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We investigate whether effective field theory (EFT) approaches, which have been useful in examining
inflation and dark energy, can also be used to establish a systematic approach to inflationary reheating. We
consider two methods. First, we extend Weinberg’s background EFT to the end of inflation and reheating.
We establish when parametric resonance and decay of the inflaton occurs, but also find intrinsic theoretical
limitations, which make it difficult to capture some reheating models. This motivates us to next consider
Cheung et al.’s EFT approach, which instead focuses on perturbations and the symmetry breaking induced
by the cosmological background. Adapting the latter approach to reheating implies some new and
important differences compared to the EFT of inflation. In particular, there are new hierarchical scales, and
we must account for inflaton oscillations during reheating, which lead to discrete symmetry breaking.
Guided by the fundamental symmetries, we construct the EFT of reheating, and as an example of its
usefulness we establish a new class of reheating models and the corresponding predictions for gravity wave
observations. In this paper we primarily focus on the first stages of preheating. We conclude by discussing
challenges for the approach and future directions. This paper builds on ideas first proposed in the paper
[O. Ozsoy, G. Sengor, K. Sinha, and S. Watson, arXiv:1507.06651.].
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I. INTRODUCTION

If inflation occurred in the early universe it must have
eventually ended resulting in a hot, thermal universe by
the time of big bang nucleosynthesis (BBN). The process
by which the inflaton’s energy is transferred into other
particles—which hopefully, eventually, gave rise to stan-
dard model particles—is known as inflationary reheating.
Reheating can occur perturbatively [1–3], or nonperturba-
tively in a process known as preheating [4–6] (see [7,8] for
recent reviews).
Existing investigations into reheating have been rather

model dependent, often focusing on constraining the
precise regions of the parameter space that lead to suc-
cessful reheating. Analytic methods for exploring the
dynamics still rely on the earliest works mentioned above,
and the nonlinearities and complexity of the reheating
process still require invoking numeric/lattice methods
[7–15]. Moreover, the wealth of cosmological observations
from the cosmic microwave background (CMB) and large
scale structure (LSS) relate to the physics of inflation far
before reheating, and so the lack of observational windows
on (p)reheating has also made its study far less compelling

than inflation—with the prediction of gravitational waves
providing a possible exception.
In this paper, we take steps to address the model

dependence of (p)reheating building on motivation from
recent works [16–18]. Our approach is to use the effective
field theory (EFT) approach to cosmology, which at this
point has been applied to all cosmic epochs except for (p)
reheating. We will first consider the EFTof the background
as developed by Weinberg for inflation in [19] and later
adapted to studies of dark energy in [20]. Ultimately, we
will find that this approach is not completely satisfactory in
generalizing studies of reheating. Instead we find that the
different approach of the EFT of cosmological perturba-
tions is more promising.
The EFT of inflation [21–23] and generalizations to dark

energy [24–29] and structure formation [30] are based on the
idea that there is a physical clock corresponding to the
Goldstone boson that nonlinearly realizes the spontaneously
broken time diffeomorphism invariance of the background.
In unitary gauge—where the clock is homogeneous—the
matter perturbations are encoded within the metric, i.e., the
would-be Goldstone boson is “eaten” by the metric, since
gravity is a gauge theory. After we establish the limitations
of the EFT background approach, we then present an EFT
of reheating using this EFT of perturbations to develop a
more robust approach to studying the end of inflation and
reheating.
The rest of the paper is as follows. In Sec. II, we review

some of the important issues and constraints surrounding
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particular examples of (p)reheating models. In Sec. III,
we consider Weinberg’s approach to the EFT of Inflation,
and consider how inflation might end and (p)reheating
would proceed. We find that the perturbative approach to
the background presents a substantial challenge to this
approach, along with the usual problem of knowing the
complete inflationary potential. This motivates us to con-
struct an EFTof reheating in Sec. IV—focusing on the EFT
of the perturbations. We analyze the process of particle
production, demonstrate how our approach connects to
existing preheating models, and discuss ways in which our
EFT can be used to connect to both inflation (and its end)
and observations. In Sec. V, we conclude and discuss the
challenges facing our approach and future directions.

II. CHALLENGES FOR INFLATIONARY
REHEATING

Model dependent studies of (p)reheating have raised a
number of important questions and issues. From the
perspective of inflationary model building within string
theory, the requirement to isolate the inflationary sector to
achieve an adequate duration of inflation can result in
challenges in transferring the energy density to other fields,
and eventually the standard model sector following infla-
tion [31]. The complexity of the string landscape and the
large number of moduli fields can exacerbate this problem
[32]. In bottom-up approaches, toy models often demon-
strate a conflict between the need for the inflaton to have
feeble interactions during inflation (so as to be consistent
with both successful inflation and constraints on non-
Gaussianity), and later having strong enough couplings
for the complete decay of the inflaton and the (eventual)
successful reheating of the standard model. Perturbative
decay can also present a challenge depending on the
effective mass of the decay channels and the time depend-
ence of the inflaton decay rate [33].
As an example, consider chaotic inflation with V ∼m2

ϕϕ
2

and reheating with a renormalizable coupling to a reheat
field, χ. We note that this model is in tension with existing
CMB constraints, but it presents a simple example of the
more general problems one might anticipate with (p)reheat-
ing. The Lagrangian we consider is1

L ¼ −
1

2
ð∂ϕÞ2 − 1

2
m2

ϕϕ
2 −

1

2
ð∂χÞ2 −UðχÞ − g2

2
ϕ2χ2;

ð1Þ

where we assume that initially the reheat field is fixed by its
UðχÞ and remains in its vacuumduring inflation. Themass of
the inflaton is fixed by the power spectrum [34],

Δ2
R ¼ 1

96π2

�
mϕ

mpl

�
2

ð4N�Þ2 ≡ 2.2 × 10−9 ð2Þ

whereN� is the number of e-folds before the end of inflation
and with N� ¼ 60 we have mϕ ≃ 6.4 × 10−6mpl. The
inflaton will begin to oscillate around the minimum of its
potential when its mass becomes comparable to the Hubble
scale, mϕ ≈HðtoscÞ, with a profile given by the expression
ϕ0ðtÞ ¼ ΦðtÞ sinðmϕtÞ [6]. The amplitude of theoscillations,
ΦðtÞ, is a monotonic function of cosmic time given by
Φ ¼ ffiffiffiffiffiffiffiffi

8=3
p ðmpl=2πNoscÞ, where Nosc is the number of

oscillations after the end of inflation. Setting Nosc ¼ 1 gives
Φ ≈ 0.3mpl, which we take as the initial amplitude of the
inflaton oscillations.
If the direct coupling in (1) presents the only decay

channel for the inflaton the expansion of the universe will
prevent the complete perturbative decay of the inflaton [6].
This is because the decay rate, Γ, scales as Γ ∝ Φ2 ∼ 1=t2

whereas the expansion rate during reheating scales as
H ∼ 1=t. Instead, in this case decay must proceed non-
perturbatively through preheating [4–6], where parametric
resonance can lead to enhanced decay of the inflaton
condensate. The mode equation for χ fluctuations resulting
from (1) in the presence of the oscillating condensate
ϕ0ðtÞ is

χ̈k þ ½k2 þm2
χ þ g2ϕ2

0�χk ¼ 0; ð3Þ

where we have neglected the expansion of the universe
(a ¼ 1) and note that including gravitational effects
would act to strengthen the main conclusion below.
If the field begins in its Bunch-Davies vacuum the
corresponding Wentzel-Kramers-Brillouin (WKB) solution
is χk ∼ expð−i R ωkðt0Þdt0Þ, where ωk is time-dependent
frequency corresponding to the terms inside the brackets in
(3). Particle production occurs if the adiabatic conditions
fail corresponding to _ωk ≫ ω2

k or ω̈k ≫ ω3
k, etc... Thus, a

necessary condition for preheating is

_ωk

ω2
k

≃ g2ϕ _ϕ

ðk2 þm2
χ þ g2ϕ2Þ3=2 > 1; ð4Þ

corresponding to the production of modes with their
momenta satisfying

k2 ≲ ðg2ϕ _ϕÞ2=3 − g2ϕ2 −m2
χ : ð5Þ

The ratio in (4) is maximal when the inflaton is near the
bottom of the potential, where we can approximate
_ϕ0 ≃mϕΦ. Broad resonance [6] will assure us that pre-
heating is successful. This corresponds to a restriction on
the range of wave numbers in the resonance bandΔk ≫ mϕ

Maximizing the right side of (5) with respect to ϕ, we find
the maximum value of ϕ2� ≃ 0.2 _ϕ=g corresponding to a

1We work in reduced Planck units mpl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.4 ×
1018 GeV with ℏ ¼ c ¼ 1 and with a “mostly plus” ð−;þ;þ;þÞ
sign convention for the metric. Our conventions for curvature
tensors are those of Weinberg.
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maximum value of resonant momentum k2� ¼ 0.4g _ϕ −m2
χ .

Therefore the condition for broad resonance Δk≃k�≫mϕ

can be written as a condition on the coupling constant g,

g ≫
m2

ϕ þm2
χ

_ϕ
≃m2

ϕ þm2
χ

mϕΦ
: ð6Þ

Taking Φ≃ 0.3mpl and assuming mχ ≪ mϕ we find g ≫
3.8 × 10−5 for efficient preheating in the broad resonance
regime.
On the other hand, we can obtain a lower bound on the

strength of the coupling by requiring the one-loop correc-
tion induced by the g2ϕ2χ2 interaction to not to spoil the
flatness of the potential during inflation. That is, we require
δmϕ ≲mϕ ≃ 6.4 × 10−6mpl, whereas the loop correction is
δm2

ϕ ¼ ðg2Λ2
uvÞ=ð16π2Þ. The cutoff is expected to be

Planckian Λuv ≈mpl, implying g < 10−5. Clearly, this
result implies that the required value of the coupling,
g, to obtain efficient preheating is inconsistent with having
a naturally light inflaton during inflation. In other words,
in general it is expected that heavy χ fields running in
the loops induced by the direct coupling g2ϕ2χ2 tends to
de-stabilize parameters of the inflationary sector if we
insist on the effective particle production at the end of
inflation.
We have a good understanding of the limitations to the

approximations we have used above to constrain preheating
in chaotic inflation models, especially since these toy
models have been well-studied over the years to establish
when they lead to successful reheating. At the same time, it
is clear that we are seeing tension in analytic expectations
for finding reliable preheating models. It is also clear that
doing a full nonlinear analyses for all parameters in all
models of preheating is not an efficient way to do model
analysis. Can one always establish a connection between
the parameters during inflation and those same parameters
during reheating? What is the expected mass of the reheat
fields during inflation? Can the inflaton just not decay
through higher dimensional operators present at the time of
reheating? These are some of the questions we hope to
address by developing a more systematic approach to
reheating below.

III. REHEATING IN WEINBERG’S
COVARIANT FORMULATION
OF THE EFT OF INFLATION

In this section, we extend Weinberg’s EFT approach to
inflation [19] to include the end of inflation and the
beginning of (p)reheating. Focusing on a two-field scalar
field model for simplicity, we present both analytic and
numeric results from our investigation into the background
evolution and the resulting particle production. We find that
consistency of the background EFT within this approach
limits its applicability and how well it can be used to

successfully describe (p)reheating. This will motivate us to
consider a different approach in Sec. IV.

A. Construction of the EFT

Following [19] we consider the most general EFT of a
scalar field in general relativity which can be written as

Linf ¼ −
1

2
m2

plR −
1

2
ð∂ϕÞ2 − VðϕÞ þ c1

Λ4
ð∂ϕÞ4; ð7Þ

where Λ is the UV cutoff of the theory, in general c1 ¼
c1ðϕÞ is an arbitrary function of the scalar, and we have
neglected terms involving the Weyl tensor which are
suppressed relative to the leading correction [19].
Assuming that the equations of motion admit inflationary
solutions it was shown in [19] that this is also the most
general EFT for the inflationary background (to be con-
trasted to the EFT for the perturbations which we will
discuss in Sec. IV).
CMB observations imply that the power spectrum of

scalar fluctuations is nearly scale-invariant, which can be
realized through an approximate shift symmetry for the
inflaton. This allows us to approximate c1ðϕÞ as nearly
constant during inflation (its time evolution is slow-roll
suppressed). When the EFT expansion is applicable, i.e.,
Λ > _ϕ1=2, self-interactions of the inflaton are small and
non-Gaussianity is negligible [35].
We now introduce an additional scalar that will play the

role of the reheat field after inflation. For simplicity, we will
focus on the situation where the reheat field has an effective
mass of at least the Hubble-scale during inflation to avoid
considering multifield inflation. However, the reheat field’s
mass during inflation is an important consideration which
we comment on later. Given these assumptions the starting
point of our analysis is similar in spirit to that of [36], where
those authors considered the EFT of the inflationary
background coupled to an additional scalar sector during
inflation. Again working to next-to-leading order in the
derivative expansion we can introduce the Lagrangian for
the additional scalar χ,

Lχ ¼ −
1

2
ð∂χÞ2 −UðχÞ þ c2

Λ4
ð∂χÞ4; ð8Þ

where c2 and UðχÞ are arbitrary functions of χ, but
cannot contain the inflaton due to its approximate shift
symmetry.2

Finally, we can introduce the interactions between the
two sectors that respect the inflaton’s shift symmetry—
implying that terms of the form ϕpχq are forbidden. At the
level of dimension five operators it was shown in [36] that
the shift symmetry can be used to forbid the operators

2The spontaneous or explicit breaking of the shift symmetry at
the time of reheating can be important and creates an additional
limitation of this approach.
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∂μϕ∂μχ and χ∂μϕ∂μχ. Similar arguments can be used at the
level of dimension six operators and we find the two
leading interactions3

Lmix ¼ −c3ð∂ϕÞ2 χΛ − c4ð∂ϕÞ2 χ
2

Λ2
þO

�
1

Λ3

�
; ð9Þ

where c3 and c4 are expected to be order one constants and
positive (for a UV completable EFT [37] and to avoid
pathological instabilities [38]). Given our discussion and
assumptions above, the EFT of Inflation with an additional
to-be reheat field is then given by, L ¼ Linf þ Lχ þ Lmix.
Focusing on the leading interactions we have

L ¼ 1

2
m2

plR −
1

2
f

�
χ

Λ

�
ð∂ϕÞ2 − 1

2
ð∂χÞ2 − VðϕÞ −UðχÞ;

ð10Þ

where

f

�
χ

Λ

�
¼ 1þ 2c3

χ

Λ
þ 2c4

χ2

Λ2
: ð11Þ

The dynamics of fluctuations that arise from (10) have
been studied extensively in the context of inflation. In
particular, there can be interesting signatures for both the
power spectrum and higher point correlation functions
(e.g., non-Gaussianity) depending on the mass of χ [39],
its stabilization [40–45], and whether the χ and ϕ sectors
are strongly or weakly mixed [46].
In this work we are interested in connecting this system

to the end of inflation and reheating. In particular, wewould
like to investigate if (p)reheating of the χ sector can be
achieved through the derivative couplings in (11) as these
are the leading interactions allowed by the shift symmetry
of the inflaton.
We note that (p)reheating with derivative couplings has

been considered before. The authors of [47] have studied a
particular realization of the EFTwe are considering in this
work. In their case the approximate shift symmetry of
the EFT resulted from a specific UV completion motivated
by natural inflation [48], where the spontaneous (and
explicit) breaking of a Uð1Þ symmetry of a complex scalar
resulted in an inflaton associated with the pseudo-Nambu-
Goldstone Boson (pNGB) and the reheat field corre-
sponded to the excitation of the radial direction.
The UV theory took the form

L ¼ −ð∂μΦÞð∂μΦ�Þ − λðF2 −Φ�ΦÞ; ð12Þ

where the Uð1Þ symmetry is broken by the vacuum
solution hjΦji ¼ F. The inflaton potential results from
the explicit breaking term

VðϕÞ ¼ μ4
�
1 − cos

�
ϕ

F

��
: ð13Þ

Expanding around the vacuum solution using

Φ ¼ ðF þ χÞeiϕ=F; ð14Þ

one can easily see that this particular model can be recast
as the EFT of the matter sector given by the Lagrangian
(10) with the replacement Λ → F. We note that in this
particular class of models, adequate inflation unfortu-
nately requires F ≫ mpl, which seems to be at odds with
additional non-perturbative corrections and expectations
from quantum gravity [49,50]. However, we emphasize
that the (bottom-up) EFT approach we are taking here is
more general than this particular class of models. In
particular, we emphasize (see also [36]) that the sym-
metries resulting in (10) may be the result of a funda-
mental symmetry of the UV theory (as in the example of
[47]), but they can also be the result of an accidental
symmetry in the IR, or the result of fine-tuning of the
effective potential. In this way, the model of [47] provides
a particular UV completion of the more general EFT
approach we consider here. This is analogous to the way
in which EFT methods can capture phenomenology
near the scale of electroweak symmetry breaking, without
one having a precise description of the UV physics
and mechanism responsible for breaking electroweak
symmetry.
In general, the inflaton potential VðϕÞ in our EFT is

arbitrary and does not need to take the specific form given
in (13). We also have that the scale Λ can be taken as
Λ < mpl without raising any immediate issues about the
consistency of inflation. We will see the importance of
this observation when we consider the dynamics of the
background and fluctuations in the following sections.

B. Analysis of reheating in the EFT

To justify using an EFTat the end of inflation, we need to
ensure that the model is self-consistent, i.e., we have to
check that there is a consistent background solution to the
equations of motion for the fields,

ϕ̈þ 3H _ϕþ ∂χðln fÞ _ϕ _χþf−1∂ϕV ¼ 0; ð15Þ

and

χ̈ þ 3H _χ −
1

2
ð∂χfÞ _ϕ2 þ ∂χU ¼ 0; ð16Þ

and that the background also admits a perturbative descrip-
tion. This procedure will allow us to study the existence

3We have taken the cutoff of the EFT to be the same for both
the inflationary and hidden sector for simplicity, although this
need not be the case. We expect our main conclusions in this
section to be insensitive to this assumption.
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(or nonexistence) of resonant phenomena, and establish
when viable preheating occurs.
We begin by studying the behavior of the background

fields ϕ0 and χ0. These are described by the following
equations of motion,

ϕ̈0 þ 3H _ϕ0 þ ∂χðln fÞ _ϕ0 _χ0 þ f−1∂ϕV ¼ 0; ð17Þ

and

χ̈0 þ 3H _χ0 −
1

2
ð∂χfÞ _ϕ2

0 þ ∂χU ¼ 0: ð18Þ

If we further assume that the zero-mode dominates the
energy density (and pressure) of the universe in the linear
regime, then we can write down the evolution equations for
the scale factor,

H2 ¼ 1

3m2
pl

�
1

2
f _ϕ2

0 þ
1

2
_χ20 þ Vðϕ0Þ þUðχ0Þ

�
; ð19Þ

and the Hubble parameter,

_H ¼ −
1

2m2
pl

ðf _ϕ2
0 þ _χ20Þ: ð20Þ

The first question that we need to address is whether
the zero-mode of the reheat field acquires a significant
displacement from zero. Using (11), and taking c3 and c4 to
be order-one constants then (18) becomes

χ̈0 þ 3H _χ0 þ ∂χU −
_ϕ2
0

Λ2
χ0 −

_ϕ2
0

Λ
¼ 0; ð21Þ

The last two terms in (21) come from the EFT expansion—
i.e., we have dropped terms in the Lagrangian of order
∼ _ϕ2

0χ
3
0=Λ3 and higher. Therefore, if either of these terms

become large (e.g. if χ0=Λ > 1) then the EFT expansion of
the background is not justified. Equation (21) is that of
a harmonic oscillator with time-dependent frequency, where
the last term resembles an external force, which we also
require to be small compared to the restoring force from the
effective potential. Assuming that Uðχ0Þ ≈m2

χχ
2
0=2, which

is self consistent with our small-displacement assumption,
we can find the stable minimum of the effective potential,

Ueff ¼ Uðχ0Þ −
1

2
_ϕ2
0f

�
χ

Λ

�
: ð22Þ

to be

χ0ðtÞ≃
_ϕ2
0

m2
χΛ

þO
�

_ϕ4
0

m4
χΛ2

�
: ð23Þ

The velocity of the inflaton at the end of inflation is
roughly _ϕ ∼mϕmpl, which allows us to write down an
approximate condition on the size of χ0,

χ0
Λ

< 1 ð24Þ
implies that

m2
ϕ

m2
χ
≲
�

Λ
mpl

�
2

ð25Þ

That is, we find that we are free to lower the cutoff of the
EFT below the Planck scale (Λ ≪ mpl), but at the cost of
increasing the mass of the reheat field above that of the
inflaton. The fact that particle production is still possible in
the mχ ≫ mϕ regime emphasizes the importance of pre-
heating versus reheating, since in this situation perturbative
decays are kinematically forbidden. It is also interesting
that this condition is independently required so that the
reheat field does not interfere with the inflationary dynam-
ics prior to reheating (constraints from non-Gaussianity
could also be imposed). That is, even for mϕ < mχ ≃ 3HI

such heavy fields can have a dramatic impact on inflation
[39–46]. We also note that the presence of a discrete Z2

symmetry could be used to forbid the dimension five
operator leading to the tadpole in (21), and our stability
condition (25) would still hold due to the presence of the
dimension six operator.
We have numerically verified the result (25) by solving

the system (17)–(19) for a range of masses, initial con-
ditions, and the cutoff Λ. In Fig. 1, we plot a parti-
cular realization of a consistent configuration for the
background fields together with the evolution of the
cosmological background. In the plot, we take mpl=Λ ¼
14 and mχ=mϕ ¼ 10 consistent with (25). We see that the
background value χ0 stays consistent within the EFT
regime, while inflaton oscillations proceed as in the case
of a quadratic potential. On the other hand, it can be seen
that the expansion of the universe is slightly faster than
HðtÞ ∝ t−1 initially, and then asymptotes to this behavior
at late times mϕt ≫ 1. We conclude this section by
emphasizing that in order to have a stable, well-behaved
background solution within the regime of validity of the
EFT, one requires the condition, (25) to be satisfied.

1. Nonperturbative dynamics and limitations
of the background EFT

We now consider whether resonant particle production is
possible around the background we analyzed in the
previous section. Expanding both scalar fields to first
order around their background values, ϕ ¼ ϕ0 þ δϕ, χ ¼
χ0 þ δχ in the Lagrangian (10), we write the equation of
motion for the linearized fluctuations of the reheat field in
Fourier space as

δχ̈k þ 3Hδ_χk þ
��

k
a

�
2

þm2
χ −

_ϕ2
0

Λ2

�
δχk

¼ 2
_ϕ0

Λ

�
1þ χ0

Λ

�
δ _ϕk; ð26Þ
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where the terms on the right side are due to the mixing
with inflaton fluctuations. These terms can source δχk
fluctuations whenever δ _ϕk is large. In the initial stage
of (p)reheating the effect of this term will be negligible.
Neglecting these terms, we focus on sub-Hubble scales first
neglecting the cosmological expansion (we take aðtÞ → 1,
HðtÞ → 0). In this approximation, (26) becomes

δχ̈k þ
�
k2 þm2

χ −
_ϕ2
0

Λ2

�
δχk ¼ 0; ð27Þ

where we define the frequency of the modes as ω2
kðtÞ ¼

k2 þm2
χ − _ϕ2

0=Λ2. Given a coherently oscillating inflaton,
ϕ0 ¼ ΦðtÞ sinðmϕtÞ, we can map this mode equation to the
Mathieu equation

δχ00k þ ½Ak − 2q cosð2zÞ�δχk ¼ 0; ð28Þ
where we have defined the dimensionless time z ¼ mϕt and
Ak ¼ ðk2 þm2

χÞ=m2
ϕ − 2q with q ¼ Φ2=4Λ2. Floquet’s

theorem [51] states that for a given wave number, (26)
has solutions of the form

δχk ¼ eμkzg1ðzÞ þ e−μkzg2ðzÞ; ð29Þ
where g1 and g2 are periodic functions and μk is the
Floquet exponent. In general, the Floquet exponent μk
depends on the wave number k, the mass of the reheat field
mχ , and the ratio Φ=Λ. For cases where the real part of the
exponent is nonzero, we have exponentially growing
modes of δχk.
The structure of (28) tells us that the resonant momenta

are grouped into bands in parameter space. Since k2 > 0,
and hence, Ak > −2q, there are also meaningful statements
one can make about the regions of the Mathieu parameter
space that are probed by our reheating models. One
interesting case is when some modes satisfy −2q <
Ak < 0; in this case, (28) assures us that there is a time
when the mass-squared of these modes is negative (analo-
gous to the cases explored in [52]) and the Floquet
exponent can be very large, μk ≃ ð4=πÞq1=2 for q ≫ 1.
There is another case in which 0 < Ak < 2q, where the
mass-squared of some of the δχk modes become tachyonic
for certain time intervals and is also very efficient (analo-
gous to [12]).
On the other hand, Ak is frequently larger than 2q.

While these models have parametric instabilities, the
resonance structure requires us to be more careful. For
our purposes here, the consistency of the background
EFT requires the mass of the reheat field to satisfy
m2

χ > _ϕ2
0=Λ2, which requires avoiding the regions of the

parameter space that guarantee strong, broad, resonance.
While the inflaton undergoes periodic oscillations this
condition implies

m2
χ > m2

ϕ

Φ2

Λ2
; ð30Þ

which is exactly what we have found in Eq. (25) with
Φ ¼ mpl. Here, we have used ϕðtÞ ¼ Φ sinðmϕtÞ consid-

ering the maximum value of _ϕ2
0=Λ2. We have also studied

this system numerically, using FloqEx [53], with our results
appearing in Fig. 2. The figure shows the magnitude of the
Floquet exponent as a function of cutoff and wave number.
One can see the broad (and tachyonic) resonance regimes
mostly live outside of those probed by the EFT. We must
keep in mind, though, that these estimates could still

FIG. 1. This figure gives the evolution of the background fields
and Hubble parameter, where tildes imply we have normalized
these quantities by

ffiffiffiffiffi
8π

p
mpl—except for ~H ≡H=mϕ, and time is

in units of the inflaton mass. For this realization we take
mχ=mϕ ¼ 10, mpl=Λ ¼ 14 and initial conditions ϕ0 ¼ 1.038mpl,
_ϕ0 ¼ −0.662mpl, χ0 ¼ _χ0 ¼ 0.005mpl. The top panel gives the
evolution of the inflaton. In the middle panel the solid black curve
is ~χ0ðtÞ and below the dot-dashed blue horizontal line marks the
region where the EFTof the background is valid. The bottom plot
gives the Hubble rate where the red-dashed line represents a
strictly matter dominated evolution.
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produce some particles through parametric resonance, and
should be studied through full lattice methods—we leave
this to future work.
Our main conclusion thus far is that if we require the

reheat field to respect the shift symmetry of the inflationary
sector (implying adequate inflation consistent with CMB
observations), successful reheating suggests considering an
EFT cutoff far below the Planck scale Λ ≪ mpl. We saw
that having such a sub-Planckian cutoff can quickly lead to
the breakdown of the background EFT expansion when we
require efficient reheating in the EFT.
As another example of when the EFT expansion may

breakdown, consider the corrections we have thus far
neglected in (7). When evaluated on the background the
operator contains a term

c1
Λ4

ð∂ϕÞ4 ⊃ c1
Λ4

_ϕ2
0ð∂ϕÞ2: ð31Þ

During inflation this term will be slow-roll suppressed
_ϕ2
0=Λ4 ∼ ϵH2m2

pl=Λ4 and higher order terms will be even
further suppressed as long as Λ is not far below mpl during
inflation.4 However, for smaller values of the cutoff this
corresponds to strong coupling of the background and our
EFTapproach breaks down—this would also lead to a large
level of non-Gaussianity [46]. Assuming the background
remains weakly coupled at the end of inflation we have

c1
Λ4

_ϕ2
0 ∼

m2
ϕϕ

2
e

Λ4
∼
�
mϕ

mpl

�
2
�
ϕe

mpl

�
2
�
mpl

Λ

�
4

; ð32Þ

so forΛ far below the Planck scale the EFTwould again fail
as this term would be as important as the kinetic term (and
terms even higher in derivatives that we neglected would
also be important). For example, in chaotic inflation where
the inflaton mass is fixed by the COBE normalization this
impliesΛ ≳ 10−3mpl. We emphasize that this constraint has
nothing to do with requiring adequate inflation and is an
added constraint for the consistency of the derivative
expansion of the EFT during reheating. We now turn to
a different EFT approach where the challenges discussed in
this section can be addressed.

IV. THE EFT OF (P)REHEATING

We have seen that using an EFT approach to the
background has limited utility in simultaneously describing
inflation and reheating. Indeed, in addition to the chal-
lenges discussed at the end of Sec. III, an additional
concern is that there could be terms that badly break the
shift symmetry at the time of reheating. Such terms could
be small during inflation (suppressed by the breaking
scale), but could be important at the time of reheating,
as illustrated in Fig. 4. Alternatively, there are many
reheating models in which the shape of the potential during
inflation is vastly different than it is during reheating (and
could include additional fields like in hybrid models) and
the background EFT approach requires a knowledge of the
complete potential. This is illustrated in Fig. 3.

FIG. 2. Instability band structure for the model V tot ¼ 1
2
m2

ϕϕ
2 þ 1

2
m2

χχ
2 − 1

2
_ϕ2
0fðχΛÞ, where f is given by (11). This density plot

represents the real part of the scaled Floquet exponent, ReðμkÞ, where lighter regions represent larger values. The y-axis is the hierarchy
between the Planck mass and the rescaled cutoff of the EFT, ~Λ ¼ Λ=

ffiffiffiffiffi
8π

p
, while the x-axis corresponds to K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q
in

units of mϕ.

4Using the power spectrum normalization one can also show
the condition _ϕ2

0=Λ4 < 1 implies a lower bound Λ=mp≳ffiffiffi
ϵ

p
10−2, where ϵ ¼ dðH−1Þ=dt is the slow-roll parameter.
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In particular, the terms arising from the breaking of the
shift symmetry of the inflaton (which would include thus
far forbidden terms of the form giϕpχq) could become as
important as the other terms we have considered in (26).
As another example consider the potential

V ¼ m2M2

2α

��
1þ ϕ2

M2

�
α

− 1

�
: ð33Þ

where α < 1. This toy model captures many important
inflationary models including axion monodromy [54].
During the inflationary phase this potential scales as
V ∼ ϕ2α and is sensitive to the scaleM, whereas the behavior
during reheating (ϕ < M) is independent of M and
V ∼m2ϕ2. So in our EFT approach expanding the field in
powers of ϕ=Λ is causing us to miss these types of theories.

In addition, new degrees of freedom could appear at the
time of reheating that were heavy during inflation and
could have been integrated out—in other words the EFT
during inflation and the EFT during reheating can corre-
spond to two distinct EFTs. This is not to say our approach
does not capture many models. In particular, we have seen
that the model of [47] is captured by our approach, and
most chaotic inflation models would be as well. But even
focusing only on the inflationary epoch we know that
Weinberg’s EFT is not capable of capturing a large number
of interesting models. For example, in DBI type models
where the background is in some sense strongly coupled
one needs a nonperturbative expression for the background
as it is a resummed expression where each derivative in the

derivative expansion must be kept, e.g. V ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2=Λ4

q
.

Such models are not captured by the Lagrangian of (7).
One may also anticipate reheating models where the
background of the reheat field could also exhibit such
nonlinear behavior and then the derivative expansion of the
Lagrangian (8) would be inadequate—as well as the
expansion of the mixing terms stopping at dimension six
in (9). One final objection is that we have only concentrated
on scalar reheat fields. Reheating to fermions and gauge
fields is also important, and the way in which this proceeds
is not only model dependent, but the spin statistics can
also make important differences in the efficiency of
reheating [55].
Given these shortcomings of the EFT of the background

we now turn to construct an EFT for reheating along the
lines of the EFT of Inflation [22]. As we will discuss, this
approach can overcome many of the obstacles established
in this section. In the remainder of this section, we first
begin by constructing an EFT focusing on the fluctuations
directly at the end of inflation. This theory will share many
similarities with the EFT of multifield inflation [23,46].
However there will be important differences which we will

FIG. 3. Obtaining adequate inflation, ending inflation and then
successful reheating in the EFT requires a complete knowledge of
the inflationary potential. This presents a challenge when using
Weinberg’s EFT approach to capture reheating in many classes of
models.

FIG. 4. Relevant energy scales for the preheating models considered in Sec. IV C. On the left, we have the hierarchy in energy scales
associated with the dynamics of the Goldstone boson with a sound speed cπ following our general discussion of self-resonant models.
The right diagram shows the hierarchy of scales for the example of canonical two-field preheating models.
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discuss. We then demonstrate how the approach can
reproduce both the results of self-resonant reheating and
multifield reheating. We also discuss some new models that
arise from considering the symmetries of the EFT.

A. Construction of the EFT of fluctuations

The EFT expansion in fluctuations (rather than the
background) relies on the fact that the background expan-
sion of the universe spontaneously breaks time-translation
invariance. Over the history of the universe there have been
many different dominant forms of matter and energy, and
so many different sources of time-translation breaking
including; inflatons, post-inflation / pre-BBN fields, radi-
ation, dark matter, and eventually dark energy today. As the
universe passed through these phases the energy density
changed its composition many times, but the scale factor
continued to monotonically increase. The EFT approach
takes this background evolution as given a priori [as
specified by the background functions aðtÞ, HðtÞ, and
_HðtÞ] and focuses directly on the most general EFT for the
fluctuations around this background.
In taking this approach we give up on realizing explicit

models for the background, and instead focus on implica-
tions and observations associated with the fluctuations. In
regards to connecting with observations this approach is
adequate,5 since physical observables correspond to fluc-
tuations and not background quantities [57]. The approach
also has the advantage that the underlying physics respon-
sible for driving the background expansion can be non-
perturbative, in the sense that the background does not need
to admit an EFT expansion (as we required in Sec. III).
Instead, this EFT approach is more general and models
are classified by their symmetry breaking properties and
the allowed operators in the Lagrangian correspond to
cosmological perturbations. In many cases the symmetries
alone can be used to establish rigid constraints on the
theory of the fluctuations and associated observables.
For example, it is well known that inflation requires that
de Sitter symmetry must be nonlinearly realized and this
leads to constraints on inflaton correlation functions. This
fact is manifest in the EFT of inflation approach using the
corresponding Goldstone boson [57]. This EFT approach
has also been shown to be useful when the cosmological
background changes its behavior, e.g. in the EFT of dark
energy [25–29], where one is primarily interested in
observations during matter domination, but also must
account for observations during dark energy domination.
The generality of the EFT approach when applied to

cosmological backgrounds was first established in [21],
where the authors were investigating violations of the null
energy condition in nonstandard cosmologies. In that
paper, referencing earlier work of Weinberg [58], it was

pointed out that on long wavelengths there is always an
adiabatic mode corresponding to the Goldstone boson of
spontaneously broken time diffeomorphism invariance.
Whenever a decoupling limit exists—in which the
Goldstone decouples from gravity—this broken symmetry
is then realized as spontaneously broken time translation
invariance (the gauge symmetry effectively becomes a
global symmetry). Thus, for any FRW spacetime it is
possible to utilize the EFT approach and it is in this vain
that we will construct our EFT for reheating following the
initial ideas presented in [16].
As an example, suitable for studying the dynamics at the

end of inflation, we can consider a decelerated FRW
expansion with the background metric

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; äðtÞ < 0: ð34Þ

We can think of this background as generated by the
evolution of a set of homogeneous scalars6 fields, i.e.,
fϕ0; χ0;…g. In this work, to study dynamics at the end of
inflation, we may consider only one of the scalars, e.g., the
inflaton ϕ0, that contributes significantly to the evolution of
scale factor, aðtÞ. This FRW evolution has a preferred time
slicing described by the homogeneous scalar which can
also be considered a clock. In order to describe the theory
of fluctuations around this background, we can go to a
comoving frame (unitary gauge) where the vacuum expect-
ation value of the scalar coincides with this privileged time
slicing, corresponding to distinct values of hϕi ¼ ϕ0. As
we have fixed the slicing of space-time, general time diffs7

are no longer a symmetry and the fluctuations of the scalar
are hidden in the metric perturbations, which now describe
three degrees of freedom: two transverse for the graviton
and one for the scalar. We can always re-introduce inflaton
fluctuations by a common local shift in time, i.e., t →
tþ πðxÞ. By definition, such a fluctuation corresponds to
an adiabatic fluctuation, proportional to Goldstone mode
δϕ ¼ _ϕ0π associated with the broken symmetry. In this
work, apart from the adiabatic fluctuations, we will consider
an additional degree of freedom Xðt; xÞ ¼ χ0ðtÞ þ χðt; xÞ,
which will play the role of the (p)reheat field. As is standard
in the literature we will take this field to be a subdominant
source of background evolution during the first stages of
preheating (i.e., ρϕ ≫ ρχ) since before particle creation
hXi≃ 0.

1. The action in unitary gauge

The procedure for constructing the EFT of fluctuations
for the inflationary sector coupled to a reheat field at the

5Although the connection to observables is not necessarily
always straightforward [56].

6In general, we are not restricted to scalar fields, e.g., another
example can be a set of perfect fluids.

7As we mentioned before our main interest is the global part of
time diffs, i.e., time translations. See [59] for more discussion on
this matter.
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time of reheating is similar to the case of quasisingle field
inflation considered in [60]. Those authors considered the
effects of particle production during inflation, whereas
here we consider reheating and important differences will
be discussed below. Nevertheless, the action can be con-
structed analogously and working in unitary gauge the
action for the fluctuations is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

pl

2
R − f1ðtÞ − f2ðtÞg00

þ Fð2Þðδg00; χ; δRμνρσ; δKμν;∇μ; tÞ
�
; ð35Þ

where f1 and f2 are arbitrary functions of time, Fð2Þ starts
quadratic in operators which must be covariant in spatial
indices but not in time, ∇μ is the covariant derivative, and
δRμνρσ and δKμν are the fluctuations in the Riemann tensor
and extrinsic curvature, respectively. Note that the second
and third terms in the above action are the only ones that
contain linear perturbations. Requiring that terms linear in
the fluctuations vanish (i.e., tadpole cancelation) follows
from enforcing the background equations of motion in an
FRW background [22],

3H2m2
pl ¼ f1ðtÞ þ f2ðtÞ; ð36Þ

and

−2 _Hm2
pl ¼ 2f2ðtÞ: ð37Þ

As a simple example of tadpole cancelation, consider the
end of inflation where the inflaton begins oscillating with
a potential VðϕÞ and where derivative interactions and the
density of other fields are negligible. In this case the
functions in (37) are given by f1 ¼ Vðϕ0Þ and f2 ¼ _ϕ2

0=2.
However, more generally, f1 and f2 can take any form as
long as the background corresponds to the (p)reheating
period, i.e., an FRW universe with possibly small correc-
tions due to oscillations. For example, we could have
a preheating model corresponding to DBI-like models of
inflation where a large number of derivative self-
interactions could play an important role [61]. In that
case the functions f1 and f2 would contain terms with an
infinite number of derivatives at the level of the back-
ground. The key is that the behavior of the matter sector
will be captured by the functions f1 and f2, and once we
cancel the tadpoles, the background is then given (by the
equations of motion) byHðtÞ and its derivatives. Then, we
can focus on the EFT of the fluctuations about this
background—just as in the case of the EFT of inflation
or DE [22,25,26]. Thus, the problem we encountered in
the previous section, where we would need to keep all the
terms in the χ=Λ expansion is not an issue here. Instead,
these terms are captured by H and _H and could represent
resummed, nonperturbative expressions for the back-
ground.8 Moreover, because we are not performing a

perturbative expansion of the background, we work under
the assumption that we have a complete knowledge of the
potential overcoming the problems associated with Fig. 3.
The most general action is found by expanding the

function Fð2Þ in (35) in terms of fluctuations fδg00; χ;
δKμν; δRμνρσg and their derivatives. We emphasize that this
EFT expansion is one in perturbations and derivatives.
During reheating, the fluctuations are also assumed to be
initially small, however significant particle production can
change this (as we will discuss). Whereas the derivative
expansion follows from locality, causality and unitarity in a
FRWuniverse. In the gravity sector, δg00 is a zero derivative
object, whereas δKμν corresponds to one derivative and
δRμνρσ to two, as they contain first and second order
derivatives of the metric, respectively. When we introduce
the Goldstone boson in the next section, it will be clear that
terms with δK and δR will include higher derivatives of the
Goldstone boson. Finally, we find it convenient to split the
action in (35) into three parts

S ¼ Sg þ Sχ þ Sgχ ; ð38Þ

where the action Sg contains only terms build out of
fδg00; δKμν; δRμνρσg, Sχ contains those purely from χ
and the action Sgχ is due to mixing between gravity sector
and χ. Following our discussion above, we then have

Sg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

pl

2
R −m2

plð3H2ðtÞ þ _HðtÞÞ

þm2
pl
_HðtÞg00 þm4

2ðtÞ
2!

ðδg00Þ2 þ…

�
; ð39Þ

Sχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
α1ðtÞ
2

gμν∂μχ∂νχ þ
α2ðtÞ
2

ð∂0χÞ2

−
α3ðtÞ
2

χ2 þ α4ðtÞχ∂0χ

�
; ð40Þ

Sgχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½β1ðtÞδg00χ þ β2ðtÞδg00∂0χ þ β3ðtÞ∂0χ

− ð_β3ðtÞ þ 3HðtÞβ3ðtÞÞχ�; ð41Þ

where g00 ¼ −1þ δg00 and the dots represent terms higher
order in fluctuations and derivatives. Here, fm2ðtÞ; αiðtÞ;
βiðtÞg are thus far arbitrary functions of time that are
permitted in the unitary gauge as time diffs have been
spontaneously broken by the background. We note that the
coefficient of the δg00 operator is fixed by the background,
implying that it is universal in the sense that all preheating

8The importance of strong coupling and resummation appears
in many areas of physics including QCD and theories of modified
gravity. See e.g. [62]. An approach to strong coupling during
preheating, using methods of holography, appeared in [63,64].
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models with the same background evolution will have the
same coefficient (specified by HðtÞ and its derivatives).
Whereas, the operator ðδg00Þ2 is an example of a nonuni-
versal operator, because m2 is not fixed by the symmetries
of the FRW background. Instead its value corresponds to a
specific class of models (those with a nonunity sound
speed). Similarly, broken time diffs generally allow for a
term proportional to α2 that leads to nontrivial sound speed
cχ ¼ α1=ðα1 þ α2Þ in the reheat sector χ. In (41), the
functions βi can be seen as a measure of the strength of
mixing with gravitational fluctuations (including one scalar
d.o.f). At this stage, the usefulness of this approach might
be in question, given the large number of free parameters.
However, as we will see in the following sections, even
though this is the most general theory to quadratic order, in
practice many of the terms in (39)–(41) are not important
for elementary processes within reheating. Finally, we can
further simplify the action by performing a field redefini-
tion of χ, using that χ ¼ 0 on the background trajectory and
using time reparametrization invariance to set α4 ¼ β3 ¼ 0
in the actions (40) and (41).
The form of (39), (40), and (41) are not particularly

useful in studying the dynamics as the scalar fluctuation
representing inflaton is not manifest. We can reintroduce
diffeomorphism invariance and the Goldstone mode related
to inflaton by the Stückelberg trick, which will be our main
focus in the following section.

2. Introducing the Goldstone boson

To introduce the Goldstone boson along with time diffs,
we first perform the broken time diffs t → tþ ξ0ðt; x⃗Þ in the
actions (39)–(41). Since the cosmological background (i.e.,
H, _H) as well as the free functions fαi; βig depend on
cosmic time, t. The gauge function, ξ0, will appear
explicitly in the actions for the perturbations. We then
replace ξ0 → πðt; x⃗Þ everywhere it appears in the action and
require that the Goldstone transforms nonlinearly, π →
π − ξ0 under diffs. In this way, clearly full diffeomorphism
invariance can be restored in (39)–(41). In order to find the
explicit form of the actions including the Goldstone π, we
need to know the transformation rule for the remaining
operators appearing in (39)–(41) under t → tþ π. Under
the transformation we have

g00 → g00 þ 2g0μ∂μπ þ gμν∂μπ∂νπ;

gi0 → gi0 þ giν∂νπ;

∂0χ → ∂0χ þ gμν∂μχ∂νπ;

fðtÞ → fðtþ πÞ ð42Þ

Rμνλσ → RμνλσZ
d4x

ffiffiffiffiffiffi
−g

p
→

Z
d4x

ffiffiffiffiffiffi
−g

p ð43Þ

where fðtÞ represents any time-dependent function appear-
ing in the action. Carrying out this procedure on the action
(39) we find

Sg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

pl

2
R −m2

plð3Hðtþ πÞ2 þ _Hðtþ πÞÞ

þm2
pl
_Hðtþ πÞðg00 þ 2g0μ∂μπ þ gμν∂μπ∂νπÞ

þm4
2ðtþ πÞ
2!

ðδg00 þ 2g0μ∂μπ þ gμν∂μπ∂νπÞ2
�
: ð44Þ

We see that this action is invariant under time diffs if we
require the Goldstone to transform as π → π − ξ0ðt; x⃗Þ, i.e.,
the symmetry is nonlinearly realized [23]. We also note that
requiring the symmetry be realized in the UV has forced
relationships between the various operators (all the terms in
parentheses must have the same coefficients). Following
the same steps, (40) and (41) become

Sχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
α1ðtþ πÞ

2
gμν∂μχ∂νχ

þ α2ðtþ πÞ
2

ð∂0χ þ ∂μπ∂μχÞ2

−
α3ðtþ πÞ

2
χ2
�
; ð45Þ

Sgχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½β1ðtþ πÞðδg00 þ 2∂0π þ ∂μπ∂μπÞχ

þ β2ðtþ πÞðδg00 þ 2∂0π þ ∂μπ∂μπÞ
× ð∂0χ þ ∂μπ∂μχÞ�: ð46Þ

Similar to the discussion above, the nonlinearly realized
symmetry introduces interactions between χ and the
Goldstone, π.
To describe the dynamics at the end of inflation, working

with the full action given by Sg þ Sχ þ Sgχ in complete
generality is a difficult task. First of all, we need to have some
input for the time-dependent functions, i.e., fHðtÞ; αiðtÞ;
βiðtÞg appearing in the Lagrangian. However, as wewill see,
an investigation on the background dynamics during reheat-
ing along with the associated symmetries and scales of
interest will allow us to obtain generic information on the
form of these functions. This will be our main focus in the
next section.

B. Background evolution during reheating
and symmetries of the action

1. Background evolution and symmetries

In parametrizing the background expansion we have
assumed a decelerating FRW universe. A simple example
is provided by a perfect fluid with an equation of state w
and with corresponding scale factor aðtÞ ∝ t2=3ð1þwÞ
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and expansion rate HðtÞ ¼ _a=a ∝ t−1 with H−1 setting the
cosmic time scale. On the other hand, in studies of the
dynamics at the end of inflation the frequency of inflaton
oscillations introduce another important time scale. For
example, if the inflaton oscillates in a power-law potential,
V ∝ ϕn

0 , the period of oscillations will be 2πω−1 ¼
4
R ϕi
0 dϕ0ðVðϕiÞ − Vðϕ0ÞÞ−1=2, which for general n

depends on the initial amplitude, ϕi [65]. In the limit that
the period of oscillations is much smaller than the expan-
sion time scale, ω−1 ≪ H−1, coherent scalar field oscil-
lations behave like a perfect fluid with an average equation
of state, hwia ¼ ðn − 2Þ=nþ 2 [66].
The presence of two different time scales leads to

interesting symmetry breaking patterns within the EFT,
and whether a symmetry is realized will depend on the
dynamics under investigation. At high energies (or small
wavelengths) the energy being probed Eprobed exceeds both
the oscillation and expansion energy, i.e., Eprobed ≫ ω ≫
H and so the time evolution of the oscillator and the cosmic
expansion is negligible—time-translations are a good
symmetry. As we lower the energy scale to Eprobed ≲ ω
we first break time-translation invariance down to a discrete
symmetry t → tþ 2πω−1. Then as we further lower the
energy to Eprobed ≲H ≪ ω this discrete symmetry is
further broken by the cosmic expansion. This symmetry
breaking reflects that on large scales (low-energy) we have
an expanding universe, but on sub-Hubble scales the only
time dependence results from the oscillating scalar field and
the effect of the expansion can be ignored. And at even
higher energies (smaller distances/faster time scales) the
scalar oscillations would not be probed.
This hierarchy in scales can be captured by parametriz-

ing the background behavior by a Hubble rate that is a sum
of a monotonically evolving part and a small rapidly
oscillating component,

HðtÞ ¼ HFRWðtÞ þHoscðtÞPðωtÞ; ð47Þ

where the first term is adiabatically evolving HFRWðtÞ ∝
t−1 and monotonically decreasing, whereas the second term
leads to an oscillatory correction described by a general
periodic function PðωtÞwith period T ¼ 2πω−1. In order to
ensure an overall monotonic FRW evolution we take the
first term to be dominant, HFRW ≫ Hosc. This implies our
clock is always monotonically increasing—as exemplified
by the monotonic evolution of the scale factor aðtÞ in an
FRW universe. This situation is to be contrasted with
models where the universe itself is oscillating [67], which
can exhibit a number of pathologies [38]. We also note that
the time dependence of HFRW and Hosc is slow compared
with the time scale of oscillations ω−1, i.e. _HFRW=
ðHFRWωÞ ∼ _Hosc=ðHoscωÞ ≪ 1. This corresponds to our
earlier statement that on short time scales (larger energies)
there is an approximate discrete symmetry.

An important question is whether we can generalize the
symmetry arguments above for the time-dependent func-
tions associated with the non-universal operators in (44)–
(46), i.e., fm2; αi; βig. On general grounds, in an FRW
background described by (47) we expect that the functions
m2, αi, βi—which describe the self-couplings, and cou-
plings/mixings between the Goldstone and the reheat sector
χ—to be a generic function of the Hubble rate in (47) and
its derivatives. Depending on the couplings between these
sectors this suggests that in general we can write these
functions in the form

FiðtÞ ¼ Mp
i ðtÞP0ðω0tÞ; ð48Þ

where in general the periodic function P0 is different
from the one in (47) as is the frequency ω0 ≠ ω. Here,
the index i collectively represents time-dependent functions
fm2; αi; βig and p denotes the mass dimension of these
functions. Suggested by the symmetry breaking pattern we
discussed above, we can similarly take _Mi=ðMiωÞ ≪ 1.

2. Symmetries of the action and implications

An important consequence of the discrete symmetry of
the Goldstone is that nonderivative interactions can appear
in the action. When this is a good symmetry we can
expand the background and nonuniversal parameters
fH; _H;m2; αi; βig in the form

Fiðtþ πÞ ¼ FiðtÞ þ _FiðtÞπ þ 1

2
F̈iðtÞπ2 þ…: ð49Þ

This breaking is similar in spirit to the work of [68], where
those authors considered resonant non-Gaussianity induced
through small-scale oscillations in H and _H during single-
field inflation. In the two-sector EFT we are considering
here we can extend that study to dynamics that arise in the
presence of interactions between the Goldstone π and
reheating χ sectors. Moreover, contrary to the situation
during inflation, where there is a fixed energy scale
corresponding to horizon crossing, [22], to study dynamics
at the end of inflation we are often interested in the
dynamics at sub-Hubble scales. For sub-Hubble scales
with Eprobe > ω we expect interactions induced by expand-
ing the time-dependent functions in (49), which para-
metrize important contributions to the dynamics. Such
interactions can induce large loop corrections for the
parameters of the EFT, and additionally back-reaction
effects can become large and the perturbative expansion
of the EFT of fluctuations will fail. In typical studies of
preheating, the importance of such contributions corre-
spond to the end of ‘stage one’, which can be followed by
turbulence and chaotic behavior [6]. We leave an inves-
tigation of these stages to future work. In the following, we
will focus on the first stages of preheating and establish
how our framework captures existing models. We will also
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explore new models and their connection to observations
during the first stages of preheating.

C. Capturing existing models

1. Reheating through self-resonance

In this section, we focus on the Goldstone sector in (44)
to construct models of reheating through self-resonance.
That is, we want to establish how the EFT reproduces
self-resonant models of reheating where inflaton “particles”
(here corresponding to the Goldstone π ∼ δϕ) are created
from oscillations of the background condensate ϕ0ðtÞ.
We will also consider when gravitational fluctuations
can be shown to decouple. To begin we expand the
time-dependent functions in (44) and use the ADM
decomposition9 of the metric in spatially flat gauge work-
ing to second order in fluctuations δN, Ni, and π. We have

Lπc ¼
1

2

�
_π2c − c2π

ð∂iπcÞ2
a2

�
−
1

2
m2

πðtÞπ2c

−
ð−2 _HÞ1=2

cπ

�
_πcδNc −

1

2

�
Ḧ
_H
− 2

_cπ
cπ

�
πcδNc

�

þ ð−2 _HÞ1=2cπð3HδNc þ ∂iNi
cÞπc þ… ð50Þ

where we introduced the canonical fields πc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 _Hm2

pl

q
c−1π π, δNc ¼ mplδN, Ni

c ¼ mplNi, the sound

speed of the fluctuations is c2π ¼ m2
pl
_H=ðm2

pl
_H −m4

2Þ,
and we neglect terms involving the scalar curvature as
they are subleading.
An important consequence of the background evolution

and time-dependent sound speed is that it induces a time-
dependent mass10 for the Goldstone

m2
π ¼ −3 _Hc2π −

1

4

�
Ḧ
_H
− 2

_cπ
cπ

�
2

−
3H
2

�
Ḧ
_H
− 2

_cπ
cπ

�

−
1

2
∂t

�
Ḧ
_H
− 2

_cπ
cπ

�
; ð51Þ

which we note would vanish in a strictly de Sitter limit with
constant sound speed (familiar from the EFT of Inflation).
Resonant effects induced by such time dependence of cπ
is an interesting possibility that we will explore in future
work. For simplicity, here we will focus on the time-
dependence of the background and assume that the time
dependence of the sound speed is negligible.
To understand the Goldstone dynamics we first identify

the energy scales at which different phenomena become
important. An important scale is the symmetry breaking

scale below which we are able to focus on the EFT of the
perturbations (we can “integrate out the background”) and
the Goldstone description can be useful. Following closely
the example of [46], we can identify the Noether current
associated with the broken symmetry by introducing
“fake” Lorentz invariance in (50) by rescaling the spatial
coordinates

~Lg ¼ −
1

2
ð ~∂ ~πcÞ2 þ…; ð52Þ

where ~x≡ c−1π x, ~Lg ≡ c3πLg and ~πc ¼ ð−2 _Hm2
plcπÞ1=2πc.

The Noether current associated with (52) is then ~Jμ ¼
−Λ2

sb∂μ ~πc, and the symmetry breaking scale is given
by11 Λ2

sb ¼ ð−2 _Hm2
plcπÞ1=2.

For the simplest models, with unity sound speed, we
haveΛ2

sb ¼ ð−2 _Hm2
plÞ1=2, and this agrees with expectations

that the time evolution of the background is responsible
for breaking the time translation symmetry [HðtÞ is
changing in time]. In particular, given the background
evolution in (47) we are interested in the time averaged
value Λ2

sb≡ hð−2 _Hm2
plcπÞ1=2iT ≈HFRWmplc

1=2
π . For energy

scales where E < Λsb the Goldstone description of (50) is
valid. We emphasize that we are focusing on fluctuations
around a decelerating FRW background, and so the
symmetry breaking scale is more dependent on time12 than
the inflationary case, i.e., Λ2

sb ∝ t−1. However, in the
presence of resonance and with strong enough couplings
to the reheating sector to make reheating efficient, it
is justified to take a decoupling limit HFRW → 0 and
mpl → ∞, such that the combination HFRWmpl remains
fixed. In this case, an evolving symmetry breaking scale is
unimportant for the validity of the Goldstone description—
all that is required is a hierarchy of scales Λsb ≫ ωwhere ω
is the oscillation time scale associated with the background
evolution that appeared in (47).
Another important scale in understanding the Goldstone

dynamics is the energy scale where mixing with gravita-
tional fluctuations becomes important (Emix). Consider the
frequency of the Goldstone πc in Fourier space and in the
absence of mixing terms

ω2
π ¼

c2πk2

a2
þm2

πðtÞ þ…; ð53Þ

where dots represent subleading contributions of order H2.
We emphasize that ωπ is the frequency of the Goldstone,
whereas the inflaton oscillations have a frequency we
continue to denote by ω which is often comparable to

9Details appear in Appendix A.
10This is the mass term in the absence of mixing terms given in

the second and third lines of (50).

11We present the scale in terms of energy, but it is important to
remember that since Lorentz invariance is spontaneously broken
energy scales do not necessarily coincide with momenta [22].

12This raises the interesting issue of “level crossing,” which is
ubiquitous when applying EFT to gravitational systems [69].
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the Goldstone mass ω ∼mπ as follows from (47) and (51).
Remembering this distinction, we note that contrary to
the inflationary case, we are not interested in the dynamics
at a fixed energy scale, and in general whether mixing
with gravity is important will depend on the scales one is
interested in. For example, we can separate the Goldstone
modes into relativistic ω≲ cπk=a (or equivalently mπ≲
cπk=a) and nonrelativistic ω > ðcπkÞ=a modes. For rela-
tivistic modes, time derivatives scale the same as spatial
ones in (50), i.e. _π2c ∼ c2πð∂iπc=aÞ2 ∼ ω2

ππc. On the other
hand, for nonrelativistic modes, spatial derivatives are less
important than time derivatives and terms involving the
spatial kinetic terms can be compared with the mixing
terms in (50). The most relevant mixing term13 between πc
and gravitational fluctuations is given by

Lmix ⊃
ð−2 _HÞ1=2

2cπ

Ḧ
_H
πcδNc: ð54Þ

From Appendix A, we use the solution δNc ≈ cππc in (54)
and note that _H ≈H2, Ḧ ≈ ωH2 (where we keep the
leading terms). This leads to Lmix ≈ ωHπ2c from which
we can see the energy scale at which mixing with gravity
becomes important is Emix ≈ ðωHÞ1=2. For relativistic
modes, mixing with gravity is always irrelevant as
ω2
π > ω2 ≫ ωH. For nonrelativistic modes, we compare

the mixing term with the spatial kinetic term in (50).
This leads to the conclusion that mixing with gravity will
be important for modes with momenta satisfying the
following condition,

k
a
≲

ffiffiffiffiffiffiffiffi
ωH

p

cπ
ð55Þ

An explicit example: The generic construction above is
useful in studying models of inflaton self-resonance.
Consider an example where mixing with gravity at the
end of inflation leads to resonant effects for πc. For this
purpose, we consider a simple limit of the unitary gauge
action in (39) where m2 ¼ 0, m2

plð3H2 þ _HÞ ¼ Vðϕ0Þ ¼
m2

ϕϕ
2
0=2, and _Hm2

pl ¼ − _ϕ2
0=2. These choices correspond to

a cosmology dominated by a single scalar field—the
inflaton. In the regime where mϕ ≫ H, the background
condensate oscillates around the minimum of its potential
V ¼ m2

ϕϕ
2
0=2, and in this case we can solve for the

background evolution [70]

HðtÞ ¼ HFRWðtÞ −
3HFRWðtÞ2

4mϕ
sinð2mϕtÞ þ…; ð56Þ

where HFRW ¼ 2=ð3tÞ is the Hubble rate in a matter
dominated universe with scale factor aðtÞ ∝ t2=3 and dots
represent terms suppressed by higher powers of Hm=mϕ.
This solution has exactly the form proposed in (47)
with Hosc ≡ −3H2

FRW=4mϕ, ω≡ 2mϕ, and we also have
HFRW ≪ mϕ.
Given the background evolution in (56), we can now

consider the dynamics of πc. To reproduce this class of
models we take the cπ → 1 limit, and solve for the
constraints δNc and Ni

c. Using our results from
Appendix A, along with (50) we have

Lπc ¼ −
1

2
ð∂πcÞ2 − 1

2
ðm2

πðtÞ þm2
mixðtÞÞπ2c; ð57Þ

where the mass mixing induced by δNc and Ni
c is

m2
mix ¼ 6 _H þ 2

Ḧ
H

− 2
_H2

H2
: ð58Þ

Using the background evolution given by (56) and (58) the
mode equation for the re-scaled field variable ~πc ¼ a3=2πc
can be written as

̈~πc þ
�
k2

a2
þm2

ϕ

�
1þ 6

HFRW

mϕ
sinð2mϕtÞ

��
~πc ¼ 0; ð59Þ

where we have dropped additional terms further sup-
pressed by H2

FRW=m
2
ϕ and m2

π → V 00ðϕ0Þ ¼ m2
ϕ which

follows from relating derivatives of the potential to the
time derivatives of the Hubble rate given in (56) (See
Appendix B).
To establish whether self-resonance results in particle

production we can recast (59) in the form of a Mathieu
equation by redefining the time variable z ¼ mϕtþ π=4
with Ak ¼ 1þ k2=ða2m2

ϕÞ and q ¼ 3HFRW=mϕ. As the
background evolution implies the hierarchy HFRW ≪ mϕ,
this implies modes in equation (59) will be in the
narrow resonance regime, q ≪ 1. The first instability
corresponds to the condition Ak < 1þ q implying modes
with momenta

k
a
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3HFRWmϕ

p ð60Þ

will be amplified [6]. This result matches well with
our previous estimate on the momentum scales where
mixing with gravitational fluctuations is important in (55)
(recalling we have cπ ¼ 1 here).
Such resonant effects due to mixing with gravity

have been considered previously in the literature [71,72],
where those authors studied the growth of the density
perturbations and the onset of nonlinear effects arising
during oscillations of the background. Here, we can use the
EFT to reproduce their results

13Another equally important term is the one proportional to
_πcδNc. When we solve for δNc in terms of πc and use this
solution in (50), we can integrate by parts the time derivative on
πc leading to a term comparable to (54).
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δk ≡ δρk
ρ̄ðtÞ ¼

δρk
3H2m2

pl

∝
�

k
aHFRW

�
2

;

for
k
a
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3HFRWmϕ

p
; ð61Þ

where δρk is defined as

δρk ¼ ð−2 _HÞ1=2mpl

�
_πc −

1

2

�
3þ Ḧ

_H
− 2

_H
H

�
πc

�
: ð62Þ

We now consider how the EFT captures models where
the reheat sector results from the inflaton resonance given
by the time-dependent functions in (45) and (46). If any of
these couplings are stronger than gravitational strength the
resonance in the reheat sector will typically dominate over
the gravitationally induced effects discussed above.

2. Reheating in a two-field model

In this section, we explicitly demonstrate how the EFT
approach reproduces models of two-field reheating, taking
as a concrete example the specific class of models given by
(1). In the early stages of preheating the inflaton will
dominate the energy density. We take the reheat field to be
initially in its vacuum14 with χ0 ¼ 0, and we consider
production of χ quanta in the presence of the oscillating
inflaton condensate ϕ0ðtÞ. In the unitary gauge with ϕ ¼
ϕ0ðtÞ and χ0 ¼ 0, we have the following matter Lagrangian

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
_ϕ2
0g00 − Vðϕ0Þ −

1

2
gμν∂μχ∂νχ

−
1

2
ðU00ðχ0Þ þ g2ϕ2

0Þχ2
�
: ð63Þ

Using the background equations of motion we can cancel
the tadpole terms, m2

plð3H2 þ _HÞ ¼ Vðϕ0Þ ¼ m2
ϕϕ

2
0=2,

_Hm2
pl ¼ − _ϕ2

0=2, and the unitary gauge matter Lagrangian
is then given by

Lm ¼ m2
pl
_Hg00 −m2

plð3H2 þ _HÞ − 1

2
gμν∂μχ∂νχ

−
1

2

�
m2

χ þ 2
g2m2

pl

m2
ϕ

ð3H2 þ _HÞ
�
χ2; ð64Þ

where we defined U00ðχ0Þ≡m2
χ . Comparing with the

unitary gauge action (39)–(41), the matter Lagrangian
(64) corresponds to the following choice for nonuniversal
parameters in the EFT framework,

α1 ¼ 1; α3 ¼ m2
χ þ 2

g2m2
pl

m2
ϕ

ð3H2 þ _HÞ;

fm2; α2; α4; β1; β2g ¼ 0: ð65Þ
We emphasize that in this model the linear mixing

between the χ sector and gravitational sector (which
includes the Goldstone in the unitary gauge) vanishes
automatically since β1, β2 ¼ 0 in (41). As before, we
can introduce the Goldstone sector in (64) following the
transformation15 rules in (42). However, in the presence of
strong resonance in the χ sector, i.e., if _α3=α23 > Oð1Þ
during any time in the linear stage of preheating, Goldstone
fluctuations will be negligible compared to the χ’s that are
amplified through the strong resonance. In general, the
validity of this argument relies on the strength of the
coupling between the background and the χ sector through
the mass term. For example, in the model we are consid-
ering here, introducing π via t → tþ π [See also (42)] will
lead to the Goldstone sector we have discussed in the
previous section, where mixing with gravity leads to weak
resonance q ≈HFRW=mϕ ≪ 1 [cf., (59) and the discussion
that follows]. On the other hand, the strength of the
resonance in the χ sector depends on the ratio gmpl=mϕ

which can be quite large unless g ≪ 1. Too see this in
detail, it is enough to compare the scales in our EFT. The
strength of the resonance in χ can be read from (65) and
compared to the strength ≈mϕHFRW of the resonance in the
Goldstone sector in Eq. (59). The following condition is
sufficient to neglect the Goldstone dynamics

g2
�
mpl

mϕ

��
Λsb

mϕ

�
2

> 1: ð66Þ

It is clear from this expression that unless the coupling
constant is tiny g ≪ 1 we can neglect the mild amplifica-
tion of Goldstone due to mixing with gravity.
Another simplification we can make in this case is to

consider the decoupling limit in the EFT where j _Hj ≈
H2

FRW → 0 and m2
pl → ∞, while keeping the combinations

_Hm2
pl and H2m2

pl as constant. In this limit, it is clear that π
fluctuations will stay in their vacuum as the terms leading
to narrow resonance vanishes (HFRW → 0). We also note
that the decoupling limit corresponds to taking the rigid
space-time limit, a → 1 that is commonly discussed in the
preheating literature16 [6,7].

14We saw in Sec. III that it was a challenge for the background
EFT model, but this is natural here as the shift symmetry of the
background has been badly broken by the interactions.

15It is important to note that the transformation t → tþ π that
introduces the Goldstone also induces nonlinear interactions
between the Goldstone and reheat sectors—we will elaborate
on this below.

16An additional and important point on the decoupling limit is
that in this limit the time-dependent functions such as α3 we are
considering will be purely periodic functions. This can be seen by
using (56) in Eq. (65) and taking the decoupling limit. This
implies that EFT should respect an exact discrete symmetry in
this limit.
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To study particle production, we can focus on the
decoupling limit of the Lagrangian (64), and consider
the mode equation for χ as,

χ̈k þ ω2
χðtÞχk ¼ 0 ð67Þ

where the time-dependent frequency is given by

ω2
χ ¼ k2 þm2

χ þ
g2m2

pl

m2
ϕ

ð3H2 þ _HÞ: ð68Þ

In the decoupling limit, the time-dependent mass induced
by the background evolution stays intact, which is crucial
for particle production. As we have mentioned before,
particle production corresponds to the breakdown of the
adiabaticity in the frequency, i.e., j _ωχ=ω2

χ j > Oð1Þ. Using
(56) and the relations with the potential and Hubble rate in
Appendix B, this condition translates into

K2 ≲ gHFRWmpl ≈ gΛ2
sb; ð69Þ

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q
is the rescaled momenta. In the

example we are considering, we see that this condition
justifies the use of the EFT formalism as the resonant
modes have a momenta much smaller than the symmetry
breaking scale for small enough coupling, i.e., HFRWmpl ≡
Λ2
sb ≫ gΛ2

sb for g ≪ 1. The structure of the instability band
along with the exponentially growing solutions in the χ
sector have been studied many times in the literature [7].
Here, our main purpose is to show the connection of the
EFT approach to well-established two-field reheating
models.
Another potential use of EFT formalism is to capture the

effects of backreaction. This can be achieved by realizing
that once we introduce the Goldstone mode in the unitary
gauge Lagrangian (64) the time dependent mass (and for
general models other time dependent functions) of χ
becomes α3ðtþ πÞ. As α3 is a rapidly varying function
of time in the presence of particle production in the χ sector,
this term will induce higher order interactions between π
and χ upon expanding the function,

Lint ¼ −
1

2

�
_α3π þ 1

2
α̈3π

2

�
χ2: ð70Þ

In particular, in the current example the first term in (70)
will lead to a tadpole term for πc ¼ ð−2 _HÞ1=2mplπ. In the
Hartree approximation [6] this gives

Lint ⊃ −
1

2

_α3
ð−2 _Hm2

plÞ1=2
hχ2iπc; ð71Þ

where

hχ2ðtÞi ¼ 1

2π2

Z
∞

0

dkk2jχkðtÞj2: ð72Þ

The existence of such a tadpole term can be considered as
an indication of backreaction effects. For example, as we
produce χ particles the coefficient in front of πc will grow
and may eventually disturb the background evolution.
In particular they can increase the frequency of the back-
ground oscillations of the condensate [6],

m2
ϕ → m2

ϕ þ
_α3

ð−2 _Hm2
plÞ1=2

hχ2i ð73Þ

In order to understand the onset of the backreaction effects
in the presence of particle production, we can compare the
second term in (73) withm2

ϕ. We refer to this time where the
backreaction becomes important as tb and the condition
reads

m2
ϕ ¼ _α3ðtbÞ

ð−2 _HðtbÞm2
plÞ1=2

hχ2ðtbÞi ð74Þ

Knowing the solutions for χk, the background evolution
(56) and the couplings α3 one can calculate tb.
We emphasize that our discussion in this section is not

limited to the example given by (65). Using the EFT
formalism, we can in principle capture models that belong
to the same “universality class”, i.e., direct coupling models
with interactions including Lm ∝ μϕχ2 and nonrenorma-
lizable couplings Lm ∝ ϕnχ2=Mn−2 where n > 2 and M, μ
are energy scales [73].

D. A new class of reheating models

In the previous section, we showed how the EFT
captures resonance effects in two-field reheating models.
We now reconsider particle production in the presence of a
reduced sound speed for the reheat field, cχ ≠ 1. Familiar
from the EFT of inflation and dark energy, there is no
symmetry protecting cχ ¼ 1 in the EFT of reheating. This
gives rise to a new class of models for preheating where the
produced particles can have cχ ≪ 1.
We follow our previous discussion in Sec. IV B and

consider the time-dependent functions associated with the
reheat sector fαi; βig. The terms proportional to β1 and β2
in (46) lead to mixing of χ with both gravity and the
Goldstone sector. We will ignore these terms here, leaving a
discussion of them to Appendix A. In the absence of these
mixing terms we focus on the action (45). Defining the
canonical field χc ¼ αχðtÞχ where α2χðtÞ ¼ α1ðtÞ þ α2ðtÞ,
we have the following second order Lagrangian for the
canonical reheat field

Lχc ¼
1

2

�
_χ2c − c2χðtÞ

ð∂iχcÞ2
a2

�
−
1

2
m2

χðtÞχ2c; ð75Þ
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where we have defined the sound speed c2χ ¼ α1=ðα1 þ α2Þ
and the time-dependent mass term is

m2
χðtÞ ¼

α3ðtÞ
α2χðtÞ

−
�

_αχ
αχ

�
2

þ 3H

�
_αχ
αχ

�
þ ∂t

�
_αχ
αχ

�
: ð76Þ

Similar to the Goldstone case in Sec. IV C 1, we have a
time-dependent mass mχðtÞ induced by the time depend-
ence of the sound speed cχ and α1.

17 We will concentrate on
strong resonant effects due to nonadiabaticity in the time-
dependent coefficient α3 and assume that the time variation
of αχ is slow compared to α3, so that the sound speed is
nearly constant18 (where α1, α2 ≈ constant). We can then
neglect the last three terms in (76) and the mode equation
for the rescaled field variable ~χc ¼ a3=2χc in Fourier space is

̈~χkc þ
�
c2χ

k2

a2
þ α3 þ Δ

�
~χkc ¼ 0; ð77Þ

where Δ ¼ −3ð3H2 þ 2 _HÞ=4 ≈OðH2Þ are gravitational
terms resulting from the rescaling χc → ~χc and we have
absorbed the constants α1, α2 into the definition of α3.
Following our discussion in Sec. IV B, it is convenient to
parametrize α3 as α3 ¼ M2ðtÞFðωtÞ, where MðtÞ is always
adiabatic so that _M=M2 ≪ 1 and F is a periodic function
which must violate adiabaticity so that preheating occurs.
That is, at some point adequate particle production requires
the so-far arbitrary function to satisfy _F=F2 > 1. In many
models the periodicity of the function will be set by the
background evolution in (47). We focus on the strong
resonance regime where M ≫ H and M=ω ≫ 1 and hence
drop OðH2Þ terms in the frequency ω2

χ,

ω2
χ ¼ c2χ

k2

a2
þM2FðωtÞ: ð78Þ

The non-adiabaticity in α3 will lead to non-adiabaticity in
the frequency ω2

χ, i.e. _ωχ=ω2
χ > Oð1Þ. We take this to occur

as times tj when ω2
χ is at its minimum.19 This suggests that

we can expand the frequency around the times tj as

ω2
χ ≃ c2χ

k2

a2
þ 1

2
M2ω2ðt − tjÞ2 þ… ð79Þ

where we have used F̈ ≈ ω2F and dots represent higher
order terms in the t − tj expansion. This allows us to rewrite
the mode equation in a simpler form

̈~χkc þ
�
c2χ

k2

a2
þM2ω2

2
ðt − tjÞ2

�
~χkc ¼ 0 ð80Þ

and the typical momenta when adiabaticity is violated
_ωχ > ω2

χ corresponds to

k2� ≡Mω

c2χ
≳ k2

a2
; ð81Þ

We see that for cχ < 1, the physical wave numbers inside
the resonant regime are further enhanced (the resonance
band is broadened) compared to the standard cases that have
been studied in the literature. It is customary to map the
mode equation (80) to a scattering problem described by a
Schrödinger equation with a negative parabolic potential by
defining a new time variable τ≡ cχk�ðt − tjÞ and a dimen-
sionless physical momentum κ ≡ k=ðak�Þ,

d2 ~χkc
dτ2

þ ðκ2 þ τ2Þ~χkc ¼ 0: ð82Þ

The solution to the scattering problem and the resulting
number density of particles between scattering events has
appeared in the literature many times [6,74] (See also [18]).
In real space, the growth of the number density of particles
can be described by the following expression [6],

nχðtÞ ¼
1

2πa3

Z
d3knkχðtÞ ∼

k3�ffiffiffiffiffiffiffiffiffiffiffiffiffi
πμmϕt

p e2μmϕt; ð83Þ

where (for simplicity) we have assumed that the back-
ground is given by the quadratic potential we considered
before, i.e., ω ∼mϕ. Here μ is the maximum value of the
Floquet index at kmax ≈ k�=2 [6]. It is clear from this
expression that there will be an enhancement in the number
of produced particles due to the small sound speed in the χ
sector, k� ∝ c−1χ . This also agrees with our intuition as
equation (81) tells us that resonant bands are wider for
cχ < 1 and thus the contribution to the integral in (83)
over resonant modes will be enhanced by factors of c−1χ .
In the next section we will consider observational conse-
quences of theEFTof reheating, focusing on this newclass of
models with nonstandard sound speed. We also discuss
additional challenges and future directions for the approach.

V. CHALLENGES AND OUTLOOK

In this paper we have presented an EFT approach to
reheating that overcomes the challenges of the background
evolution discussed in Sec. III and is adequate to capture all
existing reheating models in the literature. Guided by
symmetries, our approach is also useful for finding new
models of reheating, e.g., we found a new class of models
where the reheating sector has cχ ≠ 1. However, there are
many challenges remaining for our EFT approach.

17Recall that c2χ ¼ α1=α2χ .18Again, we leave the interesting case of strong time depend-
ence of the sound speed to future work.

19Note that here we are focusing on nontachyonic resonance,
for tachyonic resonance this situation will be different, see,
e.g., [73].
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One of the more serious concerns is the lack of a direct
connection to observations. This problem is not specific
to our approach, with the lack of direct observational
constraints on reheating being an important reason that far
less is known about this epoch than inflation. In our EFT
framework, symmetries help to alleviate more of the
theoretical uncertainties associated with reheating than
a toy model approach. For example, the need to non-
linearly realize time translations demonstrated that many
of the unknown coefficients are related, and the need to
violate nonadiabaticity (required for particle production)
also placed some level of theoretical constraint on the
reheating sector. Nevertheless, we saw in Sec. IV there are
a large number of free functions that must be further
restricted by observations. Unlike the situation for infla-
tion, where non-Gaussianity and features in the primordial
power spectrum are a rich source of observational con-
straints, direct observational constraints on reheating are
lacking. One possibility to remedy this is gravitation wave
(GW) signatures.
Once particles are produced during reheating20 they

can scatter off each other creating a background of GWs
[10,13]. The scattering leads to a transverse-traceless
source for the gravitons

ḧij þ 3H _hij −
1

a2
∂2hij ¼

2

m2
pl

TTT
ij : ð84Þ

Following the methods of [75] we can then estimate the
critical density of gravitational waves today21

Ωgw ¼ SkðtfÞ
a4JρJ

�
aJ
arh

�
1−3w

�
grh
g0

�
−1=3

Ωr;0; ð85Þ

where subscript “0” denotes a quantity evaluated today, “J”
represents the time when the universe becomes radiation
dominated and “rh” denotes the beginning of reheating.
Here, ω is the average equation of state of the universe
between the time interval tJ < t < trh and gi is the effective
relativistic degrees of freedom. Finally, the source term Sk
encodes the predictions for different classes of models in
the EFT.
For example, let us consider the new class of models

discussed in Sec. IV D. In that case the source term Sk is
given by

SkðtfÞ ¼
c4χk3

4π2m2
pl

Z
dp

Z
1

−1
dðcos θÞp6sin4θ

×
�����

Z
tf

ti

dt cos ðktÞχcðp; tÞχcðjk⃗ − p⃗j; tÞ
����
2

þ
����
Z

tf

ti

dt sin ðktÞχcðp; tÞχcðjk⃗ − p⃗j; tÞ
����
2
�

ð86Þ

where we focus on two-body scattering, θ is the scattering
angle, and we assume that scattering happens at a fast
enough rate that we can neglect the Hubble expansion.
To get an order of magnitude estimate we can focus on the
low momenta. In this case, the contribution of the mode
functions to time integrals will be maximal for p� ¼ffiffiffiffiffiffiffiffi
Mω

p
=cχ and defining a dimensionless momentum P ¼

p=p� we have

Sjþ1
k ∼

1

c3χ

ðMωÞ3=2k3
m2

pl

Z
1

−1
dðcos θÞsin4θ

×
Z

dPP6 × ½Time integrals�; ð87Þ

where we recall that α3 is parameterized by M and ω as in
(80), and so the EFT parameters are determining the
strength of the GW signal. Moreover, the gravitational
waves will be amplified by a factor of c−3χ . This scaling may
be counterintuitive to the reader. The prefactor in (86)
results from the two-to-two scattering of the particles as
their momenta is now p → cχp. However, the lower sound
speed implies it costs less energy to produce the particles
leading to an enhancement of the particle production rate,
and more particles scattering leads to more gravity waves.
Thus, the GW signal is enhanced compared to the cχ ¼ 1

case. Assuming this signal survives the later stages of
reheating the detectability will depend on the peak
frequency [10,13,76]

f ¼
ffiffiffiffiffiffiffiffi
Mω

p

ajρ
1=4
j cχ

4 × 1010 Hz; ð88Þ

which again depends explicitly on the EFT parameters and
the sound speed. We see that by reducing the sound speed
we can increase the frequency in the new class of reheating
models.
GWs provide one way to constrain the EFT parameters.

However, we leave a more complete analysis, which
requires following the signal through all the stages of
reheating,22 to future work. Primordial black hole con-
straints and the matching of inflationary perturbations to

20This should not be confused with sourcing a gravity
perturbation with a second order scalar perturbation. Here we
are considering on-shell particles that are classically scattering
off of each other and generating a GW spectrum. We refer the
reader to [75] for more details.

21For a different approach we refer the reader to [76].

22One interesting approach would be to see if we could
combine the EFT framework here with the recent fitting analysis
of [77].
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late time observables lead to additional ways in which the
EFT parameters may be restricted. In regards to the latter,
we have stressed that direct observables correspond to
perturbations, however the subtle ways in which we match
inflationary predictions to CMB and LSS observations does
depend implicitly on the background dynamics, particu-
larly through the equation of state. Recently, it has been
shown that the physics of reheating (including nonlinear-
ities and backreaction) can have subtle and interesting
effects on the equation of state and the dynamics of
thermalization [78]. We hope to return to these issues
and interesting possibilities in future work.
In addition to the challenge to connect with observations,

a number of theoretical issues remain to be addressed.
In particular, in this paper we have primarily focused on
connecting the EFT to scalar field driven models of
reheating. However, the spectator field χ can be thought
of as an additional clock field, which can also represent
reheat fields beyond spin zero. Extending our framework to
other spins is an important consideration. We have also
primarily focused on the first stage of reheating in the EFT.
However, one of the most useful applications of our
approach could be to gain a better understanding of the
rescattering and backreaction effects that happen following
the first stage. These are stages that usually require lattice
simulations, and the Goldstone approach could be a fruitful
way to get a better analytical understanding. There is also
the issue of when the produced particles become significant
enough that they contribute to the energy density. At this
point the Goldstone boson (related to the matter sector
responsible for time-translations being broken) can change
its nature from inflatons to the reheat field. How this
transition proceeds is important for establishing the con-
nection between the Goldstone and the background fields.
This is similar to the situation in studies of dissipation in
the EFT of Inflation (see, e.g., [79]), and we expect many
of the techniques there could prove useful for the case of
reheating as well.
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APPENDIX A: ADM FORMALISM AND
MIXING WITH GRAVITY

To account for gravitational fluctuations and discuss the
regime where they are irrelevant to the dynamics of the
Goldstone we decompose the metric in the ADM form.
In the spatially flat gauge we have

ds2 ¼ −ðN2 − NiNiÞdt2 þ 2Nidxidtþ ĝijdxidxj; ðA1Þ

where ĝij ¼ a2ðδij þ hijÞ is the spatial metric and our
gauge choice implies hii ¼ ∂ihij ¼ 0. Inverse metric ele-
ments can be written as

g00 ¼ −
1

N2
; g0i ¼ gi0 ¼ Ni

N2
; gij ¼ hij −

NiNj

N2
:

ðA2Þ

To find the relevant terms in the gravitational sector, we
expand the Einstein Hilbert term as

Sg ⊃
m2

pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
R

¼ m2
pl

2

Z
d4x

ffiffiffî
g

p �
NRð3Þ þ 1

N
ðEijEij − Ei

i
2Þ
�
; ðA3Þ

where Rð3Þ is the three curvature associated with spatial
metric ĝij and Eij is related to the extrinsic curvature of
constant time slices through

Eij ≡ NKij ¼
1

2
½∂tĝij − ∇̂iNj − ∇̂jNi�; ðA4Þ

where ∇̂i is the covariant derivative with respect to spatial
metric ĝij. Using the above expressions, we can expand
(44) up to second order in scalar fluctuations

Sg ¼
Z

d4xa3
�
−
m2

pl
_H

c2π

�
_π2 − c2π

ð∂iπÞ2
a2

�

− 3m2
pl
_H2π2 þm2

plð2c−2π _H _π −6H _HπÞδN
þ 2m2

pl
_HNi∂iπ −m2

plð3H2 þ c−2π _HÞδN2

− 2m2
plHδN∂iNi

�
ðA5Þ

where the speed of sound is defined as c2π ¼ m2
pl
_H=

ðm2
pl
_H −m4

2Þ. Defining the canonical fields, πc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 _Hm2

pl

q
c−1π π, δNc ¼ mplδN, Ni

c ¼ mplNi, one can re-

write the Lagrangian as in (50).
Focusing on the Goldstone sector for now, we can solve

for the Lagrange multipliers δN and Ni in terms of π.
To linear order in π we have,
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δN ¼ −
_H
H
π; ∂iNi ¼ c−2π

_H
H2

∂tðHπÞ: ðA6Þ

Using the canonical field definitions above we may write

δNc ¼
ð−2 _HÞ1=2

2H
πc; ∂iNi

c ¼ c−2π
_H
H2

∂t

�
cπHπc

ð−2 _HÞ1=2
�
:

ðA7Þ

Using these solutions for the gravitational fluctuations δNc

Ni
c in (50) (while taking the cπ → 1 limit) we recover the

result of (57).
In the presence of a reheat sector χ, we need to take into

account the mixing between χ and gravitational fluctua-
tions, as well as π − χ mixings. Considering the mixings at
second order we need to take into account the action in
(46). Expanding up to second order in δN, Ni, π, and χ, we
have

Sð2Þmix ¼
Z

d4xa3½2β1ðδN − _πÞχ − 2β2ðδN − _πÞ_χ�: ðA8Þ

We note that the action (45) does not lead to any second
order mixing therefore it is enough to consider the mixing
action above. Combining (A5) and (A8) in the presence of
mixing we have the following solutions for the constraints,

δN ¼ −
_H
H
π;

∂iNi ¼ c−2π
_H
H2

∂tðHπÞ þ β1
m2

plH
χ −

β2
m2

plH
_χ: ðA9Þ

We see that inclusion of reheat sector does not change the
solution for δN, but we have additional contributions to
Ni proportional to the time-dependent parameters β1, β2.
To illustrate the decoupling of χ, we consider a simple πc
sector with cπ ¼ 1 and note that time derivatives of
canonically normalized fields χc and πc have the approxi-
mate scalings in the WKB approximation,

_πc ≈ ωππc ∼ ωπc; _χc ≈ ωχχc ∼
ffiffiffiffiffi
α3

p
χc ∼Mχc; ðA10Þ

where we take jα3j ¼ M2 following our discussion in the
main text and focused on the non-relativistic modes for
both fields. Following our discussion in Sec. IV B, we
assume that the strength of the couplings β1 and β2 is as
strong as the time-dependent parameter α3 responsible
for the resonance. By dimensional analysis, we therefore
take jβ1j ∼M3 and jβ2j ∼M2. Canonically normalizing the
fields as before we find from (A8) that for resonant modes
mixing between χc and gravitational fluctuations can be
neglected in the following range of momenta

�
M
Λsb

� ffiffiffiffiffiffiffiffiffi
MH

p
<

cχk

a
<

ffiffiffiffiffiffiffiffi
Mω

p
: ðA11Þ

Similarly we have the following range where we can
neglect direct mixing between πc and χc,

�
M
Λsb

� ffiffiffiffiffiffiffiffi
Mω

p
<

cχk

a
<

ffiffiffiffiffiffiffiffi
Mω

p
: ðA12Þ

Consistency of the EFT picture requires M=Λsb ≪ 1 and
we see that within this regime we can neglect both types of
mixing for a wide range of momenta. In particular, with
some mild assumptions, we showed that in the presence of
strong resonance, we can neglect the mixings between πc
and χc. This finding is similar in spirit to the discussion
presented in the recent works [18,80] where those authors
pointed out that it is technically natural to assume a flat
field space metric in the presence of strong disorder/
resonance.
We conclude this appendix by giving the second order

action for tensor perturbations and their interaction with πc
and χc that we used in the main text. Using the gravitational
part of the action in (A3) with (A4) and noting the Ricci
curvature Rð3Þ on spatial hypersurfaces,

Rð3Þ ¼ ĝik∂lΓl
ik − ĝik∂kΓl

il þ ĝikΓl
ikΓm

lm − ĝikΓm
ilΓl

km;

ðA13Þ

Γk
ij ¼

1

2
ĝklð∂iĝjl þ ∂jĝil − ∂lĝijÞ; ðA14Þ

we have the following second order action for the tensor
part of the metric fluctuations

Sg ¼
m2

pl

8

Z
d4xa3

�
_hij _hij −

∂khij∂khij
a2

�
: ðA15Þ

On the other hand, expanding the actions (44) and (45)
we find the following cubic order interactions between πc
and χc

ShXX ⊃
Z

d4xa3
�
c2χ
2
hij

∂iχc∂jχc
a2

þ c2π
2
hij

∂iπc∂jπc
a2

�
:

ðA16Þ

APPENDIX B: RELATING UNITARY GAUGE
TO THE SCALAR POTENTIAL

In cosmologies dominated by a scalar field, we can map
the time-dependent background quantities in our unitary
gauge Lagrangian (39) to the explicit scalar field models
with a given potential Vðϕ0Þ. A simple example we
provided in the main text was
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Vðϕ0Þ ¼ m2
plð3H2ðtÞ þ _HðtÞÞ; −2 _Hm2

pl ¼ _ϕ2
0: ðB1Þ

Using dϕ0 ¼ _ϕ0dt and time derivatives of expressions in
(B1), we can relate the derivatives of the potential with
respect to ϕ to the time derivatives of the Hubble rate HðtÞ.
Here, we list some of these expressions,

V 0ðϕ0Þ ¼
mpl

ð−2 _HÞ1=2 ð6H
_H þ ḦÞ; ðB2Þ

V 00ðϕ0Þ ¼ −3 _H −
1

4

�
Ḧ
_H

�
2

−
3H
2

�
Ḧ
_H

�
−
1

2
∂t

�
Ḧ
_H

�
; ðB3Þ

V 000ðϕ0Þ ¼
1

ð−2 _Hm2
plÞ1=2

�
−
Hð4Þ

2 _H
−
9Ḧ
2

þ Ḧ3

2 _H3

−
3H
2

∂t

�
Ḧ
_H

�
þ 1

2
∂t

�
Ḧ2

_H2

��
ðB4Þ
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