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We study the behavior of dark energy (DE) in the scope of anisotropic Bianchi type V (BV) spacetime.
First, we derive Friedmann-like equations, then we compare the dark energy equation of state (EoS)
parameter for viscous and nonviscous dark energy and make a correspondence between DE and
quintessence and phantom descriptions of nonviscous and viscous dark energy and reconstruct the
potential of these two scalar fields. The late time behavior of the EoS parameter through a thermodynamical
study has also been investigated. Finally, we investigate the conditions under which BV spacetime can be
mapped into the Friedmann-Robertson-Walker and how the bulk viscose coefficient may affect the dark
energy EoS parameter of our ωBV model with constraints from 28 Hubble parameter,HðzÞ, measurements
at intermediate redshifts 0.07 ≤ z ≤ 2.3.
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I. INTRODUCTION

The fact that our universe, at the present time, is
experiencing an accelerating phase of its evolution has
been approved by many observations [1–4]. This seems to
be enigmatic, since it shows that: (1) there must be an
unknown and unusual source of energy which behaves like
antigravity, i.e. it produces negative pressure in order to
overcome the attractive force of gravity, (2) maybe, the
general theory of gravity should be modified. It is worth
nothing these two scenarios could be differentiated through
the cosmic expansion history HðzÞ and the growth rate of
cosmic large scale structure fgðzÞ [5]. In case of dark
energy, the thing which is more interesting is the amount
(density) of this component. Recent observations of type Ia
supernovae indicate that almost two-thirds of the total
energy density exists in a dark energy component (the
reader is advised to see [3,4,6] for recent reviews). The
study of dark energy is possible either through its equation
of state parameter (EoS) ωde ¼ pde=ρde (the value of EoS
parameter for quintessence, ΛCDM and phantom scenarios
is > −1, ¼ −1, and < −1 respectively) or through its
microphysics that is characterized by the sound speed (c2s).
Although, at the first view, cosmological constant Λ seems
to be an appropriate candidate for the dark energy, but it
encounters a fine-tuning problem. This is the reason why
different forms of dynamically changing DE with
ωde ¼ pde=ρde < −1=3, such as quintessence, K-essence,
tachyon, phantom, ghost condensate and quintom, etc. have
been proposed in the literature. Among these scalar fields,
quintessence with the EoS parameter varying as −1 <
ωde < − 1

3
and phantom with the EoS parameter ω < −1

are of more scientific interest (note that the case of ωde ≪
−1 is ruled out by observations [7]). However, since current

observations show that the dark energyEoS parameter could
be less than−1 [8,9], the quintessence is ruled out and since
the phantom field suffers from ultraviolet quantum insta-
bilities [10] cannot be an appropriate DE candidate describ-
ing region with ωde < −1. Nevertheless, there is another
scenario in which the EoS parameter of DE could vary from
quintessence to phantom without any problem associated
with scalar fields mentioned above. In this scenariowhich is
based on the Eckart theorem [11]we consider theDE fluid to
be viscous. The possibility of a viscosity dominated late
epoch of the Universe with accelerated expansion was
already mentioned by Padmanabhan and Chitre [12].
There have been valuable works done in this regard (for
example see [13–17]). Recently, Velten et al. [18] have
investigated phantom dark energy as an effect of bulk
viscosity. It is worth noting that Brevik and Gorbunova
[19] show that fluid which lies in the quintessence region
(ωde > −1) can reduce its thermodynamical pressure and
cross the barrier ωde ¼ −1, and behave like a phantom fluid
(ωde < −1) with the inclusion of a sufficiently large bulk
viscosity.
Friedmann-Robertson-Walker (FRW) cosmology is

based on the cosmological principle which is not exactly
consistent with the recent observations [20,21] as these
observations identify tiny variations between the intensities
of the microwaves coming from different directions in the
sky (from a mathematical point of view, this means that the
spacetime should be anisotropic, i.e. metric components are
different functions of time). On the other hand, from a
theoretical (philosophical) point of view the following
question is reasonable: does the universe necessarily have
the same symmetries onvery large scales outside the particle
horizon or at early times? Therefore, to be able to compare
detailed observations, we may have to find “almost FRW”
models representing a universe that is FRW-like on large
scales but allowing for generic in inhomogeneities and
anisotropies arising during structure formation on a small*h.amirhashchi@mhriau.ac.ir
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scale. For this purpose, “Bianchi type spacetimes”which are
anisotropic but homogeneous are the best. Goliath and Ellis
[22] have shown that some Bianchi models isotropise due to
inflation. For example, flat and open FRW models are a
particular case of Bianchi type I, V respectively.
As mentioned above, one can deal with the study of DE

through its EoS parameter as well as its microphysics,
characterized by the sound speed (c2s) of perturbations to the
dark energy density and pressure. In this case, as the sound
speed drops below the speed of light (i.e. c2s < 1), dark
energy inhomogeneities increase, affecting both CMB and
matter power spectra [23]. It is worth noting that the study of
a fluid model of dark energy requires considering both an
equation of state parameter (EoS) and sound speed c2s .
Moreover, as shown in Ref. [24] a scalar field is mathemati-
cally equivalent to a fluid with a time-dependent speed of
sound. In this case, since at the present horizon scale the
scalar field dark energy perturbations are not ignorable,
dynamical dark energy is inhomogeneous. Hence, these
perturbations also affect the predicted CMB anisotropy.
Motivated by the situation discussed above, in this paper

we consider Bianchi type V (henceforth BV) to make a
detailed study of viscous dark energy. This paper is
organized as follows: the metric and the field equations
are presented in Sec. II. Section III deals with the exact
solutions of the field equations to obtain “almost FRW” base
cosmology. Section IV deals with the study of the viscous
dark energy EoS parameter. In Sec. V we make correspon-
dence between viscous DE and scalar fields. In Sec. VI,
through a thermodynamical study, we investigate the late-
time behavior of our DE model. In Sec. VII we present
constraints on a set of cosmological parameters of ourmodel
using 28Hubble parameter,HðzÞ, measurements at redshifts
range 0.07 ≤ z ≤ 2.3, and conclude in Sec. VIII.

II. THE METRIC AND THE FIELD EQUATIONS

The homogeneous and anisotropic Bianchi type V in an
orthogonal form is given by

ds2 ¼ −dt2 þ A2dx2 þ e2αx½B2dy2 þ C2dz2�; ð1Þ

where the metric potentials A, B and C are functions of
cosmic time t alone and α is a constant.
Einstein’s field equations (in gravitational units

8πG ¼ c ¼ 1) read as

Ri
j −

1

2
Rgij ¼ TðmÞi

j þ TðdeÞi
j ; ð2Þ

where TðmÞi
j and TðdeÞi

j are the energy momentum tensors of
dark matter and viscous dark energy, respectively. These
are given by

Tmi
j ¼ diag½−ρm; pm; pm; pm�;

¼ diag½−1;ωm;ωm;ωm�ρm; ð3Þ

and

Tdei
j ¼ diag½−ρde; pde; pde; pde�;

¼ diag½−1;ωde;ωde;ωde�ρde; ð4Þ

where ρm and pm are the energy density and pressure of the
perfect fluid component while ωm ¼ pm=ρm is its EoS
parameter. Similarly, ρde and pde are, respectively, the
energy density and pressure of the viscous DE component
while ωde ¼ pde=ρde is the corresponding EoS parameter.
The 4-velocity vector ui ¼ ð1; 0; 0; 0Þ is assumed to satisfy
uiuj ¼ −1.
In a comoving coordinate system (ui ¼ δi0), Einstein’s

field equations (2) with (3) and (4) for B-V metric (1)
subsequently lead to the following system of equations:

B̈
B
þ C̈
C
þ

_B _C
BC

−
α2

A2
¼ −ωmρm − ωdeρde; ð5Þ

C̈
C
þ Ä
A
þ

_C _A
CA

−
α2

A2
¼ −ωmρm − ωdeρde; ð6Þ

Ä
A
þ B̈
B
þ

_A _B
AB

−
α2

A2
¼ −ωmρm − ωdeρde; ð7Þ

_A _B
AB

þ
_A _C
AC

þ
_B _C
BC

−
3α2

A2
¼ ρm þ ρde; ð8Þ

2 _A
A

−
_B
B
−

_C
C
¼ 0: ð9Þ

The law of energy-conservation equation (Tij
;j ¼ 0) yields

_ρm þ 3ð1þ ωmÞρmH þ _ρde þ 3ð1þ ωdeÞρdeH ¼ 0: ð10Þ

The Raychaudhuri equation is found to be

ä
a
¼ 1

2
ξθ −

1

6
ðρm þ 3pmÞ − 1

6
ðρde þ 3pdeÞ − 2

3
σ2; ð11Þ

where σ2 is the shear scalar which is given by

σ2 ¼ 1

2
σijσij;

σij ¼ ui;j þ
1

2
ðui;kukuj þ uj;kukuiÞ þ

θ

3
ðgij þ uiujÞ; ð12Þ

and θ ¼ 3H is the scalar expansion. HereH is referred to as
Hubble’s parameter.
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III. FRIEDMANN-LIKE EQUATIONS

Integrating (11) and engrossing the constant of integra-
tion in B or C, without any loss of generality, we obtain the
following relation between the metric potentials:

A2 ¼ BC: ð13Þ

Now, to solve Einstein’s field equations (5)–(8), we use the
following technique proposed by Kumar and Yadav [25].
Subtracting Eq. (5) from Eq. (6), Eq. (6) from Eq. (7), and
Eq. (5) from Eq. (7) and taking the second integral of each,
we obtain the following three relations respectively:

A
B
¼ d1 exp

�
k1

Z
dt
a3

�
; ð14Þ

A
C
¼ d2 exp

�
k2

Z
dt
a3

�
; ð15Þ

and

B
C
¼ d3 exp

�
k3

Z
dt
a3

�
; ð16Þ

where d1, d2, d3, k1, k2 and k3 are constants of integration.
From (13)–(16), the metric functions A, B, C can be
explicitly obtained as

AðtÞ ¼ a; ð17Þ

BðtÞ ¼ ma exp

�
L
Z

dt
a3

�
; ð18Þ

CðtÞ ¼ a
m
exp

�
−L

Z
dt
a3

�
; ð19Þ

where

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2d3Þ3

p
; L ¼ ðk2 þ k3Þ

3
;

d2 ¼ d−11 ; k2 ¼ −k1: ð20Þ

Hence, we can write the general form of Bianchi type V
metric as

ds2 ¼ −dt2 þ a2
�
dx2 þ e2αx

�
m2e2L

R
a−3dtdy2

þ 1

m2
e−2L

R
a−3dtdz2

��
: ð21Þ

Using Eqs. (17)–(19) in Eqs. (5)–(8), we obtain the
analogue of the Friedmann equation as

2

�
ä
a

�
þ
�
_a
a

�
2

þ L2

a6
−
α2

a2
¼ −pm − pde; ð22Þ

3

�
_a
a

�
2

−
L2

a6
−
3α2

a2
¼ ρm þ ρde; ð23Þ

where a ¼ ðABCÞ13 is the average scale factor. One can
easily rewrite Eqs. (22) and (23) in the following compact
form:

2

�
ä
a

�
þ 4L2

3a6
¼ −

1

3
ðρþ 3pÞ; ð24Þ

�
_a
a

�
2

−
L2

3a6
−
α2

a2
¼ 1

3
ρ; ð25Þ

where p ¼ pm þ pde and ρ ¼ ρm þ ρde are the total
pressure and the total energy density respectively. It is
worth mentioning that α and L denote the deviation from
isotropy, e.g. α ¼ L ¼ 0 indicate flat FRW Universe. It is
also interesting to note that for sufficiently large a, almost
at the present time, the Bianchi type V spacetime behaves
like a flat FRW Universe.

IV. DARK ENERGY EQUATION OF STATE

To derive the general form of the equation of state (EoS)
for the viscous and nonviscous dark energy (DE) in Bianchi
type V spacetime, we assume that dark energy and dark
matter with ωm ¼ 0 do not interact with each other.
Therefore, we can write the conservation equation (10)
for the two dark fluids separately as

_ρde þ 3Hð1þ ωdeÞρde ¼ 0; ð26Þ

and

_ρm þ 3Hρm ¼ 0: ð27Þ

Integrating Eq. (27) leads to

ρm ¼ ρm0 a
−3: ð28Þ

Using Eqs. (28) in Eqs. (24) and (25) we obtain the energy
density and pressure of nonviscous dark fluid as

ρde ¼ 3H2 − L2a−6 − 3α2a−2 − ρm0 a
−3 ð29Þ

and

pde ¼ −2
ä
a
−H2 − L2a−6 þ α2a−2; ð30Þ

respectively. Finally, we obtain the general form of the
nonviscous dark energy EoS parameter (EoS) as
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ωde ¼ pde

ρde
¼ 2q − 1 − L2a−6H−2 þ α2a−2H−2

3 − L2a−6H−2 − 3α2a−2H−2 − 3Ωm
0 a

−3 ;

ð31Þ

where q ¼ −
ä
a
H2 is the deceleration parameter andΩm

0 ¼ ρm
0

3H2

is the current value of the DM energy density.
To obtain the equation of state parameter (EoS) of

viscous dark energy, we assume the following expression
for the pressure of the viscous fluid [11]:

pde
eff ¼ pde þ Π; ωde

eff ¼ pde
eff=ρ

de; ð32Þ

where Π ¼ −ξðρdeÞui;i is the viscous pressure and ui;i ¼ 3H
is the covariant derivative of the 4-velocity vector ui. Here
ωde
eff is referred to as the effective equation of state

parameter of viscous dark energy. As noted in [26], since
in an irreversible process the positive sign of the entropy
changes, ξ should be a positive parameter. In general,
ξðρdeÞ ¼ ξ0ðρdeÞτ, where ξ0 > 0 and τ are constant
parameters.
Using Eq. (31) in Eq. (32), the EoS parameter of viscous

dark energy is obtained as

ωde
eff ¼ ωde þ Π

ρde

¼ 2q − 1 − L2a−6H−2 þ α2a−2H−2

3 − L2a−6H−2 − 3α2a−2H−2 − 3Ωm
0 a

−3

− 3ξ0
H1−2η

ð3ΩdeÞη ; ð33Þ

where Ωde ¼ ρde

3H2 and η ¼ 1 − τ. Note that in Eq. (33), τ
(equivalently α) should be a positive number as a negative τ
(or α) forces the EoS parameter to stay in the phantom
region forever which is not a consistent result (see
discussion below).
Now we take a more precise look at Eqs. (31) and (33).

As we mentioned in the previous section, BI-V behaves
almost as a flat FRWuniverse at present time, i.e. for a very
high value of the scalar factor a. Hence, one may character-
ize the universe by α ¼ L ∼ 0 and a ∼ 0 at the current time.
Therefore, we can obtain the present form of Eqs. (31) and
(33) approximately as

ωde ∼
2q − 1

3
ð34Þ

and

ωde
eff ∼

2q − 1

3
−

213ξ0
ð12501.68Þα ; ð35Þ

respectively.

According to the recent observations the deceleration
parameter is restricted as −1 ≤ q < 0. Applying this limit
on Eqs. (34) and (35) we obtain

−1 ≤ ωde < −
1

3
;

−1 −
213ξ0

ð12501.68Þη ≤ ωde
eff < −

1

3
−

213ξ0
ð12501.68Þη : ð36Þ

This equation clearly shows that the EoS parameter of no-
viscous DE dose not cross phantom divided line (PDL)
whereas the viscous dark energy equation of state, ωde

eff ,
crosses PDL for appropriate values of α and ξ0.
Consequently, nonviscous DE can only describe the
quintessence scenario of DE where −1 < ω < − 1

3
and

hence it is not consistent with the recent cosmological
observations data indicating that ωde is less than −1 today.
However, since for a positive τ, ξðρdeÞ ¼ ξ0ðρdeÞτ is a
decreasing function of time,1 as time is passing the
viscosity dies out and ultimately ωde

eff tends to the cosmo-
logical constant, ωde ¼ −1, as expected. As noted by
Carroll et al. [10], any phantom model with ωde < −1
should decay to ωde ¼ −1 at late time. This behavior
ensures that there is no future singularity (big rip); rather,
the universe eventually settles into a de Sitter phase.
Therefore, regardless the phantom model driven from the
scalar fields, our phantom model generated by the bulk
viscosity does not suffer from the ultraviolet quantum
instabilities as well as the big rip problem.

V. CORRESPONDENCE BETWEEN DE
AND SCALAR FIELD

From our above discussion we conclude that, assuming
the cosmic fluid to be nonviscous or viscous, one can
generate quintessence and the phantomlike equation of
state parameter in the anisotropic Bianchi type V universe,
respectively. Therefore, as usual we assume that a scalar
field is the source of dark energy. The energy density and
pressure of the scalar field are given by

ρϕ ¼ 1

2
ϵ _ϕ2 þ VðϕÞ ð37Þ

and

pϕ ¼ 1

2
ϵ _ϕ2 − VðϕÞ; ð38Þ

where ϵ ¼ �1. ϵ ¼ 1 is referred to as quintessence whereas
ϵ ¼ −1 is referred to as phantom. Since the EoS parameter
of scalar field is given by

1Note that the energy density ρ is a decreasing function of time
in an expanding universe.
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ωϕ ¼ ϵ _ϕ2 − 2VðϕÞ
ϵ _ϕ2 þ 2VðϕÞ ; ð39Þ

one can easily find the scalar field and its potential as

_ϕ2 ¼ ϵð1þ ωϕÞρϕ; ð40Þ

and

VðϕÞ ¼ 1

2
ð1 − ωϕÞρϕ: ð41Þ

Now by putting ωϕ ¼ ωde and ωϕ ¼ ωde
eff in Eqs. (40) and

(41), the scalar field _ϕ and the potential VðϕÞ for quintes-
sence and phantom DE models are obtained as

_ϕ2 ¼ 2ϵ

�
H2ð1þ qÞ − L2a−6 − α2a−2

−
3

2
H2Ωm

0 a
−3 −

1

2
Γζ0

H1−2η

ðΩdeÞη−1
�
; ð42Þ

and

VðϕÞ ¼ 2

�
H2ð1 − qÞ − α2a−2

−
3

2
H2Ωm

0 a
−3 þ 1

2
Γζ0

H1−2η

ðΩdeÞη−1
�
; ð43Þ

respectively, where ζ0 ¼ 32−ηξ0. Note that in the above
equations for nonviscous (quintessence) dark energy, Γ ¼ 0
whereas for viscous (phantom) dark energy model, Γ ¼ 1.
As an example, we take η ¼ 0.5which leads to a power-law
expansion for the scale factor [27]. In this case the late time
behaviors of ϕ and VðϕÞ, approximately, are given by

ϕ ∼
�
λ for quintessenceffiffiffiffiffi
ζ0

p
tþ λ for phantom

ð44Þ

and

VðϕÞ ∼
�
0 for quintessence

ζ0 for phantom;
ð45Þ

respectively, where λ is an integration constant.
Equations (44) and (45) clearly show that the scalar field
and the potential of quintessence decrease more faster than
those of the phantom model. But ultimately when a → ∞,
ζ0 → 0, for both quintessence and phantom scenario ϕ ¼ λ
and the potential asymptotically tends to vanish.

VI. THERMODYNAMICAL PICTURE OF THE
DARK ENERGY MODEL

The continuity equations for the viscous dark energy
could be written as

_ρde þ 3Hðρde þ pdeÞ ¼ 9ξH2: ð46Þ

In a comoving volume V, the total energy density is
Ude ¼ ρdeV. Using this equation in Eq. (52) we obtain
the equation for production of entropy Sde in a comoving
volume due to dissipative effects in a fluid with temperature
T as

T _Sde ¼ _Ude þ pde _V ¼ 9ξVH2 ð47Þ

or

_Sde ¼
�
T
V

�
9ξH2: ð48Þ

In the case when the density and pressure of the cosmic
fluid are functions of the temperature only, i.e. ρ ¼ ρðTÞ
and p ¼ pðTÞ, the first law of thermodynamics is given by

TdSde ¼ dUde þ pdedV ¼ d½ðρde þ pdeÞV� − Vdpde;

ð49Þ

or

Sde ¼ V
T
ðρde þ pdeÞ ¼ V

T
ð1þ ωde

effÞρde: ð50Þ

Since V ¼ a3 and the temperature of the event horizon is
T ∝ 1

a, using Eq. (34), we can find the equation of dark
energy entropy density as

Sde ¼ cγ

�
Ωde

Ωγ

�
ð1þ ωde

effÞ; ð51Þ

where Ωγ ¼ ργ

3H2, ργ ∝ a−1 and cγ is a constant. Inserting
Eq. (51) in Eq. (48) we find

�
_S
S

�de

¼ 3ξ

ð1þ ωde
effÞΩde : ð52Þ

Now let us consider two limiting cases at z → −1, i.e.
ωde
eff → −1�. when ωde

eff → −1þ, it means that the dark
energy EoS parameter goes to cosmological constant from
quintessence region and ωde

eff → −1− means that the EoS
parameter goes to the cosmological constant from the
phantom region. If we assume that ð1þ ωde

effÞ tends to
zero faster than ξ, then we by integrating Eq. (52) we obtain
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lim
ωde
eff→−1þ

�
_S
S

�de

∼þ∞ or Sde → ∞; ð53Þ

and

lim
ωde
eff→−1−

�
_S
S

�de

∼ −∞ or Sde → 0: ð54Þ

According to the thermodynamics second law and based on
Eqs. (53) and (54), we conclude that ultimately the dark
energy EoS parameter tends to the cosmological constant
from quintessence not phantom. Therefore, although pres-
ence of viscosity in cosmic fluid causes the EoS parameter
to cross PDL, there should be a transition from phantom to
quintessence at late time. It is worth mentioning that this
result is completely independent on whether there is an
interaction between dark components or not. Also since in
the vacuum dominated era the density and pressure are not
functions of temperature, the above equations do not have
any application in this case.

VII. OBSERVATIONAL CONSTRAINTS

From Eqs. (25) and (28) one can easily find the Hubble
parameter HðzÞ as
HðzÞ2 ¼ H2

0½Ωm
0 ð1þ zÞ3 þ Ωr

0ð1þ zÞ4 þ αð1þ zÞ2
þ βð1þ zÞ6 þ Ωde

0 ð1þ zÞ3ð1þωdeÞ�; ð55Þ
where ωde is assumed to be a constant parameter and
β ¼ L2

3
. Since according to [28] a constant value of ξ0

pushes the EoS parameter to cross the phantom divided
line, for the case when cosmic fluid is viscose, the back-
ground expansion for the model reads as

EðzÞ ¼ ½Ωm
0 ð1þ zÞ3 þ Ωr

0ð1þ zÞ4 þ αð1þ zÞ2
þ βð1þ zÞ6 þΩde

0 ð1þ zÞ3ð1þωde−δÞ�12: ð56Þ
Here the effective dark energy EoS parameter is ωde

eff ¼
ωde − δ (here ξ0 is replaced by δ).
In what follows, to place observational constraints on

parameters space P ¼ fΩm;Ωde; α; β; δ;ωde
eff ; H0g of our

model we use the compilation of 28 Hubble parameter
measurements in the redshift range 0.07 < z < 2.3 as
depicted in Table I. The 28HðzÞ data points have been
compiled by Farooq and Ratra [29] to find constraints on
parameters of some dark energy models. Here following
their methodology we constrain our model parameter space
P by minimizing the following chi-square:

χ2HðPÞ ¼
X28
i¼1

½Hthðzi;PÞ −HobsðziÞ�2
σ2H;i

; ð57Þ

where P denotes the set of our parameters, Hth is the
theoretical value of HðzÞ predicted by our DE model and

σ2H;i is the error at zi. It is worth mentioning that we explore
the model parameter space P of our DE model by using the
Markov chain Monte Carlo (MCMC) method package
COSMOMC [31] and the samples have been analyzed by
the aid of Python package, GETDIST [32].
Figure 1 depicts the contour plots for parameters of the

model. The results of our statistical analysis have been
shown in Table II with χ2min ¼ 8.0. Our results clearly show
the sensitivity of ωde

eff to the specific choice of the bulk
viscosity coefficient (δ) which is restricted as 0.80 < δ <
0.88 at 1σ error and 0.74 < δ < 0.93 at 2σ error. In other
words, in absence of viscosity our model only varies in the
quintessence region whereas for appropriate values of bulk
viscosity coefficient the model crosses the PDL line. It is
interesting to note that the parameter α, as could be
expected, plays the role like curvature in FRW cosmology.
On the other hand, we see that parameter β is restricted as
0.062 < β < 0.15 at 1σ error and 0.055 < β < 0.122 at 2σ
error. Therefore, both α and β do not have significant
impact on Bianchi type V behavior at late lime (see Figs. 2
and 3 for a closer view). Hence, based on our results we can
prove this theoretical property which claims that Bianchi
type V behaves like the flat FRW model at late time. The
robustness of our fit can be viewed by looking at Fig. 4. A
compression of our H0 with those obtained by other

TABLE I. Hubble parameter versus redshift data.

HðzÞ σH z Reference

69 19.6 0.070 [33]
69 12 0.090 [34]
68.6 26.2 0.120 [33]
83 8 0.170 [34]
75 4 0.179 [35]
75 5 0.199 [35]
72.9 29.6 0.200 [33]
77 14 0.270 [34]
88.8 36.6 0.280 [33]
76.3 5.6 0.350 [31]
83 14 0.352 [35]
95 17 0.400 [34]
82.6 7.8 0.440 [36]
97 62 0.480 [37]
104 13 0.593 [35]
87.9 6.1 0.600 [36]
92 8 0.680 [38]
97.3 7 0.730 [36]
105 12 0.781 [35]
125 17 0.785 [35]
90 40 0.880 [37]
117 23 0.900 [34]
154 20 1.037 [35]
168 17 1.300 [34]
177 18 1.430 [34]
140 14 1.530 [34]
202 40 1.750 [34]
224 8 2.300 [38]
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researchers could be seen by looking at Table III. Results of
this table clearly show that ourH0 is in high agreement with
H0 obtained from CMB [39] at 1σð68%Þ and the difference
with other findings is not so considerable. The reduced chi-
squares χ2red (at 68% confident level) for ωCDM and ωBV
models are 0.81 (with χ2 ¼ 18.63) and 0.76 (with
χ2 ¼ 15.96), respectively, which shows that although both
models are acceptable but ωCDMmodel is fitted to the data
better than ωBV model (please also see Fig. 4).

For completeness of our study, here we derive the
deceleration-acceleration redshift zt (this is the redshift
at which the expansion phase changes from decelerating to
accelerating). In general, the deceleration parameter is
given by

qðzÞ ¼ −
1

H2

�
ä
a

�
¼ ð1þ zÞ

HðzÞ
dHðzÞ
dz

− 1: ð58Þ

FIG. 1. One-dimensional marginalized distribution, and two-dimensional contours with 68% C.L. and 95% C.L. for the model
parameters.
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It is clear that the transition redshift is implicitly defined
by the condition qðztÞ ¼ äðztÞ ¼ 0. In the case where
L ¼ α ¼ 0 (ωCDM model), from (24) one can easily find
(also see [30])

zt ¼
�

Ωm
0

ðΩm
0 − 1Þð1þ 3ωdeÞ

� 1

3ωde − 1: ð59Þ

Also, from (24), in the case where (α ≠ 0, L ≠ 0) we get

�
ä
a

�
¼ −2βð1þ zÞ6 − 1

6
½Ωm

0 ð1þ zÞ3

þ ð1 −Ωm
0 Þð1þ 3ωdeÞð1þ zÞ3ð1þωdeÞ�: ð60Þ

The transition redshift zt for our ωBV model could be
found by solving the following equation:

2βð1þztÞ3þ
1

6
½Ωm

0 þð1−Ωm
0 Þð1þωdeÞð1þztÞ3ωde �¼0:

ð61Þ

It is interesting to note that in both cases the transition
redshift is independent to the parameter α, i.e. the curvature
of the model. Using the best-fit parameters given in Table II
the transition redshift for ωCDM and ωBV models are
obtained as zt ¼ 0.652� 0.105 and zt ¼ 0.741� 0.075,
respectively. This result shows that our ωBV model enters
the accelerating phase at an earlier time with respect to the
ωCDM model (see Fig. 5). Our results are in good
agreement with that obtained in Refs. [29,30]. Figure 5
indicates the variation of deceleration parameter, q versus
redshift z for both ωCDM and ωBV models.

FIG. 2. Two-dimensional contours with 68% C.L. and 95% C.L.
for α vs ωde

eff .

FIG. 3. Two-dimensional contours with 68% C.L. and 95% C.L.
for β vs ωde

eff .

FIG. 4. The Hubble rate of our model (ωCDM represents the
case when L ¼ α ¼ 0) versus the redshift z. The points with bars
indicate the experimental data summarized in Table I.

TABLE II. The best fit parameters with 1σ and 2σ confidence
level.

Parameter 68% C.L. 95% C.L. Best-fit value

β 0.086� 0.015 0.086þ0.032
−0.030 0.085

α −0.0058� 0.0067 −0.006þ0.013
−0.013 −0.0057

Ωde 0.721� 0.016 0.721þ0.029
−0.032 0.726

Ωm 0.285� 0.016 0.285þ0.032
−0.029 0.283

δ 0.842� 0.038 0.842þ0.076
−0.073 0.844

H0 69.2� 2.0 69:2þ4.0
−3.9 69.3

ωde
eff −1.079� 0.082 −1.08þ0.16

−0.16 −1.184

HASSAN AMIRHASHCHI PHYSICAL REVIEW D 96, 123507 (2017)

123507-8



VIII. CONCLUDING REMARKS

In this study, we have investigated the behavior of dark
energy in the framework of anisotropic Bianchi type V
spacetime. In general, we attempted to find the possibility
of the dark energy EoS parameter to cross the PDL line, the
correspondence between dark energy and scalar fields
(phantom as well as quintessence) and the observational
constraints on the model parameters. The main results of
this study can be summarized as below.

(i) Since recent observations show small departures
from isotropy [20,21] we are motivated to take
BV as it could lead to more realistic results. We
derived exact mathematical Friedmann-like equa-
tions of BV spacetime. Based on using some
observational data sets, we found that the metric
parameter α is a negative integer very close to zero
which implies that this parameter plays a role like
curvature in BV cosmology. Also our observational
constraint on other metric parameter β shows the
importance of this parameter and its responsibility
for inherent anisotropy of BV. Both of these param-
eters are found to be very small which proves that the
FRW metric is a special case of BV spacetime (i.e.

open with K ¼ −1). Hence, the study of DE in the
scope of the anisotropic BV metric is much more
reasonable than the FRW metric.

(ii) We found that although bulk viscosity coefficient δ is
small (see Fig. 1), to cross PDL, i.e. transition from
quintessence to the phantom region, the dark sector of
the cosmic fluid must be viscous. It is worth noting
that, in general, bulk viscosity is a decreasing function
of time (see Sec. IV) and hence theviscosity dies out as
time is passing and the EoS parameter of DE tends to
−1 as it is a necessary condition for any DE model to
avoid big rip. In Sec. VII only for simplicity, without
loss of any generality,we assumed thebulk viscosity to
be a constant such as δ.

(iii) Based on weather cosmic fluid is viscous or not one
can generate phantom or quintessence scenarios in
BV spacetime. Therefore, as usual we assumed that
a scalar field is the source of dark energy and derived
the scalar field ϕ and the potential VðϕÞ for
quintessence and phantom DE models. It must be
noted that since the energy density of the phantom
field is unbounded from below, all phantom gen-
erally ruled out by ultraviolet quantum instabilities
[10] but the viscous DE model proposed here is safe
under this problem (see discussion above).

(iv) We show that, ultimately, the dark energy EoS
parameter tends to the cosmological constant from
the quintessence region not phantom. Therefore,
although presence of viscosity in cosmic fluid causes
the EoS parameter to cross PDL but there should be a
transition from phantom to quintessence at late time. It
is interesting to note that this result is completely
independent on whether there is an interaction be-
tween dark components or not.

(v) Our obtained H0 is in high agreement with its value
obtained from CMB at 68% confident level. The
difference from other values, as can be seen from
Table III, is not so considerable. It is worth mention-
ing that applying new 38HðzÞ data points compiled in
Ref. [30] can make a small change in our results by a
few percent.
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Note added.—Recently, we noticed that new 38 Hubble
parameter measurements in the redshift range 0.07 < z <
2.36 have been compiled by Farooq et al. [30]. Using the
38HðzÞ data points could make a small change of order of
few percent in our derived parameters.

TABLE III. The value ofH0 obtained from different researches.

Researchers H0 Reference

Ade et al. (Planck 2015) 67.8� 0.9 (at 68%) [40]
Chen and Ratra 68� 2.8 (at 68%) [41]
Sievers et al. 70� 2.4 (at 68%) [42]
Gott et al. 67� 3.5 (at 68%) [43]
J. Dunkley et al. (CMB) 69.7� 2.5 (at 68%) [39]
Aubourg et al. (BAO) 67.3� 1.1 (at 68%) [44]
V. Lukovic et al. 66.5� 1.8 (at 68%) [45]
Chen et al. 68:4þ2.9

−3.3 (at 68%) [46]
Riess et al. 73.24� 1.74 (at 68%) [47]
Our model 69.2� 2.0 (at 68%),

69.2þ4.0
−3.9 (at 95%)

Present work

FIG. 5. variation of deceleration parameterq versus redshift z for
both ωCDM and ωBV models. The expansion phase of the ωBV
model changes at earlier time with respect to the ωCDM model.
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