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We study preheating in models where a scalar inflaton is directly coupled to a non-Abelian SUð2Þ gauge
field. In particular, we examine m2ϕ2 inflation with a conformal, dilatonlike coupling to the non-Abelian
sector. We describe a numerical scheme that combines lattice gauge theory with standard finite difference
methods applied to the scalar field. We show that a significant tachyonic instability allows for efficient
preheating, which is parametrically suppressed by increasing the non-Abelian self-coupling. Additionally,
we comment on the technical implementation of the evolution scheme and setting initial conditions.
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I. INTRODUCTION

Recent studies of preheating following inflation have
pushed beyond scalar-scalar studies to examine theories
with field content that more closely resembles that of the
Standard Model. The dynamics of gauge fields may be
critical to a variety of phenomena in the early Universe,
such as preheating, magnetogenesis, and even inflation
itself. Recent focus has been applied to massless, Abelian
gauge fields coupled both dilatonically and axially to scalar
or pseudoscalar inflatons [1–6]. Several studies have
employed numerical lattice simulations in order to capture
the full nonlinear preheating dynamics. Simulations of
continuum Abelian, Uð1Þ fields have demonstrated stabil-
ity with respect to the gauge-fixing condition without
appealing to lattice techniques [2,3,5,6]. However, numeri-
cal investigations of non-Abelian fields demand additional
effort in order to remain on the gauge-constraint surface.
Extending the understanding of inflaton-gauge inter-

actions to non-Abelian sectors is of particular importance,
since much of the known Standard Model gauge group is
non-Abelian. Gauge fields likely play a key role in the early
Universe in generating the matter-antimatter asymmetry,
for example, in electroweak baryogenesis and leptogenesis.
Additional interest in detailed studies of non-Abelian fields
in the early Universe comes from a growing number of
inflationary models that contain non-Abelian fields [7–14].
The inherent nonlinearities of SUð2Þ theories naturally call
for numerical study; however, this same property poten-
tially sources instability. In particular, it is imperative that
the gauge condition be well satisfied within the bounds of
numerical truncation error throughout the entirety of the
simulation; typically, numerical implementations of such
fields employ a reformulation of the gauge fields as defined
by lattice gauge theory [15], the principal tool used to study
non-Abelian theories in quantum chromodynamics (QCD).
This work follows a number of numerical studies of non-

Abelian gauge theories that implement lattice gauge theory

in real time, including studies of preheating [16–29],
electroweak baryogenesis [30–32], Chern-Simons theory
[33–40], sphalerons [41–44], cosmic strings [1,45–49],
and other studies of free Yang-Mills theory [50–52]. Our
work differs from prior non-Abelian preheating studies by
considering direct couplings between an uncharged scalar,
which drives inflation, and the SUð2Þ sector, rather than
coupling the SUð2Þ fields to a charged field such as the
Higgs. Scalar-gauge couplings of the form fðϕÞFF or
fðϕÞF ~F often [2,3,5] (though not universally [6]) exhibit
tachyonic instabilities leading to highly efficient production
of gauge bosons.
In this work we study the model described by the

Lagrangian density

L ¼ m2
pl

16π
R −

1

2
∂μϕ∂μϕ − VðϕÞ − ΘðϕÞ

2
Tr½FμνFμν�; ð1Þ

where Fμν is the usual field strength of an SUð2Þ gauge
field, the trace is over Pauli matrices with normalization
defined in Eq. (A1), and ΘðϕÞ is a coupling function. This
model is analogous to the model studied in Ref. [2], except
here we consider the gauge group SUð2Þ rather than Uð1Þ.
In the Abelian context, this model has been extensively
studied as a source of magnetogenesis from inflation
[53–62] as the coupling function ΘðϕÞ breaks the con-
formal invariance of the gauge fields, permitting the
generation of primordial magnetic fields. However, recent
work has cast doubt on such models’ efficacy for magneto-
genesis due to the so-called strong coupling problem [58].
Here we consider the role such couplings might play after
inflation to rapidly and efficiently drain the energy in the
homogeneous inflaton condensate via the production of
gauge bosons.
After inflation, the scalar field ϕ oscillates about the

minimum of its potential, which we take to be quadratic,
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VðϕÞ ¼ 1

2
m2

ϕϕ
2: ð2Þ

We set the inflaton massmϕ ¼ 10−6mpl, consistent with the
amplitude of the observed scalar spectrum [63]. The
particular form of the dilatonic coupling we consider is

ΘðϕÞ ¼ eϕ=M; ð3Þ

which is parametrized by a mass scaleM and tends to unity
as the inflaton decays, recovering the canonical Yang-Mills
action. We extend the analysis of [2] by allowing the initial
value of the scalar field to be positive or negative. In the
former case, ΘðϕÞ ¼ exp ðþjϕj=MÞ is large, which might
spoil the negative pressure that facilitates accelerated
expansion. On the other hand if the field rolls in from
negative values, ϕ < 0, then ΘðϕÞ ¼ exp ð−jϕj=MÞ serves
as an exponential suppression of the gauge field contribu-
tion during inflation.
We work in conformal Friedmann-Lemaître-Robertson-

Walker (FLRW) spacetime under the “mostly plus” sign
convention,

ds2 ¼ aðτÞ2ð−dτ2 þ dx⃗2Þ; ð4Þ

where primes denote derivatives with respect to conformal
time. The evolution of the scale factor aðτÞ is given by the
Friedmann equation,

HðτÞ2 ¼ 8π

3m2
pl

T00ðτÞ: ð5Þ

The total energy density is related to the stress-energy
tensor via T00ðτÞ ¼ aðτÞ2ρtotðτÞ and has a contribution
from the scalar field,

ρϕ ¼ 1

2a2
ϕ02 þ 1

2a2
ð∇ϕÞ2 þ VðϕÞ; ð6Þ

as well as a contribution from the gauge field,

ρgauge ¼
ΘðϕÞ
2a4

�X3
i¼1

ðFa
0iÞ2 þ

X
j>i

ðFa
ijÞ2

�
: ð7Þ

The equation of motion for the inflaton is

ϕ00 ¼ ∇2ϕ − 2Hϕ0 − a2
1

4

dΘ
dϕ

Fa
μνF

μν
a − a2

dV
dϕ

: ð8Þ

Turning to the gauge sector, the non-Abelian field tensor is

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν; ð9Þ

where the SUð2Þ structure constants are given by the three-
dimensional Levi-Cività symbol, fabc ¼ ϵabc, and g is the

gauge self-coupling constant. Sums over repeated flavor
indices are implied, regardless of their placement.
Simulations of gauge theories must first initialize a field

configuration that satisfies the constraint from Gauss’s law
and a chosen gauge-fixing condition, and they must
subsequently preserve the satisfaction of these constraints
throughout the evolution. We first discuss the methodology
that allows us to satisfy the gauge constraint: lattice gauge
theory.

II. THE LATTICE APPROXIMATION

First introduced byWilson in 1974 [15] and ubiquitously
implemented in studies of lattice QCD, as well as most
numerical studies of non-Abelian gauge fields, lattice
gauge theory recasts the gauge fields as fields of “link
variables,”

UμðxÞ ¼ exp ð−aμgAa
μðxÞσaÞ; ð10Þ

which quantify the gauge connection between lattice sites.
In this expression, aμ, where μ ∈ f0; 1; 2; 3g, are the lattice
spacings and σa are the Pauli matrices [defined in
Eq. (A1)]. Note that when working with the lattice variables
we drop the Einstein summation convention. As the links
belong to the group SUð2Þ, we choose to evolve the
coefficients of the links’ decomposition onto the Pauli
basis,

UμðxÞ ¼ U0
μ · 12×2 þUa

μσ
a: ð11Þ

The field strength is given by closed loops in the lattice
called plaquettes, defined by

PμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ: ð12Þ

In this language, the lattice Lagrangian density is

LG ¼ 2

a4i g
2

1

aðtÞ4
�
1

κ2
X
i

Tr½1 − P0iðxÞ�

−
X
j>i

Tr½1 − PijðxÞ�
�
; ð13Þ

where the lattice spacing ratio κ ¼ a0=ai. This Lagrangian
density (which defines the well-known Wilson action) is
only equivalent to the continuum form, Eq. (1), in the limit
of vanishing lattice spacing, aμ → 0. For finite lattice
spacing, we have traded an evolution of the true continuum
theory for the ability to natively and exactly satisfy the
gauge condition.
Next, in these terms we may also produce the lattice form

of the gauge energy density, separated into electric and
magnetic components,
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ρE ¼ 2ΘðϕÞ
aðtÞ4a4i g2

1

κ2
X
i

Tr½1 − P0i� ð14Þ

and

ρB ¼ 2ΘðϕÞ
aðtÞ4a4i g2

X
i>j

Tr½1 − Pij�: ð15Þ

At this point we diverge from the traditional methods of
lattice QCD, which typically employ Monte-Carlo methods
in four-dimensional Euclidean space. We instead aim to
solve an initial value problem in 3þ 1 FLRW spacetime
with finite-difference methods. While it is possible to
discretize gauge theories in spatial dimensions while
keeping time continuous [64], here we retain the full
3þ 1-dimensional discretization. We work in temporal
gauge, which sets the continuum fields Aa

0 ¼ 0; on the
lattice this amounts to setting the temporal links U0ðxÞ to
the identity. By varying the lattice action, Eq. (13) (summed
over lattice sites), with respect to the link coefficients Ua

μ,
one obtains equations of motion for the combination

EiðxÞ ¼ Uiðxþ 0̂ÞU†
i ðxÞ; ð16Þ

which we call the “electric field”. In turn, Ei provides an
“update rule,”which relates the links at the next time step in
terms of the current links and electric fields,

Uiðxþ 0̂Þ ¼ EiðxÞUiðxÞ: ð17Þ

The evolution of the electric field then follows:

Ea
i ðxþ 0̂Þ ¼ ΘðxÞ

Θðxþ 0̂ÞE
a
i ðxÞ − κ2

X
j≠i

Pa
ijðxþ 0̂Þ

þ κ2
X
j≠i

Θðxþ 0̂ − |̂Þ
Θðxþ 0̂Þ Pa

ijðxþ 0̂ − |̂Þ: ð18Þ

Note that this equation of motion only holds for the trace-
free part of the fields, i.e., the three “Pauli flavors” of the
fields Ea, a ¼ 1, 2, or 3. The “zero flavor” of the electric
fields is obtained via the unitarity the lattice variables: as
elements of SUð2Þ, both the links and electric fields must
satisfy

U†
μUμ ¼ E†

μEμ ¼ 1: ð19Þ

The unitarity of the link variables is automatically satisfied
by the link update, Eq. (17), while this constraint must be
used to obtain E0

i at each time slice. See Appendix A for
further exposition on the evolution of the lattice variables.
These update rules manifestly preserve the gauge con-

dition throughout the evolution by exactly defining the field
configurations on subsequent time slices. That is, whereas

numerical integration typically approximates the evolution
equations describing the exact fields of the continuum
theory, the lattice formalism instead places this approxi-
mation at the level of the theory itself. In our 3þ
1-dimensional context, we evolve a 3D field configuration
which approximates its continuum form, the evolution
itself being an approximation of the true continuum
equations of motion. In turn, the lattice evolution is indeed
exact with respect to the constraints on the gauge fields: the
theory is reformulated such that these constraints are
internal symmetries of the discrete theory.

III. NUMERICAL SIMULATIONS

Our work extends the development of the Grid and
Bubble Evolver (GABE) [65,66], which has been used to
study a variety of Uð1Þ preheating models [2,3,5,6]. The
implementation of the lattice gauge variables requires a
significant reworking of the numerical procedure. Our
scheme retains the typical finite-differencing approach to
the numerical integration of the continuum scalar field ϕ,
which we must ensure is compatible with the link update
rules. The update rules, though they are exact, resemble a
first-order integration method such as Euler’s method,
which is insufficient to evolve the scalar field. Such
methods fail to produce convergent evolutions of the
inflaton’s second-order differential equation, which is the
reason GABE typically implements a second-order Runge-
Kutta scheme. However, this method relies on a “guess” of
the field configurations at the midpoint of the current and
next time slices, which is not well defined for the lattice
variables. To solve this problem, we update the links and
electric fields with a time step half as large as that used in
the second-order Runge-Kutta scheme that evolves the
inflation (i.e., a0=2). This provides a way to calculate the
gauge coupling terms at the “midpoint.”

A. Initial conditions

We initialize all of our simulations at the end of inflation,
just as the inflaton enters a period of near-coherent
oscillation about the minimum of its potential, Eq. (2).
We choose values of the field and field derivative which
correspond to a point just after inflation ends, which are
ϕ0 ≈ :193mpl and ϕ0

0 ≈ −14.2mϕmpl. These values depend
on the shape of the potential, Eq. (2), yet are independent of
the choice of inflationary scale mϕ (although we do not
vary this parameter here). The fluctuations of the inflaton
are assumed to be Bunch-Davies [67,68],

hϕðkÞϕðqÞ�i ¼ 1

2ωðkÞ δ
ð3Þðk − qÞ: ð20Þ

The homogeneous modes of the continuum gauge fields are
initialized to zero, with fluctuations likewise given by
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hAa
i ðkÞAb

j ðqÞ�i ¼
1

2ωðkÞΘðϕ0Þ
δð3Þðk − qÞδabδij: ð21Þ

The frequency is defined by ωðkÞ2 ¼ k2 þm2
eff, where for

the scalar ϕ the effective massmeff ¼ ∂2V=∂ϕ2. The gauge
fields are massless, so ωðkÞ ¼ jkj. Note the appearance of
the initial coupling coefficient, Θðϕ0Þ, which ensures that
the gauge kinetic term is canonically normalized [69–71].
Higher frequency modes, with large gradients between

lattice sites, are highly susceptible to numerical noise. For
this reason, we introduce a momentum space window
function,

FðkÞ ¼ 1 − tanh ðsðk − k�ÞÞ
2

; ð22Þ

where the parameter s sets the sharpness of the damping
edge and q sets the frequency cutoff. While the lattice
spacing sets a natural ultraviolet cutoff scale, we expect
most of the resonance to occur near the infrared. Therefore,
damping the upper-UV in high resolution simulations (with
large Nyquist frequencies) allows us to limit numerical
error accrued from nonphysical sources while still resolv-
ing the important modes.
In principle, setting initial conditions for the lattice gauge

variables requires no further action than translating the
continuum initial conditions to the links and electric fields
by applying the standard identity,

exp ½2Aaσa� ¼ cos jAjσ0 þ 2
Aa

jAj sin jAjσ
a; ð23Þ

which in turn sets the flavor coefficients of

E ¼ exp ½2Aaσa� exp ½2Bbσb� ð24Þ

to

E0 ¼ cos jAj cos jBj − AaBa

jAjjBj sin jAj sin jBj ð25Þ

and

Ea ¼ 2

�
Aa

jAj sin jAj cos jBj þ
Ba

jBj cos jAj sin jBj

− ϵabc
AbBc

jAjjBj sin jAj sin jBj
�
: ð26Þ

However, careful attention must be paid to Gauss’s law,
which is the result of varying the action with respect to the
temporal gauge fields, Aa

0 or U0. In Lorenz gauge, Gauss’s
law is a dynamical, second-order equation of motion for A0

which may be integrated as any other field. The temporal
gauge instead sets both Aa

0 and Aa
0
0 to zero, which sets U0

and E0 to the identity. While the choice of temporal gauge

can be trivially satisfied on the lattice, we have no
guarantee that our initial conditions satisfy Gauss’s law,
which in this gauge is a constraint on the time derivative of
the vector potential, Aa

i
0, on spatial slices.

The continuum version of Gauss’s law is

∂iAa
i
0 þ dΘ=dϕ

Θ
∂iϕAa

i
0 þ fabcAi

bA
c
i
0 ¼ 0: ð27Þ

In the limit of small coupling, the constraint in Eq. (27) is
approximately satisfied by setting Aa

i
0 to be transverse,

i.e., ∂iAa
i
0 ¼ 0. Longitudinal modes may easily be removed

with the projection operator,

Pi
jðkÞ ¼

�
δi

j −
kikj

jkj
�
: ð28Þ

In the Abelian case, with relatively weak coupling to the
scalar inflaton, applying this operator on the initial slice is a
sufficient approximation. However, for non-Abelian fields,
Gauss’s law is increasingly violated by stronger couplings,
whether to the scalar or to the other gauge flavors.
Though the lattice evolution preserves the satisfaction

(or the degree of violation) of Gauss’s law exactly,
configurations which violate it exhibit numerical instability
in the form of unphysical growth of the electric fields
[33,34]. Some prior non-Abelian preheating studies have
addressed Gauss’s law on the initial slice with a period of
“cooling” or dissipation [18] or with Monte-Carlo sampling
[19,20,42,43]. In our case, Gauss’s law may also be trivially
solved by setting the individual Aa

i
0 to zero (which in turn

sets each Ei to the identity matrix), as done in Refs. [27,29].
Alternately, setting all the Aa

i ¼ 0 on the initial slices
removes the non-Abelian term from Gauss’s law, and in
some cases allows the resulting constraint to be satisfied in
momentum space [21,22]. (Because Gauss’s law for our
model is implicit, such a prescription is not applicable.)
However, these choices violate the uncertainty principle,
breaking down the semiclassical approximation of the
Bunch-Davies vacuum. Therefore, producing nontrivial,
self-consistent initial conditions which satisfy Gauss’s law
is critical. For this reason, we will employ a dissipative
method similar to [18] as detailed below (and in Appendix
B) and compare the results to simulations beginning with
trivial (i.e., Aa

i
0 ¼ 0) initial conditions.

To set nontrivial initial conditions, we begin by projec-
ting both the fields, Aa

i (by our remaining gauge freedom),
and their time derivatives, Aa

i
0, to be transverse. Next, we

define the local Gauss constraints GaðxÞ (a ∈ f1; 2; 3g) by
Ga ≡X

i≠0
ðΘðxÞEa

i ðxÞ − Θðx − {̂Þ ~Ea
i ðxÞÞ; ð29Þ

where ~E represents the parallel-transported electric field

~Ea
i ≡ Tr½−2σaU†

i ðx − {̂ÞEiðx − {̂ÞUiðx − {̂Þ�: ð30Þ
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As Gauss’s law requires GaðxÞ ¼ 0, we implement an
iterative relaxation method, seeking to minimize the
“Hamiltonian” [18,42,43]

H ¼
X
x

GaðxÞGaðxÞ: ð31Þ

This amounts to evolving the dissipative equations

∂Ec
jðxÞ
∂t ¼ −

∂H
∂Ec

jðxÞ
; ð32Þ

which evolve the electric fields in the direction which
minimizes the global Gauss violation H (see Appendix B
for details on the numerical implementation). In practice, it
is impossible to relax the fields until the grid-averaged
Gauss violation is zero to machine precision. We instead
relax until the Gauss violation is some fraction (smaller
than 10−5) of the originally initialized value, testing
multiple such fractions to ensure that further relaxation
has no effect on the resulting evolution.

B. Lattice parameters

All simulations presented use lattices with 2563 points
and an initial box length L ¼ 5m−1

ϕ ≈ 2.5H−1
0 , whereH0 is

the Hubble parameter at the beginning of the simulation,
and the lattice spacing ratio is κ ¼ a0=ai ¼ 1=20. As
mentioned above, the degree to which our simulations
satisfy Gauss’s law is constant to numerical precision,
supporting the robustness of our implementation [18,43].
The Nyquist frequency of this lattice is

knq ≡ 256
ffiffiffi
3

p 2π

L
≈ 557mϕ; ð33Þ

and we apply the momentum-space window function,
Eq. (22), to our initial conditions with cutoff k� ¼ knq=4
and smoothness parameter

s ¼ 1

4

L
2π

≈ :2m−1
ϕ : ð34Þ

Such a window function was imposed in [2] to reduce the
effect of numerical noise on discrete spatial derivatives as a
means to improve the satisfaction of gauge conditions. The
lattice formulation (working in the temporal gauge) does
not precipitate such a need; however, we retain the use of
the window function because, as discussed above, with our
gauge choice Gauss’s law is now a differential constraint on
spatial slices of the gauge fields. Imposing the window
function reduces the degree of violation of Gauss’s law
incurred by the initial conditions when generated in
momentum space, which in turn reduces the computational
time required by the relaxation method.
As discussed below, the lattice variables require particu-

larly high spatial resolution. For this reason, our chosen box
length is relatively small compared to other studies.

Another consequence of shrinking the box length is the
addition of higher frequency modes. As the size of the box
decreases, the contribution of fluctuations to the energy
density increases relative to the homogeneous component,
since energy in the gauge modes scales with the cutoff scale
to the fourth power, k4�. This energy, which arises as a result
of treating the vacuum as a classical field configuration, is
not physical. The contribution of these zero-point fluctua-
tions to the energy density is typically ignored in lattice
treatments, provided their contribution to the total energy
remains small. Imposing a cutoff ensures that this is the
case without eliminating the necessary vacuum “seed” at
the relevant scales. We note that the resonance band is
always well within the initial cutoff k�, meaning we
suppress no modes which are relevant during resonance.
If the physically relevant modes lie far from the Nyquist

frequency of our box, one might question the need for
utilizing grid sizes upwards of 2563. Simulations of scalar
fields (and continuum gauge fields) require sufficient
spatial and temporal resolution to accurately resolve any
dynamic modes, which amounts to at least ten time slices
per oscillation of the highest-frequency mode. Issues of
numerical resolution are even more critical in the case of
continuum simulations of gauge fields, where the satisfac-
tion of gauge constraints (which are often differential
constraints) is not guaranteed to be preserved by numerical
evolution. These cases demand as much precision as
computationally feasible.
In contrast, the lattice formulation provides an evolution

which exactly preserves the gauge constraints, regardless of
the lattice dimensions. As discussed above, the role of
numerical resolution appears instead at the level of the
theory, rather than the integration: the lattice variables
compactify the gauge group. That is, the link variables are
(matrix-valued) rotations with phase argument proportional
to products of the lattice spacings, the gauge internal
coupling, and the vector potentials, i.e., aigAa

i . Likewise,
the electric fields depend upon the combination a0aigAa

i
0.

These phase variables lie within the compact domain
ð−π; π�, while the gauge potentials themselves are
unbounded. Therefore, in our simulations high numerical
resolution is not only required to accurately evolve the
scalar, but also to recover the full domain taken on by the
gauge fields. Since during preheating the gauge fields are
strongly amplified, this requirement is significant. Our
choice of box length, L ¼ 5m−1

ϕ , strikes a compromise
between the resolution requirements and the inclusion of
sufficient IR modes and is still larger than the horizon at the
end of resonance.

IV. RESULTS

To set our expectations for the nonperturbative decay of
the inflaton, we first look for the approximate location of
potential tachyonic instabilities. At the end of inflation, the
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inflaton’s dynamics are dominated by the oscillation of its
homogeneous mode about the minimum of its potential,
and so (for a short period of time) takes the form

ϕðτÞ ¼ ϕ0 cosðmϕτÞ: ð35Þ

In the case where the non-Abelian contributions are small,
the mode amplitude Aiðk; τÞ obeys the linearized equation
of motion

A00
i ðk; τÞ þ k2Aiðk; τÞ ≈

ϕ0mϕ

M
sinðmϕτÞF0iðk; τÞ ð36Þ

in the Lorenz gauge. Initially (regardless of gauge choice)
we set A0 ¼ 0, so that F0i ≈ A0

i early in the simulation.
Tachyonic resonance will occur if there are values of k for
which the mode equation, Eq. (36), has an imaginary
frequency. Assuming that the sine function is maximally
positive, we can seek exponential amplification via the
WKB approximation,

Aiðk; τÞ ∼ AiðkÞ exp
�
i
Z

τ
ωkðτ0Þdτ0

�
; ð37Þ

which holds when _ωk ≫ ω2
k. In this limit, Eq. (36) takes the

form

�
−ωkðτÞ2 þ k2 −

ϕ0
0ðτÞ
M

iωkðτÞ
�
AiðkÞ ¼ 0: ð38Þ

The characteristic equation corresponding to Eq. (38)
exhibits that solutions Aiðk; τÞ with a negative imaginary
component of ωk (i.e., exponentially growing solutions) are
strongest within the band

k2 <
ϕ2
0m

2
ϕ

4M2
≈ ð6mϕÞ2; ð39Þ

where the final relation holds for our typical parameters
M ¼ :016mpl, ϕ0 ¼ :193mpl, and mϕ ¼ 10−6mpl.

A. The Abelian limit

We begin by corroborating the results of our lattice-
gauge simulations with the Uð1Þ continuum simulations
that appeared in [2]. In Fig. 1, we show results of the
simulation of three continuum Uð1Þ fields each with
identical dilatonic couplings and compare to a simulation
using the lattice SUð2Þ variables, where the three SUð2Þ
flavors are very weakly coupled to each other (g ¼ 10−6).
The comparison demonstrates both that our lattice update
scheme correctly reproduces the continuum evolution and
that our relaxation method realizes initial conditions which
remove any unphysical instabilities from violations of
Gauss’s law (see Fig. 9 of Appendix B for a depiction
of such instability present in simulations with less applied

relaxation). Figure 1 depicts that the evolutions of the
energy fraction ρgauge=ρtot from both simulations are nearly
identical for two values of M. For M ¼ :016mpl, 96.2% of
the final energy density resides within the gauge fields
implementing the lattice variables, compared to 95.7% for
the continuum software; for M ¼ :014mpl these figures are
97.5% and 97.4%, respectively.

B. Non-Abelian preheating

Having established the efficacy of our software for
weakly coupled gauge fields, we now turn to the effect
of the non-Abelian coupling strength on preheating under
various strengths of coupling to the inflaton. In Fig. 2 we
show the effect of increasing the self-coupling, g, for two
different values of the coupling to the inflaton sector, M.
It is immediately evident in Fig. 2 that increasing the

strength of non-Abelian coupling drastically diminishes the
efficiency of preheating. Indeed, at near-Standard Model
values (g ∼ :1), less than :001% of the energy in the lattice
resides in the gauge sector at the end of the simulations

FIG. 1. The evolution of the energy fraction ρgauge=ρtot for two
coupling strengths: M ¼ :016mpl (top) and M ¼ :014mpl (bot-
tom). In each panel the solid black curve tracks this ratio for a
continuum simulation of three Uð1Þ gauge fields and the dashed
red curve corresponds to a simulation of SUð2Þ lattice fields, with
g ¼ 10−6, using the procedure described in the text.
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(τ ¼ 10m−1
ϕ ). In Fig. 3 we examine the success of preheat-

ing as a function of the self-coupling g by plotting the
maximal value of ρgauge=ρtot for the simulations depicted
in Fig. 2.
To understand this parametric suppression, return to

Eq. (36): one way to incorporate the effects of the non-
Abelian interactions is by considering terms which resem-
ble g2AjAjAi as a mass term ∼m2Ai, which naturally shifts
the upper limit of resonance via

k2 þm2 <
ϕ2
0m

2
ϕ

4M2
: ð40Þ

The effect of this time dependent mass becomes significant
once gAi is of order one, which is clearly reached earlier as
g increases. This reasoning aligns with the results of Fig. 2,
where ρgauge follows a similar trajectory early on until
preheating shuts off, which occurs sooner as g increases.
We can also track the suppression of preheating by

examining the field spectra, as in Fig. 4. The effect of the
non-Abelian interactions is not limited to blocking

FIG. 2. The evolution of the energy fraction ρgauge=ρtot for
inflaton couplings M ¼ :016mpl (top) and M ¼ :014mpl (bot-
tom), each with non-Abelian coupling strengths g ¼ 10−6 (red,
topmost line in each panel) to g ¼ 10−1 (blue, bottommost line in
each panel), by factors of 10.

FIG. 3. The maximum energy fraction ρgauge=ρtot vs g for M ¼
:016mpl (dashed red, circles) and M ¼ :014mpl (solid black,
squares) with nontrivial initial conditions.

FIG. 4. The power spectra of an arbitrary link field Ua
i ðkÞ,

scaled by aig forM ¼ :016mpl. The top panel shows the effect of
the initial resonance near the first zero crossing of the inflaton
(τ ¼ 1.25m−1

ϕ ) which is near identical among all values of g. The
bottom panel, depicting the spectra near the third zero crossing
(τ ¼ 3.75m−1

ϕ ), demonstrates that the non-Abelian effects (re-
scattering) occur earlier for larger values of g. The colors in both
panels correspond to g ¼ 10−6 (red, bottommost when appli-
cable) through g ¼ 10−1 (blue, topmost when applicable), spaced
by factors of 10.
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resonance: once the non-Abelian interactions dominate the
dynamics of the gauge fields, the energy density is spread
to larger wave numbers. Figure 5 demonstrates that
increasing g pushes power further and further out into
the ultraviolet. This cascade is another reason our simu-
lations require high resolution. While resonance always
occurs well within the cutoff k�, the gauge bosons
subsequently rescatter into higher-kmodes; these nonlinear
dynamics must also be well resolved.

C. Trivial Gauss configurations

In this section, we quantify the effect of initializing
nontrivial initial conditions (namely, those which satisfy
Gauss’s law via relaxation) compared to trivial ones. By
setting the initial electric fields to zero [namely, A0

iðkÞ ¼ 0]
and doubling the initial magnetic field strength, we evolve a
configuration which satisfies Gauss’s law to machine
precision via a trivial field configuration while preserving
the total initialized energy in the gauge sector. Figure 6
compares such a simulation to the evolution of a nontrivial
configuration for various values of g and M.

Figure 7 depicts the success of preheating for trivially
initialized electric fields relative to nontrivial initial con-
ditions, again via the maximum achieved preheating
fraction ρgauge=ρtot. These results verify that our results

FIG. 5. Power spectra of the magnetic field energy density
ρBðkÞ at the end of the simulations (τ ¼ 10m−1

ϕ ) for inflaton
couplings M ¼ :016mpl (top) and M ¼ :014mpl (bottom), each
with non-Abelian coupling strengths g ¼ 10−6 to g ¼ 10−1 (red
through blue), spaced by factors of 10.

FIG. 6. The evolution of the energy fraction ρgauge=ρtot forM ¼
:016mpl and g ¼ 10−6 (top) and M ¼ :014mpl and g ¼ 10−1

(bottom) with trivial (red, dashed) and nontrivial (solid black)
initial configurations of the gauge fields.

FIG. 7. The maximum energy fraction ρgauge=ρtot vs g for M ¼
:016mpl with trivial (dashed red, circles) and nontrivial (solid
black, squares) initial conditions.
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are only insensitive to the precise details of the initial
configuration in the region of parameter space where
preheating is successful. The discrepancy becomes signifi-
cant for larger g, though this region of parameter space is
uninteresting with respect to preheating. However, our
results suggest that, for non-Abelian models with tachyonic
instabilities, the difference between trivial and nontrivial
initial conditions may be substantial.

D. Negative initial field values

We now present the results for simulations where the
field comes in from ϕ < 0 [i.e., where the initial strength of
the coupling is expð−jϕ0j=MÞ]. Figure 8 demonstrates that
the most significant effect is that the magnetic fields are the
first to be enhanced, rather than the electric fields in the
positive coupling case. In fact, the evolutions of ρE for
positive M and ρB for negative M (and vice versa) match
almost exactly through the first oscillation or so. The
trajectory of the net gauge field energy density is largely
unchanged, though the subsequent backreaction onto the
scalar is slightly modified.
We find that the maximal fraction ρgauge=ρtot changes by

≲4% (often subpercent) in all cases that were numerically
stable. For negative values of M, our simulations are even
more constrained by the limits of the discretization because
the initial gauge field amplitudes are scaled by 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðϕ0Þ

p
.

This normalization changes by some five orders of magni-
tude when changing the sign of M, such that larger values
of g are inaccessible to our particular lattice configurations.
However, we take the results of runs using smaller values of
g to suggest that the results are insensitive to the sign of the
coupling. While it is known that the family of models ours
belongs to cannot be responsible for inflationary magneto-
genesis without (at some point) spoiling the inflationary
background, we see here evidence for a scenario in which
strongly coupled gauge fields may (1) preserve inflationary
dynamics while (2) generating primordial magnetic fields
during preheating.

V. DISCUSSION

In this work, we have produced the first finite-time lattice
simulations of SUð2Þ gauge fields coupled to an uncharged,
real scalar field in an expanding background. This work
broadens the scope of preheating studies on the lattice to
non-Abelian gauge groups, a challenging but crucial step
towards simulating preheating models with minimal exten-
sions to the Standard Model.
As observed in Uð1Þ simulations [2], a dilatonic-type

coupling offers an extremely efficient preheating channel to
SUð2Þ gauge fields. However, tuning the non-Abelian
coupling strength toward Standard Model values rapidly

FIG. 8. A comparison of evolutions for positive and negative
initial values of ϕ0 for couplingsM ¼ :016mpl and g ¼ 10−6. The
top panel shows the difference between ϕ0 > 0, where ρE (solid
black) follows a similar trajectory to the negative-coupling ρB
(dashed red), while the positive-coupling ρB (solid blue) aligns
with the negative-coupling ρE (dashed orange). The middle panel
demonstrates that the evolution of the overall gauge energy
fraction ρgauge=ρtot is largely unchanged when interchanging
ϕ0 > 0 (solid black) for ϕ0 < 0 (dashed red). The most sub-
stantial (though still marginal) difference lies in the backreaction
onto the scalar gradient energy ρgrad in the bottom panel, again for
ϕ0 > 0 (solid black) and ϕ0 < 0 (dashed red).
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blocks the resonance band in which the gauge fields
become populated. This result is significant, as it suggests
that tachyonic instabilities akin to that sourced by the
dilatonic coupling may struggle to efficiently preheat into
non-Abelian gauge fields. In the case presented here,
significantly stronger couplings to the inflaton are required
to achieve a sufficiently broad band of resonance.
The software developed for this paper offers the ability to

study other preheating models with SUð2Þ fields, as well as
other cosmological contexts which involve non-Abelian
fields. While we have here considered the simplest model
of inflation as a massive, real scalar singlet, the ability to
evolve SUð2Þ fields in an expanding universe brings our
code closer to studies of more complicated models of
inflation with gauge fields [9].
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APPENDIX A: LATTICE GAUGE THEORY

In this appendix we detail the application of real-time
lattice gauge methods to our preheating study. Generally,
simulating field theories on a discrete lattice requires
careful attention to ensure the physical results are inde-
pendent of the details of the lattice itself. For instance, the
lattice must be both large enough to encompass all
physically relevant modes (the “infrared”) and also fine
enough to accurately resolve the shortest wavelength
modes (the “ultraviolet”). Verifying that a lattice is both
large enough and of sufficient resolution requires testing
evolutions on grids which have larger sidelength (L) or
have smaller lattice spacing (ai).
Gauge fields complicate lattice simulations further

because their evolutions are constrained. While each com-
ponent of the vector potential Aμ has a nontrivial Euler-
Lagrange equation, one is a constraint (A0). Furthermore,
one must either fix a gauge choice to reduce the redundant
space of field configurations to a particular, fixed gauge
orbit, or alternatively work with gauge-invariant variables.
(As an exception, theLorenz gauge casts theEuler-Lagrange
equation for A0 as a dynamical equation of motion.) Gauge
conditions are typically (though not always) differential

constraints, which are particularly difficult to both accu-
rately evaluate and satisfy throughout the evolution on the
lattice. Spatial derivatives on a lattice are calculated by
taking finite differences between neighboring sites and carry
a truncation error proportional to powers of the lattice
spacing ai. For this reason, there is no guarantee that a
discretized evolution of gauge fields will satisfy the gauge
condition, though it is possible for the satisfaction of the
gauge condition to be stable through numerical evolution, as
has been shown in the Abelian case.
The alternative to a discretized evolution of an exact,

continuum theory is to produce a discretized theory which
(1) reproduces the continuum theory in the continuum limit
(aμ → 0) and (2) may be evolved exactly. This is precisely
the aim of lattice gauge theory, which recasts the dynamical
degrees of freedom such that the gauge constraints (both the
gauge condition and Gauss’s law) are precise internal
symmetries of the theory. As such, lattice gauge theory
is the natural tool for numerical studies of gauge theories.
In the remainder of this appendix, we detail the formulation
of lattice gauge theory and its application to our model. For
further introduction to the topic, see textbooks such as
[72,73]. For alternative treatments of lattice-gauge tech-
niques in preheating scenarios, see [18,22,23].
Before proceeding to detail the application of lattice

gauge theory to our preheating study, we first outline our
conventions. The variables UμðxÞ lie on the “link” between
the lattice point at x and the adjacent lattice point in the
μ̂-direction, denoted by xþ μ̂. As the links are members of
the Lie group SUð2Þ, we will work with the decomposition
onto the basis σμ ¼ ð1; σaÞ, where the σa are the usual Pauli
matrices,

σa ¼
�
i
2

�
0 1

1 0

�
;
i
2

�
0 −i
i 0

�
;
i
2

�
1 0

0 −1

��
: ðA1Þ

The links are therefore defined in terms of the continuum
potentials to be

UμðxÞ ¼ exp ð−aμgAa
μðxÞσaÞ; ðA2Þ

where the sum over repeated flavor index a running from 1
to 3 is implied (regardless of placement). Additionally, we
drop the Einstein summation convention when using the
link variables. The flavor coefficients are thus given by

Ua
μðxÞ ¼ Tr½−2σaUμðxÞ� ðA3Þ

and

U0
μ ¼

1

2
Tr½UμðxÞ�: ðA4Þ

These four coefficients are the dynamical degrees of
freedom of our system, which are further constrained by
the unitarity of the links, U†

μUμ ¼ 1, or
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U0
μðxÞ2 þ

1

4
Ua

μðxÞ2 ¼ 1: ðA5Þ

Recall the full action for our model,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

pl

16π
Rþ Lϕ þ LG

�
; ðA6Þ

where the inflaton term is

Lϕ ¼ −
1

2
∂μϕ∂μϕ −

1

2
m2ϕ2: ðA7Þ

In the continuum, the Lagrangian density describing the
gauge fields is

LG ¼ −
ΘðϕÞ
4

Fa
μνF

μν
a : ðA8Þ

We first need to establish the correspondence between the
continuum and lattice theories—namely, the lattice formu-
lation of the gauge field strength which reduces to the
continuum form in the aμ → 0 limit. Following the steps
outlined in Appendix C, one can demonstrate that

Tr½ðFa
μνðxÞÞ2� ¼

4

a2μa2νg2
Tr½1 − PμνðxÞ�; ðA9Þ

where again μ and ν take on fixed values, rather than
following a summation convention. Equation (A9) lends a
geometric interpretation to the lattice theory: the plaquette
quantifies the local curvature associated with the gauge
fields. That is, the trace Tr½1 − PμνðxÞ� measures the
plaquette’s deviation from the identity matrix, i.e., zero
curvature. Using Eq. (A9), the lattice form of LG is

LG ¼ 2ΘðxÞ
a4i g

2

1

aðtÞ4
�
1

κ2
X
i

Tr½1 − P0i�

−
X
j>i

Tr½1 − Pij�
�

ðA10Þ

¼ ΘðxÞ
aðtÞ4

X
ν>μ

βμνTr½1 − Pμν�; ðA11Þ

with κ the lattice spacing ratio a0=ai. The coefficients βγμ
encode the prefactors of the terms in Eq. (A10), i.e.,

β0i ¼
2

κ2a4i g
2

and βij ¼ −
2

a4i g
2
: ðA12Þ

Our task in this Appendix is to formulate a scheme to
evolve the lattice gauge variables forward in (conformal)
time in parallel with the scalar field. We will proceed by
varying the action, Eq. (A6), with respect to the coefficients

Ua
μ, which again are the dynamical quantities of our system.

Since the plaquette action Eq. (A10) includes products of
link variables at different lattice sites, we must be careful to
vary the full action,

S ¼
X
x;τ

dτdx3L; ðA13Þ

rather than the Lagrangian density L. That is, when varying
with respect to the linkUγ we must include all plaquettes at
all lattice sites which include Uγ , which gives

∂SG
∂Uf

γ ðxÞ
¼

X
μ≠γ

βγμΘðxÞTr½σfWγ;μðxÞ�

þ
X
μ≠γ

βγμΘðx − μ̂ÞTr½σfWγ;−μðxÞ�: ðA14Þ

In Eq. (A14) we encounter the staple Wγ;μðxÞ, which is
defined as the product of three links closing a plaquette
about UγðxÞ,

UγðxÞWγ;μðxÞ ¼ PγμðxÞ; ðA15Þ

the form one would expect to find upon differentiating a
plaquette by one of its constituent links.
Before obtaining the explicit update rules for the link

coefficients Ua
γ , we must first ensure that the unitarity

constraint, Eq. (A5), is satisfied by the evolution equations.
To do so, we introduce to our theory a Lagrange multiplier
term [22],

Lλ ¼
X
μ

λμðxÞTr½UμðxÞU†
μðxÞ − 1�: ðA16Þ

The relevant variations are

∂Sλ
∂U0

γðxÞ
¼ 4λγðxÞU0

γðxÞ ðA17Þ

and

∂Sλ
∂Ua

γ ðxÞ
¼ λγðxÞUa

γ ðxÞ: ðA18Þ

The resultant equation of motion (in matrix form) is

λγðxÞU†
γðxÞ ¼

X
μ≠γ

βγμΘðxÞWγ;μðxÞ

þ
X
μ≠γ

βγμΘðx − μ̂ÞWγ;−μðxÞ: ðA19Þ

However, we seek to eliminate these Lagrange multipliers
from our system of equations. To do so, we first left-
multiply both sides by the link UγðxÞ, obtaining
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λγðxÞ ¼
X
μ≠γ

βγμðΘðxÞPγμðxÞ þ Θðx − μ̂ÞPγð−μÞðxÞÞ: ðA20Þ

Note that

Pγð−μÞðxÞ ¼ UγðxÞU−μðxþ γ̂ÞU†
i ðx − μ̂ÞU†

−μðxÞ ðA21Þ

¼ UγðxÞU†
μðxþ γ̂ − μ̂ÞU†

γðx − μ̂ÞUμðx − μ̂Þ: ðA22Þ

Next, taking the trace-free part of this equation eliminates
the Lagrange multiplier λγðxÞ and provides a system of
equations for the three “Pauli flavors” Ua

γ for a ¼ 1, 2, and
3, which is

0 ¼
X
μ≠γ

βγμðΘðxÞPa
γμðxÞ þ Θðx − μ̂ÞPa

γð−μÞðxÞÞ: ðA23Þ

Equation (A23) alone does not provide an explicit instruc-
tion on obtaining links at the next time stepUγðxþ 0̂Þ from
the current links UγðxÞ. However, Eq. (A23) does include
(products of) links at the current and next time slices with
the plaquettes P0γ . After fixing a temporal gauge, setting
U0ðxÞ ¼ 1, we define these temporal plaquettes as a new
dynamical field in our system, the electric field

EiðxÞ ¼ Uiðxþ 0̂ÞU†
i ðxÞ ¼ P0iðxÞ: ðA24Þ

The temporal gauge fixes E0 ¼ 1. This definition immedi-
ately shows that we may evolve the links by performing the
matrix multiplication

Uiðxþ 0̂Þ ¼ EiðxÞUiðxÞ: ðA25Þ

Namely, Eq. (A25) is the update rule for the links’ fields
which gives the exact value for the SUð2Þ matrix UiðxÞ at
the next time slice, τ þ 0̂, in terms of the electric and links
fields at the present time step τ. Note that while Ei is not the
physical electric field reminiscent of electromagnetism, it
gets its name for its use in computing the electric field
strength jEj2. The electric field component of the total
energy density of the (coupled) gauge field takes the form

ρE ¼ 1

aðtÞ4
2ΘðxÞ
κ2a4i g

2
Tr½1 − Ei� ðA26Þ

¼ 1

aðtÞ4
2ΘðxÞ
κ2a4i g

2
· 2ð1 − E0

i Þ: ðA27Þ

Now, the effect of including a Lagrange multiplier,
Eq. (A16), and subsequently taking the trace-free part of
the equation of motion, Eq. (A23), is that we have update
rules for only Ea

i , a ≠ 0. These are obtained by substituting
the definition of the electric field into the full equation of
motion, Eq. (A23), which leads to

Ea
i ðxþ 0̂Þ ¼ ΘðxÞ

Θðxþ 0̂ÞE
a
i ðxÞ− κ2

X
j≠i

Pa
ijðxþ 0̂Þ

þ κ2
X
j≠i

Θðxþ 0̂− |̂Þ
Θðxþ 0̂Þ Pa

ijðxþ 0̂− |̂Þ: ðA28Þ

With Eqs. (A25) and (A28), we evolve the fields and their
“derivatives” as one normally would when numerically
integrating a second order differential equation. The “zero
flavor” of the electric field, E0

i , which has no update rule,
is instead computed via the unitarity constraint [identical
to that for the links, Eq. (A5)].1 Finally, because the
update rules produce exact computations for the field
configurations from time slice to time slice, the gauge
condition is preserved trivially, as is Gauss’s law
[18,21,22,33,36,42,43].

APPENDIX B: GAUSS’S LAW AND RELAXATION

We now discuss the treatment of Gauss’s law in our
simulations. As is familiar from electromagnetism, Gauss’s
law generally takes the form

DiEi ¼ ρ; ðB1Þ
whereDi is the appropriate covariant derivative and ρ is the
charge density sourced by fields covariantly coupled to
(i.e., charged under) the gauge field of interest. (Ei ¼ F0i
here represents the physical electric field, not the construct
from lattice gauge theory.) For the electromagnetic field
[Uð1Þ], the derivative Di is merely a spatial gradient ∂i as
the photon is not charged under its own gauge group. In the
temporal gauge, Gauss’s law may be imposed exactly in
momentum space by setting the divergence of A0

i equal to
the appropriate charge density, i.e.,

A0
iðkÞ ¼

ki
k2

ρðkÞ: ðB2Þ

In contrast, the couplings both to the scalar and between
non-Abelian fields make Gauss’s law for our model non-
linear. First, non-Abelian fields are charged under the

1The numerical computation of Eq. (A5) via

E0
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

4
ðEa

μÞ2
r

ðA29Þ

only produces numerically significant values to ∼10−15, the
threshold of double precision. The initial fields are often small
enough that 1 − E0

μ, using the above computation, would be zero
to machine precision. Computing instead

1 − E0
μ ¼

1
4
ðEa

μÞ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

4
ðEa

μÞ2
q ðA30Þ

provides full numerical precision for any size E0
i .
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adjoint representation of their own gauge group, which
modifies the covariant derivative to

DiAa
j
0 ≡ ∂iAa

j
0 þ fabcAb

i A
c
j
0: ðB3Þ

Next, we can think of the effect of the conformal coupling
ΘðϕÞF2 as a further modification of the gauge-covariant
derivative, which would read

DiAa
j
0 ≡ ∂iAa

j
0 þ dΘ=dϕ

Θ
∂iϕAa

j
0 þ fabcAb

i A
c
j
0: ðB4Þ

Here it is apparent that the scalar coupling makes Gauss’s
law an implicit constraint on the Aa

i
0. That is, not only do

the scalar and the other gauge fields Ab
i and Ab

i
0 for b ≠ a

source the spatial divergence of Aa
i
0, but Aa

i
0 also sources its

own divergence.
In the remainder of this Appendix we detail the imple-

mentation of the relaxation method described in Sec. III A.
Recall that the equation of motion for the temporal links
U0ðxÞ is Gauss’s law for the lattice variables. The local
Gauss constraints GaðxÞ (a ∈ f1; 2; 3g) are defined by

Ga ≡X
i≠0

ðΘðxÞEa
i ðxÞ − Θðx − {̂Þ ~Ea

i ðxÞÞ; ðB5Þ

with ~E the parallel-transported electric field

~Ea
i ≡ Tr½−2σaU†

i ðx − {̂ÞEiðx − {̂ÞUiðx − {̂Þ�: ðB6Þ
As a measure of the satisfaction of Gauss’s law, GaðxÞ ¼ 0,
we define the “Hamiltonian”

H ¼
X
x

GaðxÞGaðxÞ: ðB7Þ

We seek to minimize H by an iterative method, increment-
ing the electric fields Ea

i in the direction which decreasesH.
To do so, we evolve the dissipative equations [18]

∂Ec
jðxÞ
∂t ¼ −

∂H
∂Ec

jðxÞ
ðB8Þ

through the fictitious time t, which increments the fields in
the direction opposite to the gradient of H in the space of
the electric field variables. Evaluating the derivative of H,

∂H
∂Ea

i ðxÞ
¼ 2ΘðxÞGaðxÞ

− 2ΘðxÞGcðxþ {̂ÞTr½−2σcU†
i ðxÞσaUiðxÞ�: ðB9Þ

Note that this variation with respect to Ea
j ðxÞ picks up a

contribution from both Gauss’s law at x and at xþ {̂, since
the relaxation must ensure that the global, grid-summed
Gauss violation is improved, rather than independently
improving each local Gauss violation. Not only are the
various Ea

i coupled to each other, but discretized derivatives
(or difference operators) directly couple fields at x to the
fields at lattice sites neighboring x.

Numerically, each step of the relaxation consists of
incrementing each electric field by an amount proportional
to the above derivative by a fictitious time step Δt,

ΔEa
i ðxÞ ¼ −

∂H
∂Ea

i ðxÞ
Δt: ðB10Þ

We track both the grid-averaged Gauss violation and
electric field energy density over the course of relaxation,
iterating until the grid-averaged Gauss violation drops
below a preset tolerance.
Since the initial field configuration of electric fields (and

link fields) is well approximated to linear order, the initial
Gauss constraints GaðxÞ are proportional to g. Therefore,
we choose the tolerance to be proportional to g, relaxing the
Gauss violation to a fixed fraction of the initial degree of
violation. In the results presented above, the relaxed Gauss
violation is never larger than 10−5 times the initialized
value. Further, this choice ensures that the method requires
an identical number of steps for any value of g, and that all
relaxed configurations contain the same electric field
energy density.

FIG. 9. The effect of increasing the degree of Gauss relaxation
(from red to blue) for M ¼ :016mpl, g ¼ 10−6 (top) and
M ¼ :014mpl, g ¼ 10−2 (bottom) on the evolution of
ρgauge=ρtot. The colors red through blue correspond to relaxation
of the grid-averaged Gauss violation jGaj to ∼2, 3, 4, 5, 6, and 7
orders of magnitude smaller than the initial value.
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Finally, the choice of Δt must be chosen to achieve
convergence in the same sense as any other numerical
integration: Δt must be small enough that further reducing
the time step has no effect on the resulting final field
configuration. We find that scaling Δt by ΘðxÞ−1 [i.e.,
setting Δt ¼ α=ΘðxÞ] ensures that the relaxed electric field
energy density is also independent of the coupling param-
eter M. Setting α ¼ :1 achieved satisfactory convergence
for all parameters we tested.
Figure 9 demonstrates that, for two sets of couplings g

and M, the evolutions exhibit rapid convergence with
respect to the amount of applied Gauss relaxation. We
use this metric as a guide for all simulations in this work,
seeking to minimize computation time by relaxing only so
far as has an appreciable effect on the evolution.
As expected, the effect of the violation of Gauss’s law is

a parametrically increasing artificial growth in gauge field
strength [34]. In the case of weaker non-Abelian coupling,
this is only evident in the resonance during the first
oscillation, having minimal effect on the final configura-
tion. However, increasing the non-Abelian coupling
strength has a more dramatic effect on the final energy
fraction.

APPENDIX C: THE LATTICE ACTION

In this appendix, we briefly outline the steps to verify the
correspondence between plaquettes and F2 given by
Eq. (A9),

Tr½ðFa
μνðxÞÞ2� ¼

4

a2μa2νg2
Tr½1 − PμνðxÞ�: ðC1Þ

This identity may be verified by repeated application of the
Baker-Campbell-Hausdorff formula,

expA expB ¼ exp

�
Aþ Bþ 1

2
½A; B� þ � � �

�
; ðC2Þ

or by expanding the links in the limit of slowly varying
gauge fields. Here we outline the latter method, which
begins by expanding the link definition, Eq. (A2), to second
order in the lattice spacing, i.e.,

UμðxÞ ≈ 1 − aμgAa
μðxÞσa þ

1

2
a2μg2Aa

μðxÞσaAb
μðxÞσb: ðC3Þ

Plugging in this approximation to each of the four links
within a plaquette,

PμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ; ðC4Þ

the OðaμÞ terms of Eq. (C3) recover the Abelian
component,

PμνðxÞ ¼ 1 − aμaνgð∂μAa
ν − ∂νAa

μÞσa þOða2μÞ; ðC5Þ

where derivatives on the lattice are approximated by

∂μAa
νðxÞ ¼

Aa
νðxþ μ̂Þ − Aa

νðxÞ
aμ

: ðC6Þ

The non-Abelian term is obtained by including Oða2μÞ
terms in Eq. (C3), taking here the fields to be slowly
varying between lattice sites. This approximation cancels
all terms with two copies of the same gauge field compo-
nent, i.e., those resembling AμAμ or AνAν. We are left with
the desired non-Abelian terms of the form AμAν, such that

PμνðxÞ ¼ 1 − aμaνgð∂μAa
ν − ∂νAa

μÞσa
− aμaνg2ϵabcAb

μAc
νσ

a þOða4μÞ ðC7Þ

¼ 1 − aμaνgðFa
μνσ

aÞ þOða4μÞ: ðC8Þ

This term is still insufficient, as the trace of 1 − Pμν

would be identically zero. However, because the plaquette
is unitary (or if we take a hint from the Baker-Campbell-
Hausdorff formula), we may infer that its exponential
expansion must take the form

PμνðxÞ ¼ 1 − aμaνgFa
μνðxÞσa

þ a2μa2νg2

2
Fa
μνðxÞσaFb

μνðxÞσb þOða6μÞ; ðC9Þ

which indeed satisfies Eq. (C1).
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