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Using some of the latest cosmological data sets publicly available, we derive the strongest bounds in the
literature on the sum of the three active neutrino masses, Mν, within the assumption of a background flat
ΛCDM cosmology. In the most conservative scheme, combining Planck cosmic microwave background
temperature anisotropies and baryon acoustic oscillations (BAO) data, as well as the up-to-date constraint
on the optical depth to reionization (τ), the tightest 95% confidence level upper bound we find is
Mν < 0.151 eV. The addition of Planck high-l polarization data, which, however, might still be
contaminated by systematics, further tightens the bound to Mν < 0.118 eV. A proper model comparison
treatment shows that the two aforementioned combinations disfavor the inverted hierarchy at ∼64% C:L:
and ∼71% C:L:, respectively. In addition, we compare the constraining power of measurements of the full-
shape galaxy power spectrum versus the BAO signature, from the BOSS survey. Even though the latest
BOSS full-shape measurements cover a larger volume and benefit from smaller error bars compared to
previous similar measurements, the analysis method commonly adopted results in their constraining power
still being less powerful than that of the extracted BAO signal. Our work uses only cosmological data;
imposing the constraint Mν > 0.06 eV from oscillations data would raise the quoted upper bounds by
Oð0.1σÞ and would not affect our conclusions.
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I. INTRODUCTION

The discovery of neutrino oscillations, which resulted in
the 2015 Nobel Prize in Physics [1], has robustly estab-
lished the fact that neutrinos are massive [2–9]. The results
from oscillation experiments can therefore be successfully
explained assuming that the three neutrino flavor eigen-
states (νe, νμ, ντ) are quantum superpositions of three mass
eigenstates (ν1, ν2, and ν3). In analogy to the quark sector,
flavor and mass eigenstates are related via a mixing matrix
parametrized by three mixing angles (θ12, θ13, and θ23) and
a CP-violating phase δCP.
Global fits [10–14] to oscillation measurements have

determinedwith unprecedented accuracy fivemixing param-
eters, namely, sin2 θ12, sin2 θ13, and sin2 θ23, as well as the

two mass-squared splittings governing the solar and the
atmospheric transitions. The solar mass-squared splitting is
given by Δm2

21 ≡m2
2 −m2

1 ≃ 7.6 × 10−5 eV2. Because of
matter effects in the Sun, we know that the mass eigenstate
with the larger electron neutrino fraction is the one with the
smallest mass. We identify the lighter state with “1” and the
heavier state (which has a smaller electron neutrino fraction)
with “2.” Consequently, the solar mass-squared splitting is
positive. The atmospheric mass-squared splitting is instead
given by jΔm2

31j≡ jm2
3 −m2

1j≃ 2.5 × 10−3 eV2. Since the
sign of the largest mass-squared splitting jΔm2

31j remains
unknown, there are two possibilities for the mass ordering:
the normal hierarchy (NH) (Δm2

31>0, with m1<m2<m3)
and the inverted hierarchy (IH) (Δm2

31<0, and m3<
m1<m2). Other unknowns in the neutrino sector are the
presence of CP-violation effects (i.e., the value of δCP), the
θ23 octant, the Dirac versus Majorana neutrino nature, and,
finally, the absolute neutrino mass scale; see Ref. [15] for a
recent review on unknowns of the neutrino sector.

*sunny.vagnozzi@fysik.su.se
†egiusarm@andrew.cmu.edu
‡omena@ific.uv.es

PHYSICAL REVIEW D 96, 123503 (2017)

2470-0010=2017=96(12)=123503(26) 123503-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.123503
https://doi.org/10.1103/PhysRevD.96.123503
https://doi.org/10.1103/PhysRevD.96.123503
https://doi.org/10.1103/PhysRevD.96.123503


Cosmology can address two out of the above five
unknowns: the absolute mass scale and the mass ordering.
Through background effects, cosmology is to zeroth order
sensitive to the absolute neutrino mass scale, that is, to the
quantity

Mν ≡mν1 þmν2 þmν3 ; ð1Þ
where mνi denotes the mass of the ith neutrino mass
eigenstate. Indeed, the tightest current bounds on the
neutrino mass scale come from cosmological probes;
see, for instance, Refs. [16–23]. More subtle perturbation
effects make cosmology in principle sensitive to the mass
hierarchy as well (see, e.g., Refs. [24–29] for comprehen-
sive reviews on the impact of nonzero neutrino masses on
cosmology), although not with current data sets.
As light massive particles, relic neutrinos are relativistic

in the early Universe and contribute to the radiation energy
density. However, when they turn nonrelativistic at late
times, their energy density contributes to the total matter
density. Thus, relic neutrinos leave a characteristic imprint
on cosmological observables, altering both the background
evolution and the spectra of matter perturbations and
cosmic microwave background (CMB) anisotropies (see
Refs. [24–29] as well as the recent Ref. [30] for a detailed
review on massive neutrinos in cosmology, in light of both
current and future data sets). The effects of massive
neutrinos on cosmological observables will be discussed
in detail in Sec. III.
Cosmological probes are primarily sensitive to the sum

of the three active neutrino masses Mν. The exact distri-
bution of the total mass among the three mass eigenstates
induces subpercent effects on the different cosmological
observables, which are below the sensitivities of ongoing
and near future experiments [31–35]. As a result, cosmo-
logical constraints on Mν are usually obtained by making
the assumption of a fully degenerate mass spectrum, with
the three neutrinos sharing the total mass [mνi ¼ Mν=3,
with i ¼ 1, 2, 3, which we will later refer to as “3 deg”; see
Eq. (3)]. Strictly speaking, this is a valid approximation as
long as the mass of the lightest eigenstate, m0 ≡m1ðm3Þ in
the case of NH (IH), satisfies

m0 ≫ jmi −mjj; ∀ i; j ¼ 1; 2; 3: ð2Þ
The approximation might fail in capturing the exact
behavior of massive neutrinos when Mν ∼Mν;min,
where Mν;min¼

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

21

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p ≃0.06 eV½¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δm2
31þΔm2

21

p ≃0.1 eV� is the minimal mass allowed
by oscillation measurements in the NH (IH) scenario
[10–14]; see Appendix A for detailed discussions.
Furthermore, it has been argued that the ability to reach
a robust upper bound on the total neutrino mass below
Mν;min ¼ 0.1 eV would imply having discarded at some
statistical significance the inverted hierarchy scenario. In
this case, one has to provide a rigorous statistical treatment
of the preference for one hierarchy over the other [36–38].

We will be presenting results obtained within the
approximation of three massive degenerate neutrinos.
That is, we consider the following mass scheme, which
we refer to as 3 deg:

m1 ¼ m2 ¼ m3 ¼
Mν

3
ð3 degÞ:

This approximation has been adopted by the vast majority
of works when Mν is allowed to vary. This includes the
Planck Collaboration, which recently obtained Mν <
0.234 eV at 95% C.L. [39] through a combination of
temperature and low-l polarization anisotropy measure-
ments, within the assumption of a flat ΛCDMþMν

cosmology. Physically speaking, this choice is dictated
by the observation that the impact of the NH and IH mass
splittings on cosmological data is tiny if one compares the
3 deg approximation to the corresponding NH and IH
models with the same value of the total mass Mν (see
Appendix A for further discussions). For the purpose of
comparison with previous work, in Appendix B, we briefly
discuss other less physical approximations which have
been introduced in the recent literature as well as some of
the bounds obtained on Mν within such approximations.
We present the constraints in light of the most recent

cosmological data publicly available. In particular, we
make use of i) measurements of the temperature and
polarization anisotropies of the CMB as reported by
the Planck satellite in the 2015 data release; ii) baryon
acoustic oscillations (BAO) measurements from the Sloan
Digital Sky Survey III (SDSS-III) Baryon Oscillation
Spectroscopic Survey (BOSS) data release 11 CMASS
and LOWZ samples and from the Six-degree Field Galaxy
Survey (6dFGS) and WiggleZ surveys; iii) measurements
of the galaxy power spectrum of the CMASS sample from
the SDSS-III BOSS data release 12; iv) local measurements
of the Hubble parameter (H0) from the Hubble Space
Telescope; v) the latest measurement of the optical depth
to reionization (τ) coming from the analysis of the high-
frequency channels of the Planck satellite; and vi) cluster
counts from the observation of the thermal Sunyaev-
Zeldovich (SZ) effect by the Planck satellite.
In addition to providing bounds onMν, we also use these

bounds to provide a rigorous statistical treatment of the
preference for the NH over the IH. We do so by applying
the simple but rigorous method proposed in Ref. [36] and
evaluate both posterior odds for NH against IH, as well as
the C.L. at which current data sets can disfavor the IH.
The paper is organized as follows. In Sec. II, we describe

our analysis methodology. In Sec. III, we instead provide a
careful description of the data sets employed, complemented
with a full explanation of the physical effects of massive
neutrinos on each of them. We showcase our main results in
Sec. IV, with Sec. IVA in particular devoted to an analysis
of the relative constraining power of the shape power
spectrum versus geometrical BAO measurements, whereas
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in Sec. IV B, we provide a rigorous quantification of the
exclusion limits on the inverted hierarchy from current data
sets. Finally, we draw our conclusions in Sec. V.
For the reader who wants to skip to the results, the

most important results of this paper can be found in
Tables VI, VII, and VIII. The first two of these tables
present the most constraining 95% C.L. bounds on the
sum of the neutrino masses using a combination
of CMB (temperature and polarization), BAO, and other
external data sets. The bounds in Table VII have been
obtained using also small-scale CMB polarization data,
which may be contaminated by systematics, yet we
present the results as they are useful for comparing to
previous work. Finally, Table VIII presents exclusion
limits on the inverted hierarchy neutrino mass ordering,
which is disfavored at about 70% C.L. statistical
significance.

II. ANALYSIS METHOD

In the following, we shall provide a careful description of
the statistical methods employed in order to obtain the
bounds on the sum of the three active neutrino masses we
show in Sec. IV, as well as caveats to our analyses.
Furthermore, we provide a brief description of the stat-
istical method adopted to quantify the exclusion limits on
the IH from our bounds on Mν. For more details on the
latter, we refer the reader to Ref. [36] where this method
was originally described.

A. Bounds on the total neutrino mass

In our work, we perform standard Bayesian inference
(see, e.g., Refs. [40,41] for recent reviews) to derive
constraints on the sum of the three active neutrino
masses. That is, given a model described by the parameter
vector θ and a set of data x, we derive posterior
probabilities of the parameters given the data, pðθjxÞ,
according to

pðθjxÞ ∝ LðxjθÞpðθÞ; ð3Þ

where LðxjθÞ is the likelihood function of the data given
the model parameters and pðθÞ denotes the data-inde-
pendent prior. We derive the posteriors using the Markov
chain Monte Carlo (MCMC) sampler COSMOMC with an
efficient sampling method [42,43]. To assess the con-
vergence of the generated chains, we employ the Gelman
and Rubin statistics [44] R − 1, which we require to
satisfy R − 1 < 0.01 when the data sets do not include SZ
cluster counts and R − 1 < 0.03 otherwise (this choice is
dictated by time and resource considerations: runs
involving SZ cluster counts are more computationally
expensive than those that do not include SZ clusters,
to achieve the same convergence). In this way, the

contribution from statistical fluctuations is roughly a
few percent of the limits quoted.1

We work under the assumption of a background flat
ΛCDM Universe and thus consider the following seven-
dimensional parameter vector:

θ≡ fΩbh2;Ωch2;Θs; τ; ns; logð1010AsÞ;Mνg: ð4Þ

Here, Ωbh2 and Ωch2 denote the physical baryon and dark
matter energy densities, respectively; Θs is the ratio of the
sound horizon to the angular diameter distance at decou-
pling; τ indicates the optical depth to reionization; and the
details of the primordial density fluctuations are encoded in
the amplitude (As) and the spectral index (ns) of its power
spectrum at the pivot scale k⋆ ¼ 0.05h Mpc−1. Finally, the
sum of the three neutrino masses is denoted by Mν. For all
these parameters, a uniform prior is assumed unless
otherwise specified.
Concerning Mν, we impose the requirement Mν ≥ 0.

Thus, we ignore prior information from oscillation experi-
ments, which, as previously stated, set a lower limit of
Mν;min ∼ 0.06 eV (0.10 eV) for the NH (IH) mass ordering.
If we instead had chosen not to ignore prior information
from oscillation experiments, the result would be a slight
shift of the center of mass of our posteriors on Mν toward
higher values. As a consequence of these shifts, the
95% C.L. upper limits we report would also be shifted
to slightly higher values. Nonetheless, in this way, we can
obtain an independent upper limit on Mν from cosmology
alone, while at the same time making the least amount of
assumptions. It also allows us to remain open to the
possibility of cosmological models predicting a vanishing
neutrino density today or models in which the effect of
neutrino masses on cosmological observables is hidden due
to degeneracies with other parameters (see, e.g.,
Refs. [46,47]). One can get a feeling for the size of the
shifts by comparing our results to those of Ref. [19], in
which a prior Mν ≥ 0.06 eV was assumed. As we see, the
size of the shifts is small, of Oð0.1σÞ. We summarize the
priors on cosmological parameters, as well as some of the
main nuisance parameters, in Table I.
All the bounds on Mν reported in Sec. IV are 95% C.L.

upper limits. These bounds depend more or less strongly on
our assumption of a background flat ΛCDM model and
would differ if one were to consider extended parameter
models, for instance scenarios in which the number of
relativistic degrees of freedom Neff and/or the dark energy
equation of state w are allowed to vary, or if the assumption
of flatness is relaxed, and so on. For recent related studies
considering extensions to the minimal ΛCDM model, we

1Notice that this is a very conservative requirement, as a
convergence of 0.05 is typically more than sufficient for the
exploration of the posterior of a parameter of which the
distribution is unimodal [45].
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refer the reader to, e.g., Refs. [47–78] as well as Sec. IV C.
For other recent studies which investigate the effect of
systematics or the use of data sets not considered here (e.g.,
cross-correlations between CMB and large-scale structure),
see, e.g., Refs. [79,80].

B. Model comparison between mass hierarchies

As we discussed previously, several works have argued
that reaching an upper bound on Mν of order 0.1 eV would
imply having discarded the IH at some statistical signifi-
cance. To quantify the exclusion limits on the IH, a proper
model comparison treatment, thus rigorously taking into
account volume effects, is required. Various methods which
allow the estimation of the exclusion limits on the IH have
been devised in the recent literature; see, e.g., Refs. [36–38].
Here, we will briefly describe the simple but rigorous model
comparison method, which we will use in our work,
proposed by Hannestad and Schwetz in Ref. [36] and based
on previous work in Ref. [81]. The method allows the
quantification of the statistical significance at which the
IH can be discarded, given the cosmological bounds onMν.
We refer the reader to the original paper [36] for further
details.
Let us again consider the likelihood function L of the

data x given a set of cosmological parameters θ, the mass of
the lightest neutrino m0 ¼ m1ðm3Þ for NH (IH), and the
discrete parameter H representing the mass hierarchy, with
H ¼ NðIÞ for NH (IH): Lðxjθ; m0; HÞ. Then, given the
prior(s) on cosmological parameters pðθÞ, we define the

likelihood marginalized over cosmological parameters θ
assuming a mass hierarchy H, EHðm0Þ, as

EHðm0Þ≡
Z

dθLðxjθ; m0; HÞpðθÞ ¼ Lðxjm0; HÞ: ð5Þ

Imposing a uniform prior m0 ≥ 0 eV and assuming factor-
izable priors for the other cosmological parameters, it is not
hard to show that, as a consequence of Bayes’s theorem, the
posterior probability of a mass hierarchy H given the data
x, pH ≡ pðHjxÞ, can be obtained as

pH ¼ pðHÞ R∞
0 dm0EHðm0Þ

pðNÞ R∞
0 dm0ENðm0Þ þ pðIÞ R∞

0 dm0EIðm0Þ
; ð6Þ

where pðNÞ and pðIÞ denote priors on the NH and IH,
respectively, with pðNÞ þ pðIÞ ¼ 1. The posterior odds of
NH against IH are then given by pN=pI, whereas the C.L. at
which the IH is disfavored, which we refer to as CLIH, is
given by

CLIH ¼ 1 − pI: ð7Þ
The expression in Eq. (6) is correct as long as the

assumed prior onm0 is uniform, and the priors on the other
cosmological parameters are factorizable. Different choices
of priors on m0 will of course lead to a larger or smaller
preference for the NH. As an example, Ref. [82] considered
the effect of logarithmic priors, showing that this leads to a
strong preference for the NH (see, however, Ref. [83]).
Another valid possibility, which has not explicitly been

considered in the recent literature, is that of performing a
model comparison between the two neutrino hierarchies by
imposing a uniform prior onMν instead of m0. In this case,
it is easy to show that the posterior odds for NH against IH,
pN=pI , is given by (considering for simplicity the case in
which NH and IH are assigned equal priors)

pN

pI
≡

R
∞
0.06 eV dMνEðMνÞR∞
0.10 eV dMνEðMνÞ

; ð8Þ

where, analogously to Eq. (5), we define the marginal
likelihood EðMνÞ as

EHðMνÞ≡
Z

dθLðxjθ;Mν; HÞpðθÞ ¼ LðxjMν; HÞ: ð9Þ

It is actually easy to show that in the low-mass region of
parameter space currently favored by cosmological data,
i.e., Mν ≲ 0.15 eV, the posterior odds for NH against IH
one obtains by choosing a flat prior onMν [Eq. (8)] or a flat
prior onm0 [Eq. (6)] are to very good approximation equal.
It is also interesting to note that, as is easily seen from
Eq. (8), cosmological data will always prefer the normal
hierarchy over the inverted hierarchy, simply as a conse-
quence of volume effects; that is, the volume of parameter
space available to the normal hierarchy (Mν > 0.06 eV) is
greater than that available to the inverted hierarchy

TABLE I. Priors on cosmological and nuisance parameters
considered in this work. Priors on a parameter p of the form
½A; B� are uniform within the range A < p < B, whereas priors of
the form A� B are Gaussian with central value and variance
given by A and B, respectively. The first seven rows refer to the
basic parameter vector in Eq. (4). H0 refers to the Hubble
parameter and is a derived parameter, whereas 1 − b is the cluster
mass bias parameter; see Sec. III F. The parameters bHF and PHF
are nuisance parameters used to model the galaxy power
spectrum; see Eq. (12).

Parameter Prior Name

Ωbh2 [0.005,0.1] � � �
Ωch2 [0.01,0.99] � � �
Θs [0.5,10] � � �
τ [0.01,0.8] � � �

0.055� 0.009 τ0p055
ns [0.8,1.2] � � �
logð1010AsÞ [2,4] � � �
Mν (eV) [0,3] � � �
H0 (km/s/Mpc) [20,100] (Implicit)

72.5� 2.5 H072p5
73.02� 1.79 H073p02

1 − b [0.1,1.3] � � �
bHF [0,10] � � �
PHF [0,10000] � � �
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(Mν > 0.1 eV). For this reason, the way the prior volume is
weighted plays a crucial role in determining the preference
for one hierarchy over the other (see discussions in
Refs. [82,83]).
In our work, we choose to follow the prescription of

Ref. [36] (based on a uniform prior onm0) and hence apply
Eq. (6) to determine the preference for the normal hierarchy
over the inverted one from cosmological data.

III. DATA SETS AND THEIR SENSITIVITY TO Mν

We present below a detailed description of the data sets
used in our analyses and their modeling, discussing their
sensitivity to the sum of the active neutrino masses. For
clarity, all the denominations of the combinations of data
sets we consider are summarized in Table II. For plots
comparing cosmological observables in the presence or
absence of massive neutrinos, we refer the reader to
Refs. [24–29] and especially Fig. 1 of the recent Ref. [30].

A. Cosmic microwave background

Neutrinos leave an imprint on the CMB (both at the
background and at the perturbation level) in, at least, five
different ways, extensively explored in the literature
[24–30]:

(i) By delaying the epoch of matter-radiation equality,
massive neutrinos lead to an enhanced early integrated
Sachs-Wolfe (EISW) effect [28]. This effect is due to
the time variation of gravitational potentials, which
occurs during the radiation-dominated era, but not
during the matter-dominated era, and leads to an
enhancement of the first acoustic peak in particular.
Traditionally, this has been the most relevant neutrino
mass signature as far as CMB data are concerned.

(ii) Because of the same delay as above, light (fν < 0.1)
massive neutrinos actually increase the comoving

sound horizon at decoupling rsðzdecÞ, thus increas-
ing the angular size of the sound horizon at
decoupling Θs and shifting all the peaks to lower
multipoles l’s [24].

(iii) By suppressing the structure growth on small scales
due to their large thermal velocities (see further
details later in Sec. III B), massive neutrinos reduce
the lensing potential and hence the smearing of the
high-l multipoles due to gravitational lensing [91].
This is a promising route toward determining both
the absolute neutrino mass scale and the neutrino
mass hierarchy (see, e.g., Refs. [92,93]) because it
probes the matter distribution in the linear regime at
higher redshift and because the unlensed back-
ground is precisely understood. CMB lensing suffers
from systematics as well, although these tend to be
of instrumental origin and hence decrease with
higher resolution. In fact, a combination of CMB-S4
[94–96] lensing and DESI [97–99] BAO is expected
to achieve an uncertainty on Mν of 0.016 eV [94].

(iv) Massive neutrinos will also lead to a small change
in the diffusion scale, which affects the photon

TABLE II. Specific data sets and combinations thereof used in
this work and associated references of work in which the data are
presented and/or discussed.

Data set Content References

base PlanckTT þ lowP [39,84]
basepol PlanckTT þ lowPþ highP [39,84]
PðkÞ SDSS-III BOSS DR12 CMASS PðkÞ [85]
BAO BAO from 6dFGS BAO, WiggleZ,

SDSS-III BOSS DR11 LOWZ
[86–88]

BAOFULL BAO from 6dFGS, WiggleZ,
SDSS-III BOSS DR11 LOWZ,
SDSS-III BOSS DR11 CMASS

[86–88]

basePK baseþ PðkÞ þ BAO [39,84–88]
basepolPK basepolþ PðkÞ þ BAO [39,84–88]
baseBAO baseþ BAOFULL [39,84–88]
basepolBAO basepolþ BAOFULL [39,84–88]
SZ Planck SZ clusters [89,90]

FIG. 1. Top: Nonlinear galaxy power spectrum computed using
the HALOFIT method with the CAMB code [124] (red line) and the
Coyote emulator (blue line) [120–122] at z ¼ 0.57 for theΛCDM
best-fit parameters from Planck TT 2015 data and Mν ¼ 0 eV
(given that the emulator does not fully implement corrections due
to nonzero neutrino masses on small scales). Green triangle data
points are the clustering measurements from the BOSS
DR12 CMASS sample. The error bars are computed from the
diagonal elements Cii of the covariance matrix. For comparison
with previous work [23], purple circles represent clustering
measurements from the BOSS DR9 CMASS sample. A very
slight suppression in power on small scales (large k) of the DR12
sample compared to the DR9 sample is visible. Note that the
binning strategies adopted in DR9 and DR12 are different.
Bottom: Residuals with respect to the nonlinear model with
HALOFIT. The orange horizontal line indicates the k range used in
our analysis. As is visually clear, the k range we choose is safe
from large nonlinear corrections.
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diffusion pattern at high-l multipoles [28], although
again this effect is important only for neutrinos
which are nonrelativistic at decoupling, i.e., for
Mν > 0.6 eV.

(v) Finally, since the enhancement of the first peak due
to the EISW depends, in principle, on the precise
epoch of transition to the nonrelativistic regime of
each neutrino species, that is, on the individual
neutrino masses, future CMB-only measurements
such as those of Refs. [94–96,100–109] could,
although only in a very optimistic scenario, provide
some hints to unravel the neutrino mass ordering
[28]. Current data instead have no sensitivity to this
effect.2

Although all the above effects may suggest that the CMB is
exquisitely sensitive to the neutrino mass, in practice, the
shape of the CMB anisotropy spectra is governed by
several parameters, some of which are degenerate among
themselves [110,111]. We refer the reader to the dedicated
study of Ref. [30] (see also Ref. [112]).
To assess the impact of massive neutrinos on the CMB,

all characteristic times, scales, and density ratios governing
the shape of the CMB anisotropy spectrum should be kept
fixed, i.e., keeping zeq and the angular diameter distance to
last scattering dAðzdecÞ fixed. This would result in a
decrease in the late integrated Sachs-Wolfe (LISW) effect,
which, however, is poorly constrained owing to the fact that
the relevant multipole range is cosmic variance limited; a
modest change in the diffusion damping scale for
Mν ≳ 0.6 eV; and, finally, a ΔCl=Cl ∼ −ðMν=0.1 eVÞ%
depletion of the amplitude of the Cl’s for 20≲ l≲ 200,
due to a smaller EISW effect, which also contains a sub-
permil effect due to the individual neutrino masses,
essentially impossible to detect.

1. Baseline combinations of data sets used
and their definitions, I

Measurements of the CMB temperature, polarization,
and cross-correlation spectra from the Planck 2015 data
release [39,113] are included. We consider a combination
of the high-l (30 ≤ l ≤ 2508) TT likelihood, as well as the
low-l (2 ≤ l ≤ 29) TT likelihood based on the CMBmaps
recovered with COMMANDER; we refer to this combination
as PlanckTT. We furthermore include the Planck polariza-
tion data in the low-l (2 ≤ l ≤ 29) likelihood, referring to
it as lowP. Our baseline model, consisting of a combination
of PlanckTT and lowP, is referred to as base.

In addition to the above, we also consider the high-l
(30 ≤ l ≤ 1996) EE and TE likelihood, which we refer to
as highP. To ease the comparison of our results to those
previously presented in the literature, we shall add high-l
polarization measurements to our baseline model sepa-
rately, referring to the combination of base and highP as
basepol. For the purpose of clarity, we have summarized
our nomenclature of data sets and their combinations in
Table II.
All the measurements described above are analyzed by

means of the publicly available Planck likelihoods [84].3

When considering a prior on the optical depth to reioniza-
tion τ, we shall only consider the TT likelihood in the
multipole range 2 ≤ l ≤ 29. We do so to avoid double-
counting of information; see Sec. III E. Of course, these
likelihoods depend also on a number of nuisance param-
eters, which should be (and are) marginalized over. These
nuisance parameters describe, for instance, residual fore-
ground contamination, calibration, and beam leakage (see
Refs. [39,84]).
CMB measurements have been complemented with

additional probes, which will help break the parameter
degeneracies discussed. These additional data sets include
large-scale structure probes and direct measurements of the
Hubble parameter and will be described in what follows. We
make the conservative choice of not including lensing
potential measurements, despite that measuring Mν via
lensing potential reconstruction is the expected target of
the next-generation CMB experiments. This choice is dic-
tated by the observation that lensing potential measurements
via reconstruction through the temperature four-point func-
tion are known to be in tension with the lensing amplitude as
constrained by the CMB power spectra through the Alens
parameter [39] (see also Refs. [114–117] for relevant work).

B. Galaxy power spectrum

Once CMB data are used to fix the other cosmological
parameters, the galaxy power spectrum could in principle
be the most sensitive cosmological probe of massive
neutrinos among those exploited here. Sub-eV neutrinos
behave as a hot dark matter component with large thermal
velocities, clustering only on scales below the neutrino
free-streaming wave number kfs [26,28]:

kfs ≃ 0.018 Ω1=2
m

�
Mν

1eV

�
1=2

hMpc−1: ð10Þ

On scales below the free-streaming scale (or, correspond-
ingly, for wave numbers larger than the free-streaming
wave number), neutrinos cannot cluster as their thermal
velocity exceeds the escape velocity of the gravitational
potentials on those scales. Conversely, on scales well above
the free-streaming scale, neutrinos behave as cold dark

2The effect is below the ‰ level for all multipoles, hence well
beyond the reach of Planck. The effect will be below the reach of
ground-based Stage-III experiments such as Advanced ACTPol
[100,101], SPT-3G [102], the Simons Array [103], and the
Simons Observatory [104]. It will most likely be below the
reach of ground-based Stage-IV experiments such as CMB-S4
[94–96] or next-generation satellites such as the proposed Lite-
BIRD [105], COrE [106,107], and PIXIE [109]. 3www.cosmos.esa.int/web/planck/pla.
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matter after the transition to the nonrelativistic regime.
Massive neutrinos leave their imprint on the galaxy power
spectrum in several different ways:

(i) For wave numbers k > kfs, the power spectrum in
the linear perturbation regime is subject to a scale-
independent reduction by a factor of ð1 − fνÞ2,
where fν ≡Ων=Ωm is defined as the ratio of the
energy content in neutrinos to that in matter [28].

(ii) In addition, the power spectrum for wave numbers
k > kfs is further subject to a scale-dependent step-
like suppression, starting at kfs and saturating at
k ∼ 1 hMpc−1. This suppression is due to the
absence of neutrino perturbations in the total matter
power spectrum, ultimately due to the fact that
neutrinos do not cluster on scales k > kfs. At
k ∼ 1 hMpc−1, the suppression reaches a constant
amplitude of ΔPðkÞ=PðkÞ≃ −10fν [28] (the am-
plitude of the suppression is independent of redshift;
however, see the point below).

(iii) The growth rate of the dark matter perturbations is
reduced from δ ∝ a to δ ∝ a1−

3
5
fν , due to the absence

of gravitational backreaction effects from free-
streaming neutrinos. The redshift dependence of
this suppression implies that this effect could be
disentangled from that of a similar suppression in the
primordial power spectrum by measuring the galaxy
power spectrum at several redshifts, which amounts
to measuring the time dependence of the neutrino
mass effect [28].

(iv) On very large scales (10−3 < k < 10−2), the matter
power spectrum is enhanced by the presence of
massive neutrinos [118].

(v) As in the case of the EISW effect in the CMB, the
steplike suppression in the matter power spectrum
carries a nontrivial dependence on the individual
neutrino masses, as it depends on the time of the
transition to the nonrelativistic regime for each
neutrino mass eigenstate [31,34] (kfs ∝ m1=2

νi ) and
thus is in principle extremely sensitive to the neutrino
mass hierarchy. However, the effect is very small and
very hard to measure, even with the most ambitious
next-generation large-scale structure surveys
[32,33,35]. Through the same effect, the lensed
CMB as well as the lensing potential power spectrum
could also be sensitive to the neutrino mass hierarchy.

Notice that, in principle, once CMB data are used to fix
the other cosmological parameters, the galaxy power
spectrum could be the most sensitive probe of neutrino
masses. In practice, the potential of this data set is limited
by several effects. Galaxy surveys have access to a region
of k space kmin < k < kmax where the steplike suppression
effect is neither null nor maximal. The minimum wave
number accessible is limited both by signal-to-noise ratio
and by systematics effects and is typically of order
k ∼ 10−2 hMpc−1, meaning that the fourth effect outlined
above is currently not appreciable. The maximum wave

number accessible is instead limited by the reliability of the
nonlinear predictions for the matter power spectrum.
At any given redshift, there exists a nonlinear wave

number, above which the galaxy power spectrum is only
useful insofar as one is able to model nonlinear effects,
redshift space distortions, and the possible scale depend-
ence of the bias (a factor relating the spatial distribution of
galaxies and the underlying dark matter density field [119])
correctly. The nonlinear wave number depends not only on
the redshift of the sample but also on other characteristics
of the sample itself (e.g., whether the galaxies are more or
less massive). At the present time, the nonlinear wave
number is approximately k ¼ 0.15 hMpc−1, whereas for
the galaxy sample we will consider [Data Release (DR)
12 CMASS, at an effective redshift of z ¼ 0.57; see
footnote 4 for the definition of effective redshift], we will
show that wave numbers smaller than k ¼ 0.2 hMpc−1 are
safe against large nonlinear corrections (see also Fig. 1,
where the galaxy power spectrum has been evaluated
for Mν ¼ 0 eV given that the Coyote emulator adopted
[120–122] does not fully implement corrections due to
nonzero neutrino masses on small scales, and Ref. [23]).4

The issue of the scale-dependent bias is indeedmore subtle
than it might seem, given that neutrinos themselves induce a
scale-dependent bias [125–127]. A parametrization of the
galaxy power spectrum in the presence of massive neutrinos
in terms of a scale-independent bias and a shot-noise
component [see Eq. (12)], which in itself adds two extra
nuisance parameters, may not capture all the relevant effects
at play. Despite these difficulties, the galaxy power spectrum
is still a very useful data set as it helps break some of the
degeneracies present with CMB-only data, in particular by
improving the determination ofΩmh2 and ns, the latter being
slightly degenerate withMν. Moreover, as we shall show in
this paper, the galaxy power spectrum represents a
conservative data set (see Sec. IVA).
Nonetheless, a great deal of effort is being invested into

determining the scale-dependent bias from cosmological
data sets. There are several promising routes toward achiev-
ing this, for instance, through CMB lensing, galaxy lensing,
cross-correlations of the former with galaxy or quasar
clustering measurements, or higher-order correlators of the
former data sets; see, e.g., Refs. [128–136]. A sensitivity on
Mν of 0.023 eV has been forecasted from a combination of
Planck CMB measurements together with weak lensing
shear autocorrelation, galaxy autocorrelation, and galaxy-
shear cross-correlation from Euclid [137], after marginali-
zation over the bias, with the figure improving to 0.01 eV
after including a weak lensing–selected cluster sample from
Euclid [137–142]. Similar results are expected to be achieved
for certain configurations of the proposed WFIRST survey

4The effective redshift consists of the weighted mean redshift
of the galaxies of the sample, with the weights described in
Ref. [123].
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[143]. It is worth considering that the sensitivity of these data
setswould be substantially boosted by determining the scale-
dependent bias as discussed above.
A conservative cutoff in wave number space, required in

order to avoid nonlinearitieswhendealingwith galaxy power
spectrum data, denies access to the modes in which the
signature of nonzeroMν is greatest, i.e., those at high kwhere
the free-streaming suppression effect is most evident. One is
then brought to question the usefulness of such data when
constrainingMν. Actually, the real power of PðkÞ rests in its
degeneracy breaking ability, when combined with CMB
data. For example,PðkÞ data are extremely useful as far as the
determination of certain cosmological parameters is con-
cerned (e.g., ns, which is degenerate with Mν).
The degeneracy breaking effect of PðkÞ, however, is

most evident when in combination with CMB data. For an
example, let us consider what is usually referred to as the
most significant effect of nonzero Mν on PðkÞ, that is, a
steplike suppression of the small-scale power spectrum.
This effect is clearest when one increases Mν while fixing
ðΩm; hÞ. However, as we discussed in Sec. III A, the impact
of nonzeroMν on CMB data is best examined fixing Θs. If
one adjusts h in order to keep Θs fixed, and in addition
keeps Ωbh2 and Ωch2 fixed, the power spectrum will be
suppressed on both large and small scales; i.e., the result
will be a global increase in amplitude [144]. In other words,
this reverses the fourth effect listed above. This is just an
example of the degeneracy breaking power of PðkÞ data in
combination with CMB data.
Galaxy clustering measurements are addressed by means

of the SDSS-III [145] BOSS [146–148] DR12 [123,149].
The SDSS-III BOSS DR12CMASS sample covers an
effective volume of Veff ≈ 7.4 Gpc3 [150]. It contains
777,202 massive galaxies in the range 0.43 < z < 0.7, at
an effective redshift z ¼ 0.57 (see footnote 4 for the
definition of effective redshift), covering 9376.09 deg2

over the sky. Here, we consider the spherically averaged
power spectrum of this sample, as measured by Gil-Marín
et al. in Ref. [85]. We refer to this data set as PðkÞ. The
measured galaxy power spectrum Pg

meas consists of a
convolution of the true galaxy power spectrum Pg

true with
a window function Wðki; kjÞ, which accounts for correla-
tions between the measurements at different scales due to
the finite size of the survey geometry:

Pg
measðkiÞ ¼

X
j

Wðki; kjÞPg
trueðkjÞ ð11Þ

Thus, at each step of the Monte Carlo, we need to convolve
the theoretical galaxy power spectrum Pth at the given point
in the parameter space with the window function, before
comparing it with the measured galaxy power spectrum and
constructing the likelihood.
Following previous works [151,152], we model the

theoretical galaxy power spectrum as

Pth ¼ b2HFP
m
HFνðk; zÞ þ Ps

HF; ð12Þ

where Pm
HFν denotes the matter power spectrum calculated

at each step by the Boltzmann solver CAMB, corrected for
nonlinear effects using the HALOFIT method [153,154]. We
make use of the modified version of HALOFIT designed by
Ref. [155] to improve the treatment of nonlinearities in the
presence of massive neutrinos. To reduce the impact of
nonlinearities, we impose the conservative choice of con-
sidering a maximumwave number kmax ¼ 0.2 hMpc−1. As
we show in Fig. 1 (for Mν ¼ 0 eV), this region is safe
against uncertainties due to nonlinear evolution and is also
convenient for comparison with other works which have
adopted a similar maximum wave number cutoff. The
smallest wave number we are considering is instead of
kmin ¼ 0.03 hMpc−1 and is determined by the control over
systematics, which dominate at smaller wave numbers. The
parameters bHF and Ps

HF denote the scale-independent bias
and the shot noise contributions; the former reflects the fact
that galaxies are biased tracers of the underlying dark
matter distribution, whereas the latter arises from the
discrete pointlike nature of the galaxies as tracers of the
dark matter. We impose flat priors in the range [0.1, 10] and
[0, 10000], respectively, for bHF and Ps

HF.
Although in this simple model the bias and shot noise are

assumed to be scale independent, there is no unique
prescription for the form of these quantities. In particular,
concerning the bias, several theoretically well-motivated
scale-dependent functional forms exist in the literature
(such as the Q model of Ref. [156], that of Ref. [157],
or that of Ref. [158] motivated by local primordial non-
Gaussianity). It is beyond the scope of our paper to explore
the impact of different bias function choices on the neutrino
mass bounds. Instead, we simply note that it is not
necessarily true that increasing the number of parameters
governing the bias shape may result in broader constraints.
Indeed, tighter constraints on Mν may arise in some of the
bias parametrizations with more than one parameter
involved because they might have comparable effects on
the power spectrum.

C. Baryon acoustic oscillations

Prior to the recombination epoch, photons and baryons
in the early Universe behave as a tightly coupled fluid, the
evolution of which is determined by the interplay between
the gravitational pull of potential wells and the restoring
force due to the large pressure of the radiation component.
The resulting pressure waves which set up, before freezing
at recombination, imprint a characteristic scale on the late-
time matter clustering, in the form of a localized peak in the
two-point correlation function or a series of smeared peaks
in the power spectrum. This scale corresponds to the sound
horizon at the drag epoch, denoted by rsðzdragÞ, where the
drag epoch is defined as the time when baryons were
released from the Compton drag of photons; see Ref. [159].
Then, rsðzdragÞ takes the form
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rsðzdragÞ ¼
Z

∞

zdrag

dz
csðzÞ
HðzÞ ; ð13Þ

where csðzÞ denotes the sound speed and is given by
csðzÞ ¼ c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ RÞp

, with R ¼ 3ρb=4ρr being the ratio
of the baryon to photon momentum density. Finally, the
baryon drag epoch zdrag is defined as the redshift such that
the baryon drag optical depth τdrag is equal to 1,

τdragðηdragÞ ¼
4

3

Ωr

Ωb

Z
zdrag

0

dz
dη
da

σTxeðzÞ
1þ z

¼ 1; ð14Þ

where σT ¼ 6.65 × 10−29 m2 denotes the Thomson cross
section and xeðzÞ represents the fraction of free electrons.
BAO measurements contain geometrical information in

the sense that, as a “standard ruler” of known and measured
length, they allow for the determination of the angular
diameter distance to the redshift of interest and hence make
it possible to map out the expansion history of the Universe
after the last scattering. In addition, they are affected by
uncertainties due to the nonlinear evolution of the matter
density field to a lesser extent than the galaxy power
spectrum, making them less prone to systematic effects
than the latter. An angle-averaged BAO measurement
constrains the quantity DvðzeffÞ=rsðzdragÞ, where the dila-
tion scale Dv at the effective redshift of the survey zeff is a
combination of the physical angular diameter distance
DAðzÞ and the Hubble parameter HðzÞ (which control
the radial and the tangential separations within a given
cosmology, respectively):

DvðzÞ ¼
�
ð1þ zÞ2DAðzÞ2

cz
HðzÞ

�1
3

: ð15Þ

Dv quantifies the dilation in distances when the fiducial
cosmology is modified. The power of the BAO technique
resides on its ability to resolve the existing degeneracies
present when the CMB data alone are used, in particular, in
sharpening the determination of Ωm and of the Hubble
parameter H0, discarding the low values of H0 allowed by
the CMB data.
Massive neutrinos affect both the low-redshift geometry

and the growth of structure, and correspondingly BAO
measurements. If we increaseMν, while keeping Ωbh2 and
Ωch2 fixed, the expansion rate at early times is increased,
although only forMν > 0.6 eV. Therefore, in order to keep
fixed the angular scale of the sound horizon at last
scattering Θs (which is very well constrained by the
CMB acoustic peak structure), it is necessary to decrease
ΩΛ. As ΩΛ decreases, it is found that HðzÞ decreases for
z < 1 [160,161]. It can be shown that an increase inMν has
a negligible effect on rsðzdragÞ. Hence, we conclude that the
main effect of massive neutrinos on BAO measurements is
to increase DvðzÞ=rsðzdragÞ and decrease H0, as Mν is
increased (see Ref. [161]). It is worth noting that there is no
parameter degeneracy which can cancel the effect of a

nonzero neutrino mass on BAO data alone, as far as the
minimal ΛCDMþMν extended model is concerned [30].

1. Baseline combinations of data sets used
and their definitions, II

In this work, we make use of BAO measurements
extracted from a number of galaxy surveys. When
using BAO measurements in combination with the
DR12 CMASS PðkÞ, we consider data from the 6dFGS
[86], the WiggleZ survey [87], and the DR11 LOWZ
sample [88], as is done in Ref. [23]. We refer to the
combination of these three BAO measurements as BAO.
When combining BAO with the base CMB data set and
the DR12 CMASS PðkÞ measurements, we refer to the
combination as basePK. When combining BAO with
the basepol CMB data set and the DR12 CMASS PðkÞ
measurements, we refer to the combination as basepolPK
Recall that we have summarized our nomenclature of data
sets (including baseline data sets) and their combinations in
Table II.
The 6dFGS data consist of a measurement of

rsðzdragÞ=DVðzÞ at z ¼ 0.106 (as per the discussion above,
rs=DV decreases as Mν is increased). The WiggleZ data
instead consist of measurements of the acoustic parameter
AðzÞ at three redshifts, z ¼ 0.44, z ¼ 0.6, and z ¼ 0.73,
where the acoustic parameter is defined as

AðzÞ ¼ 100DvðzÞ
ffiffiffiffiffiffiffiffiffiffiffi
Ωmh2

p
cz

: ð16Þ

Given the effect of Mν on DvðzÞ, AðzÞ will increase as Mν

increases. Finally, the DR11 LOWZ data consist of a
measurement of DvðzÞ=rsðzdragÞ (which increases as Mν

is increased) at z ¼ 0.32.
Since the BAO feature is measured from the galaxy two-

point correlation function, to avoid the double-counting of
information, when considering the base and basepol data
sets, we do not include the DR11 CMASS BAO measure-
ments, as the DR11CMASS and DR12CMASS volumes
overlap. However, if we drop the DR12CMASS power
spectrum from our data sets, we are allowed to add
DR11CMASS BAO measurements without this leading
to the double-counting of information. Therefore, for
completeness, we consider this case as well. Namely, we
drop the DR12CMASS power spectrum from our data sets,
replacing it with the DR11CMASS BAO measurement.
This consists of a measurement of DvðzeffÞ=rsðzdragÞ
at zeff ¼ 0.57.

2. Baseline combinations of datasets used
and their definitions, III

We refer to the combination of the four BAO measure-
ments (6dFGS,WiggleZ,DR11LOWZ, andDR11CMASS)
as BAOFULL. We instead refer to the combination of the
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base CMB and the BAOFULL data sets with the nomen-
clature baseBAO. When high-l polarization CMB data are
added to this baseBAOdata set, the combination is referred to
as basepolBAO; see Table II. The comparison between
basePK and baseBAO, as well as between basepolPK and
basepolBAO, gives insight into the role played by large-scale
structure data sets in constraining neutrino masses. In
particular, it allows for an assessment of the relative
importance of shape information in the form of the power
spectrum against geometrical information in the form of
BAO measurements when deriving the neutrino mass
bounds. For clarity, all the denominations of the combina-
tions of data sets we consider are summarized in Table II.
All the BAO measurements used in this work are

tabulated in Table III. Note that we do not include BAO
measurements from the DR7 main galaxy sample [162] or
from the cross-correlation of DR11 quasars with the Lyα
forest absorption [163], and hence our results are not
directly comparable to other existing studies which
included these measurements.

D. Hubble parameter measurements

Direct measurements of H0 are very important when
considering bounds on Mν. With CMB data alone, there
exists a strong degeneracy between Mν and H0 (see, e.g.,
Ref. [164]).WhenMν is varied, the distance to last scattering
changes as well. Defining ωb ≡ Ωbh2, ωc ≡Ωch2, ωm≡
Ωmh2, ωr ≡Ωrh2, and ων ≡Ωνh2, within a flat Universe,
this distance is given by

χ¼ c
Z

zdec

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωrð1þ zÞ4þωmð1þ zÞ3þð1−ωm

h2 Þ
q ; ð17Þ

where ωm ¼ ωc þ ωb þ ων. The structure of the CMB
acoustic peaks leaves little freedom in varying ωc and ωb.
Therefore, for what concerns the distance to the last scatter-
ing, a change inMν can be compensated essentially only by a
change in h or, in other words, by a change in H0. This
suggests that Mν and H0 are strongly anticorrelated; the
effect on the CMB of increasing Mν can be easily compen-
sated by a decrease in H0 and vice versa.
In light of the above discussion, we expect a prior on the

Hubble parameter to help pin down the allowed values of

Mν from CMB data. Here, we consider two different priors
on the Hubble parameter. The first prior we consider is
based on a reanalysis of an older measurement based on
the Hubble Space Telescope, the original measurement
being H0 ¼ ð73.8� 2.4Þ km s−1 Mpc−1 [165]. The origi-
nal measurement showed a ∼2.4σ tension with the value of
H0 derived from fitting CMB data [39,93]. The reanalysis,
conducted by Efstathiou in Ref. [166], used the revised
geometric maser distance to NGC4258 of Ref. [167]
as a distance anchor. This reanalysis obtains a more
conservative value of H0 ¼ ð70.6� 3.3Þ km s−1Mpc−1,
which agrees with the extracted H0 value from CMB-only
data within 1σ. We refer to this prior as H070p6.
The second prior we consider is based on the most recent

Hubble Space Telescope (HST) 2.4% determination of the
Hubble parameter in Ref. [168]. This measurement benefits
frommore than twice the number of Cepheid variables used
to calibrate luminosity distances, with respect to the
previous analysis [165], as well as from improved deter-
minations of distance anchors. The measured value of the
Hubble parameter is H0 ¼ ð73.02� 1.79Þ km s−1Mpc−1,
which is in tension with the CMB-onlyH0 value by 3σ. We
refer to the corresponding prior as H073p02.5

A consideration is in order at this point. Given the strong
degeneracy betweenMν andH0, we expect the introduction
of the two aforementioned priors (especially the H073p02
one) to lead to a tighter bound onMν. At the same time, we
expect this bound to be less reliable and/or robust. In other
words, such a bound would be quite artificial, as it would
be driven by a combination of the tension between direct
and primary CMB determinations of H0 and the strong
Mν −H0 degeneracy. We can therefore expect the fit to
degrade when any of the two aforementioned priors is
introduced. We nonetheless choose to include these priors
for a number of reasons. First, the underlying measurement
in Ref. [168] has attracted significant attention, and hence it
is worth assessing its impact on bounds on Mν, subject to
the strict caveats we discussed, in light of its potential to
break the Mν −H0 degeneracy. Next, our results including

TABLE III. Baryon acoustic oscillation measurements considered in this work. From left to right, the columns display the survey, the
type of measurement, the effective redshift, the measurement, and the associated reference.

Data set Type of measurement zeff Measurement Reference

6dFGS rsðzdragÞ=DvðzeffÞ 0.106 0.336� 0.015 [86]
WiggleZ AðzÞ 0.44 0.474� 0.034 [87]

AðzÞ 0.60 0.442� 0.020 [87]
AðzÞ 0.73 0.424� 0.021 [87]

BOSS DR11 LOWZ DvðzeffÞ=rsðzdragÞ 0.32 8.250� 0.170 [88]
BOSS DR11 CMASS DvðzeffÞ=rsðzdragÞ 0.57 13.773� 0.134 [88]

5We do not include here the latest 3.8% determination ofH0 by
the H0LiCOW program. The measurement, based on gravita-
tional time delays of three multiply imaged quasar systems, yields
H0 ¼ 71.9þ2.4

−3.0 km s−1 Mpc−1 [169].
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the H0 priors will serve as a warning of the danger of
adding data sets which are inconsistent with each other.

E. Optical depth to reionization

The first generation of galaxies ended the dark ages of
the Universe. These galaxies emitted UV photons which
gradually ionized the neutral hydrogen which had rendered
the Universe transparent following the epoch of recombi-
nation, in a process known as reionization (see, e.g.,
Ref. [170] for a review). So far, it is not entirely clear
when cosmic reionization took place. Cosmological mea-
surements can constrain the optical depth to reionization τ,
which, assuming instantaneous reionization (a very
common useful approximation), can be related to the
redshift of reionization zre.
Early CMB measurements of τ from WMAP favored an

early reionization scenario (zre ¼ 10.6� 1.1 in the instan-
taneous reionization approximation [171]), requiring the
presence of sources of reionization at z≳ 10. This result
was in tension with observations of Ly-α emitters at z≃ 7
(see, e.g., Refs. [172–176]), which suggest that reionization
ended by z≃ 6. However, the results delivered by the
Planck Collaboration in the 2015 public data release, using
the large-scale (low-l) polarization observations of the
Planck Low Frequency Instrument (LFI) [84] in combina-
tion with Planck temperature and lensing data, indicate that
τ ¼ 0.066� 0.016 [39], corresponding to a significantly
lower value for the redshift of instantaneous reionization,
zre ¼ 8.8þ1.2

−1.1 (see also Ref. [177] for an assessment of the
role of the cleaning procedure on the lower estimate of τ
and Ref. [178] for an alternative indirect method for
measuring large-scale polarization and hence constraining
τ using only small-scale and lensing polarization maps),
and thus reducing the need for high-redshift sources of
reionization [179–183].
The optical depth to reionization is a crucial quantity

when considering constraints on the sumof neutrinomasses,
the reason being that there exist degeneracies between τ and
Mν (see, e.g., Refs. [19,23,30,111,184–186]). If we consider
CMB data only (focusing on the TT spectrum), an increase
in Mν, which results in a suppression of structure, reduces
the smearing of the damping tail. This effect can be
compensated by an increase in τ. Because of the well-
known degeneracy between As and τ from CMB temper-
ature data (which are sensitive to the combination Ase−2τ),
the value of As should also be increased accordingly.
However, the value of As also determines the overall
amplitude of the matter power spectrum, which is further-
more affected by the presence of massive neutrinos, which
reduce the small-scale clustering. If, in addition to TT data,
low-l polarizationmeasurements are considered, the degen-
eracy between As and τ will be largely alleviated, and,
consequently, so will the multiple ones among the As, τ, and
Mν cosmological parameters.
Recently, the Planck Collaboration identified, modeled,

and removed previously unaccounted for systematic effects

in large angular scale polarization data from the Planck
High Frequency Instrument (HFI) [187] (see also
Ref. [188]). Using the new HFI low-l polarization like-
lihood (that has not been made publicly available by the
Planck Collaboration), the constraints on τ have been
considerably improved, with a current determination of
τ ¼ 0.055� 0.009 [187], entirely consistent with the value
inferred from the LFI.
In this work, we explore the impact on the constraints

on Mν of adding a prior on τ. Specifically, we impose a
Gaussian prior on the optical depth to reionization of
τ ¼ 0.055� 0.009, consistent with the results reported
in Ref. [187]. We refer to this prior as τ0p055. We expect
this prior to tighten our bounds onMν. However, a prior on
τ is a proxy for low-l polarization spectra (low-lCEE

l , CBB
l ,

and CTE
l ). Therefore, as previously stated, when adding a

prior on τ, we remove the low-l polarization data from our
data sets, in order to avoid double-counting information,
while keeping low-l temperature data.

F. Planck SZ clusters

The evolution with mass and redshift of galaxy clusters
offers a unique probe of both the physical matter density,
Ωm, and the present amplitude of density fluctuations,
characterized by the root mean squared of the linear
overdensity in spheres of radius 8 h−1 Mpc, σ8; for a
review, see, e.g., Ref. [189]. Both quantities are of crucial
importance when extracting neutrino mass bounds from
large-scale structure, due to the neutrino free-streaming
nature.
CMB measurements are able to map galaxy clusters via

the SZ effect, which consists of an energy boost to the CMB
photons, which are inverse Compton rescattered by hot
electrons (see, e.g., Refs. [190–192]). Therefore, the thermal
SZ effect imprints a spectral distortion to CMB photons
traveling along the cluster line of sight. The distortion
consists of an increase in intensity for frequencies higher
than 220 GHz and a decrease for lower frequencies.
We shall here make use of cluster counts from the latest

Planck SZ clusters catalog, consisting of 439 clusters
detected via their SZ signal [89,90]. We refer to the data
set as SZ. The cluster counts function is given by the
number of clusters of a certain mass M within a redshift
range ½z; zþ dz�, i.e., dN=dz:

dN
dz

����
M>Mmin

¼ fsky
dVðzÞ
dz

Z
∞

Mmin

dM
dn
dM

ðM; zÞ: ð18Þ

The dependence on the underlying cosmological model is
encoded in the differential volume dV=dz,

dVðzÞ
dz

¼ 4π

HðzÞ
Z

z

0

dz0
1

H2ðz0Þ ; ð19Þ
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through the dependence of the Hubble parameter HðzÞ on
the basic cosmological parameters and further through the
dependence of the cluster mass function dn=dM (calculated
through N-body simulations) on the parameters Ωm and σ8.
The largest source of uncertainty in the interpretation of

cluster countsmeasurements resides in themasses of clusters
themselves, which in turn can be inferred by x-ray mass
proxies, relying, however, on the assumption of hydrostatic
equilibrium. This assumption can beviolated by bulkmotion
or nonthermal sources of pressure, leading to biases in the
derived value of the cluster mass. Further systematics in the
x-ray analyses can arise, e.g., due to instrument calibration or
the temperature structure in the gas. Therefore, it is clear that
determinations of cluster masses carry a significant uncer-
tainty, with a typicalΔM=M ∼ 10%–20%, quantified via the
cluster mass bias parameter, 1 − b,

MX ¼ ð1 − bÞM500; ð20Þ

whereMX denotes the x-ray extracted cluster mass andM500

denotes the true halo mass, defined as the total mass within a
sphere of radiusR500, R500 being the radius within which the
mean overdensity of the cluster is 500 times the critical
density at that redshift.
As the cluster mass bias 1 − b is crucial in constraining

the values ofΩm and σ8, and hence the normalization of the
matter power spectrum, it plays an important role when
constraining Mν. We impose a uniform prior on the cluster
mass bias in the range [0.1, 1.3], as is done in Ref. [19], in
which it is shown that this choice of 1 − b leads to the most
stringent bounds on the neutrino mass. There exist as well
independent lensing measurements of the cluster mass bias,
such as those provided by the Weighing the Giants project
[193], by the Canadian Cluster Comparison Project [90],
and by CMB lensing [194] (see also Ref. [195]). However,
we shall not make use of 1 − b priors based on these
independent measurements, as the resulting value of σ8 is in
slight tension, at the level of 1 − 2σ, with primary CMB
measurements (however, see Ref. [196]).
The value of σ8 indicated by weak lensing measurements

is smaller than that derived from CMB-only data sets,
favoring therefore quite large values ofMν, large enough to
suppress the small-scale clustering in a significant way.
Therefore, we restrict ourselves to the case in which the
cluster mass bias is allowed to freely vary between 0.1 and
1.3. It has been shown in Ref. [19] that this choice leads to
robust and unbiased neutrino mass limits. In this way, the
addition of the SZ data set can be considered truly reliable.

IV. RESULTS ON Mν

We begin here by analyzing the results obtained for the
different data sets and their combinations, assessing their
robustness. The constraining power of geometrical versus
shape large-scale structure data sets will be discussed in
Sec. IVA. In Sec. IV B, we apply the method of Ref. [36]

that is described in Sec. II B to quantify the exclusion limits
on the inverted hierarchy given the bounds onMν presented
in the following. The 95% C.L. upper bounds on Mν we
obtain are summarized in Tables IV, V, VI, and VII. The
C.L.s at which our most constraining data sets disfavor the
inverted hierarchy, CLIH, obtained through our analysis in
Sec. IV B, are reported in Table VIII.
Table IV shows the results for the more conservative

approach when considering CMB data, namely, by neglect-
ing high-l polarization data. The limits obtained when the
base data set is considered are very close to those quoted in

TABLE IV. 95%C.L. upper bounds on the sumof the three active
neutrino masses Mν. The left column lists the combination of
cosmological data sets adopted. PlanckTT and lowP denote
measurements of the CMB full temperature and of the low-l
polarization anisotropies from the Planck satellite 2015 data
release, respectively. PðkÞ denotes the galaxy power spectrum of
the CMASS sample from the SDSS-BOSS data release 12 (DR12),
with marginalization over the bias and the shot noise; see Eq. (12).
BAO refers to the combination of BAO measurements from the
BOSS data release 11 LOWZ sample, the 6dFGS survey, and
the WiggleZ survey (see Table III). τ0p055 denotes a prior on the
optical depth to reionization of τ ¼ 0.055� 0.009 as measured
by the Planck HFI. H073p02 and H070p6 denote priors on
the Hubble parameter of H0 ¼ 73.02� 1.79 km s−1 Mpc−1 and
H0 ¼ 70.6� 3.3 km s−1 Mpc−1, respectively, based on twodiffer-
ent HST data analyses. SZ consists of Planck cluster counts
measurements via thermal Sunyaev-Zeldovich effects. The right
column shows the results (95%C.L. upper bounds onMν) obtained
assuming a degenerate (3 deg) mass spectrum.

Data set Mν (95% C.L.)

base≡ Planck TT þ lowP <0.716 eV
baseþ PðkÞ <0.299 eV
basePK ≡ baseþ PðkÞ þ BAO <0.246 eV
basePK þ τ0p055 <0.205 eV
basePK þ SZ <0.239 eV
basePK þH073p02 <0.164 eV
basePK þH070p6 <0.219 eV
basePK þH073p02þ τ0p055 <0.140 eV
basePK þH073p02þ τ0p055þ SZ <0.136 eV

TABLE V. As Table IV, but with the addition of highP, referring
to the small-scale CMB polarization anisotropies data.

Data set Mν (95% C.L.)

basepol≡ PlanckTT þ lowPþ highP <0.485 eV
basepolþ PðkÞ <0.275 eV
basepolPK ≡ basepolþ PðkÞ þ BAO <0.215 eV
basepolPK þ τ0p055 <0.177 eV
basepolPK þ SZ <0.208 eV
basepolPK þH073p02 <0.132 eV
basepolPK þH070p6 <0.196 eV
basepolPK þH073p02þ τ0p055 <0.109 eV
basepolPK þH073p02þ τ0p055þ SZ <0.117 eV
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Ref. [19], where a three degenerate neutrino spectrum with
a lower prior on Mν of 0.06 eV was assumed, whereas we
have taken a lower prior of 0 eV. Our choice is driven by
the goal of obtaining independent bounds on Mν from
cosmology alone, making the least amount of assumptions.
This different choice of prior is the reason for the (small)
discrepancy in our 95% C.L. upper limit onMν (0.716 eV)
and the limit found in Ref. [19] (0.754 eV) and, in general,
in all the bounds we shall describe in what follows. That is,
these discrepancies are due to differences in the volume
of the parameter space explored. When PðkÞ data are
added to the base, CMB-only data set, the neutrino mass
limits are considerably improved, reachingMν < 0.299 eV
at 95% C.L.
The limits reported in Table IV, while being consistent

with those presented in Ref. [23] [obtained with an older
BOSS full-shape power spectrum measurement, the DR9
CMASS PðkÞ], are slightly less constraining. We attribute
this mild slight loss of constraining power to the fact that
the DR12 PðkÞ appears slightly suppressed on small scales
with respect to the DR9 PðkÞ; see Fig. 1. This fact, already
noticed for previous data releases, can ultimately be
attributed to a very slight change in power following an
increase in the mean galaxy density over time due to the
tiling (observational) strategy of the survey [197]. The
changes are indeed very small, and the broadband shape of
the power spectra for different data releases in fact agree
very well within error bars. A small suppression in small-
scale power, nonetheless, is expected to favor higher values
of Mν, which help explain the observed suppression, and
this explains the slight difference between our results and
those of Ref. [23].
While the addition of external data sets, such as a prior

on τ or Planck SZ cluster counts, leads to mild improve-
ments in the constraints on Mν, the tightest bounds are
obtained when considering the H073p02 prior on the

TABLE VI. As Table IV, but with the PðkÞ and the BAO data
sets replaced by the BAOFULL data set, which comprises BAO
measurements from the BOSS data release 11 (both CMASS and
LOWZ samples), the 6dFGS survey, and the WiggleZ survey (see
Table III). The relative constraining power of the geometric
technique versus the shape approach can be inferred by compar-
ing the results of the first, second, third, fourth, and fifth rows to
those shown in the third, fourth, sixth, eighth, and ninth rows of
Table IV, respectively. The result is that, given our current
analyses methods, geometrical information is more powerful
than shape information; see also the main text and Fig. 2.

Data set Mν (95% C.L.)

baseBAO≡ PlanckTT þ lowPþ BAOFULL <0.186 eV
baseBAO þ τ0p055 <0.151 eV
baseBAO þH073p02 <0.148 eV
baseBAO þH073p02þ τ0p055 <0.115 eV
baseBAO þH073p02þ τ0p055þ SZ <0.114 eV

TABLE VII. As Table VI, but with the addition of highP,
referring to the small-scale CMB polarization anisotropies data.
The relative constraining power of the geometric technique versus
the shape approach can be inferred by comparing the results
of the first, second, third, fourth, and fifth rows to those shown in
the third, fourth, sixth, eighth, and ninth rows of Table V,
respectively. The result is that, given our current analyses
methods, geometrical information is more powerful than shape
information; see also the main text and Fig. 3.

Data set Mν (95% C.L.)

basepolBAO≡ PlanckTT þ lowP
þhighPþ BAOFULL

<0.153 eV

basepolBAOþ τ0p055 <0.118 eV
basepolBAOþH073p02 <0.113 eV
basepolBAOþH073p02þ τ0p055 <0.094 eV
basepolBAOþH073p02þ τ0p055þ SZ <0.093 eV

TABLE VIII. Exclusion C.L.s of the inverted hierarchy from our most constraining data set combinations,
obtained through a rigorous model comparison analysis. Only data set combinations which disfavor the IH at
>70% C:L: are reported. The first column lists the combination of cosmological data sets adopted; see Table II for
definitions. The second column reports the 95% C.L. upper limit on Mν, obtained assuming the 3 deg spectrum of
three massive degenerate neutrinos. The third column reports CLIH, the C.L. at which the IH is disfavored,
calculated via Eq. (7). Finally, the last column shows the relative posterior odds for NH versus IH, with the posterior
probabilities for both mass orderings obtained via Eq. (6).

Data set Mν (95% C.L., 3 deg) CLIH pN=pI

basepolPK þH073p02þ τ0p055 <0.109 eV 74% 2.8∶1
basepolPK þH073p02þ τ0p055þ SZ <0.117 eV 71% 2.4∶1
baseBAOþH073p02þ τ0p055 <0.115 eV 72% 2.6∶1
baseBAOþH073p02þ τ0p055þ SZ <0.114 eV 72% 2.6∶1
basepolBAOþ τ0p055 <0.118 eV 71% 2.4∶1
basepolBAOþH073p02 <0.113 eV 72% 2.6∶1
basepolBAOþH073p02þ τ0p055 <0.094 eV 77% 3.3∶1
basepolBAOþH073p02þ τ0p055þ SZ <0.093 eV 77% 3.3∶1
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Hubble parameter, due to the large existing degeneracy
between H0 and Mν at the CMB level, and only partly
broken via PðkÞ or BAO measurements. However,
as previously discussed, this H073p02 measurement
shows a significant tension with CMB estimates of the
Hubble parameter.6 Therefore, the 95% C.L. limits on Mν

of <0.164, <0.140, <0.136 eV for the basePK þ
H073p02, basePK þH073p02þ τ0p055 and basePKþ
H073p02þ τ0p055þ SZ cases should be regarded as the
most aggressive limits one can obtain when considering a
prior on H0 and neglecting high-l polarization data.
Indeed, when using the H070p6 prior, a less constraining
limit of Mν < 0.219 eV at 95% C.L. is obtained in the
basePK þH070p06 case, a value that is closer to the
limits obtained when additional measurements (not related
to H0 priors) are added to the basePK data combination.
The tension between the H073p02 measurement and

primary CMB determinations of H0 implies that the very
strong bounds obtained using such a prior are also the
least robust and/or reliable. They are almost entirely
driven by the aforementioned tension in combination
with the strong Mν −H0 degeneracy and hence are
somewhat artificial. We expect in fact the quality of
the fit to deteriorate in the presence of two inconsistent
data sets (that is, the CMB spectra and H0 prior). To
quantify the worsening in fit, we compute the Δχ2
associated to the best fit, for a given combination of data
sets before and after the addition of the H0 prior. For
example, for the basePK data set combination, we find
Δχ2≡χ2minðbasePKþH073p02Þ−χ2minðbasePKÞ¼þ5.2,
confirming as expected a substantial worsening in fit
when the H073p02 prior is added to the basePK data set.
The above observation reinforces the fact that any bound
on Mν obtained using the H073p02 prior should be
interpreted with considerable caution, as such a bound
is most likely artificial.
Table V shows the equivalent to Table IV but including

high-l polarization data. Notice that the limits are consid-
erably tightened. As previously discussed, the tightest
bounds are obtained when the H073p02 prior is consid-
ered. For instance, we obtain Mν < 0.109 eV at 95% C.L.
from the basepolPK þH073p02þ τ0p055 data combi-
nation. We caution once more against the very tight bounds
obtained with the H073p02 being most likely artificial.
This is confirmed, for example, by the Δχ2min ¼ þ6.4
between the basepolPK þH073p02 and basepolPK
data sets.

A. Geometric versus shape information

In the following, we shall compare the constraining
power of geometrical probes in the form of BAO mea-
surements versus shape probes in the form of power

spectrum measurements. For that purpose, we shall replace
here the DR12 CMASS PðkÞ and the BAO data sets by the
BAOFULL data set, which consists of BAO measurements
from the BOSS DR11 (both CMASS and LOWZ samples)
survey, the 6dFGS survey, and the WiggleZ survey; see
Table III for more details. The main results of this section
are summarized in Tables VI and VII as well as Figs. 2
and 3.
Table VI shows the equivalent to the third, fourth, sixth,

eighth, and ninth rows of Table IV, but with the shape
information from the BOSS DR12 CMASS spectrum
replaced by the geometrical BAO information from the
BOSS DR11 CMASS measurements. First, we notice that
all the geometrical bounds are, in general, much more
constraining than the shape bounds, as previously studied
and noticed in the literature (see, e.g., Refs. [164,215] and
also Refs. [216,217] for recent studies on the subject).
These studies have shown that, within the minimal
ΛCDMþMν scenario, BAO measurements provide tighter
constraints on Mν than data from the full power spectrum
shape. Nevertheless, it is very important to assess whether
these previous findings still hold with the improved
statistics and accuracy of today’s large-scale structure data
(see the recent Ref. [30] for the expectations from future
galaxy surveys).
We confirm that this finding still holds with current data.

Therefore, current analyses methods of large-scale structure

FIG. 2. Posteriors of Mν obtained with baseline data sets
basePK and baseBAO, in combination with additional external
data sets. This allows for a comparison of the constraining power
of shape information in the form of the full-shape galaxy power
spectrum and geometrical information in the form of BAO
measurements, when CMB full temperature and low-l polari-
zation data are used. To compare the relative constraining power
of shape and geometrical information, compare the solid and
dashed lines for a given color: red (basePK against baseBAO),
blue (basePK þ τ0p055 against baseBAOþ τ0p055), and
black (basePK þH073p02þ τ0p055 against baseBAOþ
H073p02þ τ0p055). The dotted line at Mν ¼ 0.0986 eV de-
notes the minimal allowed mass in the IH scenario. It can be
clearly seen that with our current analyses methods geometrical
information supersedes shape information in constraining power.

6See, e.g., Refs. [144,198–214] for recent works examining
this discrepancy and possible solutions.
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data sets are such that these are still sensitive to massive
neutrinos through background rather than perturbation
effects, despite the latter being, in principle, a much more
sensitive probe of the effect of massive neutrinos on
cosmological observables. However, as we mentioned
earlier, this behavior could be reverted once we are able
to determine the amplitude and scale dependence of the
galaxy bias through CMB lensing, cosmic shear, galaxy
clustering measurements, and their cross-correlations (see,
e.g., Refs. [128–136]).
Moreover, it is also worth remembering that BAO

measurements do include nonlinear information through
the reconstruction procedure, whereas the same informa-
tion is prevented from being used in the power spectrum
measurements due to the cutoff we imposed at
k ¼ 0.2 hMpc−1. To fully exploit the constraining power
of shape measurements, improvements in our analyses
methods are necessary; in particular, it is necessary to
improve our understanding of the nonlinear regime of the
galaxy power spectrum in the presence of massive neu-
trinos as well as further our understanding of the galaxy
bias at a theoretical and observational level.
The addition of shape measurements requires at least two

additional nuisance parameters, which in our case are
represented by the bias and shot noise parameters. These
two parameters relate the measured galaxy power spectrum
to the underlying matter power spectrum, the latter being
what one can predict once cosmological parameters are
known.7 The prescription we adopted relating the galaxy to
the matter power spectrum is among the simplest choices.

However, it is not necessarily true that more sophisticated
choices with more nuisance parameters would further
degrade the constraining power of shape measurements,
particularly if we were to obtain a handle on the functional
form of the scale-dependent bias [128–136]. On the other
hand, it remains true that the possibility of benefiting from a
large number of modes by increasing the value of kmax
(which remains one of the factors limiting the constraining
power of shape information compared to geometrical one)
would require an exquisite knowledge of nonlinear cor-
rections, a topic which is the subject of many recent
investigations, particularly in the scenario in which massive
neutrinos are present; see, e.g., Refs. [125,126,218–225].
The conclusion, however, remains that improvements in
our current analyses methods, as well as further theoretical
and modeling advancements, are necessary to exploit the
full constraining power of shape measurements (see also
Refs. [226–228]).
Finally, we notice that, even without considering the

high-l polarization data, we obtain the very constraining
bound of Mν < 0.114 eV at 95% C.L. for the baseBAOþ
H073p02þ τ0p055þ SZ data sets. We caution again
against the artificialness of bounds obtained using the
H073p02 prior, as the tension with primary CMB deter-
minations in H0 leads to a degradation in the quality of fit.
Nonetheless, even without considering theH0 prior, we still
obtain a very constraining bound of Mν < 0.151 eV at
95% C.L. In any case, results adopting these data set
combinations contribute to reinforcing the previous (weak)
cosmological hints favoring the NH scenario [23].
Table VII shows the equivalent to Table VI but with the

high-l polarization data set included, i.e., adding the highP
Planck data set in the analyses. We note that the results are
quite impressive, and it is interesting to explore how far one
could currently get in pushing the neutrino mass limits by
means of themost aggressive and least conservative data sets.
The tightest limits we find areMν < 0.093 eV at 95% C.L.
using the basepolBAOþH073p02þ τ0p055þ SZ data
set, well below the minimal mass allowed within the IH.
Therefore, within the less conservative approach illustrated
here, especially due to the use of the H073p02 prior, there
exists aweak preference frompresent cosmological data for a
normal hierarchical neutrino mass scheme. Neglecting the
information from the H073p02 prior, which leads to an
artificially tight bound as previously explained, the prefer-
ence turns out to be weaker (Mν < 0.118 eV from the
basepolBAOþ τ0p055 data set combination) but still
present.
We end with a consideration, stemming from the

observation that with our current analyses methods BAO
measurements are more constraining than full-shape power
spectrum ones. This suggests that, despite uncertainties in
the modeling of the galaxy power spectrum due to the
unknown absolute scale of the latter (in other words, the
size of the bias) and nonlinear evolution, the galaxy power

FIG. 3. As Fig. 2, but with the addition of high-l polarization
anisotropy data. Hence, the data sets considered are the baseline
data sets basePK and baseBAO and combinations with external
data sets. Once more, it can be clearly seen that with our current
analyses methods geometrical information supersedes shape
information in constraining power.

7Moreover, at least another nuisance parameter is required in
order to account for systematics in the measured galaxy power
spectrum, although the impact of this parameter is almost
negligible, as we have checked (see Refs. [23,152,197]).
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spectrum actually represents a conservative data set given
that the bounds on Mν obtained using the corresponding
BAO data set are considerably tighter.
In the remainder of the section, we will be concerned

with providing a proper quantification of the statistical
significance at which we can disfavor the IH, performing a
simple but rigorous model comparison analysis.

B. Exclusion limits on the inverted hierarchy

Here, we apply the method of Ref. [36] that is described
in Sec. II B to determine the statistical significance at which
the inverted hierarchy is disfavored given the bounds onMν

just obtained. Our results are summarized in Table VIII. To
quantify the exclusion limits on the inverted hierarchy, we
apply Eq. (6) to our most constraining data set combina-
tions, where the criterion for choosing these data sets will
be explained below.
Note that in Eq. (6)we setpðNÞ ¼ pðIÞ ¼ 0.5. That is, we

assign equal priors to NH and IH, which is not only a
reasonable choice when considering only cosmological data
sets [36] but is also the most uninformative and most
conservative choice when there is no prior knowledge about
the hierarchies. In any case, the formalism we adopt would
allow us to introduce informative prior information on the
twohierarchies, i.e.,pðNÞ ≠ pðIÞ ≠ 0.5. Itwould in thisway
be possible to include information from oscillation experi-
ments, which suggest a weak preference for the normal
hierarchy due to matter effects (see, e.g., Refs. [10–14]).
Including this weak preference does not significantly affect
our results, precisely because the current sensitivity to the
neutrinomass hierarchy fromboth cosmology and oscillation
experiments is extremely weak (see also, e.g., Ref. [36]).
We choose to only report the statistical significance at

which the IH is discarded for the most constraining data set
combinations, that is, those which disfavor the IH at
>70% C:L:; we have checked that the threshold for
reaching a ≈70% C.L. exclusion limit of the IH is reached
by data set combinations which disfavor at 95% C.L. values
ofMν greater than ≈0.12 eV. In fact, the most constraining
bound within our conservative scheme, obtained through
the baseBAO+τ0p055 combination (thus disfavoring data
sets which exhibit some tension with CMB or galaxy
clustering measurements, for a 95% C.L. upper limit onMν

of 0.151 eV), falls short of this threshold and is only able to
disfavor the IH at 64% C.L., providing posterior odds for
NH versus IH of 1.8∶1.
The hierarchy discrimination is improved when small-

scale polarization is added to the aforementioned data set
combination or when theH073p02 prior (and eventually SZ
cluster counts) are added to the same data set combination,
leading to a 71% C.L. and 72% C.L. exclusion of the IH,
respectively. Similar levels of statistical significance for the
exclusion of the IH are reached when the data set combi-
nations basepolPKþH073p02þτ0p055, basepolPKþ
H073p02þτ0p055þSZ, and basepolBAOþH073p02

are considered, leading to 74% C.L., 71% C.L., and
72% C.L. exclusions of the IH, respectively. However, it
is worth remembering once more that the latter figures
relied on the addition of the H073p02 prior, which
led to less reliable bounds. It is also worth noting that
our most constraining data set combination(s), that is,
basepolBAO þ H073p02 þ τ0p055ðþSZÞ, only pro-
vide(s) a 77% C.L. exclusion of the IH.
Our findings are totally consistent with those of Ref. [36]

and suggest that an improved sensitivity of cosmological
data sets is required in order to robustly disfavor the IH,
despite that current data sets are already able to substan-
tially reduce the volume of parameter space available
within this mass ordering. In fact, it has been argued in
Ref. [36] that a sensitivity of at least ≈0.02 eV is required
in order to provide a 95% C.L. exclusion of the IH.
Incidentally, not only does such a sensitivity seem within
the reach of post-2020 experiments [229], but it would also
provide a detection of Mν at a significance of at least 3σ,
unless nontrivial late-Universe effects are at play (see, e.g.,
Refs. [46,47]).

C. Bounds on Mν in extended parameter spaces:
A brief discussion

Thus far, we have explored bounds on Mν within the
assumption of a flat background ΛCDM cosmology. We
have used different data set combinations, and have identified
the baseBAO data set (leading to an upper limit of
Mν < 0.186 eV) combination as being the one providing
one of the strongest bounds while at the same time being one
of the most robust to systematics and tensions between
data sets.
However, we expect the bounds on Mν would degrade

if we were to open the parameter space, that is, if we
were to vary additional parameters other than the six base
ΛCDM parameters and Mν. While there is no substantial
indication for the need to extend the base set of parameters
of the ΛCDM model (see, e.g., Refs. [230,231]), one is
nonetheless legitimately brought to wonder about the
robustness of the obtained bounds against extended param-
eter spaces.
While a detailed study belongs to a follow-up paper in

progress [232], we nonetheless decide to present two
examples of bounds on Mν within minimally extended
parameter spaces. That is, we allow in one case the dark
energy equation of state w to vary within the range ½−3; 1�
(parameter space denoted by ΛCDMþMν þ w), and in the
other case, we allow the curvature energy densityΩk to vary
freely within the range ½−0.3; 0.3� (parameter space denoted
by ΛCDMþMν þΩk). Both parameters are known to be
relatively strongly degenerate with Mν, and hence we can
expect our allowing them to vary to lead to less stringent
bounds onMν. In both cases, we consider for simplicity the
baseBAO data set, for the reasons described above; therefore,
the corresponding boundwithin theΛCDMþMν parameter
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space to which we should compare our results is Mν <
0.186 eV at 95% C.L., as reported in the first row of
Table VI.
For the ΛCDMþMν þ w extension, where we leave the

dark energy equation of state w free to vary within the range
½−3; 1�, we can expect the bounds on Mν to broaden due to
a well-known degeneracy between Mν and w [233].
Specifically, an increase in Mν can be compensated by a
decrease in w, due to the mutual degeneracy with Ωm. Our
results confirm this expectation. With the baseBAO data
combination, we findMν < 0.313 eV at 95% C.L. and w ¼
−1.08þ0.09

−0.08 at 68% C.L., with a correlation coefficient
between Mν and w of −0.56.8 The degeneracy between
Mν and w is clearly visible in the triangle plot of Fig. 4.
For the ΛCDMþMν þ Ωk extension, where we leave

the curvature energy density Ωk free to vary within the
range ½−0.3; 0.3�, we can again expect the bounds onMν to
broaden due to the three-parameter geometric degeneracy
between h, Ωνh2 and Ωk [111]. For the baseBAO data
combination, we find Mν < 0.299 eV at 95% C.L. and
Ωk ¼ 0.001þ0.003

−0.004 at 68% C.L., with a correlation coeffi-
cient betweenMν and Ωk of 0.60. The degeneracy between
Mν and Ωk is clearly visible in the triangle plot of Fig. 5.

A clarification is in order here: when leaving the dark
energy equation of state w and the curvature energy density
Ωk free to vary, it would be extremely useful to add
supernovae data, given that these are extremely sensitive
to these two quantities. We have, however, chosen not
to do so in order to ease comparison with the bound
Mν < 0.186 eV obtained for the same baseBAO combina-
tion within the ΛCDMþMν parameter space. Moreover,
in this way, we are able to reach a conservative conclusion
concerning the robustness of Mν bounds to the ΛCDMþ
Mν þ w and ΛCDMþMν þ Ωk parameter spaces, as the
addition of supernovae data would lead to tighter bounds
than the Mν < 0.313 eV and Mν < 0.299 eV quoted.
Of course, as expected, the bounds on Mν degrade the

moment we consider extended parameter spaces. Given our
discussion in Sec. IV B, this means within the extended
parameter spaces considered the preference for one hier-
archy over another essentially vanishes. However, the last
statement is not necessarily always true; for instance, in
certain models of dynamical dark energy with specific
functional forms of wðzÞ, the constraints on Mν can get
tighter. An example is the holographic dark energy model,
within which bounds on Mν have been shown to be
substantially tighter than within a ΛCDM Universe
[59,63,217]. An interesting thing to note, however, is that
within better than 1σ uncertainties (i.e., within ∼68% C:L:)
both w and Ωk are compatible with the values to which they
are fixed within the minimal ΛCDMþMν parameter
space, that is, −1 and 0, respectively.

FIG. 4. 68% C.L. (dark blue) and 95% C.L. (light blue) joint
posterior distributions in the Mν − w plane, along with their
marginalized posterior distributions, for the baseBAO data
combination (see the caption of Table VI for further details).
Ticks on the w axis of the upper left plot are the same as those for
the lower left plot.

FIG. 5. 68% C.L. (dark blue) and 95% C.L. (light blue) joint
posterior distributions in the Mν-Ωk plane, along with their
marginalized posterior distributions, for the baseBAO data
combination (see the caption of Table VI for further details).
Ticks on theΩk axis of the upper left plot are the same as those for
the lower left plot.

8The correlation coefficient between two parameters i and j (in
this case i ¼ Mν, j ¼ w) is defined as R ¼ Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
, with C

the covariance matrix of cosmological parameters.
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V. CONCLUSIONS

Neutrino oscillation experiments provide information on
the two mass splittings governing the solar and atmospheric
neutrino transitions but are unable to measure the total
neutrino mass scale, Mν. The sign of the largest mass
splitting, the atmospheric mass gap, remains unknown. The
two resulting possibilities are the so-called normal (pos-
itive-sign) or inverted (negative-sign) mass hierarchies.
While in the normal hierarchy scheme neutrino oscillation
results set the minimum allowed total neutrino mass Mν to
be approximately equal toMν;min ∼ 0.06 eV, in the inverted
one, this lower limit is Mν;min ∼ 0.1 eV.
Currently, cosmology provides the tightest bounds on the

total neutrino mass Mν, i.e., on the sum of the three active
neutrino states. If these cosmological bounds turned out to be
robustly and significantly smaller than theminimum allowed
in the inverted hierarchy, then one would indeed determine
the neutrinomass hierarchy via cosmologicalmeasurements.
To prepare ourselves for the hierarchy extraction, an assess-
ment of the cosmological neutrinomass limits, studying their
robustness against different priors and assumptions concern-
ing the neutrino mass distribution among the three neutrino
mass eigenstates, is mandatory. Moreover, the development
and application of rigorous model comparison methods to
assess the preference for one hierarchy over the other is
necessary. In this work, we have analyzed some of the most
recent publicly available data sets to provide updated con-
straints on the sum of the three active neutrino masses, Mν,
from cosmology.
One very interesting aspect is whether the information

concerning the total neutrino mass from the large-scale
structure of the Universe in its geometrical form (i.e., via
the BAO signature) supersedes that of full-shape measure-
ments of the power spectrum. While previous studies have
addressed the question with former galaxy clustering data
sets, it is timely to explore the situation with current galaxy
catalogs, covering much larger volumes, benefiting from
smaller error bars and also from improved, more accurate
descriptions of the mildly nonlinear regime in the matter
power spectrum.
We find that, despite that the latest measurements of the

galaxy power spectrum cover a vast volume of our Universe,
theBAOsignature extracted fromcomparable data sets is still
more powerful than the full-shape information, within the
minimalΛCDMþMν model studied here. This statement is
expected to change within the context of extended cosmo-
logical models, such as those with nonzero curvature or a
time-dependent dark energy equation of state, andwe reserve
this study for future work [232] (whereas a short discussion
on the robustness of the bounds on Mν within extended
parameter spaces is provided in Appendix B).
The reason for the supremacy of BAO measurements

over shape information is due to the cutoff in k space
imposed when treating the power spectrum. This cutoff is
required to avoid the impact of nonlinear evolution. It is

worth remembering once more that BAO measurements
contain nonlinear information wrapped in with the
reconstruction procedure. This same nonlinear information
cannot be used in the power spectrum due to the choice of
the conservative cutoff in k space. Moreover, the need for at
least two additional nuisance parameters relating the galaxy
power spectrum to the underlying matter power spectrum
further degrades the constraining power of the latter.
Therefore, the stronger constraints obtained through geo-
metrical rather than shape measurements should not be seen
as a limitation of the constraining power of the latter but
rather as a limitation of methods currently used to analyze
these data sets. A deeper understanding of the nonlinear
regime of the galaxy power spectrum in the presence of
massive neutrinos, as well as further understanding of the
galaxy bias at a theoretical and observational level, are
required; it is worth noting that a lot of effort is being
invested into tackling these issues.
Finally, in this work, we have presented the tightest up-to-

date neutrino mass constraints among those which can be
found in the literature. Neglecting the debated prior on the
Hubble constant of H0 ¼ ð73.02� 1.79Þ km s−1Mpc−1,
the tightest 95% C.L. upper bound we find is Mν <
0.151 eV (assuming a degenerate spectrum), from CMB
temperature anisotropies, BAO, and τ measurements.
Adding Planck high-l polarization data tightens the previous
bound to Mν < 0.118 eV. Further improvements are pos-
sible if a prior on the Hubble parameter is also added. In this
less conservative approach, the 95% C.L. neutrino mass
upper limit is brought down to the level of ∼0.09 eV,
indicating a weak preference for the normal neutrino hier-
archy due to volume effects. Our work also suggests that we
can identify a restricted set of conservative but robust data
sets; this includes CMB temperature data, as well as BAO
measurements and galaxy power spectrum data, after
adequate corrections for nonlinearities. These data sets allow
us to identify a robust upper bound of∼0.15 eV onMν from
cosmological data alone.
In addition to providing updated bounds on the total

neutrino mass, we have also performed a simple but robust
model comparison analysis, aimed at quantifying the exclu-
sion limits on the inverted hierarchy from current data sets.
Our findings indicate that, despite the very stringent upper
bounds we have just outlined, current data are not able to
conclusively favor the NH over the IH. Within our most
conservative scheme, we are able to disfavor the IH with a
significance of at most 64%C.L., corresponding to posterior
odds ofNHover IHof 1.8∶1. Even themost constraining and
less conservative data set combinations are able at most to
disfavor the IH at 77% C.L., with posterior odds of NH
against IH of 3.3∶1. This suggests that further improvements
in sensitivity, down to the level of 0.02 eV, are required in
order for cosmology to conclusively disfavor the IH.
Fortunately, it looks like a combination of data from near-
future CMB experiments and galaxy surveys should be able
to reach this target.

SUNNY VAGNOZZI et al. PHYSICAL REVIEW D 96, 123503 (2017)

123503-18



We conclude that our findings, while unable to robustly
disfavor the inverted neutrino mass ordering, significantly
reduce the volume of parameter space allowed within this
mass hierarchy. The more robustly future bounds will be
able to disfavor the region of parameter space with
Mν > 0.1 eV, the more the IH will be put under pressure
with respect to the NH. In other words future cosmological
data, in the absence of a neutrino mass detection, are
expected to reinforce the current mild preference for the
normal hierarchy mass ordering. On the other hand, if the
underlying mass hierarchy is the inverted one, a cosmo-
logical detection of the neutrino mass scale could be
quickly approaching. In any case, we expect neutrino
cosmology to remain an active and exciting field of
discovery in the upcoming years.
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APPENDIX A: THE 3 DEG APPROXIMATION

Throughout the paper, we have presented bounds within
the 3 deg approximation of a neutrino mass spectrum with
three massive degenerate mass eigenstates. The choice was
motivated, as discussed in Sec. I, by the observations that the
NH and IHmass splittings have a tiny effect on cosmological
data, when compared to the 3 deg approximation with the

same value of the total mass Mν. Here, we discuss the
conditions under which this approximation is mathemati-
cally speaking valid. We also briefly discuss why the 3 deg
approximation is nonetheless physically accurate given the
sensitivity of current data.
Mathematically speaking, the 3 deg approximation is

valid as long as

m0 ≫ jmi −mjj; ∀ i; j ¼ 1; 2; 3; ðA1Þ

wherem0 ¼ m1ðm3Þ in the NH (IH) scenario (see Sec. I for
the definition of the labeling of the three mass eigenstates).
Recall that, according to our convention, m1 < m2 <
m3ðm3 < m1 < m2Þ in the NH (IH). Therefore, the 3 deg
approximation is, strictly speaking, valid when the absolute
neutrino mass scale is much larger than the individual mass
splittings. A good candidate for a figure of merit to quantify
the goodness of the3 deg approximation can thenbeobtained
by considering the ratio of any given mass difference, over a
quantity proportional to the absolute neutrino mass scale.
This leads us to consider the figure(s) of merit

ζij ≡ 3jmi −mjj
Mν

; ðA2Þ

where the indices i, j run over i, j ¼ 1, 2, 3. The figures of
merit ζij quantify the goodness of the 3 deg approximation. If
the 3 deg approximationwere to be exact (which, of course, is
physically impossible given the nonzero mass-squared
splittings), one would have ζij ¼ 0. The 3 deg approxima-
tion, then, can be considered valid from a practical point of
view as long as ζij is sufficiently small, where the amount of
deviation from ζij ¼ 0 one can tolerate defines what is
sufficiently small andhence thevalidity criterion for the 3deg
approximation.
In Fig. 6, we plot our figure(s) of merit ζij, for i, j ¼ 1, 2

(red) and i, j ¼ 1, 3 (blue) in Eq. (A2) and for the NH
(solid) and IH (dashed) scenarios (see the caption for
details), against the total neutrino mass Mν. We plot the
same quantities, but this time against the lightest neutrino
mass m0 ¼ m1ðm3Þ for the NH (IH), in Fig. 7. As we
discussed previously, the 3 deg approximation would be
exact if ζij ¼ 0 (which of course cannot be displayed due to
the choice of a logarithmic scale for the y axis).
As we already discussed, the decision of whether or not

3 deg is a sensible approximation mathematically speaking
depends on the amount of deviation from ζij ¼ 0 that can
be tolerated. As an example, from Figs. 6 and 7, we see
that, considering an indicative value of Mν ≈ 0.15 eV, the
value of ζ13 ≈ 0.4, indicating a ≈40% deviation from the
exact 3 deg scenario, which can hardly be considered small.
This indicates that, within the remaining allowed region

of parameter space, the 3 deg approximation is, math-
ematically speaking, not valid. It is worth remarking that
there is a degree of residual model dependency as this
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conclusion was reached taking at face value the indicative
upper limit on Mν of ≈0.15 eV, which has been derived
under the assumption of a flatΛCDM background. One can
generically expect the bounds we obtained to be loosened
to some extent if considering extended cosmological
scenarios (although this does not always need to be the
case).
A different issue is, instead, whether the 3 deg approxi-

mation is physically appropriate, given the sensitivity of
current and near-future experiments. The issue has been

discussed extensively in the literature and in particular in
some recent works [23,38,112]. It has been argued that, if
Mν > 0.1 eV, future cosmological observations, while
measuring Mν with high accuracy, will not be able to
discriminate between the NH and the IH. In any case,
cosmological measurements in combination with labora-
tory experiments will in this case (Mν > 0.1 eV) play a key
role in unraveling the hierarchy [61]. IfMν < 0.1 eV, most
of the discriminatory power in cosmological data between
the NH and the IH is essentially due to volume effects, i.e.,
the fact that oscillation data force Mν;min ≃ 0.1 eV in the
IH, implying that the IH has access to a reduced volume of
parameter space with respect to the NH.
Another example of the goodness of the 3 deg approxi-

mation is provided in Ref. [107], considering a combination
of forecasts for COrE, Euclid, and DESI data. Specifically,
Ref. [107] considered a fiducial mock data set generated by
implementing the full NH or IH and then studied whether
fitting the fiducial data set using the 3 deg approximation
rather than the “true” NH or IH would lead to substantial
biases. The findings suggest that, apart from small Oð0.1σÞ
reconstruction biases (which can be removed for Mν <
0.1 eV), the 3 deg approximation is able to recover the
fiducial value ofMν (as long as the free parameter is taken to
be consistently either Mν or m0). This suggests that, even
with near-future cosmological data, the 3 deg approximation
will still be sufficiently accurate for the purpose of estimating
cosmological parameters and further validates the goodness
of the 3 deg approximation in our work.
The conclusion is that current cosmological data sets are

sensitive to the total neutrino mass Mν rather than to the
individual masses mi, implying that the 3 deg approxima-
tion is sufficiently precise for the purpose of obtaining
reliable cosmological neutrino mass bounds for the time
being. On the other hand, for future high-precision cos-
mological data, which could benefit from increased sensi-
tivity and could reliably have access to nonlinear scales of
the matter power spectrum, modeling the mass splittings
correctly will matter.
In conclusion, although the 3 deg approximation is not,

mathematically speaking, valid in the remaining volume of
parameter space, it is, physically speaking, a good approxi-
mation given the sensitivity of current data sets. However,
quantitative claims about disfavoring the inverted hierarchy
have to be drawn with care, making use of rigorous model
comparison methods.

APPENDIX B: THE 1 MASS APPROXIMATION

As argued in a number of works, the ability to robustly
reach an upper bound onMν of ≈0.1 eV translates more or
less directly into the ability to exclude the inverted
hierarchy at a certain statistical significance, as we quanti-
fied in Sec. IV B. In this case, it is desirable to check
whether one’s conclusions are affected by assumptions on
the underlying neutrino mass spectrum. Throughout our
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FIG. 6. Figures of merit ζij, defined in Eq. (A2) and which
quantify the goodness of the 3 deg approximation, as a function
of the total neutrino mass Mν. ζij ¼ 0 (not displayed in this plot
due to the logarithmic scale on the y axis) corresponds to the
unphysical case in which the 3 deg approximation is exact. The
red lines correspond to i, j ¼ 1, 2 [that is, ζ ¼ 3ðm2 −m1Þ=Mν],
whereas the blue lines correspond to i, j ¼ 1, 3 [that is,
ζ ¼ 3jm3 −m1j=Mν], with solid and dashed lines corresponding
to the NH and IH scenarios, respectively. The solid vertical line at
Mν ¼ 0.15 eV represents the indicative upper limit on Mν of
0.15 eV obtained in our analysis.
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FIG. 7. As Fig. 6, but with the figures of merit plotted against
the mass of the lightest mass eigenstate m0 ¼ m1ðm3Þ for NH
(IH). The solid and dashed vertical lines at ≃0.03 eV and
≃0.04 eV, respectively, represent the masses of m0 correspond-
ing to the indicative upper limit onMν of 0.15 eVobtained in our
analysis.
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paper, we have presented bounds on Mν making the
assumption of a spectrum of three massive degenerate
neutrinos, denoted 3 deg. As we have argued extensively
(see, e.g., Appendix A), given the sensitivity of current
data, this assumption does not to any significant extent
influence the resulting bounds. Nonetheless, it is interesting
and timely to investigate the dependence of neutrino mass
bounds under assumptions of different mass spectra, which
was recently partly done in Ref. [23].
Here, as in Ref. [23], we consider (in addition to the

3 deg spectrum) the approximation spectrum featuring a
single massive eigenstate carrying the total mass Mν

together with two massless species. We refer to this scheme
by the name “1mass”:

m1 ¼ m2 ¼ 0; m3 ¼ Mν ð1massÞ: ðB1Þ
The motivation for the 1mass choice is twofold: i) it is
the usual approximation adopted when performing cosmo-
logical analyses with the total neutrino mass fixed to
Mν;min ¼ 0.06 eV, in order to mimic the minimal mass
scenario in the case of the NH (m1 ¼ 0 eV,m2 ≪ m3), and
ii) it might provide a better description of the underlying
neutrino mass ordering in theMν < 0.1 eV mass region, in
which m1 ∼m2 ≪ m3, although a complete assessment
goes beyond the scope of our work. The latter is the main
motivation for exploring the 1mass approximation further,
given the recent weak cosmological hints favoring the NH.
Before proceeding, it is useful to clarify why we have

chosen to focus on results within the 3 deg scheme. As we
discussed, it has been observed that the impact of the NH
and IH mass splittings on cosmological data is tiny if one
compares the 3 deg approximation to the corresponding
NH and IH models with the same value of the total mass
Mν. However, this does not necessarily hold when the
comparison is made between 3 deg and 1mass, because the
latter always has two pure dark radiation components (see
footnote 8 for a definition of dark radiation) throughout the
whole expansion history and, in particular, at the present
time (on the other hand, NH and IH can have at most one
pure radiation component at present time, a situation which
occurs in the minimal mass scenario when m0 ¼ 0 eV and
thus only for one specific point in neutrino mass parameter
space).9 The extra massless component(s) present in the
1mass case, but not in the NH and IH (1mass features only
one extra component compared to the NH and IH if these

happen to correspond to the minimal mass scenario in
which m0 ¼ 0 eV; if m0 ≠ 0 eV, 1mass possesses two
extra massless components), are known to have a non-
negligible impact on cosmological observables, in particu-
lar, the CMB anisotropy spectra [23,30].
Let us now discuss how the bounds on Mν change when

passing from the 3 deg to the 1mass approximation. We
observe that when considering the base data set combina-
tions, and extensions thereof (i.e., the combinations consid-
ered in Table IV, in which we report the 3 deg results), the
bounds obtained within the 1mass approximation are typi-
cally more constraining than the 3 deg ones, by about ∼2%–
8%. For example, the 95% C.L. upper bound on Mν is
tightened from 0.716 to 0.658 eV for the base combination,
from 0.299 to 0.293 eV for the baseþ PðkÞ combination,
and from 0.246 to 0.234 eV for the basePK combination.
When small-scale polarization data are added (see Table V
for the 3 deg results), we observe a reversal in this behavior:
that is, the bounds obtained within the 1mass approximation
are looser than the 3 deg ones. For example, the 95% C.L.
upper bound onMν is loosened from 0.485 to 0.619 eV for
the basepol combination, from 0.275 to 0.300 eV for the
basepolþ PðkÞ combination, and from 0.215 to 0.228 eV
for the basepolPK combination.
Regarding the baseBAO and basepolBAO data set

combinations and extensions thereof (see Tables VI and
VII for the 3 deg results), no clear trend emerges when
passing from the 3 deg to the 1mass approximation,
although we note that the bounds typically degrade slightly:
for example, the 95% C.L. upper bound on Mν is loosened
from 0.186 to 0.203 eV for the baseBAO combination and
from 0.153 to 0.155 eV for the basepolBAO combination.
We choose not to further investigate the reason behind

these tiny but noticeable shifts because, as previously stated,
the 1mass distribution is less “physical,” owing to the
presence of two unphysical dark radiation states. Instead,
we report these numbers in the interest of noticing how these
shifts suggest that, at present, cosmological measurements
are starting to become sensitive (albeit in a very weak
manner) to the late-time hot darkmatter versus dark radiation
distribution among the neutrino mass eigenstates, a con-
clusion which had already been reached in Ref. [23].
One of the reasons underlying the choice of studying the

1mass approximation is that this scheme might represent a
useful approximation to the minimal mass scenario in the
NH. Of course, the possibility that the underlying neutrino
hierarchy is inverted is far from being excluded. This raises
the question of whether an analogous scheme, which we
refer to as “2mass” (already studied in Ref. [23]), might
instead approximate the minimal mass scenario in the IH:

m3 ¼ 0; m1 ¼ m2 ¼ Mν=2 ð2massÞ: ðB2Þ
Of course, the previously discussed considerations con-
cerning the nonphysicality of the 1mass approximation
(due to the presence of extra pure radiation components)

9Dark radiation consists of any weakly or noninteracting extra
radiation component of the Universe; see, e.g., Ref. [234] for a
review and Refs. [235,236] for recent relevant work in connection
to neutrino physics. For example, sterile neutrinos may in
some models have contributed as dark radiation, see, e.g.,
Refs. [237,238], or possibly thermally produced cosmological
axions [239,240]. Dark radiation might also arise in dark sectors
with additional relativistic degrees of freedom which decouple
from the Standard Model as, for instance, hidden photons (see,
e.g., Refs. [241–252]).
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automatically apply to the 2mass approximation as well.
Moreover, we note that bounds on Mν obtained within the
2 mass approximation (which features one pure radiation
state) are always intermediate between those of the 3 deg
(which features no pure radiation state) and the 1mass
(which features two pure radiation states) ones (see also,
e.g., Ref. [23]). This confirms once more that the discrep-
ancy between bounds within these three different approx-
imations is to be attributed to the impact of the unphysical

pure radiation states on cosmological observables, in
particular the CMB anisotropy spectra. In conclusion,
we remark once more that, while the 3 deg approximation
is sufficiently accurate given the precision of current data,
other approximations which introduce nonphysical pure
radiation states, such as the 1 mass and 2 mass ones, are
not. Adopting these to obtain bounds on Mν might instead
lead to unphysical shifts in the determination of cosmo-
logical parameters and hence should be avoided.
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