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We study the cosmological effects of adding terms of higher order in the usual energy-momentum tensor
to the matter Lagrangian of general relativity. This is in contrast to most studies of higher-order gravity
which focus on generalizing the Einstein-Hilbert curvature contribution to the Lagrangian. The resulting
cosmological theories give rise to field equations of similar form to several particular theories with different
fundamental bases, including bulk viscous cosmology, loop quantum gravity, k-essence, and brane-world
cosmologies. We find a range of exact solutions for isotropic universes, discuss their behaviors with
reference to the early- and late-time evolution, accelerated expansion, and the occurrence or avoidance of
singularities. We briefly discuss extensions to anisotropic cosmologies and delineate the situations where
the higher-order matter terms will dominate over anisotropies on approach to cosmological singularities.

DOI: 10.1103/PhysRevD.96.123517

I. INTRODUCTION

The twin challenges of naturally explaining two periods
of accelerated expansion during the history of the Universe
engage the attention of many contemporary cosmologists.
The first period may have had a beginning and necessarily
came to an end when the Universe was young and hot: it is
called a period of “inflation” and it leaves observable traces
in the cosmic microwave background radiation that are
believed to have been detected. The second period of
acceleration began only a few billion years ago and is
observed in the Hubble flow traced by type IA supernovae;
it is not known if it will ever come to an end or is changing
in any way. There are separate nonunique mathematical
descriptions of each of these periods of acceleration but
there is no single explanation of both of them, nor any
insight into whether or not they are related, or even random,
occurrences. For these reasons, there is continuing interest
in all the different ways in which expanding universes can
undergo periods of accelerated expansion. In the case of
late-time acceleration the simplest description of an effec-
tively antigravitating stress, known as “dark energy,” is
provided by introducing a cosmological constant (Λ) into
general relativity with a value arbitrarily chosen to match
observations.
The best-fit theory of this sort is dubbed ΛCDM and in

its simplest form is defined by six constants (which
determine Λ) that can be fixed by observation. One of
those parameters is Λ and its required value is difficult to
explain: it requires a theory that contributes an effective
vacuum stress of magnitude Λ ∼ ðtpl=t0Þ2 ∼ 10−120 at a
time of observation t0 ∼ 1017 s, where tpl ∼ 10−43 s is the
Planck time [1]. Other descriptions that lead to slowly

evolving scalar fields in place of a constant Λ have also
been explored, together with a range of modified gravity
theories that contribute antigravitating stresses. There are
many such modifications and extensions of Einstein’s
general relativity and they can be tuned to provide accel-
eration at early or late times. So far, almost all of these
modifications to general relativity have focused on general-
izing the gravitational Lagrangian away from the linear
function of the spacetime curvature, R, responsible for the
Einstein tensor in Einstein’s equations. A much-studied
family of theories of this sort are those deriving from a
Lagrangian of the form FðRÞ, where F is some analytic
function. By contrast, in this paper we will explore some of
the consequences of generalizing the form of the matter
Lagrangian in a nonlinear way, to some analytic function of
TμνTμν, where Tμν is the energy-momentum tensor of the
matter stresses. This is more radical than simply introduc-
ing new forms of fluid stress, like bulk viscosity or scalar
fields, into the Einstein equations in order to drive accel-
eration in Friedmann-Lemaître-Robertson-Walker (FLRW)
universes.
In Sec. II we discuss and motivate higher-order con-

tributions to gravity from matter terms. In Sec. III we
derive the equations of motion for a generic FðR; TμνTμνÞ
modification of the action with a bare cosmological
constant, before specializing to the case FðR; TμνTμνÞ ¼
Rþ ηðTμνTμνÞn. We then investigate several features of the
isotropic cosmology in this theory in Sec. IV and, finally,
move to the anisotropic Bianchi type I setting in Sec. V.

II. BACKGROUND

A. Field equations

Einstein’s theory of general relativity (GR) with a
cosmological constant Λ can be derived from the variation
of the action,
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S ¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p ðR − 2ΛÞd4xþ
Z ffiffiffiffiffiffi

−g
p

Lmd4x; ð1Þ

where κ ¼ 8πG and Lm is the matter Lagrangian, which we
will take to describe a perfect fluid;R≡ Ra

a, whereRa
b is the

Ricci tensor, and g is the determinant of the metric itself.
Here, and in all that follows, we use units in which c ¼ 1.
An isotropic and homogeneous universe may be

described by the FLRW metric:

ds2¼−dt2þa2ðtÞ
�

dr2

1−kr2
þr2ðdθ2þsin2θdϕ2Þ

�
; ð2Þ

where k, the curvature parameter, takes the values
f−1; 0;þ1g corresponding to open, flat and closed
3-spaces, respectively; t is the comoving proper time
and aðtÞ is the expansion scale factor.
There are many proposals to modify or extend the

ΛCDM cosmological picture. These fall broadly into
two categories, depending on which side of the Einstein
field equations is modified. We can modify the right-hand
side of the Einstein equations by adding new forms of
matter that will drive expansion either at early times, as in
the theory of inflation, or at late times, such as in
quintessence or k-essence scenarios [2]. Alternatively,
we can modify the left-hand side of the Einstein equations
in order to modify the effect of gravity itself. There are
several ways to do this, including FðRÞ theories [3] in
which the Ricci scalar in EQ. (1) is replaced by some
function fðRÞ, so-called FðTÞ theories in which we modify
the teleparallel equivalent of general relativity [4], or scalar-
tensor theories in which a scalar field is coupled to the Ricci
scalar.

B. Higher-order matter contributions

The type of generalization of general relativity we will
explore in this paper looks to add higher-order contribu-
tions to the right-hand side of the Einstein equations, where
the material stresses appear. This results in field equations
that include new terms that enter at high densities and
pressures, which may be antigravitational in their effects.
Typically, they affect the cosmological model at high
densities and may alter the conclusions regarding the
appearance of spacetime singularities in the finite cosmo-
logical past. Conversely, we might expect their effects at
late times and low cosmological densities to be very small.
Even within general relativity, there is scope to include
high-order matter contributions, as the Einstein equations
have almost no content unless some prescription or con-
straint is given on the forms of matter stress. Thus, in the
general-relativistic Friedmann models, we can introduce
nonlinear stresses defined by relations between pressure, p,
and density, ρ, of the form ρþ p ¼ γρn, [5], or fðρÞ, [6],
where γ ≥ 0 and n are constants, or add a bulk viscous
stress to the equation of state of the standard form

p ¼ ðγ − 1Þρ − 3HςðρÞ, where H is the Hubble expansion
rate and ς ≥ 0 is the bulk viscosity coefficient [7]. The so-
called Chaplygin and generalized Chaplygin gases are just
special cases of these bulk viscous models, and choices of n
or ς ∝ ρm introduce higher-order matter corrections.
Similarly, the choice of self-interaction potential VðϕÞ
for a scalar field can also introduce higher-order matter
effects into cosmology. Analogously, in scalar-tensor the-
ories like Brans-Dicke (BD) which are defined by a
constant BD coupling constant, ω, generalizations are
possible to the cases where ω becomes a function of the
BD scalar field. In all these extensions of the standard
relativistic perfect fluid cosmology there will be several
critical observational tests which will constrain them. In
particular, in higher-order matter theories the inevitable
deviations that can occur from the standard thermal history
in the early radiation era will change the predicted
abundances of helium-4 and deuterium and alter the
detailed structure of the microwave background power
spectrum. Also, as we studied for Brans-Dicke theory [8,9],
changes in the cold-dark-matter-dominated era evolution
can shift the time when matter and radiation densities are
equal. This is the epoch when matter perturbations begin to
grow and sensitively determines the peak of the matter
power spectrum. At a later nonlinear stage of the evolution,
higher-order gravity theories will effect the formation of
galactic halos. This has been investigated for bulk viscous
cosmologies by Li and Barrow [10]. These observational
constraints will form the subject of a further paper and will
not be discussed here.
If we depart from general relativity, then various simple

quantum gravitational corrections are possible, and have
been explored. The most well known are the loop quantum
gravity (LQG) [11] and brane-world [12] scenarios that
contribute new quadratic terms to the Friedmann equation
for isotropic cosmologies by replacing ρ by ρð1�Oðρ2ÞÞ
in the Friedmann equation, where the − contribution is
from LQG and the þ is from brane-world scenarios.
The impact on anisotropic cosmological models is more
complicated and not straightforward to calculate [13,14].
In particular, we find that simple forms of anisotropic
stress are no longer equivalent to a p ¼ ρ fluid as we are
used to finding in general relativity. Our study will be
of a type of higher-order matter corrections which modify
the Friedmann equations in ways that include both of
the aforementioned types of phenomenological modifica-
tion to the form of the Friedmann equations, although
the underlying physical theory does not incorporate
the LQC or brane-world models or reduce to them in a
limiting case.
Standard FðRÞ theories of gravity [3] can be generalized

to include a dependence of the form

S ¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p
FðR;LmÞd4x: ð3Þ
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This is in some sense an extremal extension of the
Einstein-Hilbert action, as discussed in Ref. [15]. If the
coupling between matter and gravity is nonminimal, then
there will be an extra force exerted on matter, resulting in
nongeodesic motion and a violation of the equivalence
principle. This type of modification has been investigated
in several contexts, particularly when the additional
dependence on the matter Lagrangian arises from F taking
the form FðR; T Þ where T is the trace of the energy-
momentum tensor [16].
A theory, closely related to FðR; T Þ gravity, that allows

the gravitational Lagrangian to depend on a more compli-
cated scalar formed from the energy-momentum tensor is
provided by FðR;T2Þ, where T2 ≡ TμνTμν is the scalar
formed from the square of the energy-momentum tensor.
This was first discussed in Ref. [17], and the special
case with

FðR;T2Þ ¼ Rþ ηT2; ð4Þ

where η is a constant, was also discussed in Ref. [18],
where the authors investigated the possibility of a bounce at
early times when η < 0 (although in that paper they used
the opposite sign convention to us for η), and also found an
exact solution for charged black holes in the extended
theory. In Ref. [19] a similar form, with additional cross
terms between the Ricci and energy-momentum tensors,
was discussed as arising from quantum fluctuations of the
metric tensor. Recently the authors of Ref. [20] investigated
the late-time acceleration of universes described by this
model in the dust-only case, and used observations of the
Hubble parameter to constrain the parameters of the theory.
We would expect the theory derived from Eq. (4) to

provide different physics to the FðR; T Þ case. Indeed,
one example of this is the case of a perfect fluid with
the equation of state p ¼ − 1

3
ρ. The additional terms in

FðR; T Þ will vanish as T ¼ 0, but in the FðR;T2Þ theory
the extra terms in T2 will not vanish and we will find new
cosmological behavior. In Sec. III, we will investigate the
cosmological solutions in a more general setting, where the
T2 term may be raised to an arbitrary power.

III. FIELDEQUATIONS FORFðR;TμνTμνÞGRAVITY
WITH A COSMOLOGICAL CONSTANT

In Ref. [18] the Friedmann equations were derived in
the case where F is given by Eq. (4), for a flat FLRW
cosmology. A “bare” cosmological constant was also
included on the left-hand side of the field equations (rather
than as an effective energy-momentum tensor for the
vacuum). In Ref. [17], the field equations were derived
without a cosmological constant and specialized to two
particular models. We first derive the equations of motion
with a cosmological constant for general F, before spe-
cializing to theories where the additional term takes the

form ðT2Þn, and determining the FLRW equations with
general curvature. In GR, the cosmological constant can be
considered to be, equivalently, either a “bare” constant on
the left-hand side of the Einstein equations, or part of the
matter Lagrangian. As discussed in Ref. [18], the two are
no longer equivalent in this theory, due to the nonminimal
nature of the curvature-matter couplings. A similar inequi-
valence also occurs in other models that introduce non-
linear matter terms, including loop quantum cosmology.
We will assume that the cosmological constant arises in its
bare form as part of the gravitational action. This gives the
modified action

S ¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p ðFðR; TμνTμνÞ − 2ΛÞd4xþ
Z

Lm
ffiffiffiffiffiffi
−g

p
d4x;

ð5Þ

where Lm is taken to be the same as the matter component
contributed by Tμν. Since the gravitational Lagrangian now
depends on T2, we note that the new terms in the variation
of the action will arise from the variation of this square, via
δðTμνTμνÞ. To calculate this, we define Tμν by

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð6Þ

We enforce the condition that Lm depends only on the
metric components, and not on their derivatives, to find

Tμν ¼ gμνLm − 2
∂Lm

∂gμν : ð7Þ

Varying with respect to the inverse metric, we define

θμν ≡ δðTαβTαβÞ
δgμν

¼ −2Lm

�
Tμν −

1

2
gμνT

�
− TTμν þ 2Tα

μTνα

− 4Tαβ ∂2Lm

∂gμν∂gαβ ; ð8Þ

where T is the trace of the energy-momentum tensor.
Varying the action in this way, we find

δS ¼ 1

2κ

Z �
FRδRþ FT2δðTμνTμνÞ − 1

2
gμνFδgμν þ Λ

þ 1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi
−g

p
LmÞ

�
d4x; ð9Þ

where subscripts denote differentiation with respect to R
and T2, respectively.
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From this variation we obtain the field equations:

FRRμν −
1

2
Fgμν þ Λgμν þ ðgμν∇α∇α −∇μ∇νÞFR

¼ κ

�
Tμν −

1

κ
FT2θμν

�
: ð10Þ

These reduce, as expected, to the field equations for
FðRÞ gravity in the special case where FðR;T2Þ ¼ FðRÞ
[3] and to the Einstein equations with a cosmological
constant when FðR;T2Þ ¼ R.
We will assume that the matter component can be

described by a perfect fluid,

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð11Þ

where ρ is the energy density and p is the pressure; hence

TμνTμν ¼ ρ2 þ 3p2: ð12Þ

Furthermore, we take the Lagrangian Lm ¼ p. This
means that the final term in the definition of θμν vanishes
and allows us to calculate the form of θμν independently of
the function F. Substituting Eq. (11) into Eq. (8), we find

θμν ¼ −ðρ2 þ 4pρþ 3p2Þuμuν: ð13Þ

We now proceed to specify a particular form for
FðR;T2Þ which includes and generalizes the models used
in Ref. [17] and for energy-momentum-squared gravity in
Ref. [18] (EMSG). This form is

FðR; TμνTμνÞ ¼ Rþ ηðTμνTμνÞn; ð14Þ

where n need not be an integer. This corresponds to EMSG
in the case n ¼ 1, and to Models A and B of Ref. [17] when
n ¼ 1=2 and n ¼ 1=4, respectively; it reduces the field
equations to

Rμν−
1

2
RgμνþΛgμν

¼κ

�
Tμνþ

η

κ
ðTαβTαβÞn−1

�
1

2
ðTαβTαβÞgμν−nθμν

��
; ð15Þ

which we rewrite as

Gμν þ Λgμν ¼ κTeff
μν ; ð16Þ

whereGμν is the Einstein tensor, to show the relationship to
general relativity. Continuing with the perfect fluid form of

the energy-momentum tensor, this expands to give

Gμν þ Λgμν ¼ κððρþ pÞuμuν þ pgμνÞ

þ ηðρ2 þ 3p2Þn−1
�
1

2
ðρ2 þ 3p2Þgμν

þ nðρþ pÞðρþ 3pÞuμuν
�
: ð17Þ

IV. ISOTROPIC COSMOLOGY

If we assume a FLRWuniverse with curvature parameter
k, we find the generalized Friedmann equation,

�
_a
a

�
2

þ k
a2

¼Λ
3
þκ

ρ

3

þη

3
ðρ2þ3p2Þn−1

��
n−

1

2

�
ðρ2þ3p2Þþ4nρp

�
;

ð18Þ

and acceleration equation

ä
a
¼ −κ

ρþ 3p
6

þ Λ
3

−
η

3
ðρ2 þ 3p2Þn−1

�
nþ 1

2
ðρ2 þ 3p2Þ þ 2nρp

�
: ð19Þ

If the matter field obeys a barotropic equation of state,
p ¼ wρ with w constant, then the non-GR terms are all of
the form ρ2n multiplied by a constant. Thus, the generalized
Friedmann equation becomes

�
_a
a

�
2

þ k
a2

¼ Λ
3
þ κ

ρ

3
þ ηρ2n

3
Aðn; wÞ; ð20Þ

where A is a constant depending on the choice of n and w,
given by

Aðn;wÞ≡ð1þ3w2Þn−1
��

n−
1

2

�
ð1þ3w2Þþ4nw

�
; ð21Þ

and the acceleration equation becomes

ä
a
¼ −κ

1þ 3w
6

ρþ Λ
3
−
ηρ2n

3
Bðn; wÞ; ð22Þ

where B is a constant given by

Bðn; wÞ≡ ð1þ 3w2Þn−1
�
nþ 1

2
ð1þ 3w2Þ þ 2nw

�
: ð23Þ

Finally, we determine the generalized continuity equa-
tion, by differentiating the generalized Friedmann equation,
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_ρ ¼ −3
_a
a
ρð1þ wÞ

�
κ þ ηρ2n−1nð1þ 3wÞ
κ þ 2ηρ2n−1Aðn; wÞ

�
; ð24Þ

where we have written it in a form that makes clear the
generalization of the GR case.
We can see immediately that there is an interesting

difference between the FLRW equations in GR and in
EMSG.When η ¼ 0 there are solutions with finite a; _a, and
ρ but infinite values of p and ä. These are called sudden
singularities [21–23] and can be constructed explicitly. In
EMSG, where η ≠ 0, the appearance of the pressure, p,
explicitly in the Friedmann equation changes the structure
of the equations and the same type of sudden singularity is
no longer possible at this order in derivatives of a.

A. Integrating the continuity equation

We now attempt to determine the cosmological behavior
of some cases where the modified continuity equation can
be integrated exactly. We find four simply integrable cases:
two of these are for fixed w independent of the value of n,
and the other two occur for specific values of w dependent
on the choice of n, although we note that some of these
integrable cases may coincide, depending on our choice of
the exponent, n.
The first case that can be integrated is for the equation of

state corresponding to dark energy, w ¼ −1, where the
entire right-hand side of Eq. (24) vanishes, and so ρ≡ ρ0, a
constant. In this case we expect to find a solution to the
modified Friedmann equation that is the same as the
solution in GR except with altered constants, which results
in a de Sitter solution where H ≡ _a

a ¼ constant, and the
universe expands exponentially.
Next, we consider the case w ¼ − 1

3
, which corresponds

to an effective perfect fluid representing a negative
curvature, so the numerator in the modified continuity
equation becomes simply κ, and we can integrate Eq. (24)
since

_ρ

�
1

ρ
þ 2ηAðn;− 1

3
Þ

κ
ρ2n−2

�
¼ −2

_a
a
; ð25Þ

d
dt

�
ln ρ −

ηð4
3
Þn

ð2n − 1Þκ ρ
2n−1

�
¼ d

dt
ðln a−2Þ; ð26Þ

ρ exp

�
−

ηð4
3
Þn

ð2n − 1Þκ ρ
2n−1

�
¼ Ca−2; ð27Þ

where C > 0 is a constant of integration.
We can also integrate the continuity equation when the

correction factor in Eq. (24) is equal to 1, which occurs
when

nð1þ 3wÞ ¼ 2Aðn; wÞ: ð28Þ

The continuity equation then reduces to the standard GR
form for these special values, w ¼ w�, and so we have

ρ ¼ Ca−3ð1þw�Þ: ð29Þ

The final possibility that we consider is when

Aðn; wÞ ¼ n2ð1þ 3wÞ; ð30Þ

in which case we can write Eq. (24) as

d
dt

ðlnðκρþ nηρ2nð1þ 3w�ÞÞÞ ¼
d
dt

ðln a−3ð1þw�ÞÞ; ð31Þ

which integrates to

κρþ nηρ2nð1þ 3w�Þ ¼ Ca−3ð1þw�Þ: ð32Þ

We note that, depending on the choice of exponent n,
some of the second pair of solutions may exist for multiple
choices of w, or may coincide with each other, or with the
w ¼ −1 and w ¼ − 1

3
cases. Also, for some choices of n,

there may be no solutions at all.
Finally, note that only one of these solutions allows easy

integration of the modified Friedmann equation (20). This
is the case when w ¼ −1 and so ρ ¼ ρ0. In this case the
Friedmann-like equation becomes

�
_a
a

�
2

þ k
a2

¼ αðΛ; nÞ; ð33Þ

where α is a constant given by

αðΛ; nÞ≡ Λ
3
þ κ

ρ0
3
−
ηρ2n0
6

4n: ð34Þ

The solution to the modified Friedmann equation is then
given by

aðtÞ ¼ 1

2
ffiffiffi
α

p
�
C

ffiffiffi
α

p þ k
C

ffiffiffi
α

p
�
coshð ffiffiffi

α
p

tÞ

�
�
C

ffiffiffi
α

p
−

k
C

ffiffiffi
α

p
�
sinhð ffiffiffi

α
p

tÞ ð35Þ

where C is a new constant of integration. Equivalently, we
can write this solution in terms of exponentials as

aðtÞ ¼ 1

2
ffiffiffi
α

p
�
C

ffiffiffi
α

p
e

ffiffi
α

p
t þ k

C
ffiffiffi
α

p e−
ffiffi
α

p
t

�
ð36Þ

as well as its time reversal, t → −t. Assuming α > 0, we
can see that this reduces to the expected de Sitter solution
from general relativity in the case k ¼ 0, as we would
expect. If α < 0 then, writing instead α → −α, there is a
real solution only for negative curvature, where we must
choose k ¼ −C2α, giving the anti–de Sitter solution
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aðtÞ ¼ C cosð ffiffiffi
α

p
tÞ: ð37Þ

It is important to note that because of the form of α, unlike
in the unmodified case, we do not necessarily require a
negative cosmological constant to find this solution. We
would expect this anti–de Sitter analogue to appear when-
ever η > 0, for suitable choices of ρ0 and n.
This solution is very similar to the case of w ¼ −1 in GR,

where we can rewrite the cosmological constant as a perfect
fluid with this equation of state. This is possible in GR
because the continuity equations for noninteracting multi-
component fluids decouple, allowing us to treat them
independently. Unfortunately, because of the additional
nonlinear terms arising in these FðR;T2Þmodels (except in
the special case n ¼ 1=2), we cannot decouple different
fluids in this way and then subsequently superpose them in
our Friedmann-like equations. This means that we cannot
replace the curvature or cosmological constant terms with
perfect fluids with w ¼ −1=3 and −1 as in classical GR.
However, for some choices of n and η, the correction terms
can themselves provide an additional late-time or early
inflationary repulsive force, removing the need for an
explicit cosmological constant.

B. Energy-momentum-squared gravity:
The case n= 1

If we fix our choice of n, then we can say more about the
behavior of the specific solutions that arise. In what follows
we consider primarily the case n ¼ 1 which was originally
discussed in Ref. [18], under the name “energy-momentum
squared gravity.” After specializing to n ¼ 1, we can say
more about the solutions to the continuity equation found in
the previous section, and investigate the modified
Friedmann equations. The form of the Friedmann equa-
tions, after setting n ¼ 1 in Eqs. (20), (22) and (24), is

�
_a
a

�
2

þ k
a2

¼ Λ
3
þ κ

ρ

3
þ ηρ2

6
ð3w2 þ 8wþ 1Þ; ð38Þ

ä
a
¼Λ

3
−κ

1þ3w
6

ρ−
ηρ2

3
ð3w2þ2wþ1Þ; ð39Þ

_ρ¼−3
_a
a
ρð1þwÞ κþηρð1þ3wÞ

κþηρð3w2þ8wþ1Þ: ð40Þ

The new terms in the Friedmann equations are quadratic
in the energy density, which we would expect to dominate
in the very early universe as ρ → ∞. Additionally, if we
choose η < 0, then the modified Friedmann equations in
this model are similar to the effective Friedmann equations
arising in loop quantum cosmology [11], where

�
_a
a

�
¼ κ

3
ρ

�
1 −

ρ

ρcrit

�
; ð41Þ

which may warrant further investigation. An analogous
higher-order effect occurs in brane-world cosmologies,
where there is an effective equation of state with [24–27]

peff ¼ 1

2λ
ðρ2 þ 2pρÞ; λ > 0 constant: ð42Þ

We briefly summarize the values of w for which the
results of the previous section allow us to integrate the
Friedmann equation and find the values of w that satisfy
Eqs. (28) and (30). If we set n ¼ 1 then Eq. (28) reduces to

3w2 þ 5w ¼ 0; ð43Þ

which has the solutions w ¼ − 5
3
and w ¼ 0. The w ¼ 0

solution describes “dust” matter. The case w ¼ −5=3
corresponds to some form of phantom energy, which will
result in a big rip singularity [28], at finite future time.
Alternatively, solving Eq. (30) for n ¼ 1 gives

3w2 þ 2w − 1 ¼ 0; ð44Þ

which has the solutions w ¼ −1 and w ¼ 1
3
. The first of

these has already been found for all n as the first case
above, while the second gives a solution corresponding to
blackbody radiation. Hence, we have exact solutions to the
continuity equation for the cases w ¼ f− 5

3
;−1;− 1

3
; 0; 1

3
g

which include the physically important cases of dust and
radiation.
The equation of state p ¼ 0 corresponds to pressureless

dust or nonrelativistic cold dark matter, and as shown
above, we recover the same dependence of the energy
density on the scale factor as in the GR case,

ρ ¼ Ca−3: ð45Þ

If we combine this with the modified acceleration and
Friedmann equations for w ¼ 0 we find

aäþ 2_a2 þ k ¼ Λ
2
a2 þ κ

4C
a−1: ð46Þ

If we consider only flat space (k ¼ 0) then we find

aðtÞ ¼ ð4ΛÞ−1
3ððC2 þDþ 1Þ cosh

� ffiffiffiffiffiffi
3Λ
2

r
t

�

þ ðC2 þD − 1Þ sinh
� ffiffiffiffiffiffi

3Λ
2

r
t

�
− 2CÞ13; ð47Þ

where D is a constant of integration, and we have
eliminated a further constant by a covariant translation
of the time coordinate. We can then find ρ explicitly, using
Eq. (45). We can see, however, that this form of the solution
does not capture the case Λ ¼ 0. In this case, instead we
find the solution
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aðtÞ ¼
�

3

8C

�1
3ðC2t2 − 16DÞ13; ð48Þ

which gives the GR dust behavior of a ∼ t
2
3 at large t.

In the case of w ¼ − 1
3
, we can write

ρ exp

�
−
4η

3κ
ρ

�
¼ Ca−2: ð49Þ

After differentiation and multiplication by a2, we can write

_a
a
¼ _ρ

ρ

�
1 −

4η

3κ
ρ

�
ð50Þ

and so in the case k ¼ 0 we can write the Friedmann
equation in terms of ρ without any exponentials, as

�
_ρ

ρ

�
2
�
1 −

4η

3κ
ρ

�
2 1

4C2
¼ Λ

3
þ κ

3
ρ −

2η

9
ρ2: ð51Þ

Finally, in the case of w ¼ 1
3
, which corresponds to

radiation, the authors of Ref. [18] gave a solution in the

case of flat space, aðtÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðαtÞp

where α≡
ffiffiffiffiffi
4Λ
3

q
. We

see that in this case we can write the continuity equation as

κρþ 2ηρ2 ¼ Ca−4; ð52Þ

and that in the Friedmann and acceleration equations, the
density terms are of equal magnitude but opposite sign. We
can then sum the two to find our equation for aðtÞ

�
_a
a

�
2

þ ä
a
þ k
a2

¼ 2Λ
3

; ð53Þ

which we solve by use of the substitution y ¼ a2 to find

a2ðtÞ ¼ 1

4Λ
ðð1þ 9k2 − 12ΛDÞ coshðαtÞ

þ ð1 − 9k2 þ 12ΛDÞ sinhðαtÞ þ 6kÞ ð54Þ

for all Λ, k nonzero, with α≡
ffiffiffiffiffi
4Λ
3

q
, as above. In the Λ ¼ 0

subcase, we find the solutions

a2ðtÞ ¼
�
Dt − kt2 k ≠ 0;

Dt k ¼ 0.
ð55Þ

C. de Sitter-like solutions

de Sitter solutions arise in EMSG theory. They have
constant density and Hubble parameter, which includes the
case w ¼ −1. In ΛCDM we expect this to arise in two
situations. The first is when we have ρ≡ 0, that is an empty
universe whose expansion is controlled solely by Λ, and the

second is the similar dark-energy equation of state w ¼ −1
for which the perfect fluid behaves as a cosmological
constant. In EMSG we find that there is an extra family of
de Sitter solutions. We describe them first for general n,
then specialize to EMSG.
Since we are searching for solutions with H ≡H0 and

ρ≡ ρ0, from Eq. (20) we must have k ¼ 0, and the
Friedmann equation then reduces to an algebraic one for
H2 in terms of ρ0. Similarly, since _H ¼ 0, Eq. (22) reduces
to another relation for H2. Equating the two to remove H2

and simplifying, we find that ρ0 must satisfy

ρ0ð1þ wÞðκ þ nηð1þ 3w2Þn−1ð1þ 3wÞρ2n−10 Þ ¼ 0: ð56Þ
There are the two standard solutions, w ¼ −1 and ρ0 ¼ 0,
but the additional factor gives us another family of
solutions, with

ρ2n−10 ¼ −
κ

nηð1þ 3w2Þn−1ð1þ 3wÞ : ð57Þ

In the case of EMSG, when we choose n ¼ 1, this
condition reduces to

ρ0 ¼ −
κ

ηð1þ 3wÞ ð58Þ

which gives us a constant-density, exponentially expanding
solution for every equation of state, w, excluding w ¼ − 1

3
,

for an appropriate sign of η. The existence of this extra de
Sitter solution is reminiscent of its appearance in GR
cosmologies with bulk viscosity [7]
This unusual situation suggests that we investigate the

stability of these n ¼ 1 solutions. We consider a linear
perturbation about the constant-density solution by writing

ρ ¼ ρ0ð1þ δÞ; ð59Þ

H ¼ H0ð1þ ϵÞ: ð60Þ

The perturbed continuity equation is then given by

ρ0 _δ ¼ −3ð1þ wÞH0ð1þ ϵÞρ0ð1þ δÞ

×
κ þ ηρ0ð1þ δÞð1þ 3wÞ

κ þ ηρ0ð1þ δÞð3w2 þ 8wþ 1Þ : ð61Þ

If we use the expression for ρ0 given in Eq. (58), we can
reduce this to

_δ ¼ −3ð1þ wÞð1þ 3wÞH0ð1þ ϵÞð1þ δÞ

× δ
1

ð3w2 þ 5wÞ
	
1þ 3w2þ8wþ1

3w2þ5w δ

 : ð62Þ

From the perturbation of the modified Friedmann equa-
tion we find that ϵ ∼ δ which means that after expanding to
first order in δ, we have
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_δ ¼ −3H0δ
ð1þ wÞð1þ 3wÞ

ð3wþ 5Þw ; ð63Þ

so small perturbations evolve as

δ ∝ exp

�
−3H0

ð1þ wÞð1þ 3wÞ
ð3wþ 5Þw

�
: ð64Þ

The exponent in Eq. (64) is plotted in Fig. 1, where we
can see that these de Sitter-like solutions are indeed stable
for a wide range of w values. This gives us an exponentially
expanding universe for (almost) any equation of state as
long as we set the density to the correct constant value. In
particular, these solutions will be stable for w < − 5

3
, −1 <

w < − 1
3
and w > 0, and unstable for − 5

3
< w < −1 and

−1
3
< w < 0. It is also the case that, depending on the sign of

the parameter η, some of these solutions will be unphysical,
as they require negative energy density. For η < 0, there
will be no physical solutions for w < − 1

3
, while for η > 0

there will be no solutions for w > − 1
3
.

D. Early times: The bounce and high-density limits

Examining the modified Friedmann equation (38) in the
case k ≥ 0, we can see that as the left-hand side of the
equation is a sum of positive terms, we must have

Λþ κρþ ηρ2Að1; wÞ ≥ 0; ð65Þ

which can be split into two cases, for ηAð1; wÞ < 0 and
ηAð1; wÞ > 0, respectively. The first case occurs for

η < 0 and fw < α− or w > αþg; ð66Þ

η > 0 and fα− < w < αþg; ð67Þ

where

α� ¼ −
−4� ffiffiffiffiffi

13
p

3
ð68Þ

are the roots of

Að1; wÞ≡ 3w2 þ 8wþ 1 ¼ 0: ð69Þ

In this case we have a maximum possible density
given by

ρmax ¼
κ

2Að1; wÞη
�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ηΛAð1; wÞ
κ2

r �
; ð70Þ

indicating that a bounce occurs in this case, avoiding an
initial singularity. In the second case, where ηAð1; wÞ > 0,
there is no bounce and no maximum energy density.
We now consider the solutions when k ¼ 0 in the high-

density limit, where we assume the correction terms
dominate over the ρ and Λ terms. We consider the case
of general n, and find an analytic solution. The Friedmann
and acceleration equations reduce to

�
_a
a

�
2

¼ η

3
ρ2nAðn; wÞ; ð71Þ

ä
a
¼ −

η

3
ρ2nBðn; wÞ: ð72Þ

From these, we can eliminate ρ to find

�
_a
a

�
2

þ Aðn; wÞ
Bðn; wÞ

ä
a
¼ 0 ð73Þ

which has the solution

aðtÞ ¼ D½ðAþ BÞt − C� A
AþB ð74Þ

where C and D are new constants of integration. We can
then solve for the density:

ρðtÞ ¼
�
3A
η

� 1
2nððAþ BÞt − CÞÞ−1

n: ð75Þ

This solution is real (and thus not unphysical) only if
Aðn; wÞ=η is positive. In the case of EMSG, this condition
reduces to the requirement that η and 3w2 þ 8wþ 1 must
have the same sign. So, the two regions where this solution
exists are,

FIG. 1. The plot shows the value of the exponent, and hence the
stability of the solutions, in Eq. (64) (where we have divided by
3H0). The asymptotes are found at w ¼ − 5

3
and w ¼ 0, while the

zeros are at w ¼ −1 and w ¼ − 1
3
. The solutions will be stable for

values of w where the graph is negative, and unstable otherwise.
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η > 0 and fw < α− or w > αþg; ð76Þ

η < 0 and fα− < w < αþg; ð77Þ

where

α� ¼ −
−4� ffiffiffiffiffi

13
p

3
ð78Þ

are the roots of 3w2 þ 8wþ 1. These are complementary to
the conditions for the bounce to occur, as previously
discussed. This is as we would expect, with the high-
density approximation failing at a maximum density, as in
the case of a bounce.

V. ANISOTROPIC COSMOLOGY

There are several ways of introducing anisotropy into our
cosmological models. We will consider the simplest gen-
eralization of FLRW, in which we have a flat, spatially
homogeneous universe, with anisotropic scale factors. This
is the Bianchi type I universe, whose metric is given by [29]

ds2 ¼ −dt2 þ a2ðtÞdx2 þ b2ðtÞdy2 þ c2ðtÞdz2; ð79Þ

where aðtÞ, bðtÞ and cðtÞ are the expansion scale factors in
the x, y and z directions, respectively.
Assuming that the energy-momentum tensor takes the

form of a perfect fluid with principal pressures, p1, p2 and
p3, so Lm ¼ 1

3
ðp1 þ p2 þ p3Þ, we can derive the field

equations for Bianchi I universes in our higher-order matter
theories:

_a _b
ab

þ
_b _c
bc

þ _c _a
ca

¼ κρþ η

6

�
ρ2 þ

X3
i¼1

p2
i

�n−1�
ð6n − 3Þρ2 þ 8nρ

X3
i¼1

pi þ 2n

�X3
i¼1

pi

�
2

− 3
X3
i¼1

p2
i

�
; ð80Þ

_b _c
bc

þ b̈
b
þ c̈
c
¼ −κp1 þ

η

6

�
ρ2 þ

X3
i¼1

p2
i

�
n−1

�
2nðρþ p1 − p2 − p3Þð2p1 − p2 − p3Þ − 3

X3
i¼1

p2
i

�
; ð81Þ

_c _a
ca

þ c̈
c
þ ä
a
¼ −κp2 þ

η

6

�
ρ2 þ

X3
i¼1

p2
i

�
n−1

�
2nðρþ p2 − p3 − p1Þð2p2 − p3 − p1Þ − 3

X3
i¼1

p2
i

�
; ð82Þ

_a _b
ab

þ ä
a
þ b̈
b
¼ −κp3 þ

η

6

�
ρ2 þ

X3
i¼1

p2
i

�
n−1

�
2nðρþ p3 − p1 − p2Þð2p3 − p1 − p2Þ − 3

X3
i¼1

p2
i

�
: ð83Þ

In the case of an isotropic pressure fluid (p1 ¼ p2 ¼
p3 ¼ p),

_a _b
ab

þ
_b _c
bc

þ _c _a
ca

¼ κρþη

2
ðρ2þ3p2Þn−1

×ðð2n−1Þρ2þ8nρpþð6n−3Þp2Þ; ð84Þ

_b _c
bc

þ b̈
b
þ c̈
c
¼ −κp −

η

2
ðρ2 þ 3p2Þn−13p2; ð85Þ

_c _a
ca

þ c̈
c
þ ä
a
¼ −κp −

η

2
ðρ2 þ 3p2Þn−13p2; ð86Þ

_a _b
ab

þ ä
a
þ b̈
b
¼ −κp −

η

2
ðρ2 þ 3p2Þn−13p2: ð87Þ

The first of these is the generalized Friedmann equation.
Qualitatively, we expect that the higher-order density and

pressure terms will dominate at early times to modify or
remove (depending on the sign of η) the initial singularity
when n > 1=2, but will have negligible effects at late times,

when the dynamics will approach the flat isotropic FLRW
model. At early times, we know that in GR the singularity
will be anisotropic and dominated by shear anisotropy
whenever −ρ=3 < p < ρ. In order to determine the dom-
inant effects as t → 0 we will simplify to the case of
isotropic perfect fluid pressures (p1 ¼ p2 ¼ p3 ¼ wρ).
Now, we determine the dependence of the highest-order
matter terms on the scale factors, a, b and c from the
generalization of the conservation equation (24) with
an anisotropic metric (79). For the case with general n,
this is

_ρ¼−
�
_a
a
þ

_b
b
þ _c
c

�
ρð1þwÞ

�
κþηρ2n−1nð1þ3wÞ
κþ2ηρ2n−1Aðn;wÞ

�
; ð88Þ

and so the behavior of the density is just

ρ ∝ ðabcÞ−Γ; ð89Þ

where
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Γðn; wÞ ¼ ð1þ wÞ
�
κ þ ηρ2n−1nð1þ 3wÞ
κ þ 2ηρ2n−1Aðn; wÞ

�
: ð90Þ

The higher-order density terms will dominate the evolution
at early times when n > 1=2 and we see that, in these cases,
Γ is independent of ρ and η as ρ → ∞, since in this limit,

Γðn; wÞ → nð1þ 3wÞð1þ wÞ
2Aðn; wÞ : ð91Þ

In the cosmology obtained by setting n ¼ 1 in
Eqs. (80)–(83) we will have domination by the nonlinear
matter terms, which will drive the expansion towards
isotropy as t → 0 if ρ2 diverges faster than ðabcÞ−2 as
abc → 0. Thus, the condition for an isotropic initial
singularity in n ¼ 1 theories is that Γð1; wÞ > 2, or

ð1þ 3wÞð1þ wÞ
2Að1; wÞ > 2: ð92Þ

When this condition holds as t → 0, the dynamics will
approach the flat FLRW metric with

aðtÞ ∝ bðtÞ ∝ cðtÞ ∝ t2=Γð1;wÞ: ð93Þ

When Γð1; wÞ < 2, the dynamics will approach the
vacuum Kasner metric with

ða; b; cÞ ¼ ðtq1 ; tq2 ; tq3Þ; ð94Þ
X3
i¼1

qi ¼
X3
i¼1

q2i ¼ 1: ð95Þ

This condition simplifies to four cases:

w > 0 anisotropic singularity
αþ < w < 0 isotropic singularity
α− < w < αþ anisotropic singularity
w < α− isotropic singularity

Here, the constants αþ and α− take the values determined
earlier in Eq. (78).
In general, for arbitrary n, the higher-order correction

terms on the right-hand side of the field equations (17) are
proportional to ηρ2n when p ¼ wρ, and so the condition for
an isotropic singularity as t → 0 becomes

Γðn; wÞ > 2n; ð96Þ
and the dynamics approach

aðtÞ ∝ bðtÞ ∝ cðtÞ ∝ t2=Γðn;wÞ: ð97Þ

The case for general n and w is problematic to simplify
succinctly due to the exponential dependence on n.
However, we can consider specific physically relevant
equations of state individually.

For dark energy (w ¼ −1) and curvature (w ¼ − 1
3
)

“fluids,” we find that ΓðnÞ ¼ 0, for all n, and so the
condition for an isotropic initial singularity will depend
only on whether n itself is positive or negative.
For w ¼ 0, dust, we find

Γðn; 0Þ ¼ n
2n − 1

; ð98Þ

for n ≠ 1
2
which leads to isotropy only when 1

2
< n < 3

4
.

For radiation, w ¼ 1
3
, an isotropic singularity will occur if

n
ð4
3
Þn−1ð2n − 1

2
Þ > 2n; ð99Þ

while for w ¼ 1 we find that the condition for isotropy is

n
4n−1ð2n − 1

2
Þ > 2n: ð100Þ

In both of the latter cases, we require n ≠ 1
4
.

A similar effect will occur in more general anisotropic
universes, like those of Bianchi type VIIh or IX, which are
the most general containing open and closed FLRW
models, respectively. In type IX, the higher-order matter
terms will prevent the occurrence of chaotic behavior with
w < 1 fluids on approach to an initial or final singularity in
a T2n theory when n > 1. Thus we see that in these theories
the general cosmological behavior on approach to an initial
and (in type IX universes) final singularity is expected to be
isotropic in the wide range of cases we have determined,
when Γðn; wÞ > 2n. This simplifying effect of adding
higher-order effects can also be found in the study of other
modifications to GR, for example those produced by the
addition of quadratic RabRab terms to the gravitational
Lagrangian, [30,31]. These also render isotropic singular-
ities stable for normal matter (unlike in GR). If Tab is not a
perfect fluid but has anisotropic terms (for example,
because of a magnetic field or free-streaming gravitons
[32]) they will add higher-order anisotropic stresses.

VI. CONCLUSIONS

We have considered a class of theories which generalize
general relativity by adding higher-order terms of the form
ðTμνTμνÞn to the matter Lagrangian, in contrast to theories
which add higher-order curvature terms to the Einstein-
Hilbert Lagrangians, as in fðRÞ gravity theories. The family
of theories which lead phenomenologically to higher-order
matter contributions to the classical gravitation field equa-
tions of the sort studied here includes loop quantum gravity,
and bulk viscous fluids, k-essence, or brane-world cosmol-
ogies in GR. This generalization of the matter stresses is
expected to create changes in the evolution of simple
cosmological models at times when the density or pressure
is high but to recover the predictions of general-relativistic
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cosmology at late times in ever-expanding universes where
the density is small. However, we find that there is a richer
structure of behavior if wegeneralizeGRby adding arbitrary
powers of the scalar square of the energy-momentum tensor
to the action. In particular, we found a range of exact
solutions for isotropic universes, and discussed their behav-
iors with reference to the early- and late-time evolution,
accelerated expansion, and the occurrence or avoidance of
singularities. Finally, we discussed extensions to the sim-
plest anisotropic cosmologies and delineated the situations
where the higher-order matter terms will dominate over
the anisotropic stresses on approach to cosmological sin-
gularities. This leads to a situation where the general

cosmological solutions of the field equations for our
higher-order matter theories are seen to contain isotropically
expanding universes, in complete contrast to the situation in
general-relativistic cosmologies. In future work we will
discuss the observational consequences of higher-order
stresses for astrophysics.
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