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The presence of ubiquitous magnetic fields in the universe is suggested from observations of radiation
and cosmic ray from galaxies or the intergalactic medium (IGM). One possible origin of cosmic magnetic
fields is the magnetogenesis in the primordial universe. Such magnetic fields are called primordial magnetic
fields (PMFs), and are considered to affect the evolution of matter density fluctuations and the thermal
history of the IGM gas. Hence the information of PMFs is expected to be imprinted on the anisotropies of
the cosmic microwave background (CMB) through the thermal Sunyaev-Zel’dovich (tSZ) effect in the
IGM. In this study, given an initial power spectrum of PMFs as PðkÞ ∝ B2

1 Mpck
nB , we calculate dynamical

and thermal evolutions of the IGM under the influence of PMFs, and compute the resultant angular power
spectrum of the Compton y-parameter on the sky. As a result, we find that two physical processes driven by
PMFs dominantly determine the power spectrum of the Compton y-parameter; (i) the heating due to the
ambipolar diffusion effectively works to increase the temperature and the ionization fraction, and (ii) the
Lorentz force drastically enhances the density contrast on small scale just after the recombination epoch.
These facts result in making the anisotropies of the CMB temperature on small scales, and we find that
the signal goes up to 10 μK2 around l ∼ 106 with B1 Mpc ¼ 0.1 nG and nB ¼ 0.0. Therefore, CMB
measurements on such small scales may provide a hint for the existence of the PMFs.
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I. INTRODUCTION

Magnetic fields are found on various scales in the
universe through numerous astronomical observations so
far. They appear to be not only on small scales such as in
planets, stars [1], and galaxies [2], but also in galaxies at
high redshifts [3], and even on large scales such as in
galaxy clusters [4]. Moreover, there are some works which
suggest the presence of magnetic fields in the intergalactic
region. They have provided lower limits on the strength of
intergalactic magnetic fields from observations of γ-rays
emitted from distant blazars [5–9]. They claim that
magnetic fields on kpc scales should be stronger than
3 × 10−16 G in void regions. Interestingly, this lower limit
seems to be nearly the same among these studies though
they used different methods and observational data.
It is still ambiguous that the origin of these magnetic

fields is either an astrophysical or a cosmological phe-
nomenon. If magnetic fields existed in a protogalaxy, it is
believed that the magnetic fields would be amplified by the

galactic dynamo process [10,11]. According to the recent
study about the cosmological dynamo process, seed
fields as large as 10−20–10−30 G are enough to explain
the galactic magnetic fields of a few μG observed in the
present universe [12]. However, the efficiency of the
dynamo process is still under discussion. A robust way
of magnetic field amplification in the cosmological context
is the adiabatic amplification during the structure forma-
tion. In this case, nG magnetic fields are required for μG
magnetic fields observed in galaxies and galaxy clusters.
Many mechanisms have been proposed to explain the
generation of such seed fields with both astrophysical
[13] and cosmological phenomena [14]. In particular,
magnetic fields generated by cosmological phenomena
seem to have a larger correlation length, and they are
called primordial magnetic fields (PMFs). There are many
scenarios of the PMF generation in various epochs of the
early universe (for a recent review, see Ref. [15]).
The properties of PMFs depend on the generation

mechanisms, and are often characterized by Bλ, the field
strength on a scale λ at the present epoch. Through
cosmological observations, many works have provided
observational constraints on Bλ (for a review, see [16]).
One of the important constraints comes from the anisot-
ropies of the cosmic microwave background (CMB). PMFs
induce the magnetohydrodynamics (MHD) motions in the
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primordial ionized plasma by the Lorentz force on small
scales. Additionally, the stress-energy tensor of PMFs also
generates large scale metric perturbations [17–19]. As a
result, these fluctuations generate additional anisotropies in
the CMB temperature and polarization on both large and
small scales [20–25]. The Planck collaboration has per-
formed a data analysis by taking these effects into account
consistently. The obtained constraint on the amplitude of
PMFs is B1 Mpc ≲ 5 nG considering these effects [26].
Even after the recombination epoch, PMFs may also

provide significant effects in the expanding universe. In
particular, PMFs induce density fluctuations by the Lorentz
force [27,28], and heat the baryon gas in the intergalactic
medium (IGM) due to the dynamical friction between
neutral and charged particles that is called the ambipolar
diffusion [29]. These effects give strong impacts on the
structure formation, the reionization process, and so on
[30,31]. Many authors have discussed the observational
constraints on PMFs from the Thomson optical depth
[30–32], 21 cm anisotropies [33–35], cosmic shear [36],
and galaxy surveys [37,38].
We investigate the thermal Sunyaev-Zel’dovich (tSZ)

effect in the intergalactic medium (IGM) due to PMFs.
We assume that PMFs are random Gaussian fields.
Therefore, the heating efficiency of the ambipolar diffusion
is not spatially homogeneous. As a result, the fluctuations of
the IGM gas temperature arise. Additionally, the random
magnetic fields can also generate the matter density fluc-
tuations. These fluctuations create the anisotropies of the
Compton y-parameter on the sky and result in the CMB
temperature anisotropies due to the tSZ effect. The aim of
this paper is to investigate the potential to constrain the
strength and scale dependence of PMFs through measure-
ments of the tSZ angular power spectrum. It is worth
mentioning the difference of this work from previous ones
[39,40]. Although these works investigated the effect of
PMFs on the tSZ angular power spectrum, their concerns are
in the tSZ effect in galaxy clusters. The additional density
fluctuations generated by PMFs increase the abundance of
galaxy clusters and enhance the tSZ angular power spec-
trum. On the other hand, we focus on the tSZ effect in the
IGM in the present study.We evaluate the fluctuations of the
density, temperature and ionization fraction of the IGM gas
with PMFs and, then, compute the tSZ angular power
spectrum.
In the evolutional equations for the IGM gas density and

temperature, the Lorentz force and the ambipolar diffusion
are represented as nonlinear convolutions of PMFs.
Therefore, it is difficult to evaluate the effects of PMFs
on the fluctuation of the IGM gas density and temperature
analytically. In this investigation, therefore, we perform
numerical simulations. In a simulation box, we generate
PMFs based on a simple power-law model, assuming that
PMFs are adiabatically decaying due to the cosmological
expansion. We compute the gas density evolution and the

thermal history of the IGM gas with the ambipolar diffusion
and the several cooling effects of the IGM gas explained in
[41]. Although the linear perturbations are employed to
calculate the density evolution for the simplicity, this work
is the first attempt to evaluate the PMF effect on the spatial
distributions of the IGM density, temperature and ioniza-
tion fraction, consistently. Finally we show the resultant
tSZ angular power spectrum and discuss its dependence on
the statistical properties of PMFs.
This paper is organized as follows: In Sec. II, we

describe how PMFs alter the dynamics and the thermal
history of the IGM and create tSZ effect anisotropies. In
Sec. III, we introduce our numerical method to realize
PMFs and to compute the thermal history and the tSZ
angular power spectrum. Section IV is dedicated for
results and discussions. Section V concludes this paper.
Throughout this paper we adopt the flat-ΛCDMmodel with
the cosmological parameters from the Planck 2015 results
[42]: H0 ¼ 67.8 km=s=Mpc, ΩΛ ¼ 0.692, Ωm ¼ 0.308
and Ωb ¼ 0.048.

II. COSMIC MAGNETISM AND SZ EFFECT

After the recombination epoch, the presence of magnetic
fields could change the gas dynamics. In this study, we
consider two effects: (A) generation of the matter density
fluctuations by PMFs, and (B) heating of the IGMgas due to
the ambipolar diffusion of PMFs. Then, we evaluate the tSZ
effects taking these two effects into account simultaneously.

A. IGM density fluctuations due to PMFs

As investigated in the previous study [27,28], magnetic
fields can generate baryon (IGM) density fluctuations after
the recombination epoch. The evolutional equations of the
density fluctuations for cold dark matter and baryons can be
provided as [30]

∂2δc
∂t2 þ 2HðtÞ ∂δc∂t − 4πGðρcδc þ ρbδbÞ ¼ 0; ð1Þ

∂2δb
∂t2 þ 2HðtÞ ∂δb∂t − 4πGðρcδc þ ρbδbÞ ¼ SðtÞ; ð2Þ

where HðtÞ represents the Hubble parameter, ρb;c and δb;c
are the densities and density contrasts of baryons (b) and
cold dark matter (c), respectively.
In Eq. (2), SðtÞ is the source term due to the Lorentz force

of PMFs that is given by

SðtÞ ¼ ∇ · ð∇ ×Bðt;xÞÞ ×Bðt;xÞ
4πρbðtÞa2ðtÞ

; ð3Þ

where Bðt;xÞ represents the PMFs at a comoving three-
dimensional position x with time t, aðtÞ is the cosmic scale
factor, and ∇ is taken in the comoving coordinate. We can
obtain the solution of Eq. (2) analytically by the Green
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function method. Resultantly, assuming a matter dominated
universe and δb ¼ 0 initially, we can write the evolution of
δb as

δb¼
2SðtÞ

15H2ðtÞ
��
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; ð4Þ

where Ωm and Ωb are the density parameters of total matter
and baryons, respectively, and arec is the cosmic scale factor
at the recombination epoch. Note that Eqs. (1) and (2)
are valid only when δb ≪ 1 and the baryon pressure is
negligible. We discuss the validity of these assump-
tions later.

B. Thermal history of the IGM gas

The existence of PMFs significantly affects the thermal
history of the IGM gas, in addition to its density fluctua-
tions. After the photon decoupling, the cosmic ionization
fraction rapidly decreases. However there still exist residual
ionized particles in the IGM. These ionized particles are
affected by the Lorentz force of the PMFs, while neutral
particles do not feel the force. Therefore, a relative motion
between ionized and neutral gases arises. The energy of this
relative motion is thermalized by subsequent collisions
between ionized and neutral particles. This process is
known as the ambipolar diffusion and the magnetic fields
provide the extra heating of the IGM temperature. Through
this process, the energy of PMFs dissipates and the thermal
energy of the IGM gas increases.
The evolutional equation of the gas temperature Tgas

with the extra heating is given by [41]

dTgas

dt
¼ −2HðtÞTgas þ

_δb
1þ δb

Tgas

þ xi
1þ xi

8ργσT
3mec

ðTγ − TgasÞ þ
ΓðtÞ

1.5kBnb

−
xinb
1.5kB

½Θxi þΨð1 − xiÞ þ ηxi þ ζð1 − xiÞ�; ð5Þ

where xi is the ionization fraction, me is the electron mass,
σT is the cross section of the Thomson scattering, kB is the
Boltzmann constant, nb is the baryon number density, and
the subscript γ represents the values for the CMB. The first
term in the right-hand side of Eq. (5) represents the
adiabatic cooling by the expansion of the universe, the
second is the effect of adiabatic compression or expansion
due to the growth of the local density, and the third
describes the Compton cooling (or heating). The forth
term represents the extra heating source of the IGM gas.

Here we consider the ambipolar diffusion due to the PMF,
whose heating rate ΓðtÞ is given by [30]

ΓðtÞ ¼ jð∇ ×Bðt;xÞÞ ×Bðt;xÞj2
16π2ξρ2bðtÞ

ð1 − xiÞ
xi

; ð6Þ

where ξ is the drag coefficient, and ξ¼3.5×1013cm3g−1s−1
[43]. The last term interposed between the square brackets
stands for the cooling effects of the gas. Here we include the
free-free cooling (bremsstrahlung), the collisional excitation
cooling, the recombination cooling and the collisional
ionization cooling. In Eq. (5), these cooling rates are denoted
as Θ, Ψ, η, and ζ, respectively, and we adopt the values
in Ref. [41].
In order to solve the thermal history in Eq. (5), the

ionization fraction xi is required.According toRefs. [30,44],
the ionization history is given by

dxi
dt

¼
�
−αenbx2i þ βeð1 − xiÞ exp

�
E1s − E2s

kBTγ

��
D

þ γenbð1 − xiÞxi; ð7Þ

where we adopt the three-levels model (1s, 2sþ 2p and
continuum), Ei represents the binding energy of i-state
(Ei < 0), and D is the suppression factor due to the Ly-α
resonance photons,

D ¼ 1þ KΛnbð1 − xiÞ
1þ KΛnbð1 − xiÞ þ Kβeð1 − xiÞ

; ð8Þ

with the redshift rate of Ly-α denoted by K, and the two-
photon emission coefficient denoted by Λ ¼ 8.22458 s−1

[44]. The first, second, and last terms in the right-hand side in
Eq. (7) represent the collisional recombination, the photo-
ionization and the collisional ionization, respectively. The
coefficients in those terms are given by

αe ¼ 1.14 × 10−13 ×
4.309T−0.6166

4

1þ 0.6703T0.5300
4

½cm3 s−1�; ð9Þ

βe ¼ αe

�
2πmekBTγ

h2Pl

�3
2

exp

�
E2s

kBTγ

�
½s−1�; ð10Þ

γe ¼ 0.291 × 10−7 ×U0.39 expð−UÞ
0.232þU

½cm3 s−1�; ð11Þ

with T4 ¼ Tgas=104 K andU ¼ jE1s=kBTgasj as in RECFAST

code [45]. Equation (10) was represented by βe ¼
αeð2πmekBTgas=h2PlÞ3=2 exp ðE2s=kBTgasÞ in the original
RECFAST code. However, it was pointed out that RECFAST
code might overestimate the ionization rate under the
presence of PMFs by Chluba et al. [46]. Therefore, we
adopt Eq. (10) to calculate the ionization rate.
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For simplicity, we do not include any ionizing photons
from astronomical objects and also assume that there are no
helium and heavier elements. When we calculate Eqs. (5)
and (7), we take into account the fluctuations of the
hydrogen number density nH and the IGM density ρb,
which are evaluated by Eq. (4).

C. SZ angular power spectrum

In the previous section, we discuss the effects of the
PMFs on the gas evolution. When the PMFs are tangled,
the fluctuations of the density, temperature and ionization
fraction are generated. These fluctuations can induce the
temperature anisotropies of the CMB through the so-called
tSZ effect. In this subsection, we describe the angular
power spectrum of the CMB temperature due to the tSZ
effect (the tSZ angular power spectrum).
The strength of the tSZ effect is characterized by the

Compton y-parameter on the line-of-sight direction n̂ [47],

yðn̂Þ≡ kBσT
mec2

Z
dχaχwðχ; n̂Þ; ð12Þ

where χ is the comoving distance and aχ is the scale factor
corresponding to χ. In Eq. (12), wð χ; n̂Þ is the function of
nb, xi and Tgas at a comoving three-dimensional position x
given by x ¼ χn̂,

wðχ; n̂Þ ¼ xinbðTgas − TγÞjx: ð13Þ

The CMB temperature anisotropies caused by the tSZ
effect can be written with the Compton y-parameter,

ΔT
T

ðn̂Þ ¼ gνyðn̂Þ; ð14Þ

where gν is the spectral function of the tSZ effect, gν ¼
−4þ x=tanhðx=2Þ with x≡ hPlν=kBT, and gν ¼ −2 in the
Rayleigh-Jeans limit of a frequency ν.
According to Eq. (14), we can obtain the tSZ angular

power spectrum as

Cl ¼
�
gνkBσT
mec2

�
2
Z

dχ
Pwðχ;l=χÞ

χ2
; ð15Þ

where l is a multipole moment. Here we adopt Limber’s
approximation because we are interested in large l modes.
In Eq. (15), Pwðχ; kÞ is the three-dimensional power
spectrum of the Compton y-parameter at a comoving
distance χ and we can obtain Pwðχ; kÞ from w in Eq. (13).

III. SIMULATION SETUP

We can calculate the tSZ angular power spectrum from
Eqs. (12) and (15) by solving Eqs. (4), (5) and (7) for a
given realization of PMFs. However, since the source terms
due to PMFs for density fluctuations, i.e., Eq. (3) and for

thermal history, i.e., Eq. (6), are highly nonlinear, it is
difficult to obtain these fluctuations in an analytical way.
Therefore we perform numerical simulations to evaluate the
fluctuations of the density, temperature and ionization
fraction and compute the tSZ angular power spectrum
from them.
First we assume that the evolution of the PMFs depends

only on the cosmic expansion after the recombination
epoch. That is, we neglect any backreaction from local
matter evolution to the PMFs, and we assume conductivity
of the universe is infinity. Under these assumptions, the
PMFs adiabatically decay with the expansion of the
universe as

Bðt;xÞ ¼ B0ðxÞ
a2

; ð16Þ

where jB0j is the comoving strength of the PMFs.
Additionally the PMFs are assumed to be statistically
homogeneous and isotropic. Such magnetic fields can be
characterized by the power spectrum PBðkÞ defined as
[48,49]

hB�
i ðkÞBjðk0Þi ¼ ð2πÞ3

2
δðk − k0Þðδij − k̂ik̂jÞPBðkÞ; ð17Þ

where BðkÞ is the Fourier component of B0ðxÞ. For
simplicity, we assume a power-law shape for PBðkÞ with
the spectral index nB as

PBðkÞ ¼
nB þ 3

2

ð2πÞ2B2
n

knBþ3
n

knB; ð18Þ

where Bn is the field strength at the normalized scale kn. We
take kn corresponding to 1 Mpc in this paper. In this work,
we do not consider any specific origin of the PMFs.
Instead, we adopt a general form of power spectrum of
PMFs to cover a wide range of PMF models.1 It is useful to
introduce Bλ which represents the typical magnetic field
strength on a scale λ in the real space as

B2
λ ¼

1

2π2

Z
kλ

0

k2dkPBðkÞ ¼ B2
n

�
kλ
kn

�
nBþ3

; ð19Þ

where kλ ¼ 2π=λ.
Additionally, we assume the presence of cutoff scale

with PMFs due to the damping of Alfvén waves in the
early universe [50,51]. This cutoff wave number, kc, is
obtained by

1There are some different definitions of the power spectrum of
PMFs, for example, see Eq. (3.8) in [48]. We follow the above
one with which most of the previous studies have worked.

TEPPEI MINODA et al. PHYSICAL REVIEW D 96, 123525 (2017)

123525-4



k−2c ¼ B2
λc
ðtrÞ

4πργðtrÞ
Z

tr

0

lγðt0Þ
a2ðt0Þ dt

0; ð20Þ

where tr is the recombination time, lγ is the mean-free path
of CMB photons and λc ¼ 2π=kc. In k ≤ kc, the amplitude
of PMFs is derived from Eq. (18), and in k ≥ kc, PMFs
sharply drop off.
Resultantly, the statistical character of the PMFs in our

model is determined by only two parameters, Bn and nB.
We investigate the tSZ effects from the PMFs with some
combinations of these parameters summarized in Table I.
These parameters are consistent with the Planck constraint
on the PMFs [26].
Now we describe the details of our simulations. First, we

set the simulation box size to ð1 MpcÞ3. It is required to
resolve the cutoff scale in Eq. (20) in order to evaluate
properly the magnetic field effects. We adopt the grid
number to 643 for models 1–3 and 1283 for model 4.
These resolutions are enough to resolve the cutoff scale of
magnetic fields.
To satisfy the divergenceless condition of PMFs, we

first make a realization of a vector potential field, AðkÞ, in
wave-number space. Then, the PMFs,BðkÞ, are obtained as

BðkÞ ¼ ik ×AðkÞ: ð21Þ
In this way, the condition ∇ ·B ¼ 0 is automatically
satisfied. Also calculating the outer product of ik and
BðkÞ provides ∇ ×B in wave-number space. Then, we
perform the inverse Fourier transformation of these values to
obtain B and ∇ × B in real space. This procedure allows us
to evaluate the source terms of the density fluctuation and
gas temperature from Eqs. (4) and (5) in real space. The
evolution of physical quantities in all cells of our simulations
are independently calculated from local values, according to
Eqs. (4), (5), and (7).We adopt the fourth-orderRunge-Kutta
method to solve Eqs. (5) and (7), and make output data at
67 redshift slices taken logarithmically from z ¼ 1000 to
z ¼ 10. We then calculate the power spectrum PwðχðzÞ; kÞ,
at each redshift slice. We integrate these power spectra with
the linear interpolation between the slices and, finally, we
obtain the angular power spectrum in Eq. (15).

IV. RESULTS AND DISCUSSION

We perform our simulations for four different PMF
models with the parameter sets listed in Table I.
Depending on the PMFs, the evolutions of the gas quantities,

δb, Tgas and xi, are different. First, we focus on the PMF
dependence of these values.
In the left column of Fig. 1, we show the two-dimen-

sional structure of the x-component of ð∇ ×BÞ ×B, which
appeared in the source terms due to the Lorentz force in
Eqs. (3) and (6). In this figure, the panels from top to
bottom correspond to the cases for models 1–4 listed in
Table I. The middle and right columns show the ionization
fraction and the hydrogen number density maps at
z ¼ 10.0, respectively. In regions where the magnetic fields
are strong, the gas is heated up to ∼20 000 K via the
ambipolar diffusion. Furthermore, the gas densities in these
regions significantly decrease due to the Lorentz force.
Since the photoionization becomes more effective than the
collisional recombination, the gas in low density regions
maintains a high ionization state. Thus, it is obvious that
xion and nH have a strong anticorrelation. According to
Eq. (20), the cutoff scale becomes small from model 1 to 4
in Table I. Therefore, the model whose cutoff scale is
smaller has small-scale structures in the spatial distribution
of xion and nH. Note that we set the lower limit of the
density fluctuations to δb ¼ −0.9 to avoid the negative
density because Eq. (4) evolves the density fluctuations to
jδbj ≫ 1 quickly, in particular, on small scales. Since it is a
linearized, Eq. (4) is not valid in such a highly nonlinear
regime. We discuss this point in the end of this section.
Figure 2 shows the time evolutions of the average gas

temperature and the ionization fraction for different models
of the PMFs. These values are obtained by density-
weighted averaging. Therefore Fig. 2 mainly reflects the
evolution in highly overdense regions. The PMF heating
term in Eq. (5) decreases with increasing the IGM gas
density. Therefore the heating becomes less effective as the
gas becomes denser. Indeed, the left-hand side of Fig. 2
shows that the gas temperature is saturated at 3000–4000 K
around z ∼ 300. In such high redshifts, the density contrast
has not yet grown very much, and, as a result, the heating
efficiency is still high. However, the gas temperature starts
to drop after z ∼ 300 because the density contrast develops
well and it decreases the heating efficiency. Figure 2 also
shows that the dependence of the gas temperature on the
PMF models is small. Even at z ¼ 10, the difference of the
gas temperature between 0.5 and 0.1 nG is within the factor
of 2. This is because the saturated temperature in high
redshifts is independent on the PMF model and depends
mainly on the several cooling effects and the ionization
fraction. After the saturation, the temperature slowly goes
down balancing between the cooling and heating effects.
As a result, the PMF dependence of the temperature is
small for the magnetic field strengths considered in this
work. Although it is not apparent in the figure as mentioned
above, we investigate the gas temperature in the low density
regions. We find that the gas temperature in such regions
increases soon after the recombination epoch similarly.
After reaching the temperature saturation, however, the gas

TABLE I. The models of PMFs.

Model Bn [nG] nB λc [kpc]

1 0.5 0.0 250
2 0.5 −1.0 162
3 0.1 0.0 131
4 0.1 −1.0 72.4
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temperature keeps as high as the saturated temperature even
in the lower redshifts.
The right-hand side of Fig. 2 shows the density-weighted

average value of the ionization fraction for different
PMF models. Contrary to the gas temperature evolution,
the average value of the ionization fraction does not
simply reflect the values in high density regions. This is
because the typical ratio of the ionization fraction of
the high density region to the low density region is
much greater than that of the density contrast, i.e.,

ðρxiÞhigh density < ðρxiÞlow density. As we can expect, the
ionization fraction in lower density regions keeps xi ≈ 1
after the recombination epoch. This is because the gas
density is low and the collisional recombination term in
Eq. (7) becomes small. In high density regions, as the
density evolves, the collisional recombination becomes
effective and the ionization fraction quickly drops down.
We find that, while xi ≈ 1 at the lowest density regions
where δb ¼ −0.9, xi ≈ 10−7 at the highest density regions
with δb > 103. Because of this huge gap in xi between low
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FIG. 1. Illustration of ð∇ ×BÞ × Bx (left column), ionization fraction (middle column) and the IGM number density (right column) in
the PMFs models 1–4 from top to bottom at z ¼ 10.0. Negative spatial correlation between xi and nH is apparent. It is also visible that
the PMFs with smaller values of Bλ and nB generate more homogeneous structure of the Lorentz force and the gas density distributions.
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and high density regions, the density-weighted average
value of xi does not only reflect xi in high density regions.
Basically, the full ionization in low density regions makes
the average value of the ionization fraction larger than that
without PMFs plotted in black in Fig. 2. On the other hand,
the almost neutral gas in high density regions can decrease
the average value below that without PMFs (see the yellow
short dashed curve around z ∼ 600 in the right panel of
Fig. 2). In summary, the average value of xi is determined
by the balance between low and high density regions.
Although model 1, in which the strength of magnetic fields
at the cutoff scale is strongest, has the largest value of xi, the
model dependence is not so significant.
We show the CMB temperature angular power spectrum

due to the tSZ effect in the IGM caused by PMFs in Fig. 3.
The tSZ angular power spectrum has a peak around the
cutoff scale of the PMFs and the amplitude depends on the
PMF strength at the cutoff scale. Therefore, the angular
spectrum in model 1 has the largest amplitude among our
PMF models. However, it is difficult to provide the depend-
ence of the power spectrum amplitude on the PMF param-
eters in the analytical form. This is because the physical gas
quantities related to the tSZ effect are highly nonlinear and
become saturated in some regions. We also find that the tSZ
angular power spectrum decays proportional to l on larger
scales than the cutoff scale independently on the spectral
index of the PMF, nB. This means that the tSZ effect comes
from the magnetic field predominantly on the cutoff scale,
and magnetic fields on larger scales have little impact on the
tSZ CMB power spectrum. Although we have shown the
results with nB ¼ 0.0 and−1.0 in Fig. 3, we have confirmed
that nB indeed affects tSZ anisotropies only through the
cutoff scale in the cases with −1.0 < nB < 2.0. However, it
does not necessarily mean that the tSZ angular power
spectrum is insensitive to nB because the cutoff scale does

depend on nB. Therefore, we conclude that, although the
measurement of the tSZ effect due to the PMFs can provide
the information about the cutoff scale of the PMFs, it is
required to perform careful comparison between the obser-
vational data and the theoretical prediction to deduce the
properties of the PMFs, such as the field strength and the
spectral index.
At the end of this section, we make comments on the

validity of the gas density evolution and the impact on the
final results. To obtain the density evolution, we solve
Eqs. (1) and (2) in which we make two important assump-
tions, i.e., neglecting the thermal pressure and employing
linear perturbations. For the validity of the former
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FIG. 2. Time evolutions of the gas temperature (left) and ionization fraction (right) with and without the PMFs. The lines are the mass
weighted averages of these values in the corresponding models shown in the legend. The black wide solid lines are time evolutions
without the PMFs, and in the left panel the CMB temperature is also shown by the red line. If the PMFs exist, the gas temperature is
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FIG. 3. Angular power spectra of the tSZ effect induced by the
PMFs, obtained by integrating Eq. (15) from z ¼ 1000 to z ¼ 10,
for the four models listed in Table I. The primary CMB angular
power spectrum and the observational data with the Atacama
Cosmology Telescope (ACT) [52] are also shown by the black
solid line and the red dots with error bars, respectively. Clearly,
the present observational data cannot constrain the PMF models
1–4 because the angular resolution is not enough.
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assumption, we have confirmed that the grid scales of our
simulations are always larger than the Jeans scale. On the
other hand, as already mentioned above, we find that there
are many regions where the density contrast is much larger
than unity and the linear approximations are no longer valid.
However, such high density regions have a tiny ionization
fraction in general due to the collisional recombination
process. As a result, the contribution to the tSZ angular
power spectrum is negligibly small. The overestimation of
the gas density does not harm our final results. As regards
low density regions, we set the lower limit of the IGM
density contrast to δb ¼ −0.9 in order to avoid a negative
IGM density. This procedure means that we artificially take
into account the nonlinear structure formation, that is, the
void formation, because voids are observed as significant
underdense regions with δb < −0.85 [53]. This limit vio-
lates the mass conservation in a simulation box. However,
although this violation leads to the overestimation of the
density in high density regions, it does not seem to give a
negative impact on the estimation of the y-parameter in low
density regions which produces significant contributions on
the tSZ angular power spectrum. To confirm this point, it is
required to calculate the tSZ spectrum including the non-
linear effect in the IGM density evolution. We perform the
numerical simulations in our futurework to take into account
this nonlinear effect.

V. CONCLUSION

In this paper we have investigated the impact of the
PMFs on the CMB temperature anisotropies caused by the
tSZ effect in the IGM. Here we have taken into account two
effects of PMFs on the IGM including their spatial
correlations; the generation of the IGM density fluctuations
by the Lorentz force, and the heating of the IGM through
the ambipolar diffusion. The spatial inhomogeneity of
PMFs can induce the fluctuations of the IGM density,
temperature and ionization fraction through these effects.
The anisotropy of the Compton y-parameter in the IGM
arises due to the existence of these fluctuations. We have
calculated the tSZ angular power spectrum, assuming the
PMF statistical properties, i.e., the amplitude of the power
spectrum and the spectral index.
To evaluate the tSZ angular power spectrum, we have

performed numerical simulations of the IGM evolution
with the realization of random Gaussian PMFs. This is the
first attempt to investigate the effect of PMFs on the spatial
distributions of the IGM gas properties consistently.
Performing numerical simulations for different PMF mod-
els, we have found that the scale of the spatial distributions
corresponds to the cutoff scale of the PMFs. There are
strong relations among the IGM density, temperature and
ionization fractions. In high density regions, since the
heating rate of the PMF per one IGM particle becomes
low, the IGM temperature is not effectively heated and the
ionization fraction drops down because of the enhancement

of the recombination rate due to the high density. On the
other hand, in low density regions, the collisional recombi-
nation occurs less effectively than that in high density
regions, and thus the ionization fraction can be still high in
the lower redshifts.
From the results of our simulations, we have calculated

the tSZ angular power spectrum due to the IGM with
PMFs. We have found that since high density regions are
almost neutral, their contributions to the tSZ power
spectrum are almost negligible. Therefore the SZ meas-
urement can probe mainly lower density regions heated by
the PMFs. The tSZ angular power spectrum has a peak
around the cutoff scale of the PMFs (l ∼ 106 for sub-nG
PMFs) and its amplitude depends on the PMF strength at
the cutoff scale. On such small scales, the tSZ effect in
galaxy clusters and the kSZ effect due to the patchy
reionization can produce the CMB temperature anisotro-
pies. However these signals have the peaks around l≲ 104

and decay on high l modes. On the other hand, the tSZ
angular power spectrum even for 0.1 nano Gauss PMFs
keeps increasing up to l ∼ 106.
In this work, we have used the linearized equation to

calculate the density evolution of the IGM. It is known that
the density fluctuations generated by the PMFs have the blue
spectrum. Therefore, in our simulations, there are many
regions where the IGM density contrast is greater than unity
and the linearized equation is no longer valid there.
However, as mentioned above, such high density regions
have significantly small ionization fraction and their con-
tributions to the Compton y-parameter are expected to be
negligibly small. That is, the existence of much higher
density contrast than unity does not make us overestimate
the tSZ angular power spectrum. In low density regions, we
set the bound of the density contrast, δb > −0.9 to avoid the
negative density. Imposing this bound,we intend to take into
account approximately the nonlinear effect of the structure
formation in a low density region, i.e., a void formation. The
density evolution is determined by the local strength of the
Lorentz force in our simulation based on the linear density
perturbation theory. However, the formation of voids also
depends on the environmental condition. Therefore, it is
required to include the nonlinear effect of the structure
formation to evaluate the tSZ angular power spectrum
properly. Besides, we only consider the cosmological
expansion in the PMF evolution. Even in low ionization
fraction, PMFs could be frozen in the IGM and the density
evolution gives the effect on the PMF evolution. This PMF
evolution can affect the thermal history of the IGM, in
particular, in high density regions and may enhance the tSZ
angular power spectrum. To improve these simplified treat-
ments, the detailed MHD simulation of cosmological
structure formation with PMFs is required. Furthermore,
such a simulation allows us to investigate the PMF effect on
the collapse condition [54] and the enhancement of the tSZ
angular power spectrum due to galaxy clusters [39,40].
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We have shown that the PMFs can generate tSZ signal
on small scales after the recombination epoch. Therefore
it is worth mentioning about the possibility to provide
constraints on the PMFs from small-scale CMB obser-
vations. In the current observation status, the foreground
emissions dominate on small scales where the tSZ signal
from the PMFs arises, and it is difficult to remove the
foreground. In addition to the tSZ signal studied in this
work, the existence of PMFs can create non-negligible
small-scale CMB anisotropy before the recombination
epoch through the Doppler effect due to the velocity
perturbations induced by the PMFs [20,22]. Therefore, in
order to obtain constraints on the PMFs, it is required to
precisely investigate the CMB anisotropies on small

scales including all of these contributions. However, it
is beyond the scope of this paper and we address this
issue in the future.
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