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We present a Bayesian reconstruction algorithm that infers the three-dimensional large-scale matter
distribution from the weak gravitational lensing effects measured in the image shapes of galaxies. The
algorithm is designed to also work with non-Gaussian posterior distributions which arise, for example,
from a non-Gaussian prior distribution. In this work, we use a lognormal prior and compare the
reconstruction results to a Gaussian prior in a suite of increasingly realistic tests on mock data. We find that
in cases of high noise levels (i.e. for low source galaxy densities and/or high shape measurement
uncertainties), both normal and lognormal priors lead to reconstructions of comparable quality, but with the
lognormal reconstruction being prone to mass-sheet degeneracy. In the low-noise regime and on small
scales, the lognormal model produces better reconstructions than the normal model: The lognormal model
(1) enforces non-negative densities, while negative densities are present when a normal prior is employed,
(2) better traces the extremal values and the skewness of the true underlying distribution, and (3) yields a
higher pixel-wise correlation between the reconstruction and the true density.
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I. INTRODUCTION

Weak gravitational lensing of galaxies offers a unique
way to study the distribution of matter in the Universe (see
[1] for a review on weak gravitational lensing and [2–4]
for recent reviews on weak galaxy lensing). Lensing by
structures along the line of sight causes distortions in the
images of distant galaxies (which in this context are often
referred to as sources), which leads to correlations between
the apparent shapes of these galaxies. The dominant and
most easily detectable image distortion that lensing induces
is a shearing of the galaxy images. Because of this, the
effect is often referred to as cosmic shear.
Galaxy shape measurements allow to constrain the

clustering of matter at different scales and redshifts, which
can then be translated into constraints on cosmological
models and their parameters. The integrated lensing signal
is mostly sensitive to a combination of the cosmic mean
matter density Ωm and the matter power spectrum ampli-
tude σ8 [5]. Tomographic methods can yield additional
constraints on all parameters guiding the growth rate of
structure [6,7], notably also on the properties of dark
energy [8–10], but rely on low photometric redshift
uncertainties [11]. Since lensing is a direct probe of the
total matter, luminous and dark, it can be combined with
measurements of the luminous matter distribution in order
to learn about the relationship between baryons and dark
matter. Another important feature of weak galaxy lensing
lies in its ability to probe the matter distribution over a wide
range of scales, from many tens of Mega parsec, where
structure formation is still linear today and comparably

easy to model, down to nonlinear sub-Mega parsec scales.
Due to its sensitivity to such a wide range of scales, lensing
can provide a large amount of information to constrain
models of nonlinear structure formation and cosmology, in
particular if also higher-order statistics are considered.
First firm statistical detections of cosmic shear were

reported in 2000 by four different groups [12–15]. Since
then, the field has seen a tremendous increase in the amount
and quality of lensing data [e.g., [16–20] ] as well as a
notable improvement in analysis techniques [e.g. [21–30] ].
Estimates of cosmological parameters have been inferred
from these data by comparing the power spectrum of the
fully projected 2D shear field (or related quantities) as well
as auto- and cross-spectra in a number of redshift bins to
theoretical predictions [27,31–39]. Several authors have
also investigated the additional constraining power that can
be achieved by incorporating third-order statistics and/or
shear peak counts and correlations [5,40–48], which helps
to break parameter degeneracies.
The full information content, however, lies in the three-

dimensional nonlinear shear field. 3D weak shear analysis
methods have been proposed by a number of authors
[49–51] and were recently applied to data from the Canada
France Hawaii Telescope Lensing Survey (CFHTLenS)
[52]. Furthermore, the measured shear field can be used for
3D reconstructions of the underlying density field. This
can then be directly compared to models of structure
formation and simplifies the cross correlation with other
tracers of matter. Algorithms that invert the lens equation
to obtain the density have been worked out by a number of
authors [53–55]. Since this inversion is underconstrained,
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it requires some regularization method or choice of prior
on the density field. Most of the algorithms employ a
Wiener filter, which corresponds to a normal (Gaussian)
prior, that can be complemented with information about
galaxy clustering [56,57].
We aim to extend the work on tomographic

reconstruction of the 3D matter distribution by designing
a fully Bayesian reconstruction algorithm that uses a
lognormal prior on the density field. The algorithm is
designed to reconstruct the 3D cosmic density fluctuation
field δðx; τÞ from weak galaxy lensing data, i.e. a meas-
urement of galaxy ellipticities at different (photometrically
measured) redshifts. Its derivation is based on the language
of information field theory [58], which has already been
used to address similar tomography problems [59]. We do
not make use of the flat-sky approximation i.e. lines of sight
are allowed to be nonperpendicular to a fixed 3D coordinate
grid. Further, we do not bin the data into pixels but take
each galaxy into account as an individual contribution
to the likelihood. This allows us to incorporate distance
uncertainties of individual galaxies instead of sample
redshift distributions.
In contrast to a normal prior for the density field, as it

has often been assumed before, a lognormal prior auto-
matically enforces the strict positivity of the field and
allows to capture some of the non-Gaussian features that
are imprinted on the density distribution by nonlinear
structure formation. Hubble was the first to notice that
galaxy number counts could be well approximated by a
lognormal distribution [60]. Characterizing the matter
overdensities in the Universe as a lognormal field was
first assessed by Coles and Jones in 1991 [61]. Subsequent
studies showed that a logarithmic mapping of the non-
linear matter distribution can partly re-Gaussianize the
field, and that nonlinear features in the matter power
spectrum can be reproduced by a lognormal transforma-
tion of the linear matter power spectrum [62,63]. A
lognormal prior has already been used and shown to be
superior to a Gaussian one in Bayesian algorithms that
reconstruct the large-scale matter distribution from the
observed galaxy distribution [58,64,65]. Lognormal dis-
tributions have also already been considered in the context
of weak lensing: Analyses of ray-tracing simulations and
the Dark Energy Survey (DES) Science Verification data
showed that the 1-point distribution function of the lensing
convergence is better described by a lognormal than a
Gaussian model [66,67]. Also the cosmic shear covariance
can bemodeled to better accuracy under the assumption that
the underlying convergence field follows a lognormal
distribution instead of a Gaussian one [68].
Bayesian inference methods are widely used in weak

shear analyses, most prominently in the context of shear
measurements from galaxy images [21,26,69]. Recently,
notable effort has been put into developing a fully
Bayesian analysis pipeline that propagates all uncertainties

consistently from the raw image to the inferred cosmo-
logical parameters [70,71].
This paper is organized as follows: This introduction is

followed by a short section, Sec. II, in which we briefly
introduce the notations and coordinate systems that will be
used in the derivation of the formalism. Our lognormal
prior model for the density is described in detail in Sec. III.
In Sec. IV, we present the data model, i.e. the lensing
formalism that connects the data from a cosmic shear
measurement to the underlying density field and give a
brief overview over its implementation in Sec. V. The
maximum a posteriori estimator that is used to infer the
matter distribution is introduced in Sec. VI and extended
to include redshift uncertainties of individual sources in
Sec. VII. In Sec. VIII, we show results of the density
reconstruction on increasingly realistic mock data. We
conclude this work with a summary and discussion in
Sec. IX.

II. COORDINATE SYSTEMS AND
NOTATIONAL CONVENTIONS

In the derivation of the formalism we work with
three different types of coordinate systems. First, we use
three-dimensional purely spatial comoving coordinates
x ¼ ðx0; x1; x2Þ at fixed comoving lookback time τ,
that, combined with the time coordinate, form the four-
dimensional coordinate system ðx; τÞ.
Second, we use a 3D comoving coordinate system on the

light cone of an observer at the origin. Vectors on the light
cone are marked by a prime, e.g. x0. Since x0-coordinates
implicitly define a comoving lookback time τðx0Þ ¼ jx0j=c
(where c denotes the speed of light), we omit spelling out
the time explicitly and write Aðx0Þ ¼ Aðx0; τÞ for any
quantity A that is defined on the light cone. The operation
that links quantities on the light cone to their corresponding
quantities in 4D spacetime can be encoded in a projection
operator with kernel

Cx0ðx;τÞ ¼ δDðx0 − xÞδDðτ − jxj=cÞ: ð1Þ

Third, we employ a set of coordinate systems on the light
cone, in which each system is orientated such that one axis
points into the direction of a source galaxy. These line of
sight coordinate systems are centered on the observer and
spanned by the vectors ðr̂i0; r̂i1; r̂i2Þ, where r̂i0ðx0Þ points into
the direction of the ith source galaxy and the normal vectors
ðr̂i1; r̂i2Þ span the two-dimensional plane perpendicular to
r̂i0. The radial comoving distance of each galaxy from the
observer is denoted ri ¼ jrij≡ jri0j. The transformation
from the light cone system into the line of sight (LOS)
system of a source galaxy i is achieved by a rotation of the
x00-axis into the ith line of sight, while x

0
1 and x

0
2 get aligned

with the image coordinates of the galaxy observation. We
label the corresponding transformation operators Ri

rx0 .
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III. PRIOR MODEL

The comoving density ρðx; τÞ can be split into its time-
independent spatial mean ρ̄, and a perturbation δρðx; τÞ ¼
ρ̄δðx; τÞ. The fractional overdensity δðx; τÞ is commonly
modeled as a homogeneous, isotropic Gaussian field with
zero mean and power spectrum Pδðk; τÞ. This is an
excellent description at early times where fluctuations
are very small, as e.g., shown by observations of the
cosmic microwave background radiation (CMB). At linear
level, valid for δ ≪ 1, the time evolution of the density field
can be described by

ρðx; τÞ ¼ ρ̄½1þ δðx; τÞ�

¼ ρ̄

�
1þ

Z
y
Dðjx − yj; τ; τ0Þφðy; τ0Þ

�

¼ ρ̄½1þDxyðτ; τ0Þφyðτ0Þ�: ð2Þ

In the last expression we have introduced a shorthand
notation that will be used in the rest of the paper: repeated
indices are integrated over if they do not appear on both
sides of the equation. In Eq. (2), Dðjx − yj; τ; τ0Þ is the
integration kernel of a linear homogeneous and isotropic,
but possibly scale-dependent, growth operator. The field φ
is an isotropic and homogeneous random field whose
values are drawn from a multivariate normal distribution
with mean φ̄ and covariance Φ,

φ↩N ðφjφ̄;ΦÞ: ð3Þ

Here, it describes the three dimensional density fluctuations
at time τ0 and is translated to other times τ by the growth
operation Dxyðτ; τ0Þ. This implies φ̄ ¼ 0 for this linear
Gaussian model.
The description Eq. (2) breaks down when δ≪1 such

that nonlinearities become important. A possible way to
account for nonlinearities is to include higher-order terms
from a perturbation series expansion of the full nonlinear
evolution equations. However, a further shortcoming of
the model (2) is that it allows arbitrarily negative density
contrasts, which physically can not be smaller than −1.
To obtain a strictly positive density field, we instead modify
Eq. (2) by an exponential:

ρðx; τÞ ¼ ρ̄½1þ δðx; τÞ� ¼ ρ̄ exp½Dxyðτ; τ0Þφyðτ0Þ�: ð4Þ

Since the expectation value of the density ρðx; τÞ must
equal ρ̄, the mean of φ must be set to

φ̄xðτÞ ¼ −
1

2
D−1

xy ðτ; τ0Þ½Dðτ; τ0ÞΦðτ0ÞDðτ; τ0Þ�yy; ð5Þ

for every time τ. Note that we integrate over the index y in
this expression, i.e. the diagonal of the composite operator
in square brackets is treated as a field.

For a local growth operator, Dxyðτ; τ0Þ ¼ Dðτ; τ0Þ
δDðx − yÞ, this mean correction simplifies to

φ̄xðτÞ ¼ −
1

2
Dðτ; τ0ÞΦ̂xðτ0Þ; ð6Þ

where we defined Φ̂xðτ0Þ≡Φxxðτ0Þ.
The Gaussian field φ and the growth operator D can be

related to known quantities. To see this, consider the
expansion of the Fourier modes of δ in Eulerian perturba-
tion theory (see e.g. [72]),

δðk; τÞ ¼
X
n¼1

DðnÞðτÞδðnÞðkÞ; ð7Þ

where δðnÞ are convolutions of n initial fields δðk; τ0Þ with
an integration kernel that changes from order to order. The
first term in this series is Dð1ÞðτÞ=Dð1Þðτ0Þδ0ðk; τ0Þ, where
Dð1ÞðτÞ is the growing solution to the linearized growth
equation [73].
We use this analogy to motivate the simplest possible

form of the growth operation in the lognormal model and
write

DxyðτÞ ¼ δDðx − yÞDð1ÞðτÞ ð8Þ
where we have setDð1Þðτ0Þ ¼ 1. This approximation erases
any a priori assumption of scale-dependent growth and
mode-coupling of the log field φ. Such a simplification is
viable since the model in Eq. (8) describes only our prior
assumptions about the density field ρ. The algorithm will
find the most probable realization of φ for a fixed growth
operator D given the data. If a scale-dependence is favored
by the data, it will be recovered, at least partially, in the
estimate of φ.
Our algorithm also allows to incorporate a more general

growth operation at the expense of computation time and
memory usage. The application of the most general DxyðτÞ
generates a four-dimensional field: three-dimensional spa-
tial comoving volumes for every time-slice τ. This very
large volume is then restricted to a three-dimensional cut by
application of the light cone operator [Eq. (1)]. The prior
model for the matter overdensity on the light cone then
becomes

δx0 ¼ Cx0ðx;τÞ exp ½DxyðτÞφyðτÞ� − 1: ð9Þ
For the purpose of comparing the lognormal to the

Gaussian density model we choose the simplest form of D,
Eq. (8), since it can be applied to the three-dimensional
field on the light cone

δx0 ¼ exp ½Dx0y0φy0 � − 1: ð10Þ
More complicated models, e.g. motivated by perturbation
theories for large-scale structure, could be envisioned but
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lie beyond the scope of this work. A growth model that is
better informed about the spatial correlations in the density
field could potentially improve the reconstruction in
regions with low signal to noise (see also the discussion
in Sec. IX.

IV. DATA MODEL

In this section we establish the analytic relation between
the signal field φ, the field of overdensities δ that we aim
to reconstruct, and the data that is obtained from a weak
lensing measurement.
Weak galaxy lensing surveys produce galaxy image

ellipticities that can be quantified, e.g., by a complex number
ϵ ¼ ϵ1 þ iϵ2 such that ϵ ¼ ða − bÞ=ðaþ bÞ expð2iηÞ for an
ellipse with major axis a, minor axis b, and position angle η
[e.g. [74] ]. We use the common approximation that the
components of the intrinsic source galaxy ellipticity
ϵs ¼ ðϵs1; ϵs2Þ, which define the shape that would be observed
in the absence of lensing,1 follow a global bivariate Gaussian
distribution with zero mean and variance σ2ϵ per component:

ϵs↩N ðϵsj0; NsÞ; Ns
ij ¼ δijσ

2
ϵ : ð11Þ

This approximation has shortcomings (see e.g. [23]), but
serves for the proof of our concept, sincewe create the mock
data on which we test the algorithm with exactly this shape
noise model. In the future, more elaborated (Bayesian
hierarchical) shear estimators, that e.g. take into account
galaxy properties, can be incorporated into the algorithm
[21,26,69].
Lensing distorts the galaxy images in shape and size

[74–78]. If the distortion is small, i.e. in the limit of weak
lensing, the relation between intrinsic source ellipticity and
observed ellipticity can be linearized and simplifies to
[79,80]

ϵ ¼ gþ ϵs; ð12Þ

where g is the reduced shear. The reduced shear combines
the effect of anisotropic lensing distortions, encoded in the
shear γ ¼ γ1 þ iγ2, and the isotropic distortion, encoded in
the convergence κ

g ¼ γ

1 − κ
≈ γ: ð13Þ

If κ ≪ 1, which is often the case for galaxy lensing, the
reduced shear can be approximated by the shear itself g ≈ γ.
The shear and convergence at angular position θ are

related to the lensing potential ψ by

γ1ðθÞ ¼
1

2
ð∂2

1 − ∂2
2ÞψðθÞ; γ2ðθÞ ¼ ∂1∂2ψðθÞ;

κðθÞ ¼ 1

2
ð∂2

1 þ ∂2
2ÞψðθÞ: ð14Þ

The lensing potential ψ is an integrated measure of scalar
perturbations to the background metric along the perturbed
photon geodesic. Integrating the perturbations along the
unperturbed geodesic turns out to be an excellent approxi-
mation [80,81]. Working in this so-called Born approxi-
mation, choosing the Newtonian gauge [82] and assuming
no anisotropic stress, the lensing potential can be written as
a weighted projection of the peculiar Newtonian gravita-
tional potential ϕ along the line of sight. For a source at
LOS distance ri, this integration reads

ψðθÞ ¼ 2

c2

Z
ri

0

dr
ri − r
rri

ϕðr; rθ1; rθ2Þ; ð15Þ

where we have assumed a spatially flat Universe. Applying
the angular derivatives in Eq. (14) to the expression for the
lensing potential in Eq. (15), we get

∂k∂lψðθÞ ¼
2

c2

Z
ri

0

drWðr; riÞ∂rk∂rlϕðr; rθ1; rθ2Þ; ð16Þ

where k; l ∈ ð1; 2Þ, and the lensing efficiency

Wðr; riÞ ¼ rðri − rÞ
ri

: ð17Þ

In practice the distance to the source ri cannot be
determined directly but follows from the photometrically
measured redshift zi. Photometrically measured redshifts
are associated with a relatively high error, σz=ð1þ zÞ ≈
0.04–0.06 [30]. In its most simple form the algorithm
ignores this uncertainty. We will use this simplified model
to validate the functionality of the algorithm in terms of
reconstructing non-linear structures in the lognormal
approximation. Redshift uncertainties will be included later
in Sec. VII.
The lensing shear is completely determined by the

second derivatives of the lensing potential perpendicular
to the LOS. The tidal tensor ∂rk∂rlϕðrÞ along the LOS of
the ith source galaxy is obtained by rotating the tidal tensor
on the global coordinate grid x0

Tijðx0Þ ¼ ∂x0i∂x0jϕðx0Þ; i; j ∈ ð0; 1; 2Þ; ð18Þ

into the specific coordinate system (with coordinates ri) that
points into the direction of this ith galaxy and projecting it
onto the ðri1 − ri2Þ-plane perpendicular to the LOS.
The last relation required to connect the data to the

density fluctuations is Poisson’s equation. It relates the
potential ϕðx0Þ to the density fluctuations δðx0Þ,

1We use vector notation, e.g. ϵ, to denote the tuple of real and
imaginary part ðϵ1; ϵ2Þ of a complex number ϵ ¼ ϵ1 þ iϵ2.
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∇2ϕðx0Þ ¼ 3

2
ΩmH2

0

δðx0Þ
aðjx0j=cÞ ; ð19Þ

where H0 denotes the Hubble constant (which will be
parametrized by h ¼ H0=ð100 km s−1 Mpc−1Þ in our test
simulations), and aðjx0j=cÞ ¼ aðτÞ denotes the scale factor
at the time τ corresponding to LOS distance riðx0Þ.

V. IMPLEMENTATION

The implementation, not only of the data model, but of
the entire algorithm, is based on NIFTy [83], a versatile
software package for the development of inference algo-
rithms. We further compute cosmology-dependent quan-
tities, like power spectra and distance-redshift relations,
with the publicly available CLASS code [84]. To summarize
the data model we introduce shorthand notations for each
operation in terms of operators.
In its most general form, the prior and data model, that

connect the Gaussian field φ with a data vector of Ns
measured source ellipticities, are as follows: The growth
operator DxyðτÞ imprints a growth structure on the
Gaussian field. The resulting four-dimensional field is
plugged into the exponential of Eð·Þ ¼ expð·Þ − 1 [see
Eq. (4)] to obtain the fractional overdensity δxðτÞ.
The overdensity induces the potential ϕyðτÞ by the
Poisson equation, encoded in the operator PyxðτÞ ¼
Δ−1 3

2
ΩmH2

0δðx0Þ=aðjx0j=cÞ [Eq. (19)]. The potential can
be computed efficiently in Fourier space. The gravitational
potential is then restricted to the light cone of the observer
by the light cone operator Cy0ðy;τÞ [Eq. (1)]. We compute
the tidal tensor of the resulting 3D field [(Eq. (18)] by
application of a global differential operator, which we
denote T z0y0 . The resulting tidal tensor is then rotated into
each galaxy’s LOS coordinate system by a rotation oper-
ator, Ri

rz0 . An integration operator I jr, which applies the
integration in Eq. (16), integrates the components of each
of the resulting Ns tidal tensors along the unperturbed
photon geodesic. For this operator, we use an adapted
version of the implementation that was already successfully
used in a similar reconstruction method [59]. The appli-
cation of I jr yields derivatives of the lensing potential for
each galaxy location. From this we can compute the shear
components by a linear operator Lij that comprises the
equations in Eq. (14). Rotation and integration map the
three dimensional continuous signal space into the discrete
space (one point for every galaxy) of the data. The shear
components are thus automatically computed at the loca-
tions of the galaxies.
In the simplified implementation that we use for this

work, we avoid the 4D coordinate grid ðx; τÞ and work on
the three-dimensional light cone from the beginning. In the
prior, we model the Gaussian log-density φ with the power
spectrum of matter fluctuations today Plinðk; a ¼ 1Þ, where
a denotes the scale factor. The growth operator is diagonal

in configuration space and only a function of comoving
distance to the observer Dx0y0 ¼ Dð1ÞðτÞδDðx0 − y0Þ, where
Dð1ÞðτÞ is the growing solution of the linearized growth
equation. The Poisson operator is split into two parts.
First, a multiplication with 3=2ΩmH2

0=aðjx0j=cÞ, i.e. an
operation that is diagonal in configuration space. Second,
the inverse Laplace operation Δ−1, which is diagonal in
Fourier space. The inverse Laplacian in the Poisson
equation is a nonlocal operation that should strictly be
applied to 3D spatial volumes at fixed time. Here, we
apply it on the light cone noting that the induced error in
radial direction should be small (roughly of order a2) if
we apply the first part of the Poisson operator first and if
Dð1ÞðτÞ is approximately proportional to the scale factor.
In this case, the first order term of the exponential
expression

expðDx0y0φy0 Þ − 1 ¼ Dx0y0φy0 þOðφ2Þ
≈ aðjx0jÞδDðx0 − y0Þφy0 þOðφ2Þ; ð20Þ

and therefore the first order time dependence of the
overdensity field will partly be canceled by the 1=a in the
Poisson equation before the inverse Laplacian rescales
the field. This cancellation corresponds to the commonly
known fact that the comoving gravitational potential is
constant in a matter dominated Universe.
After computing the six independent entries of the tidal

shear tensor, we integrate each of its components along the
LOS. Only after the integration we rotate the resulting
tensors into their LOS coordinate systems and project out
all entries which are not in the plane perpendicular to r.
This change of order allows to efficiently combine three
operations, that is the rotation into the LOS, projecting out
nonperpendicular components of the tidal tensor, and the
computation of shear components and convergence, in a
single linear operation. We denote the corresponding
operator G (gamma-projection-rotation).
For one data point the implemented data model in

operator notation reads

di ¼ ϵi ¼ ðRðφÞÞi þ ϵsi þ ni

¼ GijI jr0T r0z0Pz0y0 ½exp ðDy0x0φx0 Þ − 1y0 � þ ϵsi þ ni:

ð21Þ

The total data vector d has dimensions 2 × Ns, i.e. two
ellipticity components for each of the Ns source galaxies.
We use the letter R to encode the total response of the data
to a signal φ, i.e. the composite action of all operators. We
have also added an experimental noise n here for com-
pleteness. In general this will be subdominant to the shape
noise ϵs and we ignore it in the following. Note, however,
that the formalism allows for an incorporation of several
independent noise sources.
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VI. MAP ESTIMATOR

Our aim is to obtain a maximum a posteriori (MAP)
estimate of the signal field φ. The posterior distribution is
related to the likelihood and the prior by Bayes’ theorem

PðφjdÞ ¼ PðdjφÞPðφÞ
PðdÞ : ð22Þ

The prior probability PðφÞ is modeled as a Gaussian
distribution with covariance Φ. In a first simple approxi-
mation Φ can be taken to be diagonal in Fourier space with
the usual power spectrum of matter overdensities Plinðk; aÞ.
To obtain the likelihood, we marginalize over all

realizations of the shape noise

PðdjφÞ ¼
Z

DϵsPðdjφ; ϵsÞPðϵsÞ ¼ N ½djRðφÞ; N�; ð23Þ

where the covariance N of the shape noise was defined in
Eq. (11) and we neglect any other sources of measurement
noise. With this, the negative log-posterior becomes

− lnPðφjdÞ¼̂ 1

2
½d − RðφÞ�†N−1½d − RðφÞ�

þ 1

2
ðφ − φ̄Þ†Φ−1ðφ − φ̄Þ; ð24Þ

where we have dropped most terms that are independent of
the field of interest, φ.
The maximum of the posterior distribution is found

by minimizing the expression in Eq. (24). Note that the
posterior distribution is not Gaussian. Due to the expo-
nential in the response R it is not quadratic in φ. To find the
minimum of the negative log-posterior we apply a Newton-
like minimization scheme [85]. This requires the derivative
of the negative log-posterior with respect to φ

−
δ lnPðφjdÞ

δφu
¼ Φ−1

uqðφ − φ̄Þq
þ ½d − RðφÞ�iN−1

ij GjkIkr0T r0z0Pz0y0

× ½expðDy0x0φx0 Þ �Dy0u�; ð25Þ

where the star denotes a pointwise product in position
space, i.e. ðα � βÞx ¼ αxβx.

VII. REDSHIFT-MARGINALIZED LIKELIHOOD
AND POSTERIOR

We can take into account the source redshift uncertainty
by generalizing the marginalized likelihood in Eq. (23) to
include the probability of the source redshifts zs given
their measured photometric redshifts zphoto. This proba-
bility is given by the posterior redshift distribution function
PðzsjzphotoÞ, where zs and zphoto are vectors of the redshifts

of all sources. Including this redshift posterior in the
likelihood yields,

PðdjφÞ ¼
Z

Dϵs
Z

DzsPðdjφ; ϵs; zsÞPðϵsÞPðzsjzphotoÞ

¼
Z

DzsN ½djRzsðφÞ; N�PðzsjzphotoÞ: ð26Þ

In most cases, this integration cannot be done analytically
and the resulting distribution will in general not be
Gaussian. In the absence of further information about
the general shape of this distribution, a Gaussian charac-
terized by the first and second central moment of the full
distribution is the most conservative approximation one can
use (it is the maximum entropy approximation and there-
fore adds the least additional information). This motivates
the use of a Gaussian to model the redshift-marginalized
likelihood.
To obtain the first and second moment, we need to

calculate hdiPðdjφÞ and hdd†iPðdjφÞ. For the expectation
value of the data, we obtain

hdiPðdjφÞ ¼
Z

Dzs
Z

DddN ½djRzsðφÞ; N�PðzsjzphotoÞ

¼
Z

DzsRzsðφÞPðzsjzphotoÞ ð27Þ

hdiiPðdjφÞ
¼ Gij

�Z
dzsPðzsjzphotoÞIzs

jr

�
R̄ðφÞr

¼ Gij

�Z
∞

0

dr
Z

∞

r
drjWðr; rjÞPðzsjjzphotojÞ

dzsj
drj

�
R̄ðφÞr

≡ ½GĪ R̄�ðφÞi ≡ ~RðφÞi; ð28Þ

where Ī denotes the redshift averaged integration operator
defined in the square brackets in the first line of Eq. (28)
and we have introduced R̄ð·Þ≡ T Pðexp ½Dð·Þ� − 1Þ to
summarize the action of all source-redshift independent
operators.
The second moment is

hdd†iPðdjφÞ ¼ N þ hðRðφÞÞðRðφÞÞ†iPðzjzphÞ: ð29Þ

Nondiagonal elements of the second term in Eq. (29)
read

hððRðφÞÞiðRðφÞÞjÞiPðzjzphÞ
¼ hðRðφÞÞiiPðzjzphÞhðRðφÞÞjiPðzjzphÞ
¼ ð ~RφÞið ~RφÞj ð30Þ

and diagonal elements are
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hðRðφÞÞiðRðφÞÞiiPðzjzphÞ

¼ GijGij

�Z
∞

0

dr
Z

∞

0

dr0
Z

∞

maxðr;r0Þ
drjWðr; rjÞWðr0; rjÞ

× PðzsjjzphotojÞ
dzj

drj

�
R̄ðφÞrR̄ðφÞr0

≡ GijGij
~I jr;r0R̄ðφÞrR̄ðφÞr0 ; ð31Þ

where the new operator ~I denotes the squared average of
the integration operator, i.e. the square brackets in the first
line of Eq. (31).
The Gaussian approximation to the likelihood is then

N ½dj ~RðφÞ; ~N�, where ~N ¼ N þQ and Q is

Q¼ hðRðφÞÞiðRðφÞÞjiPðzjzphÞ − hð ~RφÞiiPðzjzphÞhð ~RφÞjiPðzjzphÞ
¼ hðRðφÞÞiðRðφÞÞiiPðzjzphÞ − ð ~RφÞið ~RφÞi: ð32Þ

This expression is still signal-dependent and we approxi-
mate it further by replacing φ by its posterior mean
hφiPðφjdÞ. Since this mean depends on ~N, the resulting
set of equations must be solved iteratively.
To estimate the effect of the additional redshift-

marginalization, we compare the effective lensing effi-
ciency that appears in the redshift-marginalized data
model [Eq. (28)],

Weffðr; rsÞ ¼
Z

∞

r
drsWðr; rsÞPðzsjzphotoÞ

dzs

drs
; ð33Þ

to the exact lensing efficiency Wðr; rsÞ.
In the left panel Fig. 1 we plot both kernels for a source at

redshift zs ¼ 0.8 and a Gaussian redshift posterior with

variance σz ¼ 0.04ð1þ zsÞ. For this particular configura-
tion we find that both integration kernels are very similar
over most of the distance to the source, i.e. their relative
difference never exceeds 4% for r < 0.9rs. Only very close
to the galaxy the kernels start to differ significantly. At this
point the amplitude of the kernels has already dropped by
more than 80%. The contribution to the lensing signal from
structures with r > 0.9rs is therefore strongly suppressed.
In the right panel of Fig. 1 we plot the relative difference

of the integration volumes of the kernels assuming a
uniform density contrast along the line of sight and the
same Gaussian redshift posterior with σz ¼ 0.04ð1þ zsÞ.
We find that the difference between the kernels is sub-
percent for sources with zs > 0.43.
These tests suggest that the redshift uncertainty should

change the lensing signal of individual galaxies on average
at the percent level.
We caution, however, that these tests are very simplified

and only serve to get a rough estimate of the effect of
redshift uncertainties, especially since we have ignored
catastrophic outliers or the fact that redshift posteriors
can be bimodial. For the proof of the concept of our
reconstruction algorithm, we ignore redshift uncertainties.
Following a test of their exact impact (e.g. by comparing a
reconstruction with exact spectroscopic redshifts to one
with redshifts obtained from the corresponding photometric
redshift posteriors), they could be included in the way that
has been outlined in this section.

VIII. VALIDATION AND TESTS

To validate the implementation and assess the goodness
of the tomographic reconstruction, we perform a number of
increasingly realistic tests, which we denote tests A, B and

FIG. 1. Left panel: In the presence of redshift uncertainties the expected measured galaxy shape (i.e. the mean of its likelihood) is
obtained by replacing the lensing efficiency W½r; rsðzsÞ� with known source redshift zs (blue) by the redshift-marginalized effective
lensing efficiencyWeff (orange-dashed) in the data model (Eq. (28). In the example shown, we have placed a source at redshift zs ¼ 0.8
and assume a Gaussian photometric redshift uncertainty characterized by σz=ð1þ zÞ ≈ 0.04. The redshift distribution function
PðzsjzphotoÞ is shown for comparison (not normalized). In this example, the pointwise difference between the kernels is below 4% for all
r < 0.9rs. Right panel: Relative ratio of the integration volumes for different source redshifts assuming the same redshift error. In this
idealized case (we assume a homogeneous density contrast along the line of sight), the effect of replacing the lensing kernel is sub-
percent for source redshifts zs > 0.43 as indicated by the dashed lines.
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C. In tests of type Awe employ an even source distribution
over the entire box. These tests are the least realistic ones
and serve to validate the correctness of the implementation.
Test B uses a surveylike source-redshift distribution and
test C adds realistic shape noise.
In all of these tests, we place the observer in the center

of the bottom of the computational box2 and resolve the
underlying and reconstructed overdensity fields with 1283

pixels. Depending on the test, we allow the physical sizes of
the box to differ. The current pixel resolution is limited due
to computation time and memory usage. A higher reso-
lution will be accessible after parallelization and adaption
of the code for the usage on a high-performance cluster.
The minimization is achieved through 300 steps of an

LBFGS algorithm [85] followed by a steepest descent
algorithm. The latter is set to have reached convergence if
the maximal pixel-wise relative difference between two
subsequent field estimates is smaller than 10−4 for three
iteration in a row. If the steepest descent does not converge
within 200 iterations, the same combination of LBFGS and
steepest descent minimizers is repeated. We find that, at
latest in this second run, all of our example reconstructions
meet the convergence criterium. In the current serial
implementation, the entire minimization takes between
1 day (for idealized tests at fixed redshifts) and 6 days
(for a realistic source distribution and shape noise) on a
2.3 Ghz core of an Intel Xeon E5 processor.
Most of the tests are based on mock data that we create by

applying the data model described in Sec. IV to nonlinear
density fields obtained from N-body simulations. For tests at
fixed redshifts we use snapshots of the Millennium-XXL
simulation [86] fromwhich we take the entire volume of size
½3h−1 Gpc�3. For more realistic test cases we construct a
light cone of size ½500h−1Mpc; 500h−1Mpc; 4000h−1 Mpc�
by joining snapshots of the Millennium Run [87]. The
Millennium box measures 500h−1 Mpc along each side and
weshift it every time500h−1 Mpc in thez-directionhavebeen
constructed. This procedure ensures that a LOS is unlikely to
hit the same structure repeatedly. In the resulting light conewe
achieve a resolution of 3.9h−1 Mpc in the x- and y-directions
corresponding to mildly nonlinear scales and reach a redshift
of z ¼ 2.2 in the z-direction. Note that the physical size of the
pixels is eight times longer along the z-axis, meaning that we
obtain a poorer resolution in radial direction.
We map the simulations onto our pixel grid by a nearest

grid point interpolation. This procedure suppresses power
on small scales and modifies the power spectrum by a
kernel consisting of cardinal sine functions (see e.g. [88]).
To be consistent with this modification, we apply the same
kernel to the theory power spectra which we use in the prior
distributions.

Both the Millennium-XXL and the Millennium simu-
lation use a flat ΛCDM cosmology with Ωm ¼ 0.25
and h ¼ 0.73.

A. Fidelity of the reconstruction

The BFGS algorithm is a quasi-Newton method. While
Newton methods rely on an exact evaluation of the inverse
Hessian at each step, quasi-Newton methods estimate the
curvature from previous evaluations of the gradient. The
“L” in L-BFGS refers to the limited memory version of this
algorithm in which the inverse Hessian is approximated by
a sparse matrix instead of a dense one. This additional
approximation becomes necessary for problems with many
degrees of freedom such as this. In principle the final
estimate of the inverse Hessian could be used as an
approximation for the pixel-pixel covariance, but it depends
on the correlated previous steps of the algorithm and only
probes the curvature along the search directions. The
covariance, C, of a Gaussian posterior distribution,
GðφjdÞ, with maximum m can be estimated by sampling.
A straightforward algorithm to obtain such an estimate is
outlined in the following.
(1) Draw random realizations of signal and noise from

the Gaussian prior and noise distributions.

φ0↩Gðφ;ΦÞ and n0↩Gðn;NÞ: ð34Þ
(2) Use the resulting realizations to model a data

vector d0

d0 ¼ Rφ0 þ n0: ð35Þ
(3) From this random data vector reconstruct the Wiener

filter estimate m0, i.e. the maximum of the Gaussian
posterior distribution,

m0 ¼ CR†N−1d0; with C ¼ ½R†N−1RþΦ−1�−1:
ð36Þ

(4) Repeat steps 1–3 N times and estimate C from

Ĉ ¼ 1

N

XN
i

ðφ0
i −m0

iÞðφ0
i −m0

iÞ†: ð37Þ

Computing the full covariance is computationally infea-
sible since it would require ∼9 Tb to store a full covariance
matrix of size 1=2nðnþ 1Þ for a map with n ¼ 1283 pixels.
Numerically feasible are, e.g., estimates of its diagonal (the
pixelwise covariance), or of the full covariance of 1D slices
of the reconstruction box.
The above algorithm yields an unbiased estimator of the

posterior covariance only if the data model is linear in the
density field. The lognormal model is inherently nonlinear
and therefore the posterior non-Gaussian. However,
for sufficiently small perturbation Δm around the MAP
estimate m the Laplace approximation should be appli-
cable, meaning that we can approximate the negative log
posterior as a Gaussian,

2This position is not fixed by the algorithm. For a reconstruc-
tion from a survey that covers a significant fraction of the sky, the
observer can be placed in the center of the box, for example.
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− lnPðφ ¼ mþ ΔmjdÞ ≈ 1

2
ð ~d − R0 ~φÞ†N−1ð ~d − R0 ~φÞ

þ 1

2
~φ†Φ−1 ~φ ð38Þ

¼̂ − lnGð ~φjdÞ: ð39Þ
To obtain Eq. (38), we have linearized the response
operator

R0 ¼ δR
δφ

����
φ¼m

; ð40Þ

redefined the data vector ~d ¼ d − RðmÞ þ R0ðm − φ̄Þ and
shifted the signal ~φ ¼ mþ Δm − φ̄. The covariance C0 of
this Gaussian approximation to the posterior is

C0 ¼ ½R0†N−1R0 þ S−1�−1: ð41Þ

FIG. 2. Qualitative comparison of reconstruction methods in the test series A2, for which we create mock data from individual
simulation snapshots, apply an even source distribution and add negligible shape noise. We show central slices through the 3-
dimensional fields. The observer is located in the center of the (x − y)-plane at the origin of the z-axis. The redshift of the snapshot
decreases from top to bottom, z ¼ ½1; 0.25; 0.�. In the two upper rows we show the (x − y) plane at z ¼ maxðzÞ=2, in the last row we look
at the (x − z)-plane at y ¼ maxðyÞ=2. The fields are from left to right: the underlying density field from the simulation, its reconstruction
with a lognormal prior and its reconstruction with a Gaussian prior (Wiener filter). We plot ln½1þ δ� and mark unphysical negative
densities in the Wiener Filter reconstruction in red. The resolution of the reconstruction decreases with distance to the observer. This is
because (1) the density of lines of sight decreases (2) there are less sources behind the point we want to reconstruct (3) the information
from these sources is suppressed by the shape of the integration kernel. In all cases, the lognormal reconstruction is superior in capturing
the highest values of the density field and avoids unphysically low density contrasts below −1. The Gaussian prior seems better in
identifying low density regions.
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This approximate covariance can be evaluated as outlined
above. As an example, we estimate diagðC0Þ, which can be
interpreted as an uncertainty map for the reconstruction, for
one of our test cases in the next section.

B. Tests A: Simple geometry

In a first series of tests we distribute 500 000 sources
evenly in the box and slightly beyond (�100h−1 Mpc). We
place sources outside of the reconstructed volume in order
to increase the area in which we can recover the underlying
density field with high resolution. The quality of the
reconstruction decreases with increasing distance to the
observer because of increasing distances between lines of
sight and a decreasing number of background sources that
help to break the LOS degeneracy of the lensing kernel. We
further only add unphysically low, negligible shape noise in
this first test set.
We perform three different tests of type A for which we

create data from increasingly realistic input fields:
(1) A self-consistency test, where we create an over-

density field from a random realization of the Gaus-
sian field φ [Eq. (3)] in a cubic box of side length
1000h−1 Mpc. We then apply the implemented data
model and use the algorithm to recover this input field.
We do not show any results from this test, since they
would not provide any additional insights compared
to tests A2 and A3, but simply state that we can
recover the input field with high fidelity which means
that the implementation is in itself consistent.

(2) A test in which we create shears from overdensity
fields taken from an N-body simulation at fixed
redshifts. We use three different snapshots at individ-
ual redshifts z ¼ 1, z ¼ 0.25 and z ¼ 0. This allows
us to assess the algorithm’s ability to recover increas-
ingly nonlinear fields. In each case, we compare the
lognormal reconstruction to a Wiener filter (WF)
reconstruction, which uses the same data model
and source distribution but a Gaussian prior on the
overdensity field δ. Comparisons between input and
reconstructed fields in each case are shown in Fig. 2.
The resolution of the reconstruction decreases with
distance to the observer. This is because (1) thedensity
of lines of sight decreases (2) there are less sources
behind the point we want to reconstruct (3) the
information from these sources is suppressed by the
shape of the integration kernel. In Table I we compare
the minimal and maximal values in the reconstruc-
tions to the extremal values in the true density field.
The lognormal reconstruction is superior in capturing
the highest values of the density field and avoids
unphysically low density contrasts below−1. Table II
summarizes pixel-wise quadratic differences and the
pixel-wise Pearson correlation between underlying
and reconstructed fields. For all redshifts tested the
lognormal prior yields higher correlations with the

original field than the Gaussian prior. The difference
between lognormal and WF reconstruction increases
as the input field becomesmore nonlinear. This is also
reflected in the 1-point probability distribution func-
tions (PDFs), which we show in Fig. 3. While the
Wiener filter PDF is closer to symmetric in all cases,
we can capture part of the skewness of the input field
by applying the lognormal prior. A notable feature of
the 1-point PDFs is that themaximumvalue is slightly
biased in both reconstructions.The distributions of the
reconstructions peak at zero, i.e. at their mean, while
the underlying field peaks below. This is a feature of
both priors since they prefer the mean density (or a
zero density contrast) if the data does not contain
enough information on the density.3

(3) zA test similar to A2 but with a redshift dependent
density field constructed from different snapshots.
The physical size of the box spans ½500h−1 Mpc�2

TABLE I. Quantitative comparison of reconstruction methods
for tests A2 and A3. We compare the minimal and maximal
values of the underlying and reconstructed fields (δ and δ̂,
respectively).

maxðδ̂Þ, maxðδÞ minðδ̂Þ, minðδÞ
Redshifts Lognormal WF N-body Lognormal WF N-body

1. 4.22 2.95 4.92 −0.63 −0.91 −0.79
0.25 7.38 5.00 8.49 −0.77 −1.28 −0.87
0.0 8.32 5.55 10.26 −0.99 −1.57 −0.89
light
cone

32.90 20.81 70.20 −0.98 −4.28 −0.92

TABLE II. Quantitative comparison of reconstruction methods
for tests A2 and A3. We compare the lognormal to the Gaussian
prior in terms of the mean square pixel-wise difference (first
column) and the Pearson-correlation coefficient (second column)
between the reconstruction and the underlying field (which we
denote δ̂ and δ, respectively).

hðδ̂ − δÞ2i=σ2δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδ̂δi=ðσδσδ̂Þ

q

Redshifts Lognormal WF Lognormal WF

1. 0.66 0.69 0.58 0.56
0.25 0.73 0.77 0.52 0.49
0.0 0.73 0.77 0.53 0.48
light cone 0.65 0.73 0.61 0.51

3To be precise one should note that the maximum of the
lognormal posterior lies slightly below the mean density. How-
ever, the difference to the mean turns out to be small in all test
cases. For the light cone box we have calculated that the prior
distribution peaks at δ ¼ −0.1. This value is consistent with the
lognormal reconstructions that we obtain in our test cases.
Closely inspecting the right panels of Figs. 5 and 10, one can
see that the bulge of the reconstructed densities lies slightly below
1, at δþ 1 ≈ 0.9).
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in the (x − y)-plane and 4000h−1 Mpc into the
z-direction corresponding to a maximum redshift
of z ¼ 2.2.4 Results of test A3 are shown in Fig. 4
and Fig. 5. The quantitative comparison between

the lognormal and the corresponding WF run is
listed in the last rows of Tables I and II, labeled
“light cone.” We find a similar match between the
underlying and reconstructed fields as in tests A2
and again a superiority of the lognormal prior over
the Wiener filter reconstruction in terms of corre-
lation coefficients, pixelwise differences and ex-
tremal values. The distributions of the pixelwise
matching between input and reconstructions in the
left panel of Fig. 5 imply that the lognormal prior is
more likely to reconstruct overdensities correctly,
while the Wiener filter is better in tracing the
underdensities. The full distributions in the right
panel of the same figure suggest that the better
reconstruction of low densities with the Wiener
filter is a consequence of the symmetry of the

(a) (b)

(c)

FIG. 3. 1-point PDFs of the simulated density contrasts (in cyan) and their Wiener filter and lognormal reconstructions (red and dark
blue) in tests on mock data created from different snapshots of an N-body simulation with an even source distribution and negligible
shape noise (A2). The PDF of the lognormal reconstruction is slightly more skewed than the Wiener filter PDF, which is closer to
symmetric in all cases. Both the Wiener filter and the lognormal reconstruction are equally biased in the position of the peak, however,
the mean values of both reconstructions agree well with the mean value of the underlying density. The mean values of the density
contrast are indicated by vertical lines in the same color as their corresponding distribution. We also find that the Wiener filter produces
unphysical density contrasts below −1 in snapshots at z ¼ 0.25 and z ¼ 0.

4The light cone is constructed by merging planes from
different snapshots along the z-direction of the box, but the
algorithm assumes that the distance and redshift increase in radial
direction from the observer. This leads to a mismatch between the
distance to a (source) position assumed by the algorithm and
the distance or rather redshift that this position corresponds to in
the simulation. The distance in the simulation is cos θ times the
distance assumed by the algorithm, where θ is the angle between
the LOS and the z-axis. This mismatch should only become
relevant for relatively large angles θ > π=2. Lines of sight with
such angles only cover a minor fraction of the box and we
therefore expect the test to not be severely affected by this
approximation.
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FIG. 4. Qualitative comparison of reconstruction methods in test A3. For this test, we create mock data from a simulated density field
on a light cone, use an even source distribution and add negligible shape noise. The fields are from left to right: the underlying
overdensity field from the simulation, the reconstructed overdensity field using a lognormal prior and the reconstructed overdensity
using a Gaussian prior (Wiener filter). We show the central (x − y)-plane of the reconstruction box in each panel. The observer is located
in the center of the (x − y)-plane at the origin of the z-axis. Note that we plot ln½1þ δ� and mark negative densities in red. In the second
row, we show a smoothed version of the fields. The smoothing is performed with a Gaussian kernel with σ ¼ 8h−1 Mpc.

FIG. 5. Comparison of reconstruction methods in test A3: In the left panel, we have binned the underlying density into 40 bins of equal
width (0.17) in ln-space and count the points in the reconstructions whose density lies in the same bin at the same location. The total
number of points in a density bin in the original density field is shown for comparison in the background (cyan). This plot shows that the
lognormal model is better in capturing overdensities, while it is worse than the WF reconstruction in capturing underdensities (note the
log scaling). In the right panel, we plot the full distributions of the reconstructions against the underlying density. A perfect
reconstruction would follow the diagonal. The lognormal reconstruction achieves this better in the high density tail and prefers values
around the mean in poorly constrained regions. The Gaussian prior tends to identify more low density regions.
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Gaussian prior: The Gaussian prior suppresses
both positive and negative offsets from the mean
density by an equal amount. Because of this
property it also allows negative densities. The
lognormal prior strongly suppresses deviations
towards low densities, while it is less sensitive
to deviations towards higher densities (since it
suppresses deviations equally on a logarithmic
scale). As a result, the lognormal model refrains
from assigning very low densities to regions with
small signal-to-noise.

In Fig. 7 we show estimates of the reconstruction
uncertainties in this test which were obtained by follow-
ing the prescription in Sec. VIII A. We find that the
estimator in Eq. (37) converges very quickly and use 20
samples (from the 15th sample on the average change per
pixel from adding another sample is less than 0.05,
adding the 20th sample changes the uncertainty estimate
on average only by 0.03 per pixel). For both priors, but
especially for the lognormal prior, a comparison to the
input field shows that overdensities are reconstructed
with higher fidelity than low density regions. The Wiener
filter reconstruction is less sensitive to overdensities but
slightly more sensitive to underdensities than the log-
normal reconstruction.
In Fig. 6 we compare the correlation coefficient between

input field and reconstructions on different scales. The
Gaussian model provides better fits on the largest scales.
This could be due to the aforementioned missing power in
low density regions in the lognormal reconstruction, which
can be best seen by eye in the lower row of Fig. 4. On
intermediate and small scales the power spectrum of the
lognormal reconstruction shows higher correlations with
the original field. We note that the estimator in this work

was designed for the map level and is not expected to be an
optimal estimator for the power spectrum.

C. Test B: Realistic survey geometry

In the test of type B, we employ a realistic survey
geometry and source distribution. We use input over-
densities from the same light cone as in test A3 to generate
mock data and place sources in a cone that spans 7.15°.
The sources are distributed according to a distribution
function of form

nðzÞ ¼ zα exp½−ðz=z0Þβ�; ð42Þ

where we fit α, β, and z0 to the publicly available source
distribution of the CFHTLenS survey.5 The resulting
source distribution function is shown in the left panel
of Fig. 8. The fit does not exactly match the survey
distribution, but the similarity is sufficient for this test.
We then draw Ω½arcmin2�ρs½gal=arcmin2� source positions
from this distribution, where Ω is the angular opening
area of the cone in arcmin2 and ρs the source density of
the survey, which we choose to be ρs ¼ 11 gal=arcmin2

corresponding to the source density in CFHTLenS. A
scatter plot of the resulting spatial source distribution is
shown in the right panel of Fig. 8. The reconstructions are
depicted in Fig. 9.
For a realistic source distribution the lognormal model

seems to better reconstruct the underlying field at lower
redshifts, while the Gaussian prior better traces distant low

(a) (b)

FIG. 6. Cross spectra (2πδDðk − k0ÞPY;X
k ¼ ℜhδYðkÞδXðk0Þi) between the underlying density field and the reconstructions divided by

the square root of the auto spectra. We show results for tests of type A at z ¼ 0 (left panel) and on the light cone (right panel). Albeit
adding only negligible noise in this test, we do not expect a perfect correlation due to the information loss caused by the sparse sampling
of the underlying field by the data. We find that the Gaussian model is better in reconstructing the largest-scales, while the lognormal
model shows higher correlations at low and intermediate scales.

5http://www.cfhtlens.org/astronomers/cosmological-data-
products.
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density regions. We interpret this is again a consequence
of the symmetry of the Gaussian distribution, the same
property which leads to the abundant reconstruction of
negative densities, nicely visible in the 1-point PDF
(Fig. 10).

D. Test C: Realistic shape noise

In the last test of our test series, we add realistic
shape noise with σϵ ¼ 0.25 to the mock data on the light
cone. This value is close to the value in CFHTLenS, σϵ ¼
0.279 [38]. Compared to test B, we use the same opening

FIG. 7. Estimated uncertainty maps, σδ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðĈÞ

q
(c.p. Sec. VIII A), of the reconstructions in Test A(3) obtained with 20 samples.

In the upper row we show uncertainty maps of the central slice through the (x − y)-plane, in the lower row through the (x − z)-plane.
The columns are from left to right: estimate of σδ̂ of the lognormal reconstruction, the Wiener filter reconstruction, and the input field in
linear scaling for comparison.

FIG. 8. The source redshift distribution used for test B: In the left panel, we show the histogram of source redshifts from CFHTLenS
and our fit to this distribution of the form given in Eq. (42). The right panel depicts the projected 3D scatter plot of the galaxy sample that
is drawn from the fit and used in test B (we only show every 200th source).
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angle of 7.15° but a slightly higher galaxy density of
15 gal=arcmin2. We show results of this final test in
Figs. 11 and 12. The left panel of Fig. 11 shows that the
lognormal model is more likely to reconstruct the correct
density in a pixel. However, the PDF in the right panel
seems to have a spurious tail of high density values. This
tail does not significantly deviate from the high density
tail of the underlying reconstruction and is therefore
hardly suppressed by the prior. Figure 11 reveals that
these high density values are due to an overestimation of
densities in slices normal to the direction of observation.
We have verified that these overdense sheets are not
due to a wrong minimum or saddle point by starting the

algorithm at either the WF solution or the true input field
and changing convergence criteria. We interpret these
features as follows: Adding a constant density offset to a
slice normal to the observational direction does not
significantly change the likelihood, because of the well
known mass-sheet degeneracy—the fact that adding a
homogeneous mass sheet does not change the lensing
signal. The lognormal prior does not punish or even
encourages these overdensities since it expects a skewed
density distribution. The Gaussian prior suppresses
strong deviations from a symmetric density distribution,
which is why these features are not present in the
Gaussian case.

FIG. 9. Results of test B, reconstructions of a redshift-dependent density field on the observer’s light cone from mock data with a
realistic source distribution but negligible shape noise. We show central slices through the y-axis of the underlying field, ln½δN-Body þ 1�,
in the left, the lognormal reconstruction, ln½δ̂ln þ 1�, in the middle and the Wiener filter reconstruction, ln½δ̂WF þ 1� in the right panel.
Negative densities are marked in red. The apparent anisotropy of the fields stems from the fact that we have squeezed them in the z-
direction. We use square pixels in the plot, while their physical size is eight times larger in the z-direction than in the x-direction.

FIG. 10. Results of test B, reconstructions from mock data with a CFHTLenS-like source distribution. We have restricted the analysis
to the field values that lie within the observed cone. In the left panel we show the 1-point PDFs of the fields with mean values indicated
by vertical lines in the same color as their corresponding distribution. The right plot shows the density distributions of the
reconstructions against the underlying density. The lognormal model is clearly better in tracing the highest values of the true density
distribution.
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FIG. 11. Results of test C, reconstructions from mock data with a CFHTLenS-like source distribution and realistic shape noise.
We have restricted the analysis to the field values that lie within the observed cone. In the left panel, we count the pixels in which the
reconstructed densities coincide with the original density field (i.e. lie within the same density bin). Similarly to test with low noise, we
find that the lognormal prior is more likely to reconstruct overdensities correctly. In the right panel we show the 1-point PDFs of the
fields with mean values indicated by vertical lines in the same color as their corresponding distribution. The lognormal reconstruction
seems to trace the high density tail of the underlying distribution, while the Gaussian density estimates remain very conservative.

FIG. 12. Results of test C: reconstructions from CFHTLenS-like mock data with realistic shape noise. In the left column we show
slices through the underlying density field, in the central and middle columns the corresponding slices through the lognormal and WF
reconstructions, respectively. In the upper row, we show a central slice through the y-axis. Both reconstructions suffer from a strong line
of sight degeneracy. The Wiener filter seems to slightly better reconstruct underdensities, while the lognormal model seems more
sensitive to overdensities. The latter even overestimates the densities in certain slices normal to the observational direction. We interpret
this as a consequence of mass sheet degeneracy. To verify that the algorithm identifies real structures in these overdense slices, we show
one of them (the lower one) in the lower row.
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IX. DISCUSSION AND FUTURE IMPROVEMENTS

We have presented a novel, fully Bayesian, lensing
tomography algorithm that reconstructs the three-
dimensional matter distribution from measurements of
individual galaxy shapes. Given a data vector of measured
galaxy shears, the galaxies’ angular positions and their
redshifts, this algorithm finds the maximum a posteriori
estimate of the density contrast between the lensed galaxies
and the observer. Since galaxy shapes provide only limited
information about the intervening structure, this recon-
struction problem is in general ill-constrained and requires
regularization. In case of a maximum a posteriori estimate
this regularization is provided by the prior probability
distribution—the distribution which ideally contains all
available information about the underlying field before the
lensing measurement.
This ideal distribution, however, is in reality unacces-

sible. Similar previous works have used a Gaussian prior in
this context. A Gaussian prior (together with a Gaussian
noise model) results in a Gaussian posterior distribution
which has a distinct minimum and no saddle points.
Maximizing this posterior is comparably straightforward.
The algorithm presented in this work was especially
designed to also handle non-Gaussian posteriors. We show
this ability by using a lognormal prior which should be an
improvement over the Gaussian approximation in two
ways: First, it enforces the strict positivity of the density
while a Gaussian prior allows unphysical, negative den-
sities. Second, it incorporates an a priori knowledge of the
presence of odd moments in the matter distribution, which
arise as a consequence of nonlinear structure formation.
These corrections are relevant since the cosmic shear signal
probes structures down to scales that lie well within the
nonlinear regime.
We note that neither of these priors describe the exact

distribution of the nonlinearly evolved density contrast. In
regions with high signal-to-noise this is not problematic
since the prior is updated by the information contained in
the data. In less well constrained regions the prior will paint
in missing information. This can lead to systematic devia-
tions from the true distribution. However, nonoptimal
priors can be sufficient depending on the quantity and
scales one is interested in reconstructing. For example a
Gaussian prior will be a good choice for large scales, where
the field is still Gaussian. On small scales the lognormal
model will yield better reconstructions since it is informed
about the skewness of the distribution and avoids negative
densities.
To test the algorithm and assess the differences between

a reconstruction with a lognormal and a Gaussian prior
(in the latter case the reconstruction simplifies to a Wiener
filter), we have applied it in both configurations to
increasingly realistic mock data sets. Those data sets were
produced by applying the algorithm’s inherent data model
to nonlinearly evolved densities from N-body simulations.

In tests with negligible shape noise, but a realistic
CFHTLenS-like source distribution, we find that the
reconstruction with a lognormal prior avoids negative
densities that are abundantly present in the Wiener filter
reconstruction. It is also better in reconstructing the highest
local peaks in the density field, and it leads to a higher
pointwise correlation between the true underlying density
and its reconstruction. The Gaussian model seems better in
tracing low density regions and capturing the largest scales.
In regions with low signal-to-noise both priors tend towards
the mean density.
For realistic shape noise, the data contains too little

information to break the line-of-sight degeneracy of the
tomographic problem with either prior. This is expected for
current data sets, which are commonly analyzed in a limited
number of broad redshift bins in order to yield sufficient
signal to noise per bin. In addition, the lognormal model is
prone to mass-sheet degeneracy: since the prior encourages
a skewed distribution with more high density pixels,
the reconstruction tends towards inserting sheets of higher
density normal to the observational direction. The situation
might slightly improve for future surveys with a higher
source density. But since the shape noise scales only
with the square root of the source density, even future
data is unlikely to contain sufficient information for a 3D
reconstruction without this degeneracy.
The fidelity of the reconstructions in this work might

also be overestimated since we assumed precisely known
source redshifts and point spread function, and ignored
intrinsic alignments. In this work we show how photo-
metric redshift uncertainties can be included, but leave the
implementation for future work. Other sources of uncer-
tainty could be included in a similar fashion. Another
approximation we made concerns the source distribution.
In reality the source distribution is correlated with the
underlying density field, which we ignore in our test cases.
A more clustered distribution of sources would render the
fidelity of the reconstruction more inhomogeneous since
structures in front of high density regions would be detected
with higher signal to noise than structures in front of low
density regions. Since the volume fraction of high density
regions is smaller than the volume fraction of low density
regions, this could decrease the overall fidelity of the
reconstruction. To get an estimate of the effect of the
clustering, future tests of the algorithm should account for
the correlation between galaxies and density field by using
the halo positions identified in the simulation by a halo finder.
Possible improvements of the algorithm could go into

two directions, (1) improving the prior or data model,
(2) including additional sources of information. An
improved data model could be obtained by forward model-
ing structure formation numerically for an initially
Gaussian distributed field. While this is conceptually
straightforward to integrate in the algorithm, it is numeri-
cally very expensive. In general, we expect any prior model
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that is informed about the relative orientation of structures
(as e.g. the Zeldovich approximation) to partly break the
line-of-sight degeneracy or inhibit spurious mass sheets.
Additional information could come from the clustering of
galaxies. This would require the inference of at least one
additional bias parameter (depending on the bias model),
but would add information about the relative orientation of
structure, also possibly breaking the line-of-sight andmass-
sheet degeneracy.
In the current implementation the algorithm assumes a

fixed set of cosmological parameters for both models. For
future applications the parameter estimation could be made
part of the algorithm by analyzing the joint posterior of the
density distribution and cosmological parameters. The cos-
mology enters the density estimate through the theoretical
matter power spectrum, the growth factor and the back-
ground evolution (that determines e.g. the redshift-distance
relation). Lensing measurements are mostly sensitive to a

combination of σ8 andΩm. For two cosmological parameters
only, sampling of the joint posterior would be feasible
already with the current serialized implementation, for one
could sample the σ8 −Ωm plane (e.g. on a grid) and evaluate
the minimum of Pðδjσ8;Ωm; dÞ for each parameter combi-
nation in parallel. Since the total information content of
the data does not depend on the analysis method, a joint
reconstruction of the 3D density field and cosmological
parameters should yield competitive constraints to traditional
analyses that make use of redshift binning.
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