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The ideal magnetohydrodynamic theorem on the conservation of the magnetic connections between
plasma elements is generalized to relativistic plasmas in curved spacetime. The connections between
plasma elements, which are established by a covariant connection equation, display a particularly complex
structure in curved spacetime. Nevertheless, it is shown that these connections can be interpreted in terms of
magnetic field lines alone by adopting a 3þ 1 foliation of spacetime.
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I. INTRODUCTION

A fundamental property of ideal magnetohydrodynamic
(MHD) plasmas is that two plasma elements connected by a
magnetic field line at a given time will remain connected by
a magnetic field line at any subsequent time. This idea,
which was analyzed in detail by Newcomb [1] for non-
relativistic and special relativistic plasmas, has been the
source of great insight into the behavior of such plasmas.
The importance of the magnetic field line connectivity

stems from the fact that it imposes strong constraints on the
plasma dynamics, in addition to providing the basis for
concepts such as magnetic field line motion [1] and
magnetic topology [2]. The process of the magnetic recon-
nection itself, which is thought to power some of the most
energetic astrophysical phenomena in the Universe by
allowing rapid magnetic energy conversion rates (e.g.,
Refs. [3–6]), relies on the local violation of these magnetic
connections (due to nonideal effects such as plasma resis-
tivity). Therefore, it is clear that the understanding of the
magnetic field line connectivity has significant implications
in a variety of astrophysical systems.
Fostered by recent extensive investigations on the dynam-

ics of relativistic plasmas, the special relativistic formulation
of the connection concept was reconsidered by Pegoraro [7],
who showed how to cast this idealMHDproperty in terms of
magnetic field lines alone by means of a time-resetting
procedure. Furthermore, it was shown in Refs. [8,9] that
more general field line connections can persist even in
nonideal relativistic plasmas, setting important constraints
on the plasma dynamics by forbidding transitions between
configurations with different connectivity.
However, one might wonder if the preservation of the

magnetic field line connectivity remains valid in the pres-
ence of significant gravitational fields. Examples of plasmas
where general relativistic effects are important are those

around black holes [10–15] or in the early Universe
[3,16–18]. In such cases, general relativity must be taken
into consideration in the plasma dynamics. Therefore, the
purpose of this work is to investigate whether the magnetic
connection concept can be applied to plasmas in curved
spacetimes. This is an important inquiry, as in any astro-
physical plasmawhere the gravitational fields are relevant to
the dynamics the fundamental notion of magnetic connec-
tion must be valid in order to properly define magnetic
reconnection.
In the rest of this manuscript, we will show that the ideal

MHD theorem on the preservation of the magnetic con-
nections can be extended to plasmas in a general curved
spacetime. This proof allows us to set the basis for the
definitions of magnetic topology and magnetic reconnec-
tion in high-energy plasmas where general relativity is
important.

II. CONNECTION EQUATION IN
CURVED SPACETIME

The ideal Ohm’s law for plasmas in curved spacetimes is
given by the relation

UνFμν ¼ 0: ð1Þ

While this equation looks like its counterpart in flat
spacetime, we should emphasize that the spacetime curva-
ture plays an essential role in the proper nature of the
electromagnetic and fluid four-velocity fields. The four-
velocity Uν contains information about the curvature of
spacetime through its normalization

UμUμ ¼ gμνUμUν ¼ −1; ð2Þ

where gμν is the metric tensor with signature ð−;þ;þ;þÞ.
Similarly, the electromagnetic field tensor Fμν ¼ ∇μAν −
∇νAμ is now given in terms of contravariant derivatives
∇μ ¼ gμν∇ν and covariant derivatives ∇μ. In general,
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covariant derivatives do not commute [19], and thus it is
convenient to deal with the covariant version of the
electromagnetic field tensor

Fμν ¼ ∇μAν −∇νAμ ¼ ∂μAν − ∂νAμ: ð3Þ

An important implication of the ideal Ohm’s law (1) is
that the electromagnetic field is Lie dragged by the fluid
motion. This can be shown in the following way. We
substitute Eq. (3) into the ideal Ohm’s law (1), which yields

DAμ

Dτ
¼ Uν∇μAν; ð4Þ

where D=Dτ≡Uν∇ν represents the convective derivative
along the fluid motion. Then, taking advantage of the above
relations, we write the convective derivative in curved
spacetime of Fμν as

D
Dτ

Fμν ¼ Uα∇αð∇μAν −∇νAμÞ
¼ Uα∇μ∇αAν −Uα∇ν∇αAμ

þUαRβνμαAβ −UαRβμναAβ; ð5Þ

where the second line takes into account the noncommu-
tative properties of the covariant derivatives. Using the
Bianchi identity for the Riemann curvature tensor,
Rβνμα þ Rβμαν þ Rβανμ ¼ 0, we can rewrite Eq. (5) as

D
Dτ

Fμν ¼ ∇μðUα∇αAνÞ −∇μUα∇αAν

−∇νðUα∇αAμÞ þ∇νUα∇αAμ −UαRβανμAβ:

ð6Þ

Substituting ∇αAν ¼ Fαν þ∇νAα in the above equation,
and making use of Eq. (4), we obtain

D
Dτ

Fμν ¼ ð∇νUαÞFαμ − ð∇μUαÞFαν þ Uαð∇μ∇νAαÞ
− Uαð∇ν∇μAαÞ −UαRβανμAβ: ð7Þ

Finally, exploiting the noncommutative properties of the
convective derivatives, it is straightforward to find that

D
Dτ

Fμν ¼ ð∇μUαÞFνα − ð∇νUαÞFμα; ð8Þ

implying that the electromagnetic field is Lie dragged
with the fluid in the ideal MHD description. A different
derivation, which led to the same conclusion, was given by
Achterberg [20].
Here, we intend to take a step further by showing how

two different fluid elements are connected to each other if
the ideal Ohm’s law is satisfied. Two different fluid

elements are separated by a spacelike event-separation
four-vector dlμ ¼ x0μ − xμ, which establishes simultaneity
between events when dl0 ¼ 0 [7]. This event-separation
four-vector is transported by the fluid motion with the fluid
four-velocity Uμ, and its convective derivative in curved
spacetime can be calculated to be

D
Dτ

dlμ ¼ Uα∇αx0μ −Uα∇αxμ

¼ Uα∂αx0μ −Uα∂αxμ þ UαΓμ
αλx0λ −UαΓμ

αλxλ

¼ U0μ −Uμ þ UαΓμ
αλdlλ; ð9Þ

where Γμ
αλ are the Christoffel symbols associated

to the metric gμν. Recalling that x0α ¼ xα þ dlα, we have
U0μ ¼ Uμðxα þ dlαÞ. Moreover, from the definition of
derivative, Uμðxα þ dlαÞ − UμðxαÞ ¼ dlν∂UμðxαÞ=∂xν as
dlα → 0. Therefore, we can rewrite Eq. (9) as

D
Dτ

dlμ ¼ dlλ∇λUμ; ð10Þ

which shows how the event-separation four-vector dynami-
cally propagates along the fluid motion.
We are now in the position to show that if the event-

separation four-vector dlμ is chosen in such a way that
dlμFμν is initially zero, then dlμFμν is always zero. Indeed,
by writing the convective derivative in curved spacetime of
the quantity dlμFμν as

D
Dτ

ðdlμFμνÞ ¼ Uαð∇αdlμÞFμν þ dlμUα∇αFμν; ð11Þ

we can directly use Eqs. (8) and (10) to obtain

D
Dτ

ðdlμFμνÞ¼dlαð∇αUμÞFμνþdlμð∇μUαFνα−∇νUαFμαÞ;
ð12Þ

which leads us to the connection equation

D
Dτ

ðdlμFμνÞ ¼ −ð∇νUαÞðdlμFμαÞ: ð13Þ

From this equation, it follows that if initially we have

dlμFμα ¼ 0; ð14Þ

then DðdlμFμνÞ=Dτ ¼ 0 at every time, implying that
dlμFμα will remain null at all times (regularity properties
of the four-velocity field Uα are assumed). This math-
ematical statement represents a generalization of the ideal
MHD theorem on the conservation of the magnetic con-
nections between plasma elements [1] for a relativistic
plasma in curved spacetime.
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Equation (13) generalizes the connection equation in flat
spacetime derived in Ref. [7]. It provides also a path for
generalizing the special relativistic extended MHD theory
developed in Refs. [8,9] to curved spacetime. However,
while the connection equation (13) in the flat spacetime limit
has a well-defined meaning, its interpretation in curved
spacetime is more subtle. In flat spacetime, if there is
simultaneity between two events, the condition (14) yields
the vectorial conditions dl⃗ · E⃗ ¼ 0 and dl⃗ × B⃗ ¼ 0, the latter
of which implies that the connection between plasma
elements is established by the magnetic field lines. This
result is generally expressed by saying that the magnetic
field lines are “frozen” into the plasma. On the other hand,
the condition (14) has more complex implications in curved
spacetime, and its interpretation in terms of magnetic field
lines alone requires a specific choice in the way that the
electric and magnetic four-vector fields are defined in an
arbitrary spacetime.

III. MAGNETIC CONNECTIONS

In order to formulate this generalization of the ideal
MHD frozen-in theorem [1] in terms of magnetic field
connections, we analyze Eqs. (13) and (14) using two
different definitions of the electric and magnetic four-
vectors. By taking projections of the electromagnetic field
tensor onto different hypersurfaces, we highlight the con-
ditions that allow us to specify the connection concept in
curved spacetime in terms of magnetic field lines alone.

A. Electromagnetic field projection onto the fluid

It is often convenient to define covariant electric and
magnetic four-vectors by projecting the electromagnetic
field onto hypersurfaces orthogonal to the fluid four-
velocity. In thisway, the aforementioned four-vectors reduce
to the electric and magnetic fields in a comoving plasma
frame. Following this approach (e.g., Refs. [20–27]), the
electric and magnetic four-vectors can be defined as

Eμ ¼ FμνUν; Bμ ¼
1

2
ϵμναβUνFαβ; ð15Þ

where ϵμναβ is the completely antisymmetric Levi-Civita
tensor, normalized such that ϵ0123 ¼ ffiffiffiffiffiffi−gp

. From the pre-
vious equations, it follows that BαUα ¼ 0 and EαUα ¼ 0.
Therefore, Bα and Eα have only three independent compo-
nents each. It is important to remark that the time component
of Bμ is B0 ¼ 1

2
ϵ0ijkUiFjk ≠ 0 in general, and thus we have

a well-defined magnetic field only when the plasma is at
rest with Ui ¼ 0 (latin indices running from 1 to 3 for
spatial components). We will see how this definition has
repercussions on the magnetic connection concept.
Since the ideal Ohm’s law (1) defines a null electric field

measured by the comoving observer, Eμ ¼ FμνUν ¼ 0, the
electromagnetic field constructed from the definitions (15)
can be written just as

Fμν ¼ ϵμναβUαBβ: ð16Þ

Similarly, the dual of the electromagnetic field becomes

F�
μν ¼ −UμBν þ UνBμ: ð17Þ

Note that in this formalism, the evolution of the magnetic
four-vector, which can be deduced from the homogeneous
Maxwell equation∇μF�μν ¼ 0, is governed by the equation

DBν

Dτ
¼ ð∇μUνÞBμ − ð∇μUμÞBν þUνð∇μBμÞ: ð18Þ

This equation differs from the standard magnetic field
evolution equation in flat spacetime, since the last term
does not vanish as the magnetic four-vector (15) is not
divergence free in general.
We are now in the position to determine the connection

condition (14) under this formalism. Indeed, using Eq. (16),
we duly obtain

ϵμναβdlνUαgβλBλ ¼ 0: ð19Þ

The above condition must be written in terms of the
covariant magnetic four-vector (15), as this is the definition
that coincides with the proper concept of magnetic field for
an observer at rest.
Let us analyze the condition (19) in the frame where

dl0 ¼ 0. This assumption does not affect the generality of
the analysis presented here, since if dl0 ≠ 0 one can always
restore the simultaneity between the two connected plasma
elements by performing the transformation dlμ → dl0μ ¼
dlμ þUμdλ such that in this reference frame dl00 ¼ 0.
Indeed, due to the validity of Ohm’s law UνFμν ¼ 0, this
transformation keeps unmodified the connection equa-
tion (13). Therefore, we can proceed by evaluating the
time component of Eq. (19), which gives a scalar equation
with the form

ϵ0ijkdliUjðgk0B0 þ gkmBmÞ ¼ 0; ð20Þ

where we have explicitly written every component of the
metric. In general, a metric can have gk0 ≠ 0, as is the case
for the spacetime of a rotating black hole. Also, a general
spacetime can have gij ≠ 0 for i ≠ j. Likewise, the spatial
components of Eq. (19) produce the equation

ϵ0ijkdlj
�
gk0B0 þ gkmBm −

Uk

U0
g00B0 −

Uk

U0
g0mBm

�
¼ 0:

ð21Þ

With the help of the constraint BαUα ¼ B0U0 þ BiUi ¼ 0,
the above equation (21) can be finally written as
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ϵ0ijkdljχkmBm ¼ 0; ð22Þ

where χ is a symmetric matrix depending on the fluid
velocity, with components given by

χij ¼ gij þ g00
UiUj

ðU0Þ2 −
1

U0
ðUig0j þ Ujg0iÞ; ð23Þ

while U0 can be obtained from the normalization of the
velocity

U0 ¼ −
g0i
g00

Ui þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
g0i
g00

Ui

�
2

−
gij
g00

UiUj −
1

g00

s
: ð24Þ

We can further analyze the condition (22). While this
condition reflects the connectivity statement for a plasma
that obeys the ideal Ohm’s law (1), its interpretation is not
straightforward and in general cannot be done in terms of
the standard magnetic field alone. Indeed, Eq. (22) shows
that the connection between plasma elements occurs
through the vector field χijBj and not the magnetic field.
The behavior of the field χijBj is rather complicated and in
general depends on the plasma fluid velocity. Furthermore,
it is difficult to understand its large dependence on different
possible spacetimes where the plasma is moving.
However, two interesting limits should be noticed from the

above equations. The first one is the limit of plasma at rest,
i.e., Ui ¼ 0. In this case, Eq. (20) is trivially satisfied, while
Eq. (22) establishes that plasma elements are connected
through the field gijBj. This result is analogous to the
magnetic connections in flat spacetime. The second interest-
ing limit is for a symmetric and static spacetime, where gij ¼
giiδij and g0i ¼ 0. Spacetimes that satisfy those conditions
are, for example, the Schwarzschild black hole metric, the
cosmological Friedman-Lemaître-Robertson-Walker metric,
wormholes, etc. [19]. In these cases, Eq. (20) simplifies to
ϵ0ijkdliUjgkkBk ¼ 0, whereas Eq. (22) is now written in
terms of χij ¼ giiδij þ g00UiUj=ðU0Þ2. Even in this sim-
plified limit, the connections are established by a complex
field that depends on the fluid velocity and the spacetime
metric.

B. 3 + 1 foliation of spacetime

In order to avoid the above difficulties,we explore another
way to define the electric andmagnetic four-vectors. Indeed,
as shown by Thorne and Macdonald [28], there are sit-
uations in which it is convenient to implement a 3þ 1
decomposition of plasma and electromagnetic fields by
projecting every physical vector and tensor onto timelike
and spacelike hypersurfaces of themetric, in such away as to
obtain a set of plasma equations that resemble those found in
special relativity (e.g., Refs. [3,15,28–42]).
To this purpose, let us consider a general spacetime

described by the metric [19,43]

ds2¼ gμνdxμdxν¼−α2dt2þ γijðdxiþβidtÞðdxjþβjdtÞ;
ð25Þ

where α is known as the lapse function, βμ ¼ ð0; βiÞ is the
shift vector (related to nonstatic spacetimes), and γij is the
induced three-metric on the spacelike hypersurfaces Σt of
constant time t. The timelike unit vector field normal to Σt
is defined by a timelike vector field nμ that satisfies the
normalization condition nμnμ ¼ −1. This vector field has
the form nμ ¼ −α∇μt ¼ ð−α; 0; 0; 0Þ, nμ ¼ ð1=α;−βi=αÞ
[28,29], and can be interpreted as the four-velocity of the
local fiducial observer, which is at rest in the absolute
space. The projection tensor, of which the spatial compo-
nents coincide with the components of the three-metric γij,
is defined as [28,29]

γμν ¼ gμν þ nμnν: ð26Þ

Note that the definitions of nμ and γμν satisfy the conditions
βμnμ ¼ 0 and nμγμν ¼ 0. Then, the 3þ 1 decomposition is
achieved by projecting every vector/tensor onto nμ (time-
like hypersurfaces) and onto γμν (spacelike hypersurfaces).
Under this 3þ 1 formalism, the electric and magnetic

four-vectors are defined as [28,29]

Eμ ¼ nνFμν; Bμ ¼ 1

2
nρϵρμστFστ: ð27Þ

In this description, both fields are spacelike vectors since
nμEμ ¼ 0 and nμBμ ¼ 0. Furthermore, we have always
B0 ¼ 0 by the definition of nμ. Therefore, the magnetic
four-vector defines a well-behaved magnetic field. On the
other hand, in this 3þ 1 formalism, the electric field does
not vanish. Thus, the three-dimensional expressions of the
electric and magnetic fields turn out to be the standard ones
(as their counterparts in flat spacetimes). Note that similar
decompositions can be performed for other plasma quan-
tities as well. For example, the four-vector plasma fluid
velocity can be written as (e.g., Refs. [39–42])

Uμ ¼ αΓnμ þ Γγμνvν; ð28Þ

with the Lorentz factor Γ¼½α2−γijðβiβjþ2βivjþvivjÞ�−1=2
and vμ ¼ ð0; viÞ, where vi are the spatial components of the
fluid velocity.
From the previous definitions, we can decompose the

electromagnetic field tensor as

Fμν ¼ Eμnν − Eνnμ − ϵμνρσBρnσ; ð29Þ

while its dual can be expressed as

Fμν� ¼ Bμnν − Bνnμ þ ϵμνρσEρnσ: ð30Þ
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Using Eq. (30) in the homogenous Maxwell equation, it is
straightforward to obtain a covariant magnetic four-vector
field equation that yields the standard three-dimensional
version of the magnetic field evolution equation (see, e.g.,
Ref. [39]), since in this case Bμ is divergence free. This
indicates that the magnetic four-vector given in Eq. (27) is
suitable to recast the theorem described in Sec. II in terms
of the standard magnetic connection concept.
We can now analyze the connection condition by

substituting Eq. (29) into Eq. (14). This gives us

nμðdlνEνÞ − ϵμνρσdlνBρnσ ¼ 0; ð31Þ

where we have used that dlμnμ ≡ 0 for simultaneous events
[the simultaneity between two connected plasma elements
can again be always obtained by means of the time-
resetting dlμ → dl0μ ¼ dlμ þUμdλ which leaves the con-
nection equation (13) unaltered]. Therefore, we can analyze
the projections of Eq. (31) onto timelike and spacelike
hypersurfaces. In the first case, by contracting Eq. (31) with
nμ, we find

dlνEν ¼ dliEi ¼ 0: ð32Þ

This implies that the electric field is orthogonal to the
event-separation vector, in analogy to ideal MHD plasmas
in flat spacetime [7]. On the other hand, the spacelike
hypersurface projection of Eq. (31) yields

ϵ0ijkdljBk ¼ 0; ð33Þ

as n0 ¼ 1=α, B0 ¼ 0, and dl0 ¼ 0 for simultaneity.
Equation (33) tells us that, under this 3þ 1 foliation of
spacetime, the connection between plasma elements occurs
through the magnetic field Bi. This result reveals that the
condition (31) is the natural general relativistic extension of
the connection condition for classical and special relativ-
istic plasmas. Therefore, the 3þ 1 formalism allows us to
interpret the ideal MHD connection theorem in terms of
magnetic field lines alone even for relativistic plasmas in
curved spacetimes.
Finally, we prove that the condition (32) is consistent

with the ideal Ohm’s law. Substituting the electromagnetic
field tensor (29) and the fluid four-velocity (28) into the
Ohm’s law (1), we get

αEν − nνγμβvβEμ − ϵμνρσγ
μ
βvβBρnσ ¼ 0: ð34Þ

Contracting it with dlν, we obtain

αdlνEν ¼ ϵμνρσdlνγμβvβBρnσ: ð35Þ

Both sides of the above equation vanish, the left-hand side
by Eq. (32) and the right-hand side by Eq. (33). Thus, the
above equation is identically satisfied.

IV. DISCUSSION

The connection equation (13), with its solution (14),
allows us to prove that, in a general curved spacetime, there
exist connections between plasma elements that are
dynamically preserved if the plasma satisfies the ideal
Ohm’s law.
The identification of these connections with properly

defined magnetic connections is not straightforward and
must be worked out carefully. In flat spacetime, the
magnetic connection concept is well defined when we
refer to a frame where the connected elements are simulta-
neous. This continues to be the case even when the
reference frame is changed, since the validity of the ideal
Ohm’s law allows us to reset the time in such a way as to
restore simultaneity without changing the connectivity of
the plasma elements [7]. Therefore, fundamental concepts
introduced for nonrelativistic plasmas, such as magnetic
field line motion, magnetic topology, and magnetic recon-
nection, can be adopted also in special relativistic regimes.
In order to apply these concepts to general relativistic

plasmas, the magnetic four-vector field has to be defined in
such a way as to recover the standard notion of magnetic
connection. We have shown that this can be done through a
3þ 1 foliation of spacetime. Indeed, the magnetic four-
vector defined in (27) allows us to maintain, in a curved
spacetime analog fashion, the concepts related to the
magnetic field line connectivity that have been adopted
for nonrelativistic and special relativistic plasmas. On the
contrary, if other definitions of the magnetic four-vector
field are invoked, the standard magnetic connection con-
cept is not guaranteed to hold. This is the case for the
definitions (15), where the electric and magnetic fields
measured in a comoving plasma frame are considered.
These different definitions lead to a redefinition of the
connected fields that do not coincide in general with the
magnetic connections (a part for very specific cases as
the limit of plasma at rest).
On account of these reasons, the 3þ 1 decomposition of

the electromagnetic and plasma quantities results to be the
most suitable approach to formulate an idealMHD frozen-in
theorem in general relativity. This formalism also provides a
straightforward way to generalize the magnetic connection
hypersurfaces [27,44], which are two-dimensional hyper-
surfaces that satisfy the connection condition (14) and
reduce to magnetic connection lines in a chosen reference
framewhen taking sections of these surfaces at a fixed time.
Indeed, substituting the decomposed electromagnetic field
(29) into the ideal Ohm’s law (1), we find

UμFμν ¼ ðUμnμÞEν − nνðUμEμÞ − ϵμναβUμBαnβ ¼ 0:

ð36Þ

Contracting this equation with nν first, and then with Bν,
we get

MAGNETIC CONNECTIONS IN CURVED SPACETIME PHYSICAL REVIEW D 96, 123004 (2017)

123004-5



UμEμ ¼ 0; BμEμ ¼ 0: ð37Þ

Thus, for a plasma that obeys the ideal Ohm’s law, the
electric andmagnetic four-vectors are orthogonal. The same
is true for the electric and fluid velocity four-vectors. These
two conditions allow us to calculate BμFμν, which turns out
to vanish,

BμFμν ¼ ðBμnμÞEν − nνðBμEμÞ − ϵμναβBμBαnβ ≡ 0: ð38Þ

Therefore,Uμ and Bμ are orthogonal to the electromagnetic
field. Hence, the four-vector event separation dlμ lies in the
hypersurface formed by the four-vectors Uμ and Bμ. This
implies that the magnetic field lines are organized on
magnetic field hypersurfaces which satisfy the connection
equation in any reference frame.
We should emphasize that the proof of the conservation

of the magnetic connections between plasma elements
relies only on the validity of the ideal Ohm’s law and

the homogeneous Maxwell equation. Hence, the magnetic
field line connectivity is preserved under more general
conditions than those required for ideal MHD to hold.
Finally, we remark that the presented treatment of the

magnetic connection concept provides an appropriate frame-
work to study magnetic reconnection in curved spacetime
[15,45]. Accordingly, it is the magnetic field defined by
Eq. (27), and not another quantity, which can be considered
to reconnect in general relativistic systems. For that reason,
we believe that this analysis can help to deepen our under-
standing of magnetic reconnection in high-energy astro-
physical plasmas.
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