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Here we consider a flat FRW universe whose horizon entropy meets the Rényi entropy of nonextensive
systems. In our model, the ordinary energy-momentum conservation law is not always valid. By applying
the Clausius relation as well as the Cai-Kim temperature to the apparent horizon of a flat FRWuniverse, we
obtain modified Friedmann equations. Fitting the model to the observational data on the current accelerated
universe, some values for the model parameters are also addressed. Our study shows that the current
accelerating phase of universe expansion may be described by a geometrical fluid, originated from the
nonextensive aspects of geometry, which models a varying dark energy source interacting with the matter
field in the Rastall way. Moreover, our results indicate that the probable nonextensive features of spacetime
may also be used to model a varying dark energy source which does not interact with the matter field and is
compatible with the current accelerated phase of the Universe.
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I. INTRODUCTION

The violation of the energy-momentum conservation law
in curved spacetime was first proposed by P. Rastall to
modify the general relativity theory of Einstein (GR) [1].
After his pioneering work, various types of modified
gravity in which matter fields are nonminimally coupled
to geometry have been proposed [2–8]. It has been shown
that the Rastall correction term to the Einstein field
equations cannot describe dark energy, meaning that a
dark energylike source is needed to model the current phase
of universe expansion in this framework [9]. But, if one
generalizes this theory in a suitable manner, then the mutual
nonminimal coupling between geometry and matter field
may be considered as the origin of the current accelerating
phase and the inflation era [5]. More studies on Rastall
theory can be found in Refs. [10–30].
In Einstein gravity, horizons may meet the Bekenstein-

Hawking entropy-area law which is a nonextensive entropy
[31–46]. Moreover, it has recently been argued that a deep
connection between dark energy and horizon entropy may
exist in gravitational theories [47–58]. Indeed, although
extensive statistical mechanics and its corresponding
thermodynamics lead to interesting results about the
expansion history of the Universe [59], the mentioned
points encourage physicists to use nonextensive statistical
mechanics [60,61] in order to study the thermodynamic
properties of spacetime and its related subjects [62](14)
[63–74].

Recently, applying Rényi entropy to the horizon of
FRW universe and considering a varying dark energy
source interacting with the matter field, N. Komatsu
found modified Friedmann equations in agreement with
observational data on the current phase of universe
expansion [73]. Therefore, in his model, the total
energy-momentum tensor, including the matter field
and varying dark-energy-like sources, is conserved.
Combining this entropy with entropic force scenario,
one can also obtain a theoretical basis for the MOND
theory [74]. In fact, the probable nonextensive features of
spacetime may be considered as an origin for both the
MOND theory and the current accelerated expansion
phase in a universe filled by a pressureless source
satisfying ordinary conservation law [74]. Finally, it is
useful to note here that both mentioned attempts [73,74]
used the Padmanabhan holographic approach [75] in
getting their models of universe expansion.
Here, we are interested in obtaining a model for the

dynamics of the Universe by applying the Clausius relation
as well as the Rényi entropy to the horizon of the FRW
universe which has nonminimally been coupled to the
matter field. Therefore, the total energy-momentum tensor
does not necessarily satisfy the ordinary conservation law
and, in fact, follows the Rastall hypothesis in our setup.
This paper is organized as follows. In the next section,

introducing our approach, we present a thermodynamic
description for Friedmann equations in Rastall theory.
Using the Rényi entropy, our model of the Universe is
obtained in Sec. III. In the fourth section, we consider a
universe filled by a pressureless source, and show that, in
our formalism, it can experience an accelerated expan-
sion. Section V includes the observational constraints of
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model. The last section is devoted to a summary and
concluding remarks. We use the unit of c ¼ ℏ ¼ kB ¼ 1
in our calculations.

II. THERMODYNAMIC DESCRIPTION OF
FRIEDMANN EQUATIONS IN

RASTALL THEORY

Based on the Rastall hypothesis [1],

Tμ
ν ;μ ¼ λR;ν; ð1Þ

where λ denotes the Rastall constant parameter, and Tμν is
the energy-momentum tensor of the source which fills the
background. Moreover, R is the Ricci scalar of spacetime.
This equation says that there is an energy exchange
between spacetime and cosmic fluids due to the tendency
of geometry to couple with matter fields in a nonminimal
way [5,29]. For example, the λ ¼ 1

4k case, where k is called
the Rastall gravitational coupling constant, can support the
primary inflationary era in an empty FRW universe [5]. In
this manner, the ability of geometry to couple with matter
fields in a nonminimal way generates a constant energy
density equal to λR [5]. Some features of this nonminimal
mutual interaction and its corresponding energy flux as
well as its applications in cosmic eras have been studied
in Ref. [5].
Bearing the Bianchi identity in mind and integrating

Eq. (1), one can reach [1]

Gμν þ kλgμνR ¼ kTμν: ð2Þ

The Newtonian limit of the Rastall theory implies
[26,28]

k ¼ γ

λ
¼ 4γ − 1

6γ − 1
8πG; ð3Þ

where γ ≡ kλ. Applying the thermodynamic laws to the
horizon of spacetime and using Eqs. (2) and (3), it is shown
that the horizon entropy is achieved as [25–27]

SRA ¼ 2πA
k

; ð4Þ

in which A is the horizon area. Combining this result with
Eq. (3), one can easily find that entropy is positive
whenever γ meets either the γ < 1

6
or γ > 1

4
condition

[26]. This equation can also be written as SRA ¼ 6γ−1
4γ−1 SB,

where SB ¼ A
4G is the Bekenstein-Hawking entropy [26],

meaning that the second law of thermodynamics is
obtained for the mentioned values of γ if it is satisfied
by the Bekenstein-Hawking entropy. In addition, simple
calculation leads to

λ ¼ γ

k
¼ γð6γ − 1Þ

ð4γ − 1Þ8πG ð5Þ

for the Rastall constant parameter [26]. Indeed, Eqs. (3)
and (5) are the direct results of imposing the Newtonian
limit on Eq. (2), indicating that only for λ ¼ γ ¼ 0 do we
have k ¼ 8πG [1,28]. In Ref. [30], assuming k ¼ 8πG and
studying Neutron stars in Rastall gravity, authors found out
that λ is close to zero. Therefore, we see that since they
consider k ¼ 8πG, their result does not reject the Rastall
hypothesis. Finally, it is worth remembering here that the
Bekenstein-Hawking entropy (SB ¼ A

4G) is also obtainable
at the appropriate limit of γ → 0.
For a flat FRW universe with scale factor aðtÞ and line

element

ds2 ¼ −dt2 þ aðtÞ2½dr2 þ r2ðdθ2 þ sinðθÞ2dϕ2Þ�; ð6Þ

the apparent horizon, equal to the Hubble horizon, is
located at

~rA ¼ aðtÞrA ¼ 1

H
; ð7Þ

and therefore A ¼ 4π
H2. Now, if the geometry is filled by a

prefect fluid with energy density ρ and pressure p
ðTμ

ν ¼ diagð−ρ; p; p; pÞÞ, then Eq. (1) leads to

_ρþ 3Hðρþ pÞ ¼ −λ _R; ð8Þ

where dot denotes derivative with respect to time. It is also
useful to remember here that, for the flat FRW universe,

R ¼ 6

��
_a
a

�
2

þ ä
a

�
: ð9Þ

Moreover, the use of Eq. (2) yields [25]

ð12γ − 3ÞH2 þ 6γ _H ¼ −
4γ − 1

6γ − 1
8πGρ;

ð12γ − 3ÞH2 þ ð6γ − 2Þ _H ¼ 4γ − 1

6γ − 1
8πGp; ð10Þ

The evolution of density perturbation in this model has
been studied in Refs. [9,16,18]. It has been shown that the
story is the same as those of the standard cosmology at the
background and linear perturbation level [9]. Finally, one
can use Eq. (10) to get [25]

_H ¼ −
k
2
ðρþ pÞ: ð11Þ

From the standpoint of tensor calculus, Eq. (2) is a
solution for Eq. (1) leading to the above results. But, does
thermodynamics lead to the same solutions? Indeed, since
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entropy is the backbone of thermodynamic approach, it is
expected that Eq. (2) and, thus, the above results are
available only whenever the horizon entropy meets
Eq. (4). In order to find the Friedmann equations corre-
sponding on Eq. (1) from the thermodynamics point of
view, we consider the general form of entropy as
SA ¼ Sð2πAk Þ. Additionally, one can use

δQm ¼ ðTb
a∂b ~rþW∂a ~rÞdxa; ð12Þ

to evaluate the energy flux crossing the apparent horizon
[76,77]. Here, we also focus on an energy-momentum
source as Tν

μ ¼ diagð−ρ; p; p; pÞ which yieldsW ¼ ρ−p
2

for
the work density. Finally, we see [25,27]

δQm ¼ −Aðρþ pÞdt: ð13Þ

Now, applying the Clausius relation (TdSA ¼ −δQm) to
the horizon [78] and using the Cai-Kim temperature
(T ¼ H

2π) [79], one can easily find

_H ¼ −
π

S0
ðρþ pÞ; ð14Þ

where S0 ¼ dSA
dA [80]. Now, combining this result with

Eq. (8), we obtain

S0dH2 ¼ 2π

3
dðρþ λRÞ; ð15Þ

as the differential form of the first Friedmann equation.
The result of this equation can be combined with Eq. (14) to
get the second Friedmann equation.
Now, if the system entropy meets Eq. (4), then Eq. (14)

leads to 2 _H ¼ −kðρþ pÞ. It is also easy to insert Eq. (4)
into Eq. (15) to get

ð12γ − 3ÞH2 þ 6γ _H þ C ¼ −
4γ − 1

6γ − 1
8πGρ; ð16Þ

where C is the integration constant of Eq. (15). Now, adding
and subtracting 2 _H from the lhs of this equation, and using
the 2 _H ¼ −kðρþ pÞ relation, we can reach

ð12γ − 3ÞH2 þ ð6γ − 2Þ _H þ C ¼ 4γ − 1

6γ − 1
8πGp: ð17Þ

It is apparent that, for the C ¼ 0 case, the original
Friedmann equations in the Rastall framework are repro-
duced (16). Indeed, since divergence of Cgμν is zero, one
may add the Cgμν term to the rhs of Rastall field
equations (2) to directly get Eq. (16) instead of Eq. (10).

Anyway, we know that this term represents an unusual
fluid in the context of ordinary physics leading to dark
energy concept and, thus, its problems.
Now, Let us consider a flat FRWuniverse filled by a fluid

with constant state parameter defined as w ¼ p
ρ. In this

manner, calculations lead to [25]

ρ ¼ ρ0a
−3ð1þωÞð4γ−1Þ
3γð1þωÞ−1 ; ð18Þ

where ρ0 is constant, for the energy density profile. For a
universe filled by a pressureless component, where

ρ ¼ ρ0a
−3ð4γ−1Þ
3γ−1 , combining this equation with Eq. (16),

one reaches at

_H ¼ −
ρ0ð4γ − 1Þ4πG

6γ − 1
a

−3ð4γ−1Þ
3γ−1 ; ð19Þ

and

H2 ¼ ρ0ð3γ − 1Þ8πG
3ð6γ − 1Þ a

−3ð4γ−1Þ
3γ−1 þ C: ð20Þ

Now, it is natural expectation that the matter density
should be diluted during the expansion of the Universe.
This limits us to the Rastall theories with γ < 1

4
and 1

3
< γ.

Applying this result to Eq. (19), we find out that, at the long
run limit (aðtÞ ≫ 1), we have _H → 0, and therefore, the
Universe may experience an accelerating phase. In this
situation, Eq. (20) implies H ¼ H0 ≈ C meaning that a
nonminimal coupling between geometry and energy-
momentum source cannot describe the current accelerating
phase of the Universe in the Rastall framework. In fact, as it
is apparent, we should have C ≠ 0 to get H0 ≠ 0, and, thus,
an accelerating universe. Therefore, the same as the
standard Friedmann equations, a dark energy-like source
is needed to model the accelerating universe in the Rastall
theory, a result in agreement with recent study by Batista
et al. [9].
In summary, our thermodynamic based study shows the

dark energy problem is also valid in this formalism [9],
unless one generalizes the Rastall theory in a suitable
manner [5].

III. RÉNYI ENTROPY AND FRIEDMANN
EQUATIONS

Recently, Rényi entropy has been used in order to study
the effects of probable nonextensive aspects of spacetime
which led to interesting results in both cosmological and
gravitational setups [31,73,74,81–84]. For a nonextensive
system including W discrete states, the Rényi entropy is
defined as [60]
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S ¼ 1

1 − q
ln
XW
i¼1

Pq
i ; ð21Þ

in which Pi and q denote the probability of ith state and the
nonextensive parameter, respectively. Moreover, the Tsallis
entropy of this system is as follows [61]

ST ¼ 1

1 − q

XW
i¼1

ðPq
i − PiÞ: ð22Þ

The linear relation between entropy and area is the key
point of the Bekenstein-Hawking entropy (SB ∼ A), which
can also be obtained from the Tsallis’ nonadditive entropy
definition [62]. As it is apparent from Eq. (4), the
functionality of SRA with respect to the horizon area (A)
is the same as that of the Bekenstein-Hawking entropy
(SRA ∼ A) meaning that SRA may be considered as a special
case of Eq. (22). More detailed studies on gravitational and
cosmological implications of Tsallis entropy (22) can be
found in Refs. [62–71] and references therein. Eq. (22) can
be combined with Eq. (21) to show that

S ¼ 1

δ
lnð1þ δSTÞ; ð23Þ

where δ≡ 1 − q, and we used
P

W
i¼1 Pi ¼ 1 to obtain this

equation [74,81]. It has frequently been argued that the
Bekenstein-Hawking entropy is not an extensive entropy
[31–46], and in fact, the Bekenstein-Hawking entropy can
be considered as a proper candidate for ST in gravitational
and cosmological setups [31,73,74,81], a choice in full
agreement with Ref. [62]. Here, following the above
arguments and recent studies [31,62,73,74,81], we use
Eq. (4) as the Tsallis entropy candidate in our calculations
leading to

SA ¼ 1

δ
lnð1þ δSRAÞ ¼

1

δ
ln

�
1þ 2πδ

k
A

�
; ð24Þ

S0
A ¼ dSA

dA
¼ 2πH2

k½H2 þ Δ� ; ð25Þ

for the Rényi entropy of horizon (SA) and its derivativewith

respect to A (S0
A), respectively. Here, Δ≡ ð6γ−1Þδπ

ð4γ−1ÞG , and it is

easy to check that whenever the nonextensive features of
system approach zero (or equally δ → 0), the SA relation
recovers Eq. (4). Now, inserting Eq. (25) into Eqs. (14) and
(15), one can obtain

_H ¼ −
k½H2 þ Δ�

2H2
ðρþ pÞ; ð26Þ

and

H2 − Δ lnðΔþH2Þ þ C1 ¼
k
3
ρþ γ

3
R; ð27Þ

where C1 is the integration constant, respectively. Defining
a new constant C ¼ C1 − Δ lnΔ, one can rewrite the last
equation as

H2 − Δ ln

�
1þH2

Δ

�
þ C ¼ k

3
ρþ γ

3
R: ð28Þ

Since H ¼ _a
a, Eq. (9) can be rewritten as

R ¼ 6ð _H þ 2H2Þ: ð29Þ

Finally, combining this equation with Eq. (28), and
inserting the result into Eq. (26), we find

H2 ¼ k
3
ðρþ ργeÞ; ð30Þ

and

H2 þ 2

3
_H ¼ −

k
3
ðpþ pγ

eÞ; ð31Þ

for the first and second Friedmann equations in our model,
respectively. In fact, one should combine Eqs. (30) and (26)
with each other, and then add and subtract the 2

3
_H term to

the result to find the last equation. In the above equations,

ργe ¼ 3

k

�
4γH2 þ Δ ln

�
1þH2

Δ

�
þ 2γ _H − C

�
;

pγ
e ¼ −

3

k

�
4γH2 þ Δ ln

�
1þH2

Δ

�

þ 2 _H

�
γ þ 1

3ðH2

Δ þ 1Þ

�
− C

�
; ð32Þ

denote effective energy density and effective pressure in
this framework, respectively. It is easy to see that, at the
δ → 0 limit (or equally Δ → 0), the results of Rastall
theory are recovered. Additionally, we have pe → −ρe
whenever _H → 0. Now, since ä

a ¼ H2 þ _H, one can rewrite
Eq. (31) as

2
ä
a
þH2 ¼ −kðpþ pγ

eÞ; ð33Þ

where its lhs has the same form as that of the standard
Friedmann equation [85]. Besides, simple calculations
reach

ä
a
¼ −

k
6
½ρþ ργe þ 3ðpþ pγ

eÞ�; ð34Þ

for the acceleration equation. Therefore, we deal with two
fluids. The first fluid is the ordinary energy-momentum
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tensor Tν
μ corresponding to the real fluid with energy

density ρ and pressure p. The second fluid, which
has geometrical origin, is called the effective energy-
momentum tensor, and it is defined as

Θν
μ ¼ diagð−ργe; pγ

e; p
γ
e; p

γ
eÞ: ð35Þ

In fact, the obtained effective fluid consists of two parts:
(i) the nonextensive aspects of spacetime, and (ii) the
nonminimal coupling between geometry and matter fields
which follows the Rastall hypothesis. Therefore, the γ → 0
limit ofΘν

μ only includes the nonextensive effects. We show
it by T ν

μ ¼ diagð−ρe; pe; pe; peÞ in which

ρe ¼
3

8πG

�
Δðγ¼0Þ ln

�
1þ H2

Δðγ¼0Þ

�
− Cðγ¼0Þ

�
;

pe ¼ −ρe −
3

8πG

�
2 _H

3ð H2

Δðγ¼0Þ
þ 1Þ

�
; ð36Þ

where Δðγ¼0Þ ¼ δπ
G and Cðγ¼0Þ ¼ C1 − Δðγ¼0Þ lnΔðγ¼0Þ.

In fact, it is a geometrical fluid originated from the
nonextensive aspects of spacetime, and recovers the ordi-
nary cosmological constant model of dark energy at the
appropriate limit of γ → 0. It is also easy to check that this
source satisfies the conservation law, i.e.,

_ρe þ 3Hðρe þ peÞ ¼ 0; ð37Þ

Therefore, Θν
μ acts as a time-varying dark energy model

which satisfies the conservation law only for γ ¼ 0.
Bearing the Bianchi identity in mind, since the lhs of

Eqs. (30) and (33) are compatible with the Einstein tensor,
we should have ðΘν

μ þ Tν
μÞ;μ ¼ 0 leading to

_ρþ 3Hðρþ pÞ ¼ −½_ργe þ 3Hðργe þ pγ
eÞ�; ð38Þ

and, thus,

λ _R ¼ _ργe þ 3Hðργe þ pγ
eÞ: ð39Þ

In fact, the above results would also be obtained by
writing Einstein field equations as Gμν ¼ kðΘμν þ TμνÞ.
In addition, Eqs. (37) and (39) tell us that there is no energy
flux between geometry and matter fields at the appropriate
limit of λ → 0 (or equally γ → 0), a result in full agreement
with Eq. (1). Indeed, although Θν

μ → T ν
μ at the γ → 0 limit,

since T ν
μ is a divergence-less tensor (37), we have λ _R ¼ 0

and, thus, the ordinary energy-momentum conservation
law is met by the Tν

μ source. Applying the γ → 0 and
Δ → 0 limits to the above equations, one can easily reach
the standard Friedmann equations compatible with the
Bekenstein-Hawking entropy of horizon [50,56,71].
Therefore, the γ → 0 limit helps us in obtaining the

modification of considering Rényi entropy to the standard
Friedmann equations as

H2 ¼ 8πG
3

ðρþ ρeÞ;

H2 þ 2

3
_H ¼ −8πG

3
ðpþ peÞ; ð40Þ

where ρe and pe follow Eq. (36). It is worth mentioning
that, independent of the values of C and Δ, we have pe →
−ρe whenever _H → 0. As a check, one can also insert
γ ¼ 0 in Eqs. (3) and (32) to get these results. In this
manner, the acceleration equation is

ä
a
¼ −

4πG
3

½ρþ ρe þ 3ðpþ peÞ�; ð41Þ

and the second line of Eq. (40) can also be written as

2
ä
a
þH2 ¼ −8πGðpþ peÞ; ð42Þ

where its lhs is in the form of the standard Friedmann
equation [85]. Bearing Eq. (37) as well as the argument
after Eq. (39) in mind, it is apparent that, for γ ¼ 0, the Tμν

source respects the continuity equation, i.e.,

_ρþ 3Hðρþ pÞ ¼ 0: ð43Þ
Although the same as Refs. [73,74], we used the Rényi

entropy to get the modified Friedmann equations, which
differ from those of recent studies [73,74] in the following
ways: (i) While the entropy expression appears in accel-
eration equations obtained in Refs. [73,74], which use the
Padmanabhan approach, its derivative is the backbone of
getting the acceleration equation in our model based on
applying thermodynamics laws to the horizon [see
Eq. (14)]; (ii) The Komar mass definition has been used
by authors in Refs. [73,74] only for the Tμν source. As we
saw, our results are also obtainable if one writes the
Einstein field equations as Gμν ¼ kðΘμν þ TμνÞ, meaning
that the Komar mass should be written for the modified
energy-momentum tensor Θμν þ Tμν instead of Tμν; and
(iii) In Ref. [73], the nonextensive features of spacetime
have been introduced as an origin for a time-varying dark
energy (ΛðtÞ) which interacts with matter fields and does
not meet Eq. (37). This is while the time-varying dark
energy candidate of our model interacts with matter fields
only in the Rastall way and meets Eq. (37) in the absence of
the Rastall hypothesis (γ ¼ 0).

IV. A UNIVERSE FILLED BY A
PRESSURELESS FLUID

In order to study a universe filled by a pressureless

source, we insert ρ ¼ ρ0a
−3ð4γ−1Þ
3γ−1 into Eq. (26) and use

Eq. (30) to reach
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H2ð1 − 4γÞ − Δ lnð1þ H2

Δ Þ þ C

1 − 3γð1þ Δ
H2Þ ¼ ξa

−3ð4γ−1Þ
3γ−1 ; ð44Þ

where ξ≡ ρ0ð4γ−1Þ8πG
3ð6γ−1Þ . It is clear that, for a Rastall theory of

γ < 1
4
or 1

3
< γ, the rhs of this equation and, thus, its lhs are

vanished at long run limit (a ≫ 1) meaning that
H → constant≡H0. Now, H0 can be evaluated from

H2
0

Δ
¼ lnð1þ H2

0

Δ Þ
1 − 4γ

þ C2; ð45Þ

where C2 ≡ C
ð4γ−1ÞΔ is a constant. It is also apparent that,

depending on the value of γ, this equation may be solvable
even if we have C2 ¼ 0 or C1 ¼ 0. Additionally, since Δ is
unknown parameter, this equation helps us in finding its
possible values as a function of H0. One can also use this
result in order to apply the a ≫ 1 limit to Eq. (26) to see
that _H → 0 whenever γ meets either γ < 1

4
or 1

3
< γ.

In summary, based on our results, the dark energy problem
in Rastall theory can be overcame by considering the
probable nonextensive features of spacetime.
Now we consider a universe filled by a pressureless

source (p ¼ 0) whenever γ ¼ 0. In this manner, both of
Eqs. (18) and (43) lead to ρ ¼ ρ0a−3 for energy density.
Inserting γ ¼ 0 into Eq. (40), and following the recipe
which led to Eqs. (44) and (45), we reach

H2 − Δðγ¼0Þ ln
�
1þ H2

Δðγ¼0Þ

�
þ Cðγ¼0Þ ¼ χa−3; ð46Þ

and

H2
0

Δðγ¼0Þ
¼ ln

�
1þ H2

0

Δðγ¼0Þ

�
− C3; ð47Þ

where χ ≡ 8πGρ0
3

, and C3 ≡ Cðγ¼0Þ
Δðγ¼0Þ

. It also means that,

whenever the divergence of Tν
μ is zero, the probable

nonextensive features of spacetime, which behave as a
conserved fluid, can be considered as the nature of the
current accelerating phase of the Universe if Δðγ¼0Þ and H0

meet the above equation. It is worth noting here that this
equation is solvable even if C1 ¼ 0. This result (the γ ¼ 0
case) is in agreement with our previous results, where we
found out the γ parameter should either meet γ < 1

4
or 1

3
< γ.

Bearing in mind the results addressed after Eqs. (20) and
(45), it is worth mentioning that from the viewpoint of
dynamics, the γ < 1

4
and 1

3
< γ intervals are permissible for

γ. On the other hand, thermodynamic considerations [the
results of Eq. (4)], insist only the γ < 1

6
and 1

4
< γ intervals

are admissible. Comparing these results with each other,
one can easily find that γ < 1

6
and 1

3
< γ are common

intervals. This means that the values of γ obtained from
observations are allowed, if they be within in these ranges.

V. OBSERVATIONAL CONSTRAINTS

In what follows, let us discuss the observational con-
straints on the scenarios presented above. In order to
constrain the free parameters of the models we use, the
Union 2.1 sample [86], which contains 580 Supernovae
type Ia (SNIa) in the redshift range 0.015 ≤ z ≤ 1.41, 36
observational Hubble data (HðzÞ) in the range (0.0708 ≤
z ≤ 2.36) compiled in [87] and the baryon acoustic
oscillations (BAO) distance measurements at different
redshift, in order to diminish the degeneracy between the
free parameters.

A. Supernovae type Ia

In order to study the constraints applied to a cosmo-
logical model by the SNIa data, one can use the distance
modulus μðzÞ defined as

μthðzÞ ¼ 5log10DLðzÞ þ μ0; ð48Þ

where μ0 ¼ 42.38 − 5log10h. Moreover, h ¼ H0=100 km ·
s−1 · Mpc−1 is the dimensionless Hubble parameter, and
DLðzÞ is the luminosity distance calculated as

DLðzÞ ¼
cð1þ zÞ

H0

Z
z

0

dz0

Eðz0Þ ; ð49Þ

in the flat FRW universe. Here, E2ðzÞ ¼ H2ðzÞ=H2
0, and,

thus, using Eqs. (30) and (40), we can easily reach

E2ðzÞ ¼ Ωmð1þ zÞ3 þ 4γE2ðzÞ

þ Δ
H2

0

ln

�
1þH2

0

Δ
E2ðzÞ

�
þ 2γ

_H
H2

0

þ ΩC ð50Þ

whenever γ ≠ 0 and ΩC ¼ −C=H2
0 (model I), and

E2ðzÞ ¼ Ωmð1þ zÞ3

þ Δðγ¼0Þ
H2

0

ln

�
1þ H2

0

Δðγ¼0Þ
E2ðzÞ

�
þ ΩCðγ¼0Þ ; ð51Þ

while γ ¼ 0 and ΩCðγ¼0Þ ¼ −Cðγ¼0Þ=H2
0 (model II), respec-

tively. In the above results, Ωm ¼ ρm0=ρcr and ρcr is the
critical density defined as ρcr ¼ 3H2

0=8πG. Now, applying
the E2ðz ¼ 0Þ ¼ 1 and _Hðz ¼ 0Þ ¼ 0 conditions (the usual
normalization conditions at z ¼ 0) to Eqs. (50) and (51),
we get

ΩC ¼ 1 −Ωm0 − 4γ −
Δ
H2

0

ln

�
1þH2

0

Δ

�
; ð52Þ
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and

ΩCðγ¼0Þ ¼ 1 −Ωm0 −
Δðγ¼0Þ
H2

0

ln

�
1þ H2

0

Δðγ¼0Þ

�
; ð53Þ

in model I and model II, respectively. Therefore, model I
has three free parameters as fΩm0;Δ; γg, and model II has
two free parameters including fΩm0;Δðγ¼0Þg. It is worth-
while remembering here that if Δ → 0 and γ → 0, then the
ΛCDM model is recovered for C ¼ C1 ≡ Λ.
Observational constraints on cosmological model can be

obtained by minimizing χ2 given by [88,89]

χ2SNIa ¼ A −
B2

C
; ð54Þ

where

A ¼
X580
i¼1

½μthðzi; piÞ − μobsðziÞ�2
σ2μi

;

B ¼
X580
i¼1

μthðzi; piÞ − μobsðziÞ
σ2μi

;

C ¼
X580
i¼1

1

σ2μi
; ð55Þ

and we have marginalized over the nuisance parameter μ0
and μobs.

B. Baryon acoustic oscillations (BAO)

The expanding spherical wave of baryonic perturbations,
which comes from acoustic oscillations at recombination
and comoving scale of about 150 Mpc, helps us in
identifying the peak of large scale correlation function
measured from SDSS (Sloan Digital Sky Survey). It is
worth noting that the BAO scale depends on (i) the scale of
sound horizon at recombination and (ii) the transverse and
radial scales at the mean redshift of galaxies in the survey.
In order to obtain the corresponding constraints on the
cosmological models, we begin with χ2 for the WiggleZ
BAO data [90] given as

χ2WiggleZ ¼ ðĀobs − ĀthÞC−1
WiggleZðĀobs − ĀthÞT; ð56Þ

where Āobs ¼ ð0.447; 0.442; 0.424Þ is data vector at
z ¼ ð0.44; 0.60; 0.73Þ, T denotes the ordinary transpose,
and Āthðz; piÞ is [91]

Āth ¼ DVðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

p
cz

; ð57Þ

in which

DVðzÞ ¼
1

H0

�
ð1þ zÞ2DAðzÞ2

cz
EðzÞ

�
1=3

ð58Þ

is the distance scale. Here, DAðzÞ denotes the angular

diameter distance defined as DAðzÞ ¼ DLðzÞ
ð1þzÞ2. Additionally,

C−1
WiggleZ is the inverse covariance matrix for the WiggleZ

data set given by

C−1
WiggleZ ¼

0
B@

1040.3 −807.5 336.8

−807.5 3720.3 −1551.9
336.8 −1551.9 2914.9

1
CA: ð59Þ

For the SDSS DR7 BAO distance measurements, χ2 can
similarly be expressed as [92]

χ2SDSS ¼ ðd̄obs − d̄thÞC−1
SDSSðd̄obs − d̄thÞT; ð60Þ

where d̄obs ¼ ð0.1905; 0.1097Þ is the data point at z ¼ 0.2
and z ¼ 0.35. d̄thðzd; piÞ is also defined as

d̄th ¼
rsðzdÞ
DVðzÞ

; ð61Þ

in which rsðzÞ is the radius of the comoving sound horizon
given by

rsðzÞ ¼ c
Z

∞

z

csðz0Þ
Hðz0Þ dz

0 ð62Þ

and

csðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ R̄b=ð1þ zÞ
p ; ð63Þ

is the sound speed. Here, R̄b ¼ 31500Ωbh2ðTCMB=2.7KÞ−4
and TCMB ¼ 2.726 K. zdrag at the baryon drag epoch fitted
with the formula, proposed in [93],

zdrag ¼
1291ðΩmh2Þ0.251

1þ 0.659ðΩmh2Þ0.828
½1þ b1ðΩbh2Þb2 �; ð64Þ

where

b1 ¼ 0.313ðΩmh2Þ−0.419½1þ 0.607ðΩmh2Þ0.674� ð65Þ

and

b2 ¼ 0.238ðΩmh2Þ0.223: ð66Þ

Here,

C−1
SDSS ¼

�
30124 −17227
−17227 86977

�
; ð67Þ
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is the inverse covariance matrix for the SDSS data set.
Additionally, we use the Six Degree Field Galaxy Survey
(6dF) measurement [94], the Main Galaxy Sample of Data
Release 7 of Sloan Digital Sky Survey (SDSS-MGS) [95],
the LOWZ and CMASS galaxy samples of the Baryon
Oscillation Spectroscopic Survey (BOSS-LOWZ) [95], and
the distribution of the LymanForest in BOSS (BOSS—Lyα)
[96]. These measurements and their corresponding effective
redshifts (z) are summarized in Table I. Therefore, the total
χ2BAO includes nine data points (for all the BAO data sets).

χ2BAO ¼ χ2WiggleZ þ χ2SDSS þ χ26dF þ χ2SDSS−MGS

þ χ2BOSS−LOWZ þ χ2BOSS−Lyα ð68Þ

C. History of the Hubble parameter

The differential evolution of early type passive galaxies
provides direct information about the Hubble parameter
HðzÞ. We adopt 36 Observational Hubble Data (OHD) at
different redshifts (0.0708 ≤ z ≤ 2.36) obtained from [87],
where 26 data are deduced from the differential age
method, and the remaining 10 data belong to the radial
BAO method. Here, we use these data to constrain the
cosmological free parameters of the models under consid-
eration. The corresponding χ2 can be defined as [88]

χ2HðzÞðH0; piÞ ¼
X36
i¼1

½HobsðziÞ −Hthðzi; H0; piÞ�2
σ2HðziÞ

; ð69Þ

where Hthðzi; H0; piÞ is the theoretical value of the Hubble
parameter at the redshift zi. This equation can be rewritten
as [88]

χ2HðzÞðH0; piÞ ¼ A1 − B1 þ C1; ð70Þ

in which

A1 ¼ H2
0

X36
i¼1

E2ðzi; piÞ
σ2i

;

B1 ¼ 2H0

X36
i¼1

HobsðziÞE2ðzi; piÞ
σ2i

;

C1 ¼
H2

obsðziÞ
σ2i

: ð71Þ

The function χ2HðzÞ depends on the model parameters.
To marginalize over H0, we assume that the distribution of
H0 is a Gaussian function with standard deviation width
σH0

and mean H̄0. Then we build the posterior likelihood
function LHðpÞ that depends just on the free parameters
pi, as

LHðpiÞ ¼
Z

πHðH0Þ exp ½−χ2HðH0; piÞ�dH0; ð72Þ

where

πHðH0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσH0

p exp

�
−
1

2

�
H0 − H̄0

σH0

�
2
�
; ð73Þ

is a prior probability function widely used in the literature.
Finally, we minimize χ2HðzÞðpiÞ ¼ −2 lnLHðpiÞ with

respect to the free parameters pi to obtain the best-fit
parameters values.

D. Statistic analysis and results

Maximum likelihood Lmax, is the procedure of finding
the value of one or more parameters for a given statistic
which maximizes the known likelihood distribution.
The maximum likelihood estimate for the best-fit param-
eters pi is

LmaxðpiÞ ¼ exp

�
−
1

2
χ2minðpiÞ

�
; ð74Þ

and therefore, χ2minðpiÞ ¼ −2 lnLmaxðpiÞ [97]. In order to
find the best values of the free parameters of the models, we
consider

χ2total ¼ χ2SNIa þ χ2BAO þ χ2HðzÞ: ð75Þ

Moreover, the Fisher matrix is widely used in analyzing
the constraints of cosmological parameters from different
observational data sets [98,99]. Having the best-fit
χ2minðpi; σ2i Þ, the Fisher matrix can be calculated as

Fij ¼
1

2

∂2χ2min

∂pi∂pj
; ð76Þ

where Fijð≡Fijðpi; σ2i ÞÞ depends on the uncertainties σ2i of
the parameters pi for a given model. The inverse of the
Fisher matrix also provides an estimate of the covariance
matrix through ½Ccov� ¼ ½F�−1. Its diagonal elements are
the squares of uncertainties in each parameter marginal-
izing over the others, while the off-diagonal terms yield
the correlation coefficients between parameters. The uncer-
tainties obtained in the propagation of errors are also

given by σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Diag½Ccov�ij

q
. Note that the marginalized

TABLE I. Baryon acoustic oscillations (BAO) data measure-
ments used in our statistical analysis.

Survey z Parameter Measurement Reference

6dF 0.106 rs=DV 0.336� 0.015 [94]
SDSS-MGS 0.57 rs=DV 0.0732� 0.0012 [95]
BOSS-LOWZ 0.32 DV=rs 8.47� 0.17 [95]
BOSS—Lyα 2.36 DA=rs 10.08� 0.4 [96]
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uncertainty is always greater than (or at most equal to) the
nonmarginalized one. In fact, marginalization cannot
decrease the error, and it has no effect if all other parameters
are uncorrelated with it. Previously known uncertainties of
parameters, known as priors, can trivially be added to the
calculated Fisher matrix.
Table II summarizes the main results of the statistical

analysis carried out by using the data sets SNIa,
SNIaþ BAO, and SNIaþ BAOþHðzÞ for two scenarios
including (i) the Rényi entropy, taking into account the
Rastall framework (model I) and (ii) the particular case of
γ ¼ 0 (model II). The parameter Ωm0 takes into account the
content of cold dark matter plus baryons to the present. It is

useful to note that SNIa does not constrainΔ very well, and
in fact, results are improved by introducing the other
observational tests including BAO and HðzÞ. We can also
see that the sign change of γ does not affect the main
thermodynamic consideration obtained from Eq. (4).
Indeed, since its obtained values meet the γ < 1

6
condition,

entropy is always positive and dynamics, i.e., the accel-
eration of the Universe, is in agreement with the observa-
tional data, an outcome in agreement with the results of
previous section. For model I, the likelihood contours
arisen from the fitting analysis for the set of free parameters
(Δ, Ωm0), and marginalized one-dimensional posterior
distributions for γ (PDF), considering the best-fit values

TABLE II. Summary of the best-fit values at 68.27% C.L. for the parameters Δð≡ ð6γ−1Þδπ
ð4γ−1ÞGÞ, Ωm0 and γ to Rényi entropy. Also, we

shows the summary of the best-fit values at 68.27% C.L. for the particular case where γ ¼ 0, where Δ ¼ Δðγ¼0Þ. We also present the
value of Ωc, derived from standard error propagation.

Data χ2min Δ Ωm0 γ ΩC

SNIa 562.227 0.001� 1.702 0.279� 0.033 0.001� 0.031 0.77� 0.36
SNIaþ BAO 564.724 0.034� 0.064 0.289� 0.015 −0.021� 0.018 0.794� 0.073
SNIaþ BAOþHðzÞ 583.613 0.183� 0.053 0.274� 0.013 −0.012� 0.016 0.725� 0.065

Model II Data χ2min Δðγ¼0Þ Ωm0 ΩCðγ¼0Þ

γ ¼ 0 SNIa 562.228 0.02� 1.26 0.28� 0.14 0.72� 0.15
γ ¼ 0 SNIaþ BAO 564.818 0.040� 0.060 0.287� 0.013 0.713� 0.014
γ ¼ 0 SNIaþ BAOþHðzÞ 585.158 0.038� 0.051 0.270� 0.010 0.729� 0.010
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0.000
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0.010

0.015

0.020

0.025
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FIG. 1. Contour plots for the free parameter fΔ − Ωm0g at 1σ and 2σ CL for model I, from the joint analysis SNIaþ BAO þHðzÞ (left
panel). Additionally, we present the corresponding marginalized one-dimensional posterior distributions for γ parameter (right panel).
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for used data sets SNIaþ BAOþHðzÞ, are presented
in Fig. 1. Moreover, Fig. 2. includes marginalized one-
dimensional posterior distributions for Δðγ¼0Þ parameter in
model II. Here, we can appreciate slight deviations from
the standard model (or equally the Δðγ¼0Þ → 0 limit). This
possibility does not rule out the standard model and may, in
principle, be used to distinguish between the ΛCDM and
our models.
The equation of state (EoS) considering a given cosmo-

logical model can be written as

wðzÞ ¼ −1 −
2

3

_H
H2

¼ −1þ 2ð1þ zÞ
3H

dH
dz

; ð77Þ

which has been derived from the combination of Eqs. (30)
and (31), for the general case and Eq. (40) for the particular
case of γ ¼ 0. Fig. 3. shows the behavior of the total EoS
for both cases, with error propagation at 68.27% C.L.
regarding the best-fit values presented in Table II. We note
that the total EoS, due to the mechanism presented in this
paper, does not cross the phantom division line for the best
fit of parameters. At high redshift limit, it approaches
asymptotically to a value of zero, that is, behaving like a
fluid without pressure. In general, we note the behavior
−1≲ w≲ 0 from the best-fit values. Similar behavior are
found in unification models in the dark sector of the
Universe.

On the other hand, it is natural to describe the kinematics
of the cosmic expansion through the Hubble parameter
HðtÞ, and its dependence on time, i.e., the deceleration
parameter qðzÞ. The deceleration parameter is defined as
qðzÞ ¼ −äa= _a combined with the ä=a ¼ H2 þ _H relation,
where _H ¼ dH=dt, to get

qðzÞ ¼ −1þ ð1þ zÞ
HðzÞ

dHðzÞ
dz

: ð78Þ

From Eq. (41) and by considering p ¼ 0 along with
pγ
e ¼ −ργe, it follows that

0.000

0.002

0.004

0.006

0.008

0)(

0.00 0.05 0.10

Δ
0.15 0.20

PD
F

FIG. 2. Marginalized one-dimensional posterior distributions
for Δðγ¼0Þ parameter at 1σ and 2σ CL for model II, from the joint
analysis SNIaþ BAO þHðzÞ.
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FIG. 3. Reconstruction of the EoS at 68% CL (gray region)
from our joint analysis model I (top panel) and model II (γ ¼ 0)
(bottom panel). The blue line represents the best-fit value for all
data set SNIaþ BAOþHðzÞ.
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q0 ¼
Ωm0

2
−Ωγ

e; ð79Þ

where its rhs has to be evaluated at z ¼ 0, and we have
defined Ωγ

e ¼ ργe=ρcr. In general, if Ωγ
e is sufficiently large

(i.e., Ωγ
e > Ωm), then qðz ¼ 0Þ < 0, which corresponds to

an accelerated expanding universe.
qðzÞ has been plotted in Fig. 4. by using the best fit of

parameters with all observational data SNIaþ BAOþHz

(See Table II). As expected, models give qðzÞ < 0 at late
times and qðzÞ > 0 at earlier epoch, which means that
the expansion rate is slowed down in the past and speeded
up in the present. Therefore, there is a transition between
the decelerated phase (qðzÞ > 0) into an accelerated era
qðzÞ < 0 at redshift zt for these models. Our analysis
admits fzt¼0.98;q0¼−0.63g for model I and fzt ¼ 0.77;
q0 ¼ −0.59g for model II.

VI. SUMMARY AND CONCLUDING REMARKS

Applying the Clausius relation, the Cai-Kim temper-
ature, and the Rényi entropy to the apparent horizon of a
flat FRW universe, we arrived at a model for the dynamics
of the Universe. Fitting the model to observational data, the
values of model parameters were obtained. We found out
that if we attribute Rényi entropy to the horizon, then the
current accelerated phase of universe expansion may be
described in the Rastall framework. Our study also shows
that the probable nonextensive features of spacetime may
play the role of a varying dark energy in a universe in which
an ordinary energy-momentum conservation law is valid.
Although our model shows suitable agreement with

observational data, it is very important to study the
evolution of density perturbations in this model which
helps us to decide about the performance of our model.
We leave this subject for future work.
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