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In Newtonian fluid dynamics simulations in which composition has been tracked by a nuclear reaction
network, energy generation due to composition changes has generally been handled as a separate source
term in the energy equation. A relativistic equation in conservative form for total fluid energy, obtained
from the spacetime divergence of the stress-energy tensor, in principle encompasses such energy
generation; but it is not explicitly manifest. An alternative relativistic energy equation in conservative
form—in which the nuclear energy generation appears explicitly, and that reduces directly to the
Newtonian internalþ kinetic energy in the appropriate limit—emerges naturally and self-consistently
from the difference of the equation for total fluid energy and the equation for baryon number conservation
multiplied by the average baryon mass m, when m is expressed in terms of contributions from the nuclear
species in the fluid, and allowed to be mutable.
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I. INTRODUCTION

Most astrophysical environments in which nucleosyn-
thesis occurs are highly dynamic, requiring numerical
treatment of at least fluid dynamics and gravity (if not
magnetic fields, neutrino transport, etc.). One possible
approach to studying the nucleosynthesis in such systems
(e.g. [1]) is to begin with simulations that employ a
simplified treatment of the nuclear composition, one that
is relatively inexpensive computationally but that is suffi-
ciently accurate in terms of the feedback on the fluid from
nuclear reactions to get the thermodynamic conditions
basically correct. One important simplification is the
exploitation, where applicable, of nuclear statistical equi-
librium (NSE; thermal equilibrium, and chemical
equilibrium with respect to strong and electromagnetic
interactions). A first approximation at lower densities and
temperatures where NSE does not apply is the instanta-
neous “flashing,” or “flash burning,” of a representative
dominant species (e.g. “oxygen” to “silicon,” or silicon to
NSE). A better approximation is time integration of a small
“α network” restricted to several species most relevant to
energy generation—those between 4He and 56Ni or 60Zn
that are “multiples” of α particles, connected mostly by
ðα; γÞ reactions. Inclusion of Lagrangian “tracer particles”
in such simplified simulations then allows the histories of
density and temperature of an ensemble of mass elements
to be “postprocessed” with a larger nuclear reaction net-
work containing many more species of observational
interest. Alternatively, and ideally, a large network could
be used within the original simulation in order that local

energy feedbacks be more accurately computed. (An α
network also lacks weak interactions, which additionally
induce electron fraction feedbacks and energy loss to
escaping neutrinos.)
With its more noticeable effect on mass, energy release

due to nuclear reactions may be considered an inherently
relativistic effect; but just as the internal energy of a
conventional fluid mixture includes the latent heat of phase
transitions due to intermolecular forces, and/or the energy
of chemical bonds due to interatomic forces, so also a fluid
consisting of reacting nuclear species can be handled in an
otherwise Newtonian system by including in the internal
energy the binding energy of nuclei due to the forces
between nucleons. In principle, therefore, an equation of
state can address the physics of nuclear energy generation
in a self-contained way, simply by including nuclear
binding energy in the definition of internal energy.
Including the nuclear binding energy in the definition of

internal energy is presumably the most natural approach
when the matter is assumed to be in NSE, or when a flashing
approximation is employed. In both of these cases, nuclear
composition is found not from time integration of reaction
rates, but from the assumption of chemical equilibrium with
respect to strong and electromagnetic interactions (in addi-
tion to thermal equilibrium and charge neutrality). This
translates into a composition that depends only on instanta-
neous conditions of density, temperature, and electron
fraction—whether rigorously, via the Saha equations in
the case of NSE; or phenomenologically, by prescribed
thresholds for flashing. A different composition corresponds
to a different binding energy; and the instantaneous corre-
spondence of this with a different temperature is naturally
expressed in terms of an internal energy function that takes
binding energy into account, whose only necessary argu-
ments are density, temperature, and electron fraction.
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In principle, inclusion of nuclear binding energy in the
internal energy is also a possible approach when a time-
dependent nuclear reaction network is used to track the
abundances of species that are not in chemical equilibrium.
The network and fluid equations (including continuity
equations for the various species) are numerically advanced
in time, yielding at each time step updated internal energy
and nuclear abundances; and once again, if the internal
energy includes the binding energy of the various species,
inversion to find the corresponding temperature (and/or
entropy) will reflect the exothermic or endothermic physics
of nuclear burning or dissociation. The complication is that,
absent chemical equilibrium (thermal equilibriumandcharge
neutrality are still assumed), the internal energy function
would depend not only on density, temperature, and electron
fraction, but on the abundances of all present nuclear species.
In practice, however, the physics of nuclear energy

generation has historically been treated separately from
the equation of state when a nuclear reaction network has
been employed, handled instead as a source term in an
energy equation in which the internal energy does not
include nuclear binding energy [2] (cf. e.g. [3]).
Presumably the primary reason for this is that a formal
decoupling of the physics of nuclear energy generation
allows networks of varying size and complexity to be
employed without requiring changes to a straightforward
equation of state with a simple composition dependence,
enhancing code flexibility (and facilitating operator split-
ting [4]). For instance, most fluid dynamical studies
involving in situ nuclear reaction networks have assumed
conditions in which the nuclei can be treated (aside from
reactions) as a nonrelativistic ideal gas mixture. That is,
when nuclear forces can be ignored between the collisions
that induce nuclear reactions, the degrees of freedom
associated with such forces can be lumped into a readily
separable binding energy contribution, leaving only the
translational degrees of freedom as in an ideal gas. With
binding energies thus excluded from the internal energy, the
composition dependence of the baryonic portion of the
equation of state is only on the average nucleon number Ā
of the nuclear ensemble (which gives the total particle
number density

P
ana of all nuclear species a); and the

composition dependence of the electron/positron portion of
the equation of state adds only a need for the average proton
number Z̄ of the nuclear ensemble (in order to specify the
total charge density

P
aZana of all nuclear species a).

In Newtonian fluid dynamics, nuclear energy generation
as a separate source term arises by splitting off the nuclear
binding energy from the rest of the internal energy in the
first law of thermodynamics applied to a perfect fluid
mass element. When the first law is used in the derivation
of an equation in conservative form [5] for Newtonian
internalþ kinetic energy, the nuclear energy generation
tags along as a separate source term.
The relativistic approach—which ought to be adopted in

the simulation of core-collapse supernovae [6] as well as of

compact-object mergers—allows a different perspective.
An energy equation in conservative form is given directly
by the vanishing spacetime divergence of the stress-energy
tensor for a perfect fluid. This stress-energy tensor contains
from the outset not only the internal and kinetic energy
densities, but also the rest mass density; hence in principle
it already encompasses energy changes due to nuclear
reactions. Instead of regarding nuclear binding energy as
part of the internal energy, it can be included in a rest mass
density expressed in terms of an average baryon mass m
that varies in time and space. Teasing the proper time
derivative of m out of the formalism is then a conceptually
appealing way to isolate nuclear energy generation as a
separate source term.
Relativistic numerical fluid dynamics is often prosecuted

in conjunction with numerical relativity in some version of
the 3þ 1 framework. This enterprise is sufficiently well
developed to be the subject of reviews and books, either
with a focus on the fluid dynamics [9–11], or as part of a
broader relativistic treatment [12–16]. But perusal of these
works and the literature they point to does not reveal any
accounts of nuclear energy generation in fluid dynamics as
a direct consequence of a mutable mean baryon mass m.
The purpose of this paper is to fill this small but

interesting lacuna with a derivation of a fully relativistic
fluid energy equation in conservative form that explicitly
separates the nuclear energy generation as a source term.
Also of interest is that the resulting evolved energy does not
include baryon rest mass, reducing to the “Newtonian total
energy” (internalþ kinetic) in the appropriate limit. After
reviewing the Newtonian formulation in Sec. II, this
relativistic derivation is presented in Sec. III, followed
by conclusions in Sec. IV. An Appendix comments on the
case in which nuclear binding energy is included in the
internal energy, so that there is no nuclear energy gen-
eration source term. A perfect fluid with vanishing viscos-
ity, vanishing heat flux, and local thermal (but not
chemical) equilibrium in the comoving frame is assumed.
Diffusion of nuclear species relative to the average flow
velocity of the fluid is neglected. Recognizing that neu-
trinos play a role in systems in which relativity and nuclear
reactions are both important, the presence of neutrino-
related source terms is noted, without giving detailed
accounts of neutrino transport (e.g. [17,18]) or interactions
(e.g. [19]). Units in which the speed of light c ¼ 1 and the
reduced Planck constant ℏ ¼ 1 are used throughout. Latin
indices near the beginning of the alphabet (a; b;…) denote
particle species. In the relativistic treatment, greek indices
denote spacetime components, latin indices near the middle
of the alphabet (i; j;…) denote spatial components, and the
metric signature ð−þþþÞ is employed.

II. NEWTONIAN FORMULATION

A conservative formulation of perfect Newtonian
fluid dynamics comprises balance equations for mass
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density D, momentum density S, and internalþ
kinetic energy density E, in each case relating the time
derivative of a volume density to the divergence of a flux:

∂D
∂t þ ∇ · FD ¼ 0; ð1Þ

∂S
∂t þ ∇ · FS ¼ QS; ð2Þ

∂E
∂t þ ∇ · FE ¼ QE: ð3Þ

In terms of primitive variables—the mass density ρ, three-
velocity v, and internal energy density e—the conserved
densities are

D ¼ ρ; ð4Þ

S ¼ ρv; ð5Þ

E ¼ eþ 1

2
ρðv · vÞ; ð6Þ

and the fluxes are

FD ¼ ρv; ð7Þ

FS ¼ ρðv ⊗ vÞ þ pI; ð8Þ

FE ¼
�
eþ 1

2
ρðv · vÞ þ p

�
v; ð9Þ

in which I is the identity tensor, and the pressure p is given
by an equation of state, which depends on the system;
absent composition variations, it can be as simple as
p ¼ pðρ; eÞ, or even p ¼ pðρÞ.
Allowing for gravity and neutrino interactions, and

separating the contribution of nuclear binding to the
internal energy density, the sources are

QS ¼ −ρ∇ΦþAΣν; ð10Þ

QE ¼ −ρv · ∇ΦþQΣν þQΔM: ð11Þ

The gravitational potential Φ satisfies the Poisson equation
∇2Φ ¼ 4πGNρ, with Newton’s constant GN . The neutrino
sources AΣν and QΣν include contributions from all
neutrino species. The distribution functions fνaðt;x;pÞ
of each neutrino type νa satisfy the Boltzmann equation

dfνa
dt

¼ ∂fνa
∂t þ n̂ · ∇fνa ¼ Rνa ; ð12Þ

where n̂ ¼ p=ϵ is the neutrino momentum direction and
ϵ ¼ jpj is the neutrino energy, both measured by an

Eulerian observer; and Rνa is the collision integral. The
momentum gained by the fluid is that lost by neutrinos:

AΣν ¼ −
d
dt

�X
νa

Z
dp

ð2πÞ3 pfνa
�

ð13Þ

¼ −
X
νa

Z
dp

ð2πÞ3 pRνa ; ð14Þ

and similarly

QΣν ¼ −
X
νa

Z
dp

ð2πÞ3 ϵRνa ð15Þ

for the neutrino energy source. The neutrino heating QΣν
and nuclear energy generationQΔM both arise from the first
law of thermodynamics applied to a perfect fluid mass
element,

d
dt

�
eþ b
ρ

�
¼ −p

d
dt

�
1

ρ

�
þ qΣν

ρ
; ð16Þ

used in the derivation of Eq. (3). Here b is the energy
density due to nuclear binding, with e comprising all other
contributions to internal energy density. Moreover qΣν is
the energy density absorption rate experienced by a
Lagrangian mass element; taking into account the
Newtonian Doppler shift,

qΣν ¼ −
X
νa

Z
dp

ð2πÞ3 ϵð1 − v · n̂ÞRνa ð17Þ

¼ QΣν − v ·AΣν: ð18Þ

[Note the cancellation of the v ·AΣν term when arriving at
Eq. (3) with the help of Eq. (2).] Finally, the separation of
the energy density b due to nuclear binding from the rest of
the internal energy density in Eq. (16) leads to

QΔM ¼ −ρ
d
dt

�
b
ρ

�
ð19Þ

for the energy source term due to nuclear burning.
The evolution of the nuclear species must be addressed

in order to flesh out the nuclear energy generation source
term QΔM of Eq. (19). The number density na of each
nuclear species a satisfies a balance equation of the form

∂na
∂t þ ∇ · Fna ¼ Ra: ð20Þ

The traditional primitive composition variable is the abun-
dance Ya, defined such that
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na ¼
ρYa

mu
; ð21Þ

Fna ¼
ρYa

mu
v; ð22Þ

in which mu is the atomic mass unit, and diffusion of
species relative to the average flow velocity v of the fluid
is neglected. The source Ra ¼ Raðρ; T; fYbgÞ is the net
particle production rate per unit volume, with T being the
local fluid temperature. The utility of the abundance Ya as a
composition variable is that, thanks to mass continuity as
expressed in Eqs. (1), (4), (7), its Lagrangian derivative

dYa

dt
¼ mu

ρ
Ra ð23Þ

eliminates the effects of compression, changing only due to
reactions (in the absence of diffusion).
Only energy differences matter in the Newtonian limit,

so that the binding energy density b can be measured
relative to an arbitrary fixed reference point. While there is
freedom in the choice of reference point, that reference
point must indeed be fixed. In the presence of weak
interactions, as contemplated here, use of the absolute
binding energy of a nucleus or neutral atom—defined as the
difference between its mass and the sum of the masses of
its free constituent particles—is not suitable, because the
total proton and neutron numbers in a mass element are
not separately conserved. Instead, a reference point that
depends only on the total nucleon number is required. One
possible choice is the mass excess ðΔMÞa, the binding
energy relative to that of 12C:

ðΔMÞa ¼ Ma −muAa; ð24Þ

where Ma is the mass of a single nucleus of species a and
Aa is its nucleon number. Then the energy density due to
nuclear binding is

b ¼
X
a

ðΔMÞana; ð25Þ

so that, using Eq. (21),

−ρ
d
dt

�
b
ρ

�
¼ −

ρ

mu

X
a

ðΔMÞa
dYa

dt
: ð26Þ

Thus Eqs. (19) and (23) yield

QΔM ¼ −
X
a

ðΔMÞaRa; ð27Þ

completing the description of the energy equation source
term when the nuclear binding energy is separated from the
rest of the internal energy (and diffusion is neglected).

As a segue into the relativistic formulation in the next
section, consider a retrofit of the Newtonian perspective
effected by relativistic insight into the nature of the mass
density in the presence of composition changes. Nuclear
reactions do not change the total baryon number density

n ¼
X
a

Aana; ð28Þ

so n obeys the conservation law

∂n
∂t þ ∇ · ðnvÞ ¼ 0: ð29Þ

This is only consistent with (what has improvidently been
dubbed “mass conservation” in) Eqs. (1), (4), (7) if ρ is a
constant multiple of n, for instance

ρ≡mun: ð30Þ

This choice makes ρ numerically close to the true baryon
mass density

ρm ¼
X
a

Mana ≡mn; ð31Þ

in which a mutable average baryon mass

m ¼ 1

n

X
a

Mana ¼
X
a

MaYa ð32Þ

has been defined [20]. The second equality follows from
Eqs. (21) and (30), according to which the abundance

Ya ¼
na
n

ð33Þ

is strictly the number density of species a relative to the
total baryon number density. Note that Eqs. (30)–(31) and
(24)–(25) yield

ρm ¼ ρþ b: ð34Þ

In practice the relative binding energy density b is only
crucial in comparison with the internal energy density e,
and the distinction between ρ and ρm is often swept under
the rug.
However, it is worth keeping in mind—both for con-

ceptual clarity, and for the relativistic derivation in the next
section—that the true baryon mass density of Eq. (31)
obeys a balance equation rather than a strict conservation
law:
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∂ρm
∂t þ ∇ · ðρmvÞ ¼

∂ðmnÞ
∂t þ ∇ · ðmnvÞ

¼ n
dm
dt

; ð35Þ

with the second line following from Eq. (29), and

n
dm
dt

¼
X
a

MaRa ð36Þ

from Eqs. (23) and (32). Using the identity

0 ¼ n
d
dt

�
1

n

X
a

Aana

�

¼ n
X
a

Aa
dYa

dt
¼

X
a

AaRa ð37Þ

following from Eqs. (23), (28) and (33), subtracting the
vanishing constant 0 ¼ mu

P
aAaRa from Eq. (36) reveals

the source

n
dm
dt

¼
X
a

ðΔMÞaRa ¼ −QΔM ð38Þ

in Eq. (35) to be none other than the nuclear energy
generation encountered in Eq. (27).

III. RELATIVISTIC FORMULATION

In the relativistic case the balance equations governing
a perfect fluid follow from the spacetime divergences of
the baryon number flux vector Nμ and fluid stress-energy
tensor Tμν:

∇μNμ ¼ 0; ð39Þ

∇μTμν ¼ ðQΣνÞν; ð40Þ

where ∇μ is the covariant derivative and

ðQΣνÞν ¼ −∇μðTΣνÞμν ð41Þ

is the four-momentum source due to neutrino interactions,
arising from the divergence of the stress-energy tensor
ðTΣνÞμν of all neutrino species (with apologies for the
subscript Σν, which stands for “all neutrino species” and is
not a spacetime index). The baryon number flux vector is

Nμ ¼ nuμ; ð42Þ

where n is the baryon number density in the comoving
frame and uμ is the fluid four-velocity. The fluid stress-
energy tensor is

Tμν ¼ ðmnþ eþ pÞuμuν þ pgμν; ð43Þ

in which m is the average baryon mass discussed in the last
two paragraphs of Sec. II. Note that e does not include
nuclear binding energy, which instead contributes to m.
The 3þ 1 formulation of general relativity is useful in

bringing Eqs. (39) and (40) closer to a form that is
simulation ready and more reminiscent of Newtonian fluid
dynamics. Central to this approach is a foliation of
spacetime into spacelike slices Σt labeled by time compo-
nent t, the component x0 of spacetime position xμ. The unit
normal nμ to a spacelike slice (a tensor not to be confused
with the scalar baryon number density n) has components

ðnμÞ ¼ ð−α; 0; 0; 0Þ; ð44Þ

ðnμÞ ¼ ð1=α;−βi=αÞT: ð45Þ

Consider an infinitesimal perpendicular displacement (i.e.,
parallel to nμ) connecting slices Σt and Σtþdt. The lapse
function α gives the proper time αdt separating the slices
along this displacement. If xi is the base of the displacement
in Σt, then the shift vector βi gives the proper distance βidt
between the tip of the perpendicular displacement in Σtþdt

and coordinate position xi in Σtþdt. The induced three-
metric γij characterizes the geometry within a spacelike
slice. These geometric prescriptions are encapsulated in the
spacetime line element

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð46Þ

from which the components of the spacetime metric gμν
can be read. The determinant g of the spacetime metric is
related to the determinant γ of the induced three-metric byffiffiffiffiffiffi−gp ¼ α

ffiffiffi
γ

p
. The tensor

γμν ¼ gμν þ nμnν ð47Þ

projects components tangent to a spacelike slice.
Also useful for making contact with the Newtonian fluid

dynamics equations is the three-velocity four-vector vμ,
defined by decomposing the fluid four-velocity uμ into
parts normal and tangent to the spacelike slice:

uμ ¼ Λðnμ þ vμÞ; ð48Þ

with nμvμ ¼ 0. Together with Eq. (44), this requires that
component v0 ¼ 0. The interpretation of vμ as a three-
velocity is confirmed by squaring Eq. (48), which yields

Λ ¼ ð1 − vμvμÞ−1=2 ¼ ð1 − viviÞ−1=2; ð49Þ

showing that Λ can be regarded as the Lorentz factor
connecting an Eulerian observer with four-velocity nμ to a
Lagrangian observer with four-velocity uμ.
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Using the 3þ 1 formalism and the fluid three-velocity
vμ, Eq. (39) for baryon number becomes

1

α
ffiffiffi
γ

p ∂
∂t ð

ffiffiffi
γ

p
NÞ þ 1

α
ffiffiffi
γ

p ∂
∂xi ½

ffiffiffi
γ

p ðFNÞi� ¼ 0; ð50Þ

with the conserved density and flux

N ¼ Λn; ð51Þ

ðFNÞi ¼ Λnðαvi − βiÞ: ð52Þ

This agrees with Eq. (1) for Newtonian mass conservation if
composition changes are ignored, so that the average baryon
mass in ρ ¼ mn can pass through derivatives in Eq. (50); if
bulk fluid speeds are much smaller than the speed of light
(Λ → 1); and if spacetime curvature is unimportant (α → 1,
βi → 0, and

ffiffiffi
γ

p
is independent of t and reflects only the use

of flat-space curvilinear coordinates).
The momentum equation corresponding to Eq. (2)

follows from the spacelike projection

γjν∇μTμν ¼ ðAΣνÞj ð53Þ

of Eq. (40), where ðAΣνÞj ¼ γjμðQΣνÞμ is the momentum
source due to neutrinos. For generic Tμν decomposed as

Tμν ¼ Gnμnν þ Sμnν þ Sνnμ þ Pμν; ð54Þ

0 ¼ nμSμ; ð55Þ

0 ¼ nμPμν ¼ nνPμν; ð56Þ

this is worked out in (for example) Appendix A of
Ref. [17] as

1

α
ffiffiffi
γ

p ∂
∂t ð

ffiffiffi
γ

p
SjÞ þ

1

α
ffiffiffi
γ

p ∂
∂xi ½

ffiffiffi
γ

p ðFSÞji� ¼ ðQSÞj; ð57Þ

with

ðFSÞji ¼ αPj
i − Sjβi; ð58Þ

ðQSÞj ¼ −
G
α

∂α
∂xj þ

Si
α

∂βi
∂xj þ

Pik

2

∂γik
∂xj

þ ðAΣνÞj ð59Þ

(see also for instance Refs. [21,22] for the metric source
terms in this form). For the perfect fluid stress-energy
tensor of Eq. (43),

G ¼ nμnνTμν ¼ Λ2ðmnþ eþ pÞ − p; ð60Þ

Sj ¼ −γjμnνTμν ¼ Λ2ðmnþ eþ pÞvj; ð61Þ

Pj
i ¼ γjμγ

i
νTμν ¼ Λ2ðmnþ eþ pÞvjvi

þ pδji: ð62Þ

The flux can be also be expressed as

ðFSÞji ¼ Λ2ðmnþ eþ pÞvjðαvi − βiÞ þ αpδji: ð63Þ

Agreement with Newtonian momentum conservation in
Sec. II requires not only slow bulk fluid speeds (Λ → 1),
but also microscopic particle speeds much less than the
speed of light, so that e ≪ mn and p ≪ mn. As for the
metric functions in the Newtonian limit, once again α → 1,
βi → 0, and γij represents only flat-space curvilinear
coordinates, except that retention of the leading term of
the Newtonian limit −g00 → α2 → ð1þ 2ΦÞ in ∂α=∂xi
gives the Newtonian gravitational acceleration.
The timelike projection

−nν∇μTμν ¼ QΣν ð64Þ

of Eq. (40), where QΣν ¼ −nμðQΣνÞμ is the energy source
due to neutrinos, provides an equation for total relativistic
fluid energy. Again this is worked out in (for example)
Appendix A of Ref. [17], as

1

α
ffiffiffi
γ

p ∂
∂t ð

ffiffiffi
γ

p
GÞ þ 1

α
ffiffiffi
γ

p ∂
∂xi ½

ffiffiffi
γ

p ðFGÞi� ¼ QG; ð65Þ

with

ðFGÞi ¼ αSi − βiG; ð66Þ

QG ¼ −
Si

α

∂α
∂xi þ PijKij þQΣν; ð67Þ

in which the extrinsic curvature tensor Kij describes the
embedding of the spacelike slices in spacetime (see also for
instance Refs. [21,22] for the metric source terms in this
form). The flux can be rewritten as

ðFGÞi ¼ Λ2ðmnþ eþ pÞðαvi − βiÞ þ βip ð68Þ

in light of Eqs. (60) and (61).
Equation (65) may at first seem puzzling when its

Newtonian limit is pondered. If the limit Λ → 1 is not
taken everywhere, but instead terms of Oðv2Þ are kept
when they multiply mn in order to get the kinetic energy
density, then from Eqs. (60) and (49),

G → mnð1þ viviÞ þ e: ð69Þ

Aside from the baryon rest energy density mn, there is a
factor of 2 difference in the v2 term relative to Eq. (6).
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However, an appropriate combination of the energy
equation (65) with baryon conservation yields an energy
equation that does reduce to Eq. (3), and as a natural
byproduct automatically separates out the energy gener-
ation due to nuclear reactions. Multiplying Eq. (39) by
average baryon mass m and using the derivative product
rule yields an additional term involving the spacetime
gradient of m:

∇μðmNμÞ − Nμ∇μm ¼ 0; ð70Þ
or

1

α
ffiffiffi
γ

p ∂
∂t ð

ffiffiffi
γ

p
DÞ þ 1

α
ffiffiffi
γ

p ∂
∂xi ½

ffiffiffi
γ

p ðFDÞi� ¼ QD; ð71Þ

where

D ¼ Λmn; ð72Þ

ðFDÞi ¼ Λmnðαvi − βiÞ; ð73Þ

QD ¼ nuμ
∂m
∂xμ ≡ n _m ð74Þ

[compare Eq. (35) in the Newtonian case]. Subtracting
Eq. (71) from Eq. (65) results in the analogue of the
Newtonian energy equation (3):

1

α
ffiffiffi
γ

p ∂
∂t ð

ffiffiffi
γ

p
EÞ þ 1

α
ffiffiffi
γ

p ∂
∂xi ½

ffiffiffi
γ

p ðFEÞi� ¼ QE; ð75Þ

with

E ¼ Λ2ðeþ pÞ − pþ ΛðΛ − 1Þmn; ð76Þ

ðFEÞi ¼ ½Λ2ðeþ pÞ þ ΛðΛ − 1Þmn�ðαvi − βiÞ
þ βip; ð77Þ

QE ¼ −
Si

α

∂α
∂xi þ PijKij þQΣν − n _m: ð78Þ

For slow bulk fluid and microscopic particle speeds (Λ → 1;
e, p, mnv2 ≪ mn) and vanishing spacetime curvature
(α → 1, βi → 0, Kij → 0, γij represents only flat-space
curvilinear coordinates) except for ∂α=∂xi → ∂Φ=∂xi, it
is apparent that Eqs. (76)–(78) reduce to the Newtonian
Eqs. (6), (9), and (11). In particular,

ΛðΛ − 1Þmn →
mn
2

vivi ð79Þ

reduces to the Newtonian kinetic energy with its factor
of 1=2 as expected and desired.
It remains to confirm more explicitly that the source term

−n _m in Eq. (78) agrees with the nuclear energy generation

sourceQΔM of Eq. (27) in Sec. II. First note that the number
flux of each species a satisfies a divergence equation
similar to Eq. (39), but with a source, the same number
production rate Ra as that in Eq. (20):

∇μðNaÞμ ¼ Ra; ð80Þ
with

ðNaÞμ ¼ nauμ ¼ nYauμ; ð81Þ
where na is the number density of species a in the
comoving frame and Ya ¼ na=n is the abundance. In terms
of 3þ 1 coordinates,

1

α
ffiffiffi
γ

p ∂
∂t ð

ffiffiffi
γ

p
NaÞ þ

1

α
ffiffiffi
γ

p ∂
∂xi ½

ffiffiffi
γ

p ðFNa
Þi� ¼ Ra; ð82Þ

with the conserved density and flux

Na ¼ Λna ¼ ΛnYa; ð83Þ

ðFNa
Þi ¼ ΛnYaðαvi − βiÞ: ð84Þ

Alternatively, using the last expression in Eq. (81) in
Eq. (80) and making use of baryon conservation in
Eqs. (39) and (42), one finds

n _Ya ≡ nuμ
∂Ya

∂xμ ¼ Ra; ð85Þ

the relativistic analogue of Eq. (23). The average baryon
mass m has the same definition as in Eq. (32) in Sec. II.
Moreover, _m ¼ uμ∂m=∂xμ—the directional derivative
along fluid four-velocity uμ—is the derivative of m with
respect to proper time, that is, the time derivative in the
comoving frame. This is the relativistic analogue of
the Lagrangian time derivative d=dt in Sec. II. With
dm=dt → _m and dYa=dt → _Ya, arguments parallel to those
in the last paragraph of Sec. II hold (includingP

aAaRa ¼ 0) with the result that

−n _m ¼ −
X
a

ðΔMÞaRa ¼ QΔM ð86Þ

in the relativistic case as well.

IV. CONCLUSION

The purpose of this paper is to derive a relativistic fluid
energy equation in conservative form in which the nuclear
energy generation is explicitly separated, the baryon rest
mass density is not present in the energy density, and whose
Newtonian limit (including the correct factor of 2 in the
kinetic energy density) matches Eq. (3). This result is
achieved very simply, by subtracting the balance equation
for mass density, Eq. (71), from the balance equation for
total energy, Eq. (65), to yield Eq. (75).
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Given that—in mathematical terms—this result is arrived
at almost trivially, it is worth pausing to ask why it does not
seem to have been previously noted in the literature on
relativistic fluid dynamics. Part of the answer may be that
the deployment of nuclear reaction networks within
numerical relativity codes is not yet widespread, so that
the issue simply may have not been noticed. But another,
perhaps more important, reason may be the manner in
which the relationship between relativistic and Newtonian
fluid dynamics is often conceptualized.
[In fact, the energy variable here denoted E ¼ G −D has

been widely (though not universally) used at least since the
seminal introduction of conservative formulations to rela-
tivistic numerical hydrodynamics in spherical symmetry
[23] and in three spatial dimensions [24]. The motivation
universally cited, when one is given, is numerical: use of
the relativistic total fluid energy density, with a strongly
dominant baryon rest mass density, can make it numerically
challenging to resolve relatively small changes in the
internal energy density. However, the presence of a source
term in the continuity equation for mass density (as
opposed to baryon number density) due to nuclear com-
position changes seems to have gone unremarked in the
literature. And perhaps surprisingly, even the fact that
the relativistic E ¼ G −D reduces to the Newtonian
eþ ρv2=2, with the correct factor of 1=2 in the kinetic
energy—unlike G itself—also seems not to have been
explicitly noted.]
Consider for a moment the Newtonian perspective,

applied to mass elements, on its own terms. Equation (1)
represents a first independent Newtonian principle: conser-
vation of mass. Newton’s second law, a second independent
principle, is embodied by Eq. (2). However, Eq. (3) typically
would not be regarded as an independent principle. Instead,
the first law of thermodynamics, expressed in Lagrangian
form appropriate for mass elements, Eq. (16), would be
regarded as a third independent principle, with Eq. (3)—
conservation of internalþ kinetic energy—following
as a derived consequence of combining Eq. (16) with
Eqs. (1) and (2).
Contrast this with the relativistic perspective on fluids,

which starts conceptually from different principles. Mass,
recognized as just another form of energy, is not conserved.
However, there is conservation of baryon number—or for
present purposes, conservation of nucleons—a principle
expressed in Eq. (50). The other major independent
principle is covariant local conservation of energy-
momentum, expressed by the vanishing divergence of
the fluidþ neutrino stress-energy tensor. With the unit
normal nμ to the spacelike slice regarded as the four-
velocity of an Eulerian observer, the projections
γjν∇μTμν ¼ ðAΣνÞj and −nν∇μTμν ¼ QΣν respectively give
Eulerian momentum and total fluid energy conservation, as
expressed in Eqs. (57) and (65). (Projections orthogonal
and parallel to a Lagrangian observer’s four-velocity uμ

yield instead the relativistic Euler equation for velocity and

the first law of thermodynamics as applied to a perfect
fluid.) Conservation of internalþ kinetic energy, Eq. (75),
is once again a derived consequence, this time a combi-
nation of Eq. (65) and average baryon mass m times
Eq. (50), that is, Eq. (71).
There is an almost irresistible temptation, widely and

understandably followed in the literature, to relate
Newtonian and relativistic fluid dynamics as pictured in
Fig. 1, which perhaps takes its cues from the Newtonian
perspective: conservation of mass corresponds to baryon
number conservation, Newton’s second law corresponds to
conservationofmomentum, and conservation of “Newtonian
total energy” (internalþ kinetic) corresponds to relativistic
total energy. But in fact the first and third elements of this
correspondence fail, due to the fundamental relativistic
insight that mass is a form of energy. The phenomenon of
nuclear energy generation cautions that conservation of
baryon number is not conservation of mass. And relativistic
total energy G is fundamentally different from internalþ
kinetic energyE, both because of the presence of restmass in
G, and because of the low-velocity limit in Eq. (69), which
exhibits twice the Newtonian kinetic energy.
The more consistent relationship between relativistic

and Newtonian fluid dynamics is that pictured in Fig. 2.
Newtonian conservation of mass is to be regarded not as an
independent principle, on a par with conservation of baryon

FIG. 1. A common but problematic correspondence between
Newtonian and relativistic fluid dynamics.

FIG. 2. A conceptually sound Newtonian limit of relativistic
fluid dynamics.

CHRISTIAN Y. CARDALL PHYSICAL REVIEW D 96, 123014 (2017)

123014-8



number; but as a derived consequence, the strictest limit of
relativistic conservation of energy, Eq. (65) with Λ → 1,
e; p → 0, and α → 1, βi, Kij → 0, and γij representing only
flat-space curvilinear coordinates [25]. Relativistic con-
servation of momentum does indeed correspond to
Newton’s second law. And conservation of relativistic
internalþ kinetic energy properly limits mathematically
to conservation of Newtonian internalþ kinetic energy—
a derived quantity in both cases.
When adding nuclear energy generation to numerical

relativity and fluid dynamics codes, the source term used in
the Newtonian case admittedly could be blithely added to
whatever energy equation is employed without significant
numerical consequence; but conceptual clarity is worth-
while for its own sake. True, the difference between baryon
number density n and its proxy in terms of mass density
and atomic mass unit, ρ=mu, is quantitatively insignificant
in many or even most expressions. But the recurrent
appearance of factors of mu is ugly [29], and a source
of cognitive dissonance in the context of nucleosynthesis
when one knows that nuclear energy generation is a
nontrivial part of the problem. Moreover, when it comes
to nucleosynthesis, the distinction is not trivial concep-
tually: when one does write down a relativistic balance
equation for mass density, Eq. (70) or (71), the resulting
source term, Eq. (74), is none other than nuclear energy
generation itself. Equation (75) is a relativistic energy
equation that separates nuclear energy generation in a
conceptually coherent and self-consistent way, which limits
to Eq. (3) and maintains some features familiar from
Newtonian numerical experience, but remains applicable
to more extreme astrophysical conditions.
The Department of Energy will provide public access to

these results of federally sponsored research in accordance
with the DOE Public Access Plan [30].
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APPENDIX INCLUDING BINDING ENERGY
IN THE INTERNAL ENERGY

While the focus of this paper is on the treatment of
nuclear energy generation as a separate source term in an
energy equation—the historically common practice when
abundances are evolved with a nuclear network—a few
comments on the alternative discussed in Sec. I are in order.
As mentioned there, nuclear binding energy can be
included in the internal energy instead of as a separate
source term, even when a nuclear network is employed; this
would be accomplished with a binding energy density term
b in the internal energy, a sum over species like Eq. (25).
This complicates the interface to the equation of state, in
that the internal energy acquires a dependence on all
abundances fYag. But one might want to do this if, for
example, one is using (e.g. [1,31]) a nuclear network at low
density and a microphysical equation of state including
nuclear forces at high density (including, for example, a
phase transition to bulk nuclear matter): if the high-density
equation of state includes nuclear binding energy in its
definition of internal energy, then onemightwish tomaintain
consistency with that definition at all densities [32].
In this case, instead of Eq. (43), one would have the

stress-energy tensor

Tμν ¼ ðmBnþ ēþ pÞuμuν þ pgμν; ðA1Þ

in which the binding energy per nucleon taken account of in
ē ¼ eþ b is reckoned relative to a fixed reference baryon
mass mB. [The atomic mass unit mu has been used as a
reference in this paper, but this is not the only possible
choice. For instance, the high-density equation of state of
Lattimer and Swesty [33] measures baryon energies relative
to the neutron mass mn, so to match this convention one
would take mB ¼ mn in Eq. (A1), and use binding energies
relative to Aa free neutrons in Eq. (25).] In a derivation
paralleling that in Sec. III, one arrives at Eq. (75) for
internalþ kinetic energy, but with e replaced by ē in
Eqs. (76) and (77) and elsewhere, and no −n _m source
term in Eq. (78).
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