ ≪ 1 describing the
strong stabilization of the modulus χ. In this case, (C2) and
(C22) give rise to

0 < χc − χ0 ≈
1

12
δ ≪ 1; ðC27Þ

leading to a single-field inflation driven by inflaton
(scalaron) f indeed.
The physical hierarchy of scales [cf. Eq. (1)] reads

mf̂0
< mχ̂0 ≪ MKK ≪ MPl: ðC28Þ

The KK scale in our case is given by MKK ≈ e−χ0MPl,
where the presence of the warp factor is dictated by the
compactification ansatz (B1).
The condition MKK ≪ MPl implies

2F2 ≫ 1 ðC29Þ

because of (C2). The condition mχ̂0 ≪ MKK implies

F2 ≫
ffiffiffi
2

p
ðC30Þ

that is slightly stronger than (C29). Both conditions can be
easily satisfied by taking F2 ≫ 1.
The remaining conditionmf̂0

< mχ̂0 implies F2=~γ8 < 72
that is already satisfied under the conditions (C26).
However, it is not possible to get mf̂0

≪ mχ̂0 here.

APPENDIX D: D= 8 GAUGED SUPERGRAVITY

The D ¼ 8 supergravity (with 16 supercharges) received
relatively little attention in the literature versus the super-
gravities inD ¼ 10 andD ¼ 11. For our purposes, we need
a D ¼ 8 supergravity modified by the quartic scalar
curvature term and having a scalar potential. In this
appendix we recall the SUð2Þ gauged N ¼ 2 supergravity
in D ¼ 8, which was derived by Salam and Sezgin [34] by
using the Scherk-Schwarz-type dimensional reduction [35]
of the 11-dimensional supergravity [36].
The 11-dimensional supergravity [36] is unique, so

that it is the good point to start with. Its standard action
is well known, while its existence can be related to the
existence of the 11-dimensional supermultiplet contain-
ing the 11-dimensional spacetime scalar curvature R
among its field components. Therefore, there is little
doubt that the ðRþR4Þ supergravity action in D ¼ 11
also exists, though (to the best of our knowledge) it was
never constructed in the literature. So, assuming its
existence, we write down the relevant part of its bosonic
terms as7

S11 ¼
Z

d11X
E
2~κ2

�
Rþ ~γR4 −

~κ2

12
GABCDGABCD

þ 8~κ3

1442
εA1…A11GA1…GA5…V…A11

�
; ðD1Þ

where we have simply added the quartic curvature term
(with the coupling constant ~γ) to the standard bosonic
action of the 11-dimensional supergravity. Of course,
adding the R4 term also requires adding its super-
symmetric completion that is going to result in more
bosonic terms in the action. However, because all extra
terms are going to be the higher-derivative couplings of
the bosonic 3-form field, also nonminimally coupled to
gravity, we assume that these extra couplings are
irrelevant for the scalar sector of the theory (see
below).8

7We use the spacetime signature ð−;þ;þ; � � � ;þÞ in D ¼ 11.
8It is worth mentioning that our approach is apparently

different from M theory, because we treat the R4 term non-
perturbatively, so that its presence leads to the new physical
degrees of freedom in D ¼ 11, which are absent in the standard
D ¼ 11 supergravity, similarly to the ðRþ R4Þ gravity in lower
dimensions.
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As regards our notation, we denote E≡ detEM
A in

terms of an elfbein EM
A in D ¼ 11. Here we denote the

11-dimensional Lorentz indices by early capital latin
letters as A; B;C;…, while the middle capital latin letters
M;N; P;… are used for the 11-dimensional Einstein
(curved) indices. The ~κ is the gravitational constant in
D ¼ 11. The scalar curvature R is defined in terms of the
spin connection

ωABC ≡ EM
A ωMBC ¼ 1

2
ηCEðEM

A E
N
B − EM

B E
N
A Þ∂MEE

N

−
1

2
ηAEðEM

B E
N
C − EM

C E
N
B Þ∂MEE

N

þ 1

2
ηBEðEM

C E
N
A − EM

A E
N
CÞ∂MEE

N ðD2Þ

as

R ¼ ωABCω
CAB þ ωAω

A − 2E−1∂MðEEM
Aω

AÞ; ðD3Þ

where ωA ≡ ηBCωBCA and ηAB is Minkowski metric in
D ¼ 11. The 4-form field strength GABCD is defined in
terms of the 3-form gauge potential VABC as

GABCD ¼ 4∂ ½AVBCD� þ 12ω½ABEVCD�E: ðD4Þ

To dimensionally reduce the modified D ¼ 11 super-
gravity to eight dimensions on a sphere S3, we use the
ansatz [34]

EM
A ¼

�
e−~κϕ=3eaμ 0

2~κe2~κϕ=3Aα
μLi

α e2~κϕ=3Li
α

�
;

EM
A ¼

�
e~κϕ=3eμa −2~κe~κϕ=3eμaAα

μ

0 e−2~κϕ=3Lα
i

�
; ðD5Þ

where we have introduced the 8-dimensional Lorentz
indices a; b; c;… and the 8-dimensional Einstein indi-
ces μ; ν; ρ;…, as well as the 3-dimensional (compact)
Lorentz and Einstein indices, i; j; k;… and α; β; γ;…,
respectively. The dilaton ϕ represents the volume
modulus of the 3-sphere, the eaμ is an 8-dimensional
achtbein, the Li

α is the unimodular matrix (detLi
α ¼ 1)

having 5 scalars, and the Aα
μ is a set of 8-dimensional

vectors.
The Scherk-Schwarz dimensional reduction is used to

gauge symmetries of a compact manifold in the reduced
theory by allowing the fields to depend on the compact
coordinates [35]. Let us denote the noncompact coordinates
by fxg, and the compact coordinates by fyg, and then
factorize the y dependence as

eaμðx; yÞ ¼ eaμðxÞ; Aα
μðx; yÞ ¼ U−1α

βðyÞAβ
μðxÞ;

Li
αðx; yÞ ¼ Uα

βðyÞLi
βðxÞ; ðD6Þ

where Uα
βðyÞ are elements of the gauge group SUð2Þ in

our case. The SUð2Þ structure constants

fγαβ ≡U−1
α

α0U−1
β

β0 ð∂β0Uα0
γ − ∂α0Uβ0

γÞ ¼ −
g
2~κ

εαβδgδβ

ðD7Þ

are y independent, where we have introduced the SUð2Þ
gauge coupling constant g and the 3-dimensional Levi-
Civita tensor εαβγ.
Substituting the ansatz (D5) into (D2) reduces the spin

connection components as [34]

ωabc ¼ e~κϕ=3
�
~ωabc −

1

3
~κηab∂cϕþ 1

3
~κηac∂bϕ

�
;

ωabi ¼ ~κe4~κϕ=3Fabi;

ωaij ¼ e~κϕ=3Qaij;

ωiab ¼ −~κe4~κϕ=3Fabi;

ωija ¼ e~κϕ=3
�
Paij þ

2

3
~κδij∂aϕ

�
;

ωijk ¼ −
g
4~κ

e−2~κϕ=3ðεjklTi
l þ εkliTj

l − εlijTk
lÞ;

ðD8Þ

where we have used the notation

Fα
μν ¼ ∂μAα

ν − ∂νAα
μ þ gεαβγA

β
μA

γ
ν;

Pμij þQμij ¼ Lα
i ðδβα∂μ − gεαβγA

γ
μÞLβj;

Tij ¼ Li
αL

j
βδ

αβ; ðD9Þ

with Pμij representing the symmetric part of the rhs of (D9),
and Qμij representing the antisymmetric part. The fields Li

α

are subject to the relations [34]

Li
αL

j
βδij ¼ gαβ; Li

αL
j
βg

αβ ¼ δij; ðD10Þ

where gαβ is the metric of the compact manifold ðS3Þ.
As regards VABC and GABCD, their relevant components

are

εαβγB≡ e2~κϕLi
αL

j
βL

k
γVijk;

εαβγ∂μB≡ e5~κϕ=3eaμLi
αL

j
βL

k
γGaijk; ðD11Þ

where B is another scalar field.
Equations (D5), (D14), and (D11) allow us to rewrite the

11-dimensional action (D1) as
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S11 ¼
Z

d8xd3yUðyÞ e
2~κ2

�
Rþ ~γe2~κϕR4 − ~κ2e2~κϕFα

μνF
μν
α − 2~κ2∂μϕ∂μϕ

−
g2

4~κ2
e−2~κϕ

�
TijTij −

1

2
T2

�
− PμijPμij −

1

2
~κ2e−4~κϕ∂μB∂μB

−
~κ2

12
e2~κϕGμνρσGμνρσ −

~κ3

432
e−1εμ1:::μ8Gμ1:::μ4Gμ5:::μ8B

�
þ…; ðD12Þ

whereUðyÞ≡ detUα
βðyÞ, T ≡ Ti

i, R is the 8-dimensional scalar curvature and the dots stand for irrelevant terms. Since the
only y-dependent function is UðyÞ, one can perform y-integration withZ

d3yUðyÞ ¼ V0; ðD13Þ

defining the invariant volume V0 of the compact manifold ðS3Þ. With the gravitational coupling κ ¼ ~κ=
ffiffiffiffiffiffi
V0

p
in D ¼ 8,

rescaling dilaton as ϕ → ϕ=
ffiffiffiffiffiffi
V0

p
(and similarly for the other fields Aα

μ, B and Vμνρ) and rescaling the gauge coupling as
g → g

ffiffiffiffiffiffi
V0

p
leads to the action

S8 ¼
Z

d8x
e
2κ2

�
Rþ ~γe2κϕR4 − κ2e2κϕFα

μνF
μν
α − 2κ2∂μϕ∂μϕ − VðTÞ − PμijPμij

−
1

2
κ2e−4κϕ∂μB∂μB −

~κ2

12
e2κϕGμνρσGμνρσ −

κ3

432
e−1εμ1:::μ8Gμ1:::μ4Gμ5:::μ8B

�
þ � � � ; ðD14Þ

whose scalar potential is given by [34]

VðTÞ ¼ g2

4κ2
e−2κϕ

�
TijTij −

1

2
T2

�
: ðD15Þ
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