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Primordial black holes (PBHs) have long been a candidate for the elusive dark matter (DM), and remain
poorly constrained in the ∼20–100 M⊙ mass range. PBH binaries were recently suggested as the possible
source of LIGO’s first detections. In this paper, we thoroughly revisit existing estimates of the merger rate of
PBH binaries. We compute the probability distribution of orbital parameters for PBH binaries formed in the
early Universe, accounting for tidal torquing by all other PBHs, as well as standard large-scale adiabatic
perturbations.We then checkwhether the orbital parameters of PBHbinaries formed in the early Universe can
be significantly affected between formation and merger. Our analytic estimates indicate that the tidal field of
halos and interactions with other PBHs, as well as dynamical friction by unbound standard DM particles, do
not do significantwork on nor torquePBHbinaries.We estimate the torque due to baryon accretion to bemuch
weaker than previous calculations, albeit possibly large enough to significantly affect the eccentricity of
typical PBH binaries. We also revisit the PBH-binary merger rate resulting from gravitational capture in
present-day halos, accounting for Poisson fluctuations. If binaries formed in the early Universe survive to the
present time, as suggested by our analytic estimates, they dominate the total PBHmerger rate. Moreover, this
merger rate would be orders of magnitude larger than LIGO’s current upper limits if PBHsmake a significant
fraction of the dark matter. As a consequence, LIGO would constrain ∼10–300 M⊙ PBHs to constitute no
more than ∼1% of the dark matter. To make this conclusion fully robust, though, numerical study of several
complex astrophysical processes—such as the formation of the first PBH halos and how theymay affect PBH
binaries, as well as the accretion of gas onto an extremely eccentric binary—is needed.
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I. INTRODUCTION

The nature of dark matter has eluded several generations
of theoretical and experimental physicists. While there is no
shortage of candidates, from ultralight axionlike scalar
fields [1], to weakly interacting massive particles [2], and
massive compact objects [3,4], dedicated dark-matter
experiments remain stubbornly silent. As LIGO is slowly
but surely ushering astronomy into the gravitational-wave
era [5–7], one of the oldest dark-matter candidates, pri-
mordial black holes (PBHs), has recently been brought
back into the spotlight [8–15].
The notion of PBHs [16] was first fleshed out by

Ref. [17], who suggested that they may form out of large
fluctuations in the early Universe, and may be of any mass
above the Planck mass. The abundance of PBHs is bounded
by a variety of observables, depending on their mass
[18,19]. In the ∼20–100 M⊙ mass range, PBHs are not
constrained by microlensing [20,21], wide Galactic bina-
ries [22], nor the cosmic microwave background (CMB)
[23,24]. Refs. [25,26] have argued that dynamical heating
of stellar systems in dwarf galaxies constrain compact
objects in this mass range to make up no more than ∼10%
of the dark matter, but Refs. [25,27] note the possibility that
intermediate-mass black holes in such systems would
weaken this constraint. Others [28,29] have set similar

bounds in this mass range from the nonobservation of
radiation from accretion of interstellar gas onto such PBHs,
but the radiative-feedback calculations upon which these
conclusions rely are highly uncertain [24,30]; see also
Refs. [31–33] for caveats on other bounds. As more data
becomes available, it will be possible to constrain PBHs
more tightly (e.g., [13,34–38]). In the meantime, it is
important to investigate different avenues to probe PBHs
with existing data.
Two decades ago, Nakamura et al. [39] (hereafter,

NSTT) pointed out that PBHs would form binaries in
the early Universe, which would then slowly shrink
through gravitational wave radiation, and eventually coa-
lesce. They estimated the merger rate per galaxy at the
present time, and found it to be within the reach of the
first gravitational-wave detectors. The LIGO Scientific
Collaboration searched for such mergers in LIGO’s second
science run [40], but could only set upper bounds on the
merger rate three to four orders of magnitude larger than
NSTT’s prediction if PBHs make all of the dark matter. A
decade later, LIGO’s sensitivity has increased spectacu-
larly, pushing out the horizon distance to cosmological
scales. It is straightforward to transpose NSTT’s result to
the ∼20–100 M⊙ range [9], and find that the predicted
merger rate is glaringly larger than the latest estimate of
the binary-black-hole merger rate from LIGO’s three
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detections, R ≈ 10–200 Gpc−3 yr−1 in the ∼5–100 M⊙
mass range [7]. It is, therefore, clear that LIGO has the
potential to significantly constrain PBH dark matter [38],
provided the rate estimated in NSTT is accurate.
The main goal of the present work is to thoroughly check

the merger rate of PBH binaries. We start, in Sec. II, by
deriving the distribution of initial orbital parameters of
PBH binaries forming in the early Universe, accounting for
tidal torquing by all other PBHs (as opposed to just the
nearest neighbor as in NSTT), as well as by standard
adiabatic perturbations. Some of the technical details of the
calculation are deferred to the Appendix. Section III is
devoted to checking one of the key underlying assumptions
of NSTT, namely that PBH binaries formed in the early
Universe are subsequently only subject to gravitational
radiation reaction. While Refs. [9,41] have checked that
PBH binaries do not get disrupted in present-day, Milky-
Way-like halos, they did not consider the effect of the
earliest nonlinear structures. We fill that gap, estimating
analytically the properties of the first halos and their effect
on PBH binaries, which we find to be small. We also
estimate the effect of baryon accretion, and find it to be at
the verge of being relevant. In Sec. IV, we revisit the late-
Universe PBH-binary formation mechanism proposed in
Ref. [8]. While the merger rate obtained there is signifi-
cantly lower than that due to early-Universe binaries, a key
ingredient was omitted in their calculation. Indeed, when
estimating the properties andmass function of halos, they did
not account for the large Poisson fluctuations resulting from
the granularity of PBH-dark-matter (although they did
speculate that this granularity would increase the rates).
Including these,we find that, while themerger rate per halo is
much enhanced, the faster evaporation of denser halos
truncates the mass function at a larger mass, leading to a
final result that is comparable with that of Ref. [8]. In Sec. V,
we derive potential upper limits on the PBH abundance from
LIGO’s existing upper bounds on the merger rate.
As we discuss in the concluding section, our results

suggest that LIGO severely constrains PBH dark matter in
the ∼10–300 M⊙ mass range, eliminating them as the
dominant component of the dark matter. To make this
conclusion fully robust, though, requires careful numerical
investigation of how the first PBH halos form and how
PBH binaries survive in these halos, and investigation of
the impact of baryon accretion onto a highly eccentric
binary. Given these remaining open questions, continued
pursuit of other observational probes of PBH dark matter in
this mass range is still warranted.

II. PBH BINARY FORMATION
IN THE EARLY UNIVERSE

A. Assumptions and notation

Throughout this paper we use geometric unitsG¼ c¼ 1.
Whenever relevant, we use cosmological parameters

consistent with the latest Planck measurements [42]. We
denote by t0 ≈ 14 Gyr the present time.
We denote by s the scale factor normalized to unity at

matter-radiation equality, and by ρeq the density of matter
(or radiation) at equality. Neglecting dark energy and
curvature, the Hubble rate is given by

HðsÞ ¼
�
8π

3
ρeq

�
1=2

hðsÞ; hðsÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s−3 þ s−4

p
: ð1Þ

We assume that PBHs make a fraction f of the non-
relativistic matter (i.e., dark matter and baryons as this
simplifies expressions). We show our results in terms of the
fraction fpbh ≈ f=0.85 of PBHs in dark matter. We assume
PBHs have a single massM ¼ mM⊙. All results carry over
to a relatively narrow mass function, though more work
would be required to generalize them to an extended mass
function.
We assume that the large-scale distribution of PBHs

follows that of the dark matter, but that on sufficiently small
scales, and at early enough times, they are effectively
randomly distributed in space. In other words, we neglect
the possibility of small-scale PBH clustering [43], which
depends on the details of the PBH formation model. If
PBHs do not make all of the dark matter, we denote by σ2eq
the variance of density perturbations of the rest of dark
matter on scales of order ∼ð10−3–103ÞM ∼ ð10−2–105ÞM⊙,
at equality. Extrapolating the measured amplitude and
spectral index of primordial adiabatic perturbations [42]
to these small scales, one gets σeq ≈ 0.005, with a weak
(logarithmic) dependence on mass. We adopt this value
whenever required.1

We denote by x̄ the characteristic comoving separation
(i.e., proper separation at equality) between two PBHs,

x̄≡
�

3M
4πfρeq

�
1=3

: ð2Þ

Given a comoving separation x, we define the dimension-
less variable X as

X ≡ ðx=x̄Þ3: ð3Þ

Provided a pair of PBHs are close enough, they decouple
from the Hubble flow early on, and form a binary. We
denote by a the semimajor axis of a PBH binary, by l its
angular momentum per unit reduced mass, and by

j≡ l=
ffiffiffiffiffiffiffiffiffiffi
2Ma

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
; ð4Þ

1It is worth pointing out that early-Universe scenarios for the
formation of PBHs typically involve enhanced primordial power,
in which case σeq may be significantly higher. We leave the
examination of particular PBH formation models to future work.
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its dimensionless angular momentum, where e ∈ ½0; 1� is
its eccentricity. We now estimate the probability distribu-
tion of these initial orbital parameters.

B. Initial semimajor axis

Consider two point masses M, initially at comoving
separation x, with vanishing peculiar velocity, in an
otherwise homogenous expanding Universe. As long as
the separation is much smaller than the Hubble scale, we
may use a Newtonian approximation. If no perturber is
present, the motion is one-dimensional. We denote by r ∈
R the proper separation projected along the axis of motion;
it evolves according to

̈r − ð _H þH2Þrþ 2M
r2

r
jrj ¼ 0; ð5Þ

where overdots denote differentiation with respect to the
proper time. We define χ ≡ r=x and rewrite Eq. (5) in terms
of the scale factor s:

χ00 þ sh0 þ h
s2h

ðsχ0 − χÞ þ 1

λ

1

ðshÞ2
1

χ2
χ

jχj ¼ 0; ð6Þ

where primes denote differentiation with respect to s, and
the dimensionless parameter λ is

λ≡ 4πρeqx3

3M
¼ X

f
: ð7Þ

At s → 0, the binary follows the Hubble flow χðsÞ ¼ s, so
the initial conditions are

χð0Þ ¼ 0; χ0ð0Þ ¼ 1: ð8Þ

We see that the solution is entirely characterized by λ.
In the limit λ ≪ 1, the PBH pair effectively decouples

from the expansion deep in the radiation-domination
era, s ≪ 1. In that limit, hðsÞ ≈ s−2, and the equation of
motion is

χ00 −
1

s2
ðsχ0 − χÞ þ 1

λ

s2

χ2
χ

jχj ¼ 0: ð9Þ

One can show that the solution to this equation is
self-similar:

χðs; λÞ ¼ λχðs=λ; 1Þ: ð10Þ

We compute this function numerically by solving Eq. (9)
and show it in Fig. 1: we find that the binary effectively
decouples from the Hubble flow at s ≈ λ=3, and that the
proper separation then oscillates with amplitude
jχj ≈ 0.2λ ¼ 2a=x, where a is the semimajor axis of the
newly formed binary. We, therefore, find, for λ ≪ 1,

a ≈ 0.1λx ¼ 0.1
f

x4

x̄3
¼ 0.1

�
3M
4πρeq

�
1=3

ðX=fÞ4=3: ð11Þ

This agrees with the result of Ref. [41] given that they
define the mean separation without the factor of ð4π=3Þ1=3.
Solving the full Eq. (6), we find that this result remains
reasonably accurate even for λ ∼ 1 (see Fig. 1). In what
follows we will see that for the PBH masses considered, the
bulk of binaries merging at the present time have λ≲ 1, so
we use Eq. (11) throughout.

C. Initial angular momentum

We now account for the fact that the binary is immersed in
a local tidal field Tij ¼ −∂i∂jϕ, which exerts a perturbative
force per unit mass F ¼ T · r, in matrix notation. This tidal
field arises from the other PBHs, as well as from matter
density perturbations, as pointed out in Ref. [44] (see also
[45]). Provided the initial comoving separation of the binary
is small relative to the mean separation, this tidal field does
not significantly affect the binary’s energy (hence, semimajor
axis). However, it produces a torque _l ¼ r × ½T · r�, resulting
in a nonvanishing angular momentum

l ¼
Z

dtr × ½T · r�; ð12Þ

and preventing a head-on collision. If the torque originates
from other PBHs whose comoving separation is approx-
imately constant (which is accurate provided their sepa-
ration is much larger than x), then T ∝ 1=s3. If the torque
originates from linear matter density perturbations, then
Tij ∼ ρmδm ∝ s−3δm. If the binary decouples deep in the
radiation era, then δm ≈ constant (neglecting the slow
logarithmic growth). Therefore, in either case, we have
T ≈ s−3Teq. We hence get

FIG. 1. Dimensionless separation χ ¼ r=x of two point masses,
rescaled by the parameter λ ¼ 1

f ðx=x̄Þ3, as a function of the
rescaled scale factor s=λ, in the limit λ ≪ 1 (solid) and for λ ¼ 1
(dashed).
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l ¼
�

3

8πρeq

�
1=2

Z
ds

shðsÞ
χ2ðs; λÞ

s3
x × ½Teq · x�: ð13Þ

The integral only depends on λ. In the limit λ ≪ 1, using the
self-similarity relation (10), it simplifies to

Z
ds

shðsÞ
χ2ðs; λÞ

s3
¼ λ

Z
d~s
~s2

χ2ð~s; 1Þ ≈ 0.3λ; ð14Þ

where we computed the last integral numerically. The
reduced angular momentum j≡ l=

ffiffiffiffiffiffiffiffiffiffi
2Ma

p
is, therefore,

j ≈
0.3ffiffiffiffiffiffiffi
0.1

p λ1=2
�

3

16πρeqM

�
1=2

x3=2x̂ × ½Teq · x̂�;

≈ 0.5x3x̂ ×

�
Teq

M
· x̂

�
; ð15Þ

wherewe used Eqs. (7) and (11) to simplify the expression.

1. Torques by other PBHs

Let us now specifically consider the tidal field generated
by a point mass M at comoving separation y ≫ x:

Tij
eq

M
¼ 3ŷiŷj − δij

y3
: ð16Þ

This implies an angular momentum

j ≈ 1.5
x3

y3
ðx̂ · ŷÞðx̂ × ŷÞ; ð17Þ

with magnitude j ≈ 0.8ðx=yÞ3 sinð2θÞ, where θ is the angle
between x̂ and ŷ, consistent with the results of Ref. [41].
The total reduced angular momentum resulting from all

other PBHs (at distance y ≫ x) is hence given by

j ≈ 1.5
X
p

x3

y3p
ðx̂ · ŷpÞðx̂ × ŷpÞ: ð18Þ

We compute explicitly the probability distribution of j in
the Appendix, where we find, for a given X,

j
dP
dj

����
X
¼ Pðj=jXÞ; PðγÞ≡ γ2

ð1þ γ2Þ3=2 ; ð19Þ

with jX ≡ 0.5X: ð20Þ

Note that this distribution extends to arbitrarily large j,
while physical values are limited to j ≤ 1. As long as
jX ≪ 1, the contribution of unphysical values j > 1 is
negligibly small. We emphasize that this probability dis-
tribution accounts for torques by all PBHs. In contrast,
Refs. [39,41] only considered torques by the nearest

neighbor, which leads to the correct approximate character-
istic value of j, but does not allow to estimate its exact
probability distribution.

2. Torques by linear density perturbations

As pointed out in Refs. [44,45], if the PBH fraction
is smaller than the characteristic large-scale matter
density perturbation δm, then tidal torques are dominated
by large-scale linear perturbations, Tij

eq ¼ −∂i∂jϕ ¼
−4πρeq∂i∂j∂−2δm. The resulting j is Gaussian-distributed
in the plane perpendicular to x̂, with variance given by [see
Appendix 2]

hj2i1=2 ¼
ffiffiffiffiffi
3

10

r
σeq
f

X ≈ 0.5
σeq
f

X: ð21Þ

The relevant scales are those larger than the binary
separation (perturbations on smaller scales are affected
in a complex way by the binary orbit and would require to
be studied separately, as we discuss in Sec. III A 7). Using
Eq. (11), we find that the dark matter mass corresponding to
the binary scale when it decouples from the Hubble flow is
of orderMdm ∼ 0.1Msdec. As we will see below, the typical
decoupling scale factor for binaries merging today is
sdec ∼ 10−2–1, so we conclude that the scales to be included
in σeq in Eq. (21) are those corresponding to a dark matter
mass larger than ∼10−3M.
In principle the probability distribution for the total j,

which is the sum of two contributions (other PBHs and
linear perturbations), can be computed by convolving the
two probability distributions. This convolution is not
analytic, however, so for simplicity we assume that for a
given semimajor axis, the probability distribution of j is
given by Eq. (19), with the characteristic value

jX ≈ 0.5ð1þ σ2eq=f2Þ1=2X: ð22Þ

D. Characteristic initial properties
of binaries merging today

For initial eccentricities close to unity, i.e., j ≪ 1, which,
as we will see shortly, is the relevant regime, the coales-
cence time through GW emission is given by [46]

t ¼ 3

170

a4

M3
j7: ð23Þ

For a given X hence a, there is a unique j such that the
merger time is t; using Eq. (11), it is given by

jðt;XÞ≡
�
170

3

tM3f4

ð0.1x̄Þ4X16=3

�
1=7

: ð24Þ

The differential probability distribution of ðX; tÞ is then
given by
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d2P
dXdt

¼ dP
dX

dP
dt

����
X
¼ dP

dX
×

�∂j
∂t

dP
dj

����
X

�
jðt;XÞ

: ð25Þ

The probability distribution of the rescaled nearest-
neighbor separation is dP=dX ¼ e−X (again, this assumes
a random distribution of PBHs, and may take on different
values in specific PBH formation models). Given that
j ∝ t1=7, ∂j=∂t ¼ j=ð7tÞ. Using Eq. (19), we arrive at

d2P
dXdt

¼ 1

7t
e−XPðγXÞ; γX ≡ jðt;XÞ

jX
: ð26Þ

From Bayes’ theorem, we obtain the probability distribu-
tion of X for binaries merging after a time t0:

dP
dX

����
t0

∝
d2P
dXdt

����
t0

∝ e−XPðγXÞ; t ¼ t0: ð27Þ

We now seek the value X� for which this probability is
maximized. We will see that X� ≪ 1, so we approximate
e−X ≈ 1. We then need to solve

0 ¼ ∂
∂X

�
dP
dX

����
t0

�
X�

∝ P0ðγX� Þ
∂γX
∂X : ð28Þ

Since γX is strictly monotonic, this implies P0ðγX� Þ ¼ 0,

which is achieved for γX� ¼
ffiffiffi
2

p
, i.e.,

jðt0;X�Þ ¼
ffiffiffi
2

p
jX� : ð29Þ

Solving for X�, we obtain that the most probable value of X
for binaries merging today is

X� ≈ 0.032fm5=37ðf2 þ σ2eqÞ−21=74: ð30Þ

We show X� in Fig. 2. We see that for all PBH masses and
fractions of interest, X� ≪ 1, indicating that PBH binaries
merging today are rare pairs with initial separation much
smaller than the characteristic inter-PBH separation. This
justifies our approximation to treat the effect of other PBHs
as a perturbation on the nearly isolated binary.
From our results in Sec. II B, the characteristic redshift at

which PBH binaries decouple from the Hubble flow is
z� ≈ 3zeq=ðX�=fÞ, which we show in Fig. 3. We find that all
binaries merging today typically form prior to matter-
radiation equality, and increasingly early for f ≳ σeq.
The characteristic semimajor axis a� is then obtained from
Eq. (11), and the characteristic angular momentum j� is
simply jðt0; X�Þ ¼

ffiffiffi
2

p
jX�, i.e., using Eq. (22),

j� ≈
1ffiffiffi
2

p ðσ2eq þ f2Þ1=2ðX�=fÞ

≈ 0.023m5=37ðσ2eq þ f2Þ8=37: ð31Þ

We show the characteristic initial orbital parameters
in Fig. 4.

E. Merger rate

We now have all the required ingredients to compute the
merger rate. First of all, since the typical formation time is
prior to matter radiation equality, the time of merger (i.e.,
the value of coordinate time since the big bang) is
approximately the time it takes to merge, for binaries
merging today. The probability distribution of the time of
merger is, therefore,

FIG. 2. Characteristic rescaled initial comoving separation X ≡
ðx=x̄Þ3 for PBH binaries that merge at the present time, as a
function of the fraction of dark matter in PBHs. The curves are
labeled by the PBH mass in units of M⊙. We see that X� ≪ 1,
indicating that PBH binaries merging today are rare pairs with
initial separation much smaller than the characteristic inter-PBH
separation. Here and in subsequent figures, the change of slope at
f ≈ σeq ≈ 0.005 is due to the change in the dominant tidal torque,
from large-scale density perturbations at f ≲ σeq to other
PBHs at f ≳ σeq.

FIG. 3. Characteristic decoupling redshift of PBH binaries
merging at the present time, as a function of the fraction of
dark matter in PBHs. We see that PBH binaries typically form
around matter-radiation equality for fpbh ≲ 0.01, and much
earlier for larger PBH fractions.
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dP
dt

¼
Z

dX
d2P
dXdt

¼ 1

7t

Z
dXe−XPðγXÞ: ð32Þ

Since the integrand peaks at X� ≪ 1, we may set e−X ¼ 1,
and compute the integral analytically. Using γX ∝ X−37=21,
and γX� ¼

ffiffiffi
2

p
, we find

Z
dXPðγXÞ ¼

21

37

X�ffiffiffi
2

p
Z

dγðγ=
ffiffiffi
2

p
Þ−58=37PðγÞ

≈ 0.59X�: ð33Þ

The merger rate per unit volume at the present time t0 is
then obtained from

dNmerge

dtdV
¼ 1

2
f
ρ0m
M

dP
dt

����
t0

≈ 0.042X�
fρ0m
Mt0

; ð34Þ

where ρ0m is the matter density at the present time, and the
factor 1=2 avoids double-counting of pairs.
We show the merger rate as a function of f in

Fig. 5. It scales as m−32=37 ≈m−0.86. For f ≫ σeq, it scales
as f53=37 ≈ f1.41, and for f ≪ σeq it scales as f2. Note that
this contrasts with the results of Ref. [9], which did

not account for torques by adiabatic density perturbations
(i.e., assumed σeq ¼ 0). In their case, the merger rate
changes from∝ f53=37 to∝ f3 at f ≲ 10−3, as PBH binaries
typically form after matter-radiation equality in that case.
The next section is dedicated to check the most important

assumption underlying this rate estimate, namely that
between formation and merger, PBH binaries are mostly
unaffected by their environment.

III. BINARY EVOLUTION BETWEEN
FORMATION AND MERGER

The goal of this section is to estimate the effect of
interactions with the overall tidal field, other PBHs and
baryons after the binary has formed, once it is part of
nonlinear structures.

A. Purely gravitational interactions

We begin by considering purely gravitational inter-
actions of PBH binaries with dark matter, whether in the
form of PBHs or otherwise. Before we start, let us point out
that if PBHs do not make all of the dark matter, one must
make assumptions about the rest of it. Given that the scales
currently probed by CMB anisotropy and large-scale-
structure measurements are significantly larger than the
scales of interest here, all bets are open regarding the
appropriate model. For instance, the dark matter could be
cold enough that its free streaming length is below current
limits from Ly-α forest data [47], yet be effectively warm
on a scale containing a few PBHs. Similarly, the dark
matter could be an ultralight axionlike particle, massive
enough to evade existing constraints [1], yet light enough to
have strong wavelike effects on the scales of interest. For
definiteness, we shall assume that the rest of the dark matter
is made of cold, collisionless particles with masses≪ M. In
addition to being the simplest scenario, it is also where the
dark matter is expected to cluster the most and, hence, have
the largest gravitational effects on PBH binaries. Making
this assumption is, therefore, conservative.

FIG. 4. Characteristic initial orbital elements (semimajor axis a
and reduced angular momentum j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
) of PBH binaries

merging at the present time.

FIG. 5. PBH binary merger rate, as a function of PBH fraction
fpbh and mass m ¼ M=M⊙.
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1. Characteristic properties of early halos

Consider a spherical region enclosing on average a total
mass Mh. The number N of PBHs it contains is Poisson
distributed with mean hNi ¼ fMh=M and variance
hðΔNÞ2i ¼ hNi. For hNi ≫ 1, the distribution of pertur-
bations on that mass scale is nearly Gaussian, with variance
at equality

σ2ðMh; eqÞ ≈ σ2eq þ
f2

hNi ¼ σ2eq þ f
M
Mh

: ð35Þ

Let us remark that the scales relevant to this section are
typically larger than those relevant to the calculation of the
torque in Sec. II C 2 (if we consider only haloes containing
at least a few PBHs), so the meaning of σeq is technically
different in these two contexts. For simplicity, and assum-
ing that the variance of perturbations varies slowly with
mass on these scales, we may approximate them to be
roughly equal.
During the matter era, perturbations grow linearly with

the scale factor, σðMh; sÞ ≈ sσðMh; eqÞ. Perturbations of
mass scaleMh typically collapse when σðMh; sÞ ≈ 1, i.e., at
scale factor

scollðMhÞ ≈ ðσ2eq þ fM=MhÞ−1=2: ð36Þ

As a sanity check, with our assumed σeq ¼ 0.005, we find
that the first small-scale structures form at z ∼ 20 if f ¼ 0,
consistent with current estimates.
Once a perturbation collapses and virializes into a halo,

we assume its characteristic density ρh is ∼200 times the
mean density at the time of collapse:

ρh ≈ 200ρ̄mðscollÞ: ð37Þ

The variance of the relative velocity of two point masses in
the halo is typically

v2h ≈ 2

�
4πρh
3

M2
h

�
1=3

: ð38Þ

The halo changes on a characteristic dynamical time

th ≈

ffiffiffiffiffiffiffiffiffiffi
3

4πρh

s
: ð39Þ

We are interested in a slightly different property, namely the
characteristic halo mass a PBH binary (or any mass
element) is part of as a function of cosmic time. We shall
make the simplest assumption, that at any given time most
of the mass resides in halos that have just collapsed. In
other words, inverting Eq. (36), we assume that the
characteristic halo mass as a function of scale factor is

MhðsÞ ≈ fMs2; ð40Þ

valid for s ≪ σ−1eq . At later times, standard adiabatic
perturbations become larger than the small-scale Poisson
contribution, and the characteristic massMhðsÞ depends on
the detailed functional form of σeqðMhÞ. Of course a PBH
binary can only be part of a halo that contains at the very
least 2 PBHs. For definiteness, we will consider halos as
containing at least 10 PBHs. We define s10 as the character-
istic scale factor at which such halos (with mass
Mh ¼ 10M=f) first form,

s10 ≡ ðσ2eq þ f2=10Þ−1=2: ð41Þ

To summarize, we take the following simple prescription:
at a given scale factor s ≥ s10, a PBH binary is typically
part of a halo of mass fMs2 ¼ 10M=fðs=s10Þ2, whose
characteristic density, velocity dispersion and dynamical
time are given by Eqs. (37), (38), and (39).

2. Relation of halo properties to characteristic
PBH binary properties

Here we write a few relations between the properties of
the first halos and those of PBH binaries, which we will use
repeatedly in the remainder of this section. We keep track of
numerical factors in order not to add on to the uncertainty,
but one should keep in mind that these are order-of-
magnitude estimates. We define the following dimension-
less quantity

ϵ≡
�
4πρha3

3M

�
1=3

≡ ϵ10ðs10=sÞ; ð42Þ

where, using Eqs. (11), (30), and (41),

ϵ10 ≈ 0.6ðσ2eq þ f2=10Þ1=2ðX=fÞ4=3

≈ 0.006m20=111 ðσ2eq þ f2=10Þ1=2
ðσ2eq þ f2Þ14=37 ðX=X�Þ4=3. ð43Þ

We see that ϵ10 ≪ 1 for all ðm; fÞ of interest. In words,
PBH binaries are much “denser” than the characteristic first
halos, because they typically form much earlier on.
An immediate consequence is that the orbital time of the

binary is always much shorter than the dynamical time of
the halo:

torb
th

∼ ϵ3=2 ≪ 1: ð44Þ

Another relevant timescale is that of general-relativistic
apsidal precession, which, for an equal-mass binary is (see,
e.g., Ref. [48])
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tprec ¼
1

6

a
M

j2torb: ð45Þ

For binaries merging at t ¼ t0, using Eq. (23), we may
rewrite this as

tprec ¼
1

6

�
170

3

t0
M

j−7
�

1=4
j2torb

≈ 2 × 105m−1=4j1=4torb: ð46Þ

In particular, for typical binaries with j ≈ j�, using Eq. (31),
we get

tprec
torb

≈ 105m−8=37ðσ2eq þ f2Þ2=37: ð47Þ

Using Eqs. (44), and (42)–(43), we find, for the character-
istic binaries merging today,

tprec
th

∼ 105m−8=37ðσ2eq þ f2Þ2=37ϵ3=210 ðs10=sÞ3=2: ð48Þ

Therefore, we find that, until late times, the apsidal
precession time is typically much longer than the character-
istic dynamical time of the halo.
The ratio of the halo’s pairwise velocity dispersion to a

binary’s circular velocity vbin ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
2M=a

p
is

v2h
v2bin

≈
a
M

�
4πρh
3

M2
h

�
1=3

¼ ðMh=MÞ2=3ϵ: ð49Þ

For PBH fractions f ≳ σeq, the mass of the first halos
evolves according to Eq. (40), so we get

vh
vbin

≈ ð10=fÞ1=3ϵ1=210 ðs=s10Þ1=6

≈ 0.09m10=111f−47=222ðs=s10Þ1=6ðX=X�Þ2=3; ð50Þ

where the second line is valid for f ≳ ffiffiffiffiffi
10

p
σeq ∼ 0.01. For

f ≳ 0.01, PBH binaries are, therefore, typically “hard”
relative to the first halos they are part of. Eventually, as the
characteristic halo mass and virial velocity increase, this is
no longer the case.
Finally, it is useful to rewrite the Hubble rate as follows,

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8π

3
ρ̄m

r
≈

1

10

ffiffiffiffiffiffiffiffiffiffi
4πρh
3

r
≈

1

10
t−1h ; ð51Þ

and integrals over time becomeZ
dt
th

¼
Z

d ln s
Hth

≈ 10

Z
d ln s: ð52Þ

We now discuss how the orbital elements of PBH binaries
may be affected by nonlinear structure. We first consider

the effect of the tidal field from the smooth halo, and
then consider discrete interactions with other PBHs.

3. Torques by the tidal field from the smooth halo

The rate of change of a binary’s specific energy due to a
tidal field Tij is Tijri _rj ¼ 1

2
Tij

d
dt ðrirjÞ, where riðtÞ is the

binary’s separation. Integrating over time, we see that the
binary’s energy hence semimajor axis are secularly con-
served if Tij changes on a timescale much longer than the
binary’s period. We have shown in the previous section that
th ≫ torb, and as a consequence, the halo’s tidal field does
not affect the semimajor axis of typical PBH binaries.
The tidal field exerts a torque per reduced mass

_li ¼ ϵijkrjTklrl: ð53Þ

Since th ≫ torb, we may average this equation over an
orbital period:

h _lii ¼ ϵijkTklhrjrli ∼ jTijja2: ð54Þ

If the tidal field evolved on a timescale longer than the
apsidal precession time, further averaging over the pre-
cession time would lead to _li ∝ ϵijkTklðδjl − l̂jl̂lÞ, i.e.,
_l ∝ l × ðT · lÞ⊥l, in which case the magnitude of the
angular momentum would also be secularly conserved.
However, we saw in the previous section that tprec ≫ th, so
the tidal field of the halo can indeed change l.
The characteristic tidal field Tij ¼ −∂i∂jϕ is of order

jTijj ∼ ð4π=3Þρh, as can be seen from Poisson’s equation.
The torque on a binary with semimajor axis a is, therefore,
of order _l ∼ ð4π=3Þρha2, implying, since _a ¼ 0,

dj
dt

∼
4π

3
ρh

a3=2

M1=2 : ð55Þ

The tidal field of the smooth halo is roughly constant on a
dynamical time th. During that time, the magnitude of the
angular momentum changes by a amount Δjh of order

Δjh ∼
4π

3
ρhth

a3=2

M1=2 ∼ ϵ3=2 ≪ 1: ð56Þ

After a time ∼th, the principal axes of the tidal field change
direction, so the changes Δjh are uncorrelated from one
dynamical time to the next. The angular momentum, there-
fore, undergoes a random walk on timescales t ≫ th, and its
variance grows as

hΔj2i ∼
Z

dt
th
ðΔjhÞ2 ∼

Z
dt
th
ϵ3

∼ 10

Z
d ln sϵ3 ∼ 10ϵ310; ð57Þ
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where we have used Eq. (52), and ϵ ¼ ϵ10ðs10=sÞ. Using
Eqs. (43) and (31), we find, for typical binaries merging
today,

hΔj2i
j2�

∼ 0.004m10=37 ðσ2eq þ f2=10Þ3=2
ðσ2eq þ f2Þ58=37 ≪ 1: ð58Þ

We, therefore, conclude that the overall halo’s tidal field
does not significantly alter the orbital parameters of PBH
binaries merging today.

4. Distant encounters with other PBHs

Let us now consider discrete interactions with other
PBHs. We start by considering distant encounters, i.e.,
those whose distance of closest approach rp is at least a few
times a, so that their interaction is tidal.
Consider a single PBH approaching a PBH binary on a

hyperbolic orbit with impact parameter b and relative
velocity at infinity v. Conservation of energy and angular
momentum imply the following relations between ðb; vÞ
and the distance of closest approach rp:

b2 ¼ r2p þ
6Mrp
v2

; ð59Þ

rp ¼ b

½1þ ð3M=bv2Þ2�1=2 þ 3M=bv2
: ð60Þ

By conservation of angular momentum, the velocity at
pericenter is vp ¼ bv

rp
. The characteristic interaction time is,

therefore,

tp ∼
rp
vp

¼ r2p
bv

: ð61Þ

The change in specific angular momentum is of order

Δl ∼
M
r3p

a2tp ∼
Ma2

rpbv
: ð62Þ

The change of specific energy E=M is at most (provided the
interaction is prompt, i.e., tp ≲ torb) of order

ΔE
M

∼
M
r3p

a

ffiffiffiffiffi
M
a

r
tp ∼

M3=2a1=2

rpbv
; ð63Þ

hence the fractional change in semimajor axis is at most

Δa
a

¼ ΔE
E

∼
M1=2a3=2

rpbv
: ð64Þ

The change in j is of the same order:

Δj ¼ Δlffiffiffiffiffiffiffiffiffiffi
2Ma

p −
1

2
j
Δa
a

∼
Δlffiffiffiffiffiffiffi
Ma

p ∼
M1=2a3=2

rpbv
: ð65Þ

Note that limiting ourselves to tidal distant encounters
implies that these changes are always small: using Eq. (59),
with rp ≫ a, we get

Δa
a

≲ Δj ≪ ð1þ av2=6MÞ−1=2 ≤ 1: ð66Þ

The merger timescale can only be significantly affected if a
or j change by a fractional amount of order unity. While
Δa=a ≪ 1 for distant encounters, since the characteristic j
is small, we do have to make sure that Δj ≪ j.
To change j by an amount greater than Δj0 requires

rpb≲M1=2a3=2

vΔj0
: ð67Þ

Defining α≡ bv2=ð3MÞ and va ≡
ffiffiffiffiffiffiffiffiffiffi
M=a

p
, this condition

implies

α3

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p ≲ v3

v3aΔj0
: ð68Þ

This has the approximate solution

α2 ≲ α20 ≡
�

v3

v3aΔj0

�
2=3

þ v3

v3aΔj0
: ð69Þ

From this we obtain the cross section to change j by more
than Δj0:

σΔj≥Δj0ðvÞ ¼ π

�
3M
v2

�
2

α20

∼
Ma
v2

1

Δj2=30

þM1=2a3=2

v
1

Δj0
: ð70Þ

The first term in this cross section corresponds to the limit
of nearly parabolic encounters, and the second term to the
limit of quasistraight line trajectories. The former has the
same dependence as equation (19) of [49] (once translated
from e to j), where this cross section was computed exactly
in the quasiparabolic-orbit limit. The numerical prefactor
found in Ref. [49] for equal-mass objects is ≈7.
The number of encounters that change j by more than

Δj0, per binary, is then

NΔj≥Δj0 ¼
Z

dt
fρh
M

vhσΔj≥Δj0ðvhÞ; ð71Þ

where fρh=M is the number density of PBHs, that is,
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NΔj≥Δj0 ∼ f

�
a

Δj2=30

Z
dt

ρh
vh

þ ða3=MÞ1=2
Δj0

Z
dtρh

�

∼ f

�
1

Δj2=30

Z
dt
th
ϵ

�
M
Mh

�
1=3

þ 1

Δj0

Z
dt
th
ϵ3=2

�

∼ 10f

�
ðf=10Þ1=3

�
ϵ310
Δj20

�
1=3

þ
�
ϵ310
Δj20

�
1=2

�
: ð72Þ

An initially narrow distribution in j is broadened by
impulsive torques from other PBHs up to the characteristic
Δj0 for which NΔj≥Δj0 ≈ 1, which is approximately

Δj20∼ ϵ310×max ½ðf=10Þð10fÞ3;ð10fÞ2�∼ ð10fÞ2ϵ310: ð73Þ

This is a factor of∼10f2 larger thanEq. (57) and is, therefore,
still small relative to j2�, even for f ≈ 1, and even if multiplied
by a factor of ∼10. Therefore, we conclude that distant
encounters with other PBHs do not significantly affect the
orbital parameters of PBH binaries merging today.

5. Close encounters with other PBHs

Let us estimate the probability of close encounters, i.e.,
those with closest approach rp ≲ a. The cross section from
such encounters is obtained from Eq. (59):

σcloseðvÞ ∼ π

�
a2 þ 2

Ma
v2

�
: ð74Þ

The first term is just the geometric cross section and the
second term accounts for gravitational focusing. Therefore,
the total number of such encounters per binary is

Nclose ¼
f
M

Z
dtρhvhσcloseðvhÞ

∼ f

�
a2

M

Z
dtρhvh þ a

Z
dt

ρh
vh

�
: ð75Þ

While the second term is dominated by the first halos as vh
increases with time, the first term also gets a contribution
from low redshifts. Indeed, at z≲ 20, the characteristic halo
mass increases exponentially with redshift due to the
logarithmic behavior of σðMhÞ, and so does vh ∼M1=3

h ρ1=6h .
Let us start by evaluating the low-redshift contribution,

i.e., the number of close encounters in Milky-Way-like
halos, with characteristic density ρMW ≈ 200ρ0m and veloc-
ity dispersion vMW ≈ 200 km=s:

Nclose

dt

����
mw

∼ f
a2

M
ρMWvMW

∼ 10−4f

�
a

104 AU

�
2 30 M⊙

M
Gyr−1: ð76Þ

The probability of close encounters in Milky-Way-like
halos is, therefore, clearly negligible.
The contribution from the first halos is dominated by the

gravitational focusing term, since vh ≫ vorb in the first
halos:

Nclose ∼
Z

dt
th
ϵ

�
M
Mh

�
1=3

∼ 10fðf=10Þ1=3ϵ10: ð77Þ

From Eq. (43), we see that this number is at most ∼0.01 for
f ∼ 1, and very small for f ≪ 1.
We, therefore, conclude that close encounters are

unlikely, and as a consequence we need not worry about
their detailed consequences. Let us point out, as additional
reassurance, that since PBH binaries are typically hard
relative to the first halos, they can not be disrupted
(“ionized"), as the perturbing PBHs do not have sufficient
energy to do so.

6. Dynamical friction by dark matter particles

Reference [45] pointed out that if PBHs are a subdomi-
nant component of dark matter, and if the bulk of dark
matter is made of particles with masses ≪ M, they would
exert dynamical friction on PBH binaries, possibly making
them merge in a short timescale. Here we revisit this
process using our analytic estimates for the properties of the
first halos.
The rate of hardening of a binary in a background of

point masses was estimated in Ref. [50]. The effect is
largest for hard binaries. In the limit of hard, highly-
eccentric binaries, the results of [50] are approximately

d ln a
dt

≈ −30
ρha
vh

≈ −
3

th
ϵðM=MhÞ1=3: ð78Þ

Therefore, we see that jΔ ln aj ∼ 30ϵ10 ≪ 1.
The fitting function for the rate of change of eccentricity

given in Ref. [50] translates to

d ln j
d ln a

≈ e2ðk1 þ k2eÞj2ðk0−1Þ ≈ ðk1 þ k2Þj2ðk0−1Þ; ð79Þ

where the constants ki are of order unity and depend on
vh=vbin, and the second approximation holds for e ≈ 1. The
minimum value of k0 estimated by Ref. [50] is k0 ∼ 0.75.
Therefore, we find that Δ ln j is at most ∼10ϵ10=j

1=2
� ∼

10ðσ2eq þ f2=10Þ1=2=ðσ2eq þ f2Þ1=4ðX�=fÞ5=6 ≪ 1.
From these analytic estimates,we conclude that dynamical

friction by dark-matter particles does not significantly affect
the orbital parameters of PBH binaries merging today.

7. A note on local particle-dark-matter halos

The previous paragraphs focused on large halos, con-
taining a few PBHs on average. In particular, for
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σeq ≲ f ≪ 1, such halos only collapse at s10 ∼
ffiffiffiffiffi
10

p
=f, i.e.,

significantly after matter-radiation equality.
In addition to being part of large halos, PBHs get

“clothed" in a local halo of bound dark matter particles
if fpbh < 1 [51–53]. While accretion onto a binary must
differ from accretion onto a point mass, we nevertheless
generically expect that a dark-matter mass of order
Mdm ∼M becomes bound to the binary by matter-radiation
equality. If the bulk of the dark matter is a thermal relic with
a weak-scale annihilation cross section, the local dark
matter halo could moreover be a luminous source of
annihilation products [54]. It is difficult to estimate
analytically the properties of such a local halo and the
effect it may have on PBH binaries (see Ref. [45] for an
attempt to do so). It is however a well-posed numerical
problem, the study of which we defer to future work.
To conclude this section, we find that the orbital

parameters of PBH binaries formed in the early Universe
are not significantly affected by halos large enough to
contain ∼10 PBHs. However, we emphasize that this
conclusion relies on very simple analytic estimates for
complex dynamics. For instance, one of our underlying
assumptions is that each generation of halos gets mostly
tidally stripped as they get engulfed in the next generation
of more massive halos. It might be that most of the first
halos actually survive as substructure of the subsequent
generation, in which case the phase-space parameters
determining collision rates would significantly differ from
our estimates. A definitive answer to the problem of
survival of PBH binaries in early halos is, therefore, likely
to require more detailed numerical studies.

B. Effect of baryon accretion

Reference [45] suggested that a thin circumbinary
accretion disk may form around PBH binaries once the
Bondi radius exceeds the binary separation. Such a disk
would then exchange energy and angular momentum with
the binary [55]. While it is not clear what kind of accretion
flow would take place (thin, slim, thick disk or advection-
dominated flow, see, e.g., [56] for a review), here we
attempt to give an estimate of the magnitude of this effect.

1. Estimate of the work and torque on the binary

Let us first consider a quasispherical accretion flow onto
the binary. Assuming the binary separation is less than the
Bondi radius, the characteristic velocity of the gas at the
orbital separation is of order the free fall velocity, which is
of the order of the orbital velocity v ∼

ffiffiffiffiffiffiffiffiffiffi
M=a

p
. The drag

force on each black hole is of the order _Mv, i.e., if we
assume the Bondi-Hoyle-Lyttleton accretion rate locally
onto each black hole, [57–59],

M _v ∼ −4πρðaÞgas
M2

v3
v ∼ −4πρðaÞgasMa; ð80Þ

where ρðaÞgas is the local gas density. Now, the total accretion
rate on the binary is such that _M ¼ 4πρgasr2vr ¼ constant,
so the gas density at the binary’s orbit is of order

4πρðaÞgas ∼ _M=ða2 ffiffiffiffiffiffiffiffiffiffi
M=a

p Þ. Hence, we get

M _v ∼ − _M
ffiffiffiffiffiffiffiffiffiffi
M=a

p
: ð81Þ

The binary loses energy at a rate _E ∼M _vv and angular
momentum at a rate _L ∼M _va, i.e., denoting the binary’s
total mass by Mbin ¼ 2M, we get

_E ¼ −A _M
Mbin

a
; ð82Þ

_L ¼ −B _M
ffiffiffiffiffiffiffiffiffiffiffiffi
Mbina

p
; ð83Þ

where A and B are dimensionless numbers of order unity.
Let us now consider instead a thin circumbinary accre-

tion disk with surface density Σ and effective shear
viscosity ν. The disk is truncated at an inner edge rin,
where viscous torques balance gravitational torques [60].
This inner edge is typically around one of the lowest
Lindblad resonances [61], i.e., rin ∼ 2a, as confirmed in
numerical simulations [60] with typical Shakura-Sunyaev
[62] viscosity parameters. The torque _L on the binary is the
opposite of the torque on the disk, which is approximately
the viscous torque at the inner edge, i.e., [60]

_L ∼ −3πνΣ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mbinrin

p
: ð84Þ

The effective viscosity also determines the radial inflow,
hence the accretion rate [63],

_M ∼ 3πνΣ: ð85Þ

Dividing these two equations, we obtain again Eq. (83).
Of course, the parameter B depends on the binary’s
eccentricity and on the details of the accretion physics,
but should be of order unity (see also Ref. [64] for a similar
parametrization).
The scaling (83) is confirmed in numerical simulations

of thin circumbinary disks. Ref. [65] simulated a circum-
binary accretion disk around a circular binary. Dividing
their Eqs. (18) and (20) gives our Eq. (83) with B ≈ 2.4.
While [65] only explicitly resolved the region r ≥ a, the
more recent simulations of Ref. [66] resolves the interior
region r ≤ a and the individual accretion “minidisks”
around each black hole. They find that the dominant
contribution of the torque arises from gas streams close
to the individual black holes. Recasting their Eq. (14) in
physical units, and setting the sink timescale to the
characteristic viscous timescale, translates again to our
Eq. (83) with B ≈ 5.6.
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The rate of energy change can be obtained from the
following consideration. For a perturbing potentialΦ of the
form Φ ∝ ϕmlðrÞeiðmθ−lΩbtÞ, where θ is the polar angle and
Ωb ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mbin=a3

p
, the combination E − l

mΩbL is constant.
Provided the torque is dominated by low-order ðm; lÞ, we,
therefore, find _E ∼ Ωb

_L, which translates to Eq. (82). Here
again, the parameter A depends on eccentricity and the
details of the accretion disks, but should be of order unity.
Therefore, we expect the simple relations (82) and (83)

to hold under rather general circumstances. From these
relations, and using E ¼ − 1

8
M2

bin=a and L ¼ 1
4
M3=2

bin a
1=2j

for an equal-mass binary, it is straightforward to show that

_a
a
∼
dj
dt

∼ −
_M
M

; ð86Þ

with uncertain numerical prefactors. Note, that the sign
of the effect itself is uncertain: the binary could instead
extract energy and angular momentum from the accre-
tion flow.

2. Accretion rate and total change in orbital parameters

Our next step is now to estimate the accretion rate _M.
Accretion is typically highly time-dependent and may
proceed in bursts (see, e.g., Fig. 7 of Ref. [65]), whose
amplitude and timescale cannot be simply estimated.
However, provided the Bondi radius is larger than the
binary separation, the large-scale accretion flow should be
roughly of the Bondi-Hoyle-Lyttleton type [57–59]: out-
side the sonic radius there should be little difference
between accretion onto a point mass or a binary.2

Therefore, on timescales long compared to the Bondi time,
the average accretion rate ought to be close to the Bondi
value, h _Mi ≈ _MB. Since the total change in orbital param-
eters is proportional to

R
dt _M=M, it is this long-timescale

accretion rate that is relevant, rather than the possibly large
short-time fluctuations. We denote by _m≡ _M= _MEdd,
where3 _MEddc2 ≡ LEdd ≈ 2Mc2 Gyr−1 is the Eddington
luminosity. We therefore have

Z
dt

_M
M

∼ 2

Z
_mdt
Gyr

: ð87Þ

The rate of accretion from the background baryon gas was
computed in Ref. [24] accounting for relative motions of
baryons and PBHs and Compton cooling and heating. At
redshifts less than a few hundred, which dominate the
integral, the characteristic dimensionless accretion rate they
find is _m ∼ 10−5ðM=M⊙Þ. Therefore, we get

Z
tmax

dt
_M
M

∼ 2 × 10−5
tmax

Gyr
M
M⊙

: ð88Þ

At low enough redshift, once the binaries are part of large
halos, we expect the accretion to be cutoff due to the large
nonlinear velocities and heating of the gas [23]. Cutting off
the integration at z ≈ 10 corresponds to tmax ∼ 0.5 Gyr, so
we get

Z
dt

_M
M

∼ 10−5
M
M⊙

; ð89Þ

which matches what Ref. [45] estimated from the results of
Ref. [23]. Therefore we conclude that, even if the coef-
ficient in Eq. (86) is ∼10–100, the semimajor axis should
not be significantly affected by an accretion disk. This
contrasts with the results of Ref. [45] who found an orbital
decay timescale much shorter than the Hubble time. The
difference can be traced back to their estimate of the
characteristic disk mass Mcbd ≡ πa2Σ by Mcbd ∼H−1 _M,
instead of the more appropriate order of magnitude
Mcbd ∼ tvisc _M. Reference [45] therefore seem to have
overestimated the effect of the accretion disk by a factor
∼H−1=tvisc ≫ 1. Nevertheless, if the coefficient in Eq. (86)
is large, and for large enough PBH masses, the change in j,
while small in absolute value, could still exceed the
characteristic initial value for PBH binaries merging today
(see Fig. 4).
If this is the case, and accretion efficiently extracts angular

momentum, binaries that would have otherwise merged
todaymaymerge much earlier on. In the extreme casewhere
most binaries merge quickly, a high-redshift gravitational-
wave background would result [45]. Conversely, if accretion
tends to circularize eccentric binaries, they may merge on a
much longer timescale. More generally, if accretion signifi-
cantly affects orbital parameters, the probability distribution
of merger times, hence the merger rate, could be drastically
different from what we have estimated in Sec. II. This
warrants further work, most likely numerical simulations, to
investigate this issue in more detail.

IV. PBH BINARY FORMATION
IN PRESENT-DAY HALOS

It was pointed out in Ref. [8] (hereafter, BCM) that PBH
binaries can also form in present-day halos through
gravitational bremsstrahlung: if two PBHs pass close
enough to each other, they may radiate a sufficient amount
of energy in gravitational waves to become bound. The
binaries formed through this pathway are typically very
tight and highly eccentric [10], and coalesce within a
timescale much shorter than a Hubble time, so that the
merger rate is approximately equal to the capture rate.
BCM found that the merger rate is dominated by the
smallest halos, of a few hundred solar masses, and is of

2We thank Geoffrey Ryan for pointing this out.
3Our convention follows that of Refs. [23,24] but differs from

the accretion-disk literature, where _MEdd is often defined with a
factor of 10 larger.
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order ∼1 Gpc−3 yr−1 if PBHs make all of the dark matter.
This is significantly lower than the merger rate of binaries
formed in the early Universe. However, the calculation of
BCM did not account for the contribution of Poisson
fluctuations to density perturbations when estimating the
characteristic density and velocity dispersion of the small-
est halos. Given how sensitively these depend on the
variance of perturbations, it is worth revisiting this calcu-
lation. Throughout this section, we assume f ¼ 1.

A. General considerations

The cross section for two equal masses to become bound
due to gravitational radiation is [67]

σgwðvÞ ¼ 4π

�
85π

3

�
2=7 M2

v18=7
≈ 45

M2

v18=7
; ð90Þ

where v is the relative velocity of the two PBHs at large
separation. The rate of binary formation in a given halo is,
therefore,

Γ ¼ 1

2

Z
d3r

ρðrÞ2
M2

hvσgwiðrÞ ∼ 20Mhρhv
−11=7
h : ð91Þ

Using Eq. (38) for virialized halos, we have vh∼2M
1=3
h ρ1=6h ,

so that

Γ ∼ 10M10=21
h ρ31=42h : ð92Þ

A simple prescription for the characteristic halo density is
that it is ∼200 times the mean density at the time of
collapse. Neglecting the effect of dark energy at low
redshift, the characteristic redshift of collapse of perturba-
tions of mass Mh is

zcoll ∼ σðMhÞ; ð93Þ

where σðMhÞ is the variance of linear perturbations on the
mass scale Mh extrapolated to the present time. Therefore,

ρh ∼ 200½σðMhÞ�3ρ̄0m: ð94Þ

Note that this is consistent with the asymptotic behavior of
the fitting formula of Ref. [68] for the mass-concentration
relation: for NFW profiles, ρh ∼ 200ρ̄0mc3, and the concen-
tration c scales nearly linearly with σðMhÞ at large values.
This implies

Γ ∼ 450ðρ̄0mÞ31=42M10=21
h ½σðMhÞ�31=14: ð95Þ

The merger rate per unit volume is then obtained by
integrating Γ over the halo mass function:

dNmerge

dtdV
¼

Z
dMh

dnh
dMh

ΓðMhÞ: ð96Þ

The halo mass function is well modeled on large scales
Mh ≳ 1010 M⊙, corresponding to σðMhÞ ≲ 4 [69]. It is not
unreasonable to extrapolate fitting functions several orders
of magnitude in mass for standard adiabatic perturbations,
as σðMhÞ only depends logarithmically on Mh in that case.
However, for Poisson perturbations, σðMhÞ ∝ 1=

ffiffiffiffiffiffiffi
Mh

p
, and

the mass function for very large values of σ is anyone’s
guess. For lack of a better estimate, we shall, therefore,
simply use the Press-Schechter (PS) mass function [70]:

dnh
dMh

≈
ffiffiffi
2

π

r
ρ̄0m
Mh

���� d ln σdMh

����νe−1
2
ν2 ; ν≡ 1.68

σðMhÞ
; ð97Þ

For the small halos of interest, with mass Mh ≪ 1012 M⊙,
ν ≪ 1 and one can neglect the exponential term. We,
therefore, arrive at

dNmerge

dtdV
∼ 600ðρ̄0mÞ73=42

Z
Mc

dMh

���� dσ
dMh

���� σ3=14

M11=21
h

; ð98Þ

where Mc is a cutoff mass that truncates the otherwise
divergent integral at Mh → 0. To determine Mc, we follow
BCM and require that the evaporation timescale of the halo
is less than a Hubble time t0. The evaporation time is
approximately [71]

tevap ∼ 10
N
lnN

th; ð99Þ

where th is the halo’s crossing or dynamical time, and N ≡
M=Mh is the number of objects in the halo. Using Eq. (94),
we have

th ∼ 0.1½σðMhÞ�−3=2t0: ð100Þ

Therefore, the cutoff halo mass Mc is determined by the
implicit equation

½σðMcÞ�3=2 ∼
Mc=M

lnðMc=MÞ : ð101Þ

Up to our specific assumptions about the characteristic halo
density and mass function, Eqs. (98) and (101) are fairly
general. They illustrate that the merger rate is entirely
determined by the variance σ2ðMhÞ.

B. Merger rate accounting for Poisson perturbations

Let us now explicitly include Poisson perturbations.
From Eq. (35), shot noise perturbations dominate over
standard adiabatic perturbations for Mh ≤ M=σ2eq ≈
4 × 104M. Provided this is the case, the variance at the
present time is of order
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σðMhÞ ≈ zeq

ffiffiffiffiffiffiffi
M
Mh

s
: ð102Þ

Equation (101), therefore, implies

z3=2eq

�
M
Mc

�
3=4

∼
Mc=M

lnðMc=MÞ ; ð103Þ

which implies

Mc ≈ 3 × 103M ≡ NcM; ð104Þ

consistent with the results of Ref. [72], and well into the
regime where Poisson perturbations dominate over adia-
batic ones. This is to be contrasted with the cutoff mass of
BCM, who estimated Mc ≈ 400 M⊙ for M ¼ 30 M⊙,
corresponding to Nc ≈ 13.
The merger rate per halo, Eq. (95), is, therefore,

Γ ∼ 3 × 1010ðρ̄0mÞ31=42M10=21
h ðM=MhÞ31=28

∼ 6 × 10−14 Gpc−3 yr−1
�
m
30

�
10=21

�
Mc

Mh

�
53=84

: ð105Þ

For m ¼ 30, this rate is about 2 orders of magnitude larger
than that of BCM at Mh ¼ Mc ≈ 105 M⊙.
Finally, the total merger rate per unit volume is

dNmerge

dtdV
∼ 600ðρ̄0mÞ73=42M−11=21z17=14eq

×
Z

∞

Nc

dx

x11=21
1

2x3=2
x−13=28

∼ 500ðρ̄0mÞ73=42M−11=21

∼ 0.2ðm=30Þ−11=21 Gpc−3 yr−1: ð106Þ

This is within a factor of a few of the result of BCM, as the
much larger cutoff mass compensates for the enhanced
merger rate per halo.
We, therefore, conclude that (i) the merger rate of PBH

binaries formed in present-day halos is roughly consistent
with the estimate of BCM, despite the important effect of
small-scale Poisson fluctuations, and (ii) it is a subdomi-
nant contribution to the overall PBH-binary merger rate.4

This last statement holds provided PBH binaries formed in
the early Universe are not significantly disturbed between

formation and merger, as our analytic estimates above
indicate.

V. POTENTIAL LIMITS FROM EXISTING
LIGO OBSERVATIONS

We now estimate upper limits on the volumetric merger
rate of binary black holes set by LIGO O1, and how such
limits would translate on the PBH abundance provided the
merger rate is that computed in Sec. II.
In Ref. [74], the LIGO Collaboration provides 90%

upper limits to the merger rate of intermediate-mass black
holes, with individual masses up to 300 M⊙. These limits
depend on the spins of the black holes, in particular on their
projection along the orbital angular momentum: in the case
of 100 − 100 M⊙ binary, the upper bound varies by a factor
∼4 between the nearly aligned and nearly anti-aligned
cases. Since Ref. [74] does not provide upper limits for
nonzero spins forM=M⊙ ¼ 200 and 300, we shall use their
zero-spin bounds for all cases, keeping in mind that they are
only accurate up to a factor of a few.
For M ¼ 10; 20; 40 M⊙, we estimate the 90% upper

limit on the merger rate from R90% ¼ − lnð0.1Þ=hVTi [74],
where hVTi is the average space-time volume to which the
LIGO search is sensitive, and is obtained from integrating
Fig. 7 of Ref. [75]. We anticipate that LIGO also strongly
constrains masses M ≤ 10 M⊙, and defer this detailed
analysis to the LIGO Collaboration, updating that carried
out in Ref. [40] with the S2 run. We summarize our
estimated limits in Table I.
We show these limits in Fig. 6, alongside the PBH binary

merger rate if they make all of the dark matter, and if PBH
binaries are not significantly perturbed between formation
and merger. We see that the latter largely exceeds the
estimated upper limits, by 3 to 4 orders of magnitude,
depending on the mass. This indicates that LIGO could rule
out PBHs as the dominant dark matter component, and set
stringent upper limits to their abundance.
To estimate these potential limits, we solve for the

maximum PBH fraction for which the merger rate is below
the LIGO upper limits. Note, that the merger rate is not

TABLE I. Estimated 90% upper limits on the merger rate of
equal-mass binary black holes from the LIGO O1 run. The limits
for M=M⊙ ¼ 10, 20 and 40 are inferred from Refs. [75,76], and
those for M=M⊙ ¼ 100, 200, and 300 are taken from Ref. [74]
for nonspinning black holes.

M=M⊙ R90% [Gpc−3 yr−1]
10 330
20 77
40 15
100 2
200 5
300 20

4Reference [73] recently argued that PBH mergers in dark
matter spikes around supermassive black holes may yield an
important contribution to the overall rate from present-day halos,
possibly increasing the total rate by more than an order of
magnitude. However, the associated uncertainties are very high
and in any case this rate is still dwarfed by that of early-Universe
binaries.
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linear in f, nor a simple power law through all range of f,
so these limits must be computed numerically. We show the
result in Fig. 7, alongside other existing bounds in that mass
range. We see that LIGO O1 may limit PBHs to be no more
than a percent of the dark matter for M ∼ 10–300 M⊙. If
confirmed with numerical computations, these would
become the strongest existing bounds in that mass range.

VI. DISCUSSION AND CONCLUSIONS

NSTT [39] pointed out long ago that PBHs would form
binaries in the early Universe, as a consequence of the
chance proximity of PBH pairs, and estimated their merger
rate at the present time. Following the first detection of a

binary-black-hole merger [5], Sasaki et al. [9] updated this
calculation to 30 M⊙ PBHs, and generalized it to an
arbitrary PBH abundance. They focused on the case where
PBHs are a very subdominant fraction of the dark matter, as
was implied by the stringent CMB spectral distortions
bounds at the time [23], since then revised and significantly
alleviated [24] (see also [33]).
In this paper, we have, first of all, made several improve-

ments to the calculation of NSST, and accurately computed
the distribution of orbital parameters of PBH binaries
forming in the early Universe. Specifically, we have com-
puted the exact probability distribution of initial angular
momentum for a close pair torqued by all other PBHs, and
have accounted for the tidal field of standard adiabatic
density perturbations, dominant when PBHs make a small
fraction of the dark matter.
Our second and most important addition was to check

thoroughly whether the highly eccentric orbits of PBH
binaries merging today can get significantly disturbed
between formation and merger. To do so, we have estimated
the characteristic properties of the first nonlinear structures,
and as a consequence their effects on the orbital parameters
of PBH binaries. We found that PBH binaries merging
today are essentially unscathed by tidal torques and
encounters with other PBHs. This robustness stems from
the fact that these binaries typically form deep inside the
radiation era and are very tight. We have also estimated the
effect of baryon accretion to be much weaker than previous
estimates [45], but potentially important if unknown
numerical prefactors happen to be large.
Thirdly, we have revisited the calculation of Ref. [8] for

the merger rate of PBH binaries forming in present-day
halos through gravitational recombination. We have explic-
itly accounted for the previously neglected Poisson fluc-
tuations resulting from the granularity of PBH dark matter.
This shot noise greatly enhances the variance of density
perturbations on small scales, and has pronounced effects
on the properties of low-mass halos. We found that, despite
a very different merger rate per halo and minimum halo
mass, the final merger rate estimated by Ref. [8] was in the
right ballpark. This makes it a very subdominant contri-
bution to the overall binary-PBH merger rate.
Last, but not least, we have shown that the predicted

merger rate would overwhelmingly exceed current upper
bounds from LIGO O1 if PBHs make all of the dark matter.
We have estimated possible upper bounds on the PBH
abundance to be less than a percent of the dark matter in the
range 10–300 M⊙, and as low as ∼0.2% forM ¼ 100 M⊙.
Let us point out that Ref. [38] recently derived weaker
potential upper limits on PBH abundance from LIGO. Our
work differs in two aspects: first, we considered the rate of
detectable merger events rather than the stochastic GW
background as in Ref. [38]. Second, and most importantly,
we carefully studied the survival of PBH binaries between
formation and the present time.

FIG. 6. Merger rate of PBH binaries if they make up all of the
dark matter, and provided PBH binaries are not significantly
perturbed between formation and merger (solid line). Super-
imposed are the upper limits from LIGO given in Table I and
described in the main text.

FIG. 7. Potential upper bounds on the fraction of dark matter in
PBHs as a function of their mass, derived in this paper (red
arrows), and assuming a narrow PBH mass function. These
bounds need to be confirmed by numerical simulations. For
comparison we also show the microlensing limits from the EROS
[21] (purple) and MACHO [20] (blue) Collaborations (see
Ref. [77] for caveats and Ref. [32] for a discussion of un-
certainties), limits from wide Galactic binaries [22], ultrafaint
dwarf galaxies [25], and CMB anisotropies [24].
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These potentially stringent upper bounds need to be
confirmed or refuted by a suite of numerical computa-
tions to check and complement our analytic estimates.5

Specifically, it would be interesting to investigate in more
detail (i) how the first PBH halos form and how they may
affect PBH binaries, (ii) the effects of a local bound halo
of dark matter particles if PBHs are a subdominant dark
matter component, and (iii) baryon accretion onto a highy-
eccentric PBH binary. These are complex but well-defined
and interesting astrophysical problems, with possible
implications beyond the topic of PBHs.
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APPENDIX: PROBABILITY DISTRIBUTION
OF THE INITIAL ANGULAR MOMENTUM

1. Torques by other PBHs

In this appendix, we compute the full probability
distribution of j resulting from torques by all other
PBHs, as given in Eq. (18). We apply Markoff’s method,
and parallel Chandrasekhar’s derivation of the Holtsmark
distribution for the gravitational field of point masses [78].
We consider N masses uniformly distributed within a
volume V ¼ 4π

3
R3 and take the limit N, V → ∞ at constant

density n ¼ N=V.
The vector j lies in the plane orthogonal to x. Using

Eq. (18), the two-dimensional probability distribution for j
is formally given by

dP
d2j

¼ lim
V→∞

YN
p¼1

Z
V

d3yp
V

δD

�
j − 1.5

XN
q¼1

x3

y5q
yqjjyq⊥

�
; ðA1Þ

where yjj ≡ y · x̂ is the projection of y on x̂, y⊥ ≡ x̂ × y is
the (rotated) component of y perpendicular to x̂, and δD is
the two-dimensional Dirac function, which we rewrite

δDðXÞ ¼
Z
k⊥x̂

d2k
ð2πÞ2 e

ik·X: ðA2Þ

We, hence, get

dP
d2j

¼ lim
V→∞

Z
d2k
ð2πÞ2 e

ik·jIN; ðA3Þ

I ≡
Z
V

d3y
V

exp

�
−1.5i

x3

y5
yjjk · y⊥

�

¼ 1 −
1

V

Z
V
d3y

�
1 − exp

�
−1.5i

x3

y5
yjjk · y⊥

�	
: ðA4Þ

The latter integral is convergent when V → ∞, so we get

lim
V→∞

IN ¼ lim
V→∞

�
1 −

1

V

Z
d3y½1 − e

−1.5ix3
y5
yjjk·y⊥ �

	
nV

¼ e−nJ ; ðA5Þ

J ≡
Z

d3y

�
1 − exp

�
−1.5i

x3

y5
yjjk · y⊥

��
: ðA6Þ

We rotate the component of y perpendicular to x̂,
y → ðy · x̂Þx̂þ x̂ × y, and rescale y → ð1.5kÞ1=3xy, so the
integral J becomes, recalling that k⊥x,

J ¼ 1.5kx3
Z

d3y

�
1 − exp

�
i
y3

ðŷ · x̂Þðŷ · k̂Þ
��

¼ 2πkx3
Z

∞

0

dv
v2

d2ŷ
4π

ð1 − eivðŷ·x̂Þðŷ·k̂ÞÞ; ðA7Þ

where in the second line we changed variables to v ¼ 1=y3.
Let us first consider the angular integral:

AðvÞ≡
Z

d2ŷ
4π

ð1 − eivðŷ·x̂Þðŷ·k̂ÞÞ: ðA8Þ

To compute it, we use spherical polar coordinates, with
polar axis x̂ × k̂:

AðvÞ ¼
Z

2π

0

dϕ
2π

Z
1

0

dμ

�
1 − exp

�
iv
2
sinð2ϕÞð1 − μ2Þ

��

¼
Z

1

0

dμ

�
1 − J0

�
v
2
ð1 − μ2Þ

��
; ðA9Þ

where J0 is the zeroth-order Bessel function. Since J0ðxÞ ¼
1þOðx2Þ for x → 0, we can compute the integral over v
first:

J ¼ 2πkx3
Z

1

0

dμ
Z

∞

0

dv
v2

�
1 − J0

�
v
2
ð1 − μ2Þ

��

¼ 2πkx3
Z

1

0

dμ
1 − μ2

2

Z
∞

0

du
u2

ð1 − J0ðuÞÞ: ðA10Þ

The last two integrals are analytic, and we arrive at the
simple expression

5This statement could and should be made for most published
bounds on PBHs.
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J ¼ 2π

3
x3k ¼ 0.5

X
n
k: ðA11Þ

We, hence, arrive at the probability distribution

dP
dj

¼ 2πj
dP
d2j

¼ j
Z

d2k
2π

eik·j−jXk

¼ j
Z

kdkJ0ðkjÞe−jXk; ðA12Þ

where jX ≡ 0.5X. This integral is analytic and gives us
Eqs. (19) and (20), which is the exact expression for the
distribution of reduced angular momentum (for a given X
hence jX), accounting for tidal torquing by all other PBHs
(not just the nearest neighbor).

2. Torques by density fluctuations

Let us now consider torques by linear density perturba-
tions in the case where PBHs do not make all of the dark
matter. The linear density field, hence tidal tensor, are
Gaussian, and so is the resulting j. Using Eq. (15), the
variance of j is given by

hj2i ¼ x6

4M2
hϵijkx̂jTklx̂lϵipqx̂pTqmx̂mi ðA13Þ

where we have dropped the subscript “eq” on Tij. This
expression simplifies to

hj2i ¼ x6

4M2
hTklx̂lTkmx̂m − ðx̂kTklx̂lÞ2i: ðA14Þ

Averaging over the direction of x̂, we arrive at

hj2i ¼ x6

20M2



TijTij −

1

3
TiiTjj

�
: ðA15Þ

In Fourier space, Tij ¼ −kikjϕ ¼ k̂ik̂j4πρ̄m;eqδeq, so we
arrive at

hj2i ¼ 3

10

�
4π

3

�
2 x6

M2
½ρ̄eq�2hδ2eqi; ðA16Þ

which implies Eq. (21).
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