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We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron
stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We
build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to
describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-
Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role,
contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the
Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct
consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity,
which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties,
and, as such, we show that it may be strongly affected by the magnetic field.
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I. INTRODUCTION

The density of matter varies enormously in neutron stars,
from about the density of iron (7.86 g=cm3) on the stellar
surface to values higher than the nuclear saturation density in
the stellar core [1,2]. In the absence of an exact theory of
superdense matter, different theoretical models predict differ-
ent equations of state (EoS) and compositions to describe
neutron stars (NS). Furthermore, the structure of NSs can be
divided into the surface, composed of ions and nonrelativistic
electrons; the outer crust, where the ions form a solid
Coulomb lattice at densities lower than the neutron drip
density ndrip ∼ 4.3 × 1011 g=cm3; the inner crust region
beyond neutron drip density, where neutrons leak out of
nuclei up to densities ∼1014 g=cm3; and, finally, the core
region, typically composedof electrons, protons, andneutrons
forming a relativistic fluid. It is also in the core that exotic
degrees of freedom such as hyperons [3–6], quark matter
[7–11], and superconducting phases might appear [12–14].
With approximately 1 km in thickness, the crust region

of neutron stars has an equation of state relatively well
known; see Refs. [15–17]. In general, the composition, the
structure, and the equation of state of the outer crust are
determined by finding the ground state of cold ionic matter.
In other words, this corresponds to minimizing the Gibbs

energy per nucleon at a given pressure. In this case, one
nucleus occupies a neutral unit Winger-Seitz cell, which
together with the nucleus and the electrons contributes also
to the total energy and pressure of the system. Here, we
describe the ground state of matter in the outer crust of
neutron stars by using the classical work formulated by
Baym et al. [18].
The inner crust of neutron stars begins when neutrons

start to drip out of the nuclei at densities about ndrip. From
this value to densities at the crust-core transition point, one
has very neutron rich nuclei immersed in a gas of neutrons.
In this case, the equation of state is usually obtained with
many-body techniques such as Hartree-Fock, the Thomas
Fermi approximation, and the compressible liquid drop
model (CLDM). In this context, we follow the prescription
of Ref. [19] to describe the structure and composition of the
inner neutron star. The authors in Ref. [19] calculated the
ground state of matter within the CLDMwith Skyrme Lyon
(SLy) effective nucleon-nucleon interaction. It is worth
mentioning that other equations of state for this regime
can be found in Refs. [20,21]. However, the choice of a
particular EoS does not alter our conclusions. In addition, it
is generally accepted that a pasta phase may appear in the
crust-core transition [22–24]. Although the properties of
the inner crust are modified in the presence of pasta phases,
we do not take them into account in this work.
Because of its low-density regime, the crust has just a

small contribution to the total mass in neutron stars [25].
Notwithstanding, the crust region is not only crucial not for
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determining the stellar radius, which is of major present
importance due to large uncertainties in the measurements
of radii in NSs, but the crust also plays a crucial role in
neutron star evolution, its dynamics, and observation.
For example, the crust is related to phenomena such as
glitches [26], the braking index [27], torsion modes
[28–30], magnetic field evolution [31–33], thermal relax-
ation [34], and the cooling of neutron stars [35–37].
Certain classes of neutron stars are associated with very

strong magnetic fields. According to observation of soft
gamma-ray repeaters and anomalous x-ray pulsars, such
stars show surface magnetic fields up to 1015 G [38,39].
These strongmagnetic fields might be generated by dynamo
processes in newly born neutron stars [40], although the
exact origin of such highmagnetic fields is still the subject of
much debate. Moreover, according to the virial theorem, the
magnetic field can reach values of ∼1018 G in the stellar
core. According to Refs. [41,42], strong magnetic fields
modify the equilibrium nuclear composition and the equa-
tion of state in neutron stars. However, as already shown in
Refs. [43,44], the global properties of compact stars, such as
the mass and the radius, do not change significantly with the
inclusion of magnetic field effects in the equation of state
of the dense matter. On the other hand, it was shown in
Refs. [43,45] that the particle degrees of freedom at the core
of stars change drastically with the inclusion of magnetic
fields. Similarly, modifications of the crust properties and
composition induced by magnetic fields can be seen in
Refs. [46,47]. In this case, a more comprehensive study of
the crustal EoS and its corresponding variation due to
magnetic fields would be very desirable. However, it is to
be noted that the inclusion of a crust magnetic field–
dependent equation of state would require a consistent
match with the magnetic field–dependent EoS of the core.
Such analysis, however, requires muchmore insight into the
microscopic of the crust, which is beyond the scope of this
initial discussion of possible observable effects of magnetic
fields in neutron stars.
Strong magnetic fields are also known to considerably

change the structure of neutron stars. The authors in
Refs. [43,44,48–50] evaluated magnetized models of stars
endowed with strong poloidal magnetic fields. In this case,
the Lorentz force induced by the magnetic field makes stars
more massive, and they become oblate with respect to the
symmetry axis. Moreover, effects of toroidal magnetic
fields were addressed in Refs. [51,52]. In this case, the
magnetized stars become more prolate with respect to the
nonmagnetized case. Nonetheless, these works do not
address the effects of strong magnetic fields on the global
properties of the neutron star crust.
In this work, we construct equilibrium configurations of

magnetized stellar models by using the same approach as in
Refs. [48,53]. We make use of spherical polar coordinates
ðr; θ;ϕÞwith origin at the stellar center and the pole located
along the axis of symmetry. We focus on the size and

geometry of the crust of highly deformed strongly mag-
netized neutron stars. In other words, we consider the
different effects of the Lorentz force according to the angle
and radius distribution inside the star.
The Lorentz force is related to the macroscopic currents

that create the magnetic field, acting on the matter that can
be pushed outward or inward. In the first case, we have the
standard and expected effect of the Lorentz force, which
acts against gravity, pushing the matter off center and
making the star bigger on the equatorial plane and smaller
at the pole. However, as we will see, the Lorentz force
reverses direction inside the star, acting inward in the outer
layers of the neutron star. It is important to note that, in
addition to the Lorentz force just described, the magnetic
field will also contribute to the curvature of space-time via
the energy it stores. Note that once the spherical symmetry
is broken in highly magnetized neutron stars the crust
thickness depends on both the coordinate radius r and the
angular direction θ.
The plan of the paper is as follows. In Sec. II we give a

general overview of the Einstein-Maxwell equations that
are required to be solved numerically. In Sec. III, we
present our results for the crust thickness in strongly
magnetized stars. Section IV contains our results for the
thermal relaxation time of the stars discussed in Sec. III.
Our final remarks and conclusions can be found in Sec. IV.

II. STELLAR MODELS WITH AXISYMMETRIC
MAGNETIC FIELD

In this work, we construct models of stationary highly
magnetized neutron stars. Details of the Einstein-Maxwell
equations, numerical procedure, and tests can be found in
Refs. [48,53]. We show here only the key equations that are
solved numerically for the sake of completeness and better
understanding for the reader.
Equilibrium stellar configuration are obtained in general

relativity by solving the Einstein equations,

Rμν −
1

2
gμνR ¼ kTμν; ð1Þ

with R ¼ gμνRμν, Rμν being the Ricci tensor, gμν being the
metric tensor, k being a constant, and Tμν being the energy-
momentum tensor of the system. As we will be dealing
with the macroscopic structure of neutron stars endowed
with magnetic fields, the energy-momentum tensor of the
system is given by

Tμν ¼ ðE þ PÞuμuν þ Pgμν þ
1

μ0

�
FμαFα

ν −
gμν
4

FαβFαβ
�
;

ð2Þ

where the first term in Eq. (2) is the perfect fluid
contribution, with the matter energy density E, the isotropic
fluid pressure P, and the 4-vector fluid velocity uμ.
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The second term represents the purely Maxwell stress
tensor, with Fαβ being the usual Faraday tensor defined
in terms of the magnetic vector potential Aα as Fαβ ¼
∂αAβ − ∂βAα.
According to Refs. [48,53,54], the metric tensor can be

expressed in spherical-like coordinates ðr; θ;ϕÞ within the
3þ 1 formalism as

ds2 ¼ −N2dt2 þ Ψ2r2 sin2 θðdϕ − NϕdtÞ2
þ λ2ðdr2 þ r2dθ2Þ; ð3Þ

with N, Nϕ, Ψ, and λ being functions of the coordinates
ðr; θÞ. The equation of stationary motion (∇μTμν ¼ 0) for
a perfect fluid with pure poloidal field can be expressed
as [48]

Hðr; θÞ þ νðr; θÞ þMðr; θÞ ¼ const; ð4Þ

where Hðr; θÞ is the logarithm of the dimensionless
relativistic enthalpy per baryon, νðr; θÞ ¼ lnNðr; θÞ, and
Mðr; θÞ is the dimensionless magnetic potential, which
determines the magnetic field configuration,

Mðr; θÞ ¼ MðAϕðr; θÞÞ ≔ −
Z

0

Aϕðr;θÞ
fðxÞdx; ð5Þ

with a current function fðxÞ as defined in Ref. [53]. The
Lorenz force induced by the magnetic field is proportional
to −∇Mðr; θÞ. Magnetic stellar configurations are deter-
mined by choosing a constant current function f0. The
magnetic field strength in the star increases proportionally
with f0. Moreover, the macroscopic electric current scale
as jϕ ¼ ðE þ pÞf0.
Note that the choice of a constant current function is the

standard way to self-consistently generate a dipolar mag-
netic field throughout the star, in both the Newtownian
and relativistic formalisms [55,56]. In addition, the effects
of different current functions were already studied in
Ref. [48]. They showed that several more complex dis-
tributions qualitatively generate the same magnetic field
profile, even in the case in which there is no current in the
center of the star (compare the dotted lines in the left panels
of Figs. 11 and 15 in Ref. [48]). With respect to the
quantitative differences, we explore them by changing the
value of f0. There are even more complicated current
distributions that could, in principle, be used, but as shown
by Ref. [48], they do not allow for numerical convergence
due to the highly nonlinear character of Maxwell’s
equations.

III. CRUST THICKNESS OF STRONGLY
MAGNETIZED STARS

We describe the inner crust with the Skyrme (Sky) EoS,
which is based on the effective nuclear interaction SLy of

the Skyrme type. For more details on the composition and
EoS calculation, see Ref. [19]. The structure of the inner
crust, and its EoS, was taken from Baym, Pethick, and
Sutherland (BPS), based upon the Reid potential [18]. To
describe the matter in the neutron star interior in the T ¼ 0
approximation, we choose the Akmal-Pandharipande-
Ravenhall EoS for the core [57], which is composed of
protons, neutrons, electrons, and muons.
The equilibrium state of magnetized objects was dis-

cussed many years ago in Refs. [58,59]. More recently,
many authors have shown that the stellar radius changes
due to magnetic fields, where the star expands in the
equatorial direction and contracts at the pole [43,44,
48–50,53]. However, it is to be noted that the Lorentz
force induced by magnetic fields reverses direction on the
equatorial plane (θ ¼ π=2) of the star [49] and might,
therefore, impact the structure of the crust of neutron stars.
The crust thickness is defined as the difference between

the stellar surface radius and the radius at the base of the
crust where the crust-core transition takes place. As already
calculated in Refs. [22,60], the symmetry energy affects
the size of the inner crust considerably. In addition, in
Ref. [61], the importance of a consistent matching between
the core and the crust regions is shown. Although a more
thorough study along this line would certainly be of
interest, for the purposes of our studies, it is sufficient to
use the the SLy and BPS results, for which the baryon
number density at the crust-core transition is 0.076 fm−3.
To illustrate the effects of strong magnetic fields on the

neutron-star crust thickness, in Fig. 1, we show the crust
thickness in the equatorial plane (θ ¼ π=2), Δreq, as a
function of the central magnetic field, Bc, for stars at fixed
baryon masses of MB ¼ 1.40M⊙ and MB ¼ 2.00M⊙,
respectively. According to Fig. 1, the maximum magnetic
field reached at the center of the star MB ¼ 2.00M⊙ is
1.3 × 1018 G, while a star with MB ¼ 1.40M⊙ has a
central magnetic field of 0.9 × 1018 G. As one can see
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FIG. 1. Thickness of the crust Δreq in the equatorial plane
(θ ¼ π=2) as a function of central magnetic fields for stars at fixed
baryon masses of MB ¼ 1.40M⊙ and MB ¼ 2.00M⊙.
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in Fig. 1, the crust thickness in the equatorial plane ia
always reduced by the magnetic field. Note that stars with
lower masses have a higher crust deformation. This is due
to the fact that these stars have larger crusts extended over
a larger radius and thus are much more easily deformed
through the magnetic fields. On the other hand, for lower
stellar mass, correspondingly lower magnetic field values
are reached at the stellar center. This is because in a
perfectly conducting fluid the magnetic field lines move
with the fluid, i.e., the magnetic field lines are “frozen” into
the plasma, and therefore the magnetic field strength is
proportional to the local mass density of the fluid.
To study the effects of the Lorenz force on the crust of

neutron stars, in Fig. 2, we show the crust thickness as a
function of the polar angle θ for the most magnetized stars
obtained in Fig. 1. We note that we have chosen the highest
magnetic field configuration (i.e., the highest magnetic
field before violating the virial theorem) so as to obtain an
upper limit of the magnetic field effects on the crustal
properties as well as the thermal relaxation of neutron stars.
For smaller fields, the results found here will be qualita-
tively similar; however, the magnitude of the effect will be
reduced, as the deformation of the star is also less
pronounced for less magnetized stars. The horizontal lines
in Fig. 2 correspond to the crust thickness for stars with
baryon masses of MB ¼ 1.40M⊙ and MB ¼ 2.00M⊙, but
without magnetic fields. In this case, the values for the crust

thickness areΔrð1.40Þ0 ¼ 0.994 kmandΔrð2.00Þ0 ¼ 0.604 km,
respectively.
In Fig. 2, we depict stars that are deformed due to

magnetic fields. As was already calculated in Refs. [48,49],
the stellar configurations can strongly deviate from

spherical symmetry due to the anisotropy of the energy-
momentum tensor in the presence of strong magnetic fields.
According to Fig. 2, the crust has a maximum expansion at
θ ¼ π=4. For the less massive star (MB ¼ 1.40M⊙), the
crust expands and becomes larger than its nonmagnetized
counterpart. From this point, the crust thickness is reduced.
At the pole (θ ¼ 0), the Lorenz force is zero by symmetry
(no electric current at the symmetry axis), but the crust
thickness is smaller than in the nonmagnetized case. This is
a geometric effect due to the expansion of the star on the
equatorial plane. On the other hand, the increase of the crust
thickness followed by a reduction at different polar angles
is caused by the inversion of the direction of the Lorentz
force inside the star.
To show the change of the Lorentz force according to its

angular and radius distributions, in Fig. 3, we calculate the
magnetic potential Mðr; θÞ as a function of the coordinate
radius and at different polar angle directions for the same
stars shown in Fig. 2. As a result, in Fig. 3, one observes
that the magnetic potential presents a minimum at higher
angles, for example, at θ ¼ 3π=8 and θ ¼ π=2 (for the star
with MB ¼ 1.40M⊙). These values correspond to angles
for which the Lorentz force reverses sign and, as a
consequence, changes its direction in the star. At lower
polar angles, Mðr; θÞ decreases monotonically, and there-
fore the Lorenz force increases throughout the star, which
leads to an expansion both of the inner and the outer layers
of the star.
In Fig. 4, we show the size of the core for the same stars

as those shown in Fig. 2 and Fig. 3. For a reference, we note
that the radius (coordinate) of the core of an equivalent star
with vanishing magnetic field is 8.41 km (for the MB ¼
2.00M⊙ star) and 9.38 km (for the MB ¼ 1.40M⊙ star).
The results in Fig. 4 indicate that highly magnetized stars
expand their cores progressively from the pole (θ ¼ 0) to
the equatorial plane (θ ¼ π=2) of the star. Note that the
curves have an inflection point at θ ¼ π=4, which
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FIG. 3. Magnetic potential M as a function of the coordinate
radius in different directions inside the stars. The corresponding
stars are depicted in Fig. 2.
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FIG. 2. Crust thickness Δrmag in different angular directions θ
for highly magnetized stars. These objects are the most magnet-
ized stars as depicted in Fig. 1. For a star at a fixed baryon mass
of MB ¼ 1.40M⊙, the central magnetic field is ∼0.9 × 1018 G,
while MB ¼ 2.00M⊙ has ∼1.3 × 1018 G. The horizontal lines
represent the crust thickness for spherical solutions (without

magnetized fields), Δrð1.40Þ0 ¼ 0.994 km and Δrð2.00Þ0 ¼ 0.604 km
for a star with MB ¼ 1.40M⊙ and MB ¼ 2.00M⊙, respectively.
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corresponds to the angle where the Lorenz force reverses
direction inside these stars. One must note, as discussed
above, that, depending on the angle, the Lorentz force may
act differently. For lower angles, since the Lorentz force
decreases monotonically, it acts only repulsively, increasing
both the core and the crust, whereas for higher angles, it has
a minimum after which it acts attractively. Accordingly, for
higher angles, one can see that the net effect of the Lorentz
force on the core is repulsive (even though there is a small
attractive region near the core-crust transition), which
causes the core to expand for all angles in the presence
of a magnetic field (albeit less intensively for higher
angles). As for the crust, we find that for lower angles
its size increases (as the Lorentz force is repulsive in these
regions) but is reduced for higher angles (as the total effect
of the Lorentz force in the crust is attractive for such
angles).
Figure 5 depicts the physical quantities corresponding to

the equation of motion in Eq. (4) as a function of the circular
equatorial radius Rcirc for a star withMB ¼ 2.00M⊙. Rcirc is
defined as Rcirc ¼ λðreq; π=2Þreq, with λ being the metric
potential in Eq. (3) and req being the coordinate equatorial
radius. A detailed discussion about the coordinate system
used in this work can be found in Ref. [53].
The upper plot in Fig. 5 represents a spherical and

nonmagnetized stellar solution. The central plot shows the
quantities from Eq. (4), i.e., C (¼ const), ν, M, and H, but
taking into account magnetic fields. This is the same star as
depicted in Figs. 2 and 4, respectively. In the bottom plot,
we highlight the magnetic potential Mðr; θÞ and show the
radii where the Lorentz force acts inward and outward
inside the star. In all cases, the vertical lines represent the
core-crust transition point and the stellar surface. As one
can see, the star becomes bigger due to magnetic fields.
However, the size of the crust decreases in the equatorial
plane (see also Fig. 2).
For nonmagnetized stars, the magnetic potential is

Mðr; θÞ ¼ 0. In addition, from Eq. (4), one has

Hðr; θÞ þ νðr; θÞ ¼ const ¼ C0. The constant C0 can be
calculated at any point in the star [49]. Since the input to
construct the stellar models is given at the stellar center,
we choose C0 ¼ Hð0; 0Þ þ νð0; 0Þ.
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FIG. 4. Core thickness for the same stars as shown in Fig. 2.
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In the upper plot in Fig. 5, the surface of the star is found
through the condition that the enthalpy goes to zero
Hðr; π=2Þ ¼ 0, and therefore, from the equation of motion,
Eq. (4), one gets ν ¼ C0. In the magnetized case (center
plot), we see that the enthalpy is reduced throughout the
star and it reaches zero on the surface when νþM ¼ C0.
An analysis similar to those described above was already
performed before for neutron stars in Ref. [49] and for
magnetized white dwarfs in Ref. [43].
The bottom plot in Fig. 5 shows the magnetic potential

and the position and the direction (red arrows) of the
Lorentz force inside the star. From the stellar center to the
reversion point (black point), the Lorentz force acts out-
ward, and therefore this part of the star expands. From the
reversion to the crust-core radius (full black vertical line),
the Lorentz force points inward. This also holds true for the
region between the crust-core transition and the stellar
surface (dashed black vertical line). As a result, the Lorentz
force always points inward in the crust region, and there-
fore the crust is reduced in size. As a net effect, the star
becomes bigger in the equatorial plane due to the increase
of the core region.

IV. THERMAL RELAXATION OF MAGNETIZED
NEUTRON STARS

The study and observation of the thermal evolution of
neutron stars have been established as an important tool for
probing the inner composition and structure of compact
stars [62–67]. Many efforts have been dedicated toward a
better comprehension of the thermal processes that may
take place inside of neutron stars as well as the macroscopic
structure effects that could affect the thermal evolution of
such objects [67,68].
Most thermal evolution calculations are performed under

the assumption of spherical symmetry and static structure
composition, although efforts have been taken toward a
self-consistent description of axis-symmetric neutron stars
[68,69] and objects with a dynamic structure evolution
[67]. The work in Ref. [68] shows that the thermal
evolution of axis-symmetric neutron stars may be substan-
tially different from that of spherically symmetric objects.
Even though in the aforementioned paper the breaking of
spherical symmetry is brought on due to rotation, it is
reasonable to expect that a similar effect occurs if the
spherical symmetry is broken due to the magnetic field as
long as the resulting system also has an axis-symmetric
structure.
A particularly interesting result, discussed in Ref. [68], is

the modification of the core-crust coupling time in axis-
symmetric neutron stars. The core-crust coupling time is
given by the duration it takes for the core and the crust of
neutron stars to become isothermal. Because of the differ-
ence in composition between the core (comprised of
hadrons and leptons, and possibly of deconfined quark
matter [66]) and the crust (mostly heavy ions in a

crystalline structure and unbound neutrons in the inner
crust), these two regions of the star have very distinct
thermal properties, with substantially different neutrino
emissivities, thermal conductivity, and specific heat [63].
Because of such differences, ordinarily the crust acts as a
blanket, keeping the star’s surface warm while the core
cools down due to stronger neutrino emission. Eventually,
the cold front, originating in the core, arrives at the crust,
cooling it off as it moves to the surface. At this moment, a
sudden drop in the stellar surface temperature is expected.
Such a drop signals the moment in which the neutron star
interior (core and crust) is thermalized. The magnitude of
the temperature drop depends on whether or not fast
cooling processes (mainly the Direct Urca process [62])
take place inside the neutron stars as well as how pervasive
superfluidity/superconductivity is in the core. The presence
of fast cooling processes would lead to a deeper and sharper
surface temperature drop, whereas the absence of fast
processes (slow cooling) affects a smoother drop in surface
temperature. The core-crust coupling time, also referred to
as the cooling relaxation time, has been studied extensively
in Ref. [70], in which the authors find that the relaxation
time, τw, may be written as

τw ¼ αt1; ð6Þ
where t1 is a characteristic time that depends solely on
crustal microscopic properties such as thermal conductivity
and heat capacity. It is also sensitive to neutron pairing,
which may be present in the crust. It is important to note
that, as pointed out in Ref. [70], the constant t1 is almost
independent of the neutron star model. This is reasonable
since, regardless of the uncertainties with respect to the
high-density EoS, the composition of the crust is fairly
known and understood. Note, however, that the work [70]
did not consider the effects of magnetic fields on the
microscopic properties of the crust, which could in prin-
ciple affect t1. We expect, however, that the inclusion of
magnetic field effects on microscopic properties of the
crust would primarily affect the thermal conductivity, as the
low-mass electrons are more susceptible to magnetic field
effects and are the prime agents in heat conduction in the
crust. We believe that the magnetic field would introduce a
direction dependence for the thermal conductivity, but it
should not significantly change the magnitude of conduc-
tivity, which is most sensitive to the onset of neutron
superfluidity in the crust. This quantity should remain
mostly unchanged, since the magnetic field will have little
effect on the neutron distribution. Furthermore, since in this
work we are primarily concerned with the relaxation time
of the whole crust and, thus, will be taking into account
angular averaged quantities, as will become clear in the
further sections, we expect that potential effects of the
magnetic field on t1 should not change our general
conclusions. The constant α depends on stellar macroscopic
properties and is given by

B. FRANZON, R. NEGREIROS, and S. SCHRAMM PHYSICAL REVIEW D 96, 123005 (2017)

123005-6



α ¼
�

ΔR
1 km

�
2
�
1 −

rg
R

�
−3=2

; ð7Þ

withΔR being the crust thickness and where rg ¼ 2GM=c2

is the gravitational radius, with M being the gravita-
tional mass.
In Ref. [70], it is found that the neutron star relaxation

time (tw) scales with the size of the crust according to
Eq. (6), more or less quickly, depending on how strong the
superfluid effects are. Furthermore, it was also shown that
the same conclusions hold for fast or slow cooling.
Given the results put forth in Refs. [70,68], in addition

to the results we show in this work regarding the crust
properties of magnetized neutron stars, it is only natural to
consider how the magnetic field, and the changes it brings
about, would affect the relaxation time. For this reason, we
follow the study of Ref. [70] using the crust properties
of magnetized neutron stars, as discussed in the sections
above. One should note that the study presented here only
establishes an upper limit for the thermal relaxation time
for magnetized neutron stars. The reason for this is that,
whereas the results in Ref. [70] were obtained for spherical
symmetric stars, this is not the case for magnetized neutron
stars that have a deformed axis-symmetric structure. In any
case, the change in the crust thickness should allow us to
make a reasonably good estimate of the relaxation time of
such objects.
To estimate how the modification of the crust properties

will affect the relaxation time, in Fig. 6, we consider the
average crust thickness, ΔR ¼ P

ΔrmagðθÞ=Nθ, as a func-
tion of the stellar magnetic field. In other words, the
average ΔR is calculated for each value of the magnetic
field, where ΔRcðθÞ is the angular-dependent (0 ≤ θ ≤ 2π)
crust thickness and Nθ is the number of points in θ.
As Fig. 6 shows, the crust becomes, on average, thinner

formoderately highmagnetic fields and thicker for the larger
values of Bs. In this context, thinner and thicker are to be

considered with respect to those of an equivalent star with
vanishing magnetic field. This is different than what
happens in a(n) (also axially symmetric) rotating neutron
star, the crust of which always gets thicker with the increase
of the rotational frequency [68]. We believe that the reason
for such a difference is connected to the Lorentz force
induced by the current distribution inside the star. For the
magnetic fields studied in this paper, the Lorentz force is
attractive in the crust (same direction as the gravitational
force), being stronger in the equatorial direction. Thismeans
that the crust will tend to become thinner on average for
highermagnetic fields. On the other hand, onemust note that
the electromagnetic field in a general relativistic scenario has
a dual role: it generates an electromagnetic force (in this
case, in the form of the Lorentz force, as just discussed),
and with the electromagnetic energy, it contributes to the
curvature of space-time (see Refs. [71,72] and references
therein for a more detailed discussion). Therefore, there are
two competing effects: one tending to thin the crust and
another causing it to be thicker (both on average). For
moderately high magnetic field, the former one is stronger,
and the crust becomes thinner (on average), whereas the
latter is dominant for very high magnetic field, causing the
crust to become thicker (also on average). Evidently, the star
with 1.40M⊙, which has a lower gravity (i.e., curvature) is
more susceptible to magnetic field effects and thus has a
more pronounced effect, as illustrated in Fig. 6.
Following the steps of Ref. [70] and using the average

crust thickness, we now estimate the upper limit for the
relaxation time of magnetized neutron stars. For that, as in
Ref. [70], we consider three situations, identified by three
different values for the normalization constant t1, namely,
t1 ¼ 28.8 yr (case 1), associated with absence of super-
fluidity in the crust; t1 ¼ 11.1 yr, associated with weak
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FIG. 6. Average crust thickness for different values of surface
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FIG. 7. Relaxation time for the 1.40M⊙ star. The three curves
indicate the three cases investigated, namely, t1 ¼ 28.8 yr
(case 1), associated with absence of superfluidity in the crust;
t1 ¼ 11.1 yr, associated with weak superfluidity in the crust
(case 2); and t1 ¼ 8.2 yr for the case of strong crustal super-
fluidity (case 3).
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superfluidity in the crust (case 2); and t1 ¼ 8.2 yr for the
case of strong crustal superfluidity (case 3). The results are
shown in Figs. 7 and 8 for the 1.40 and 2.0M⊙ stars,
respectively.
As expected, due to quadratic dependence on the crust

thickness, the relaxation time initially decreases as a
function of the magnetic field and increases for higher
values of B. Once again, the 1.40M⊙ star is more
susceptible to the effects of the magnetic field.
If one wants to eliminate the uncertainties associated

with the normalized time (t1, which is connected to the
extent and intensity of superfluidity in the crust), one can
evaluate τw=τ0, where τ0 is the relaxation time for the case
with Bs ¼ 0. This result is shown in Fig. 9.

V. CONCLUSION

In this work, we studied strong poloidal magnetic fields
effects on the global structure of the crust in stationary
highly magnetized neutron stars. We self-consistently

account for the Lorentz force, with current density bounded
within the star, by solving the coupled equilibrium equa-
tions for magnetic and gravitational fields consistently,
taking into account the stellar deformation due to anisot-
ropies induced by magnetic fields. We have employed
typical and well-known equations of state to describe the
inner and the outer crust of neutron stars.
We found that the size of the crust changes according

to its angular-dependent distribution inside the star. The
magnetic force is zero along the symmetry axis, and its
direction depends on the current distribution inside the star.
Moreover, the magnetic field changes its direction, and
therefore the Lorenz force reverses the direction inside the
star. In our case, this can be seen from the change in
behavior of the magnetic potential Mðr; θÞ around
Rcirc ∼ 10 km in Fig. 5.
In this work, we have taken steps to estimate how the

magnetic field and the consequent modification of the crust
and space-time of the neutron star may affect the thermal
evolution of neutron stars. In addition to the expected
effects that a magnetic field may have on the microscopic
composition, we have shown that the change in crust
geometry may be very relevant to the overall cooling of
neutron stars. Using the crust average thickness as a
parameter, we estimated the upper limit for the thermal
evolution relaxation time, which is the time scale for the
core-crust thermal coupling. We have found that the crust
thickness (on average), as a function of the quantity
responsible for the breaking of spherical symmetry (the
magnetic field in this case), gets smaller before growing.
This is substantially different from other deformed axially
symmetric neutron stars, such as rotating objects for
instance. In the latter case, the crust gets always thicker
as a function of the spherical symmetry breaking quantity
(rotation/angular momentum in that case). We conclude
that the reason for such behavior lies in the dual role of
electromagnetic field in a general relativistic scenario, the
energy of which contributes to curvature in addition to the
electromagnetic traditional interaction. We have found that
for the studied stars, there are two competing effects: one is
the Lorentz force that tends to make the crust thinner,
whereas the gravitational contribution of the magnetic field
tends to make the crust thicker. For moderately high
magnetic fields, the former wins, and the crust gets thinner
on average, whereas for extreme values of B, the latter is
dominant, making the crust thicker overall. This behavior is
reflected in our estimates of the core-crust coupling time,
which, as a function of the surface magnetic field, gets
initially smaller and increases for higher values of B. Such a
result is interesting, since one would be inclined to believe
that the relaxation time would increase monotonically with
B. Note that the overall geometry of the star becomes more
oblate with the increase of B, so such an assumption would
be reasonable. However, due to the Lorentz force acting on
the crust, its size is reduced for moderate values of B.
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Our results represent magnetostatic equilibrium condi-
tions. The stability of these equilibria is beyond the scope
of this initial discussion on the possible observable through
the crust geometry in highly magnetized stars. Note that
purely poloidal or purely toroidal magnetic field configu-
rations undergo intrinsic instabilities related to their geom-
etries [73–82]. In this context, several calculations have
also shown that stable equilibrium configurations are
obtained for magnetic fields composed of both a poloidal
and a toroidal component [83–90]. However, these models
considered a poloidal-dominated geometry, with the toroi-
dal-to-poloidal-energy ratio restricted to less than 10%. As
a result, we do not expect qualitative changes in our results
with the inclusion of toroidal magnetic fields.
In addition, we obtained surface magnetic fields values

above those observed so far in neutron stars. Nevertheless,
according to the virial theorem, the magnetic fields reached
at the center of neutron stars are expected to be as high as
the magnetic field values found in this work. Although we
have restricted our investigation to purely poloidal mag-
netic field, which is not the most general case, we have
shown, in a fully general relativity way, that strong
magnetic field significantly affects the crust geometry
and its size. As a result, the thermal properties of these

objects such as the cooling relaxation time are affected
correspondingly.
Evidently, our calculations should be seen as an upper

limit for the relaxation time, since full thermal evolution
calculations such as in Ref. [68] would be necessary. In any
case, the interesting behavior of the crust geometry war-
rants further investigation and shows that the thermal
behavior of magnetized neutron stars may not be straight-
forward. Studies in which the magnetic field changes over
time may lead to even more interesting and unexpected
behavior. Current efforts are being made toward the
investigation of different current distributions (which
may lead to the Lorentz force having a different effect)
as well as full two-dimensional thermal evolution calcu-
lation of magnetized neutron stars.
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