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The possibility of a subdominant component of dark matter dissipating energy could lead to dramatic
new phenomenology such as the formation of a dark disk. One rigorous way to assess this possibility and
settle the debate on its feasibility is to include the dissipative dark component in a numerical
hydrodynamical simulation. A necessary input to such a simulation is a prescription including energy
dissipation rates of different processes and rates of processes that change the number densities of dark ions
and atoms. In this article, we study the simplest dissipative dark sector which consists of a dark electron and
proton, both charged under a dark gauged Uð1Þ. We present approximate analytic formulas for energy loss
rates due to Compton scattering, bremsstrahlung, recombination, collisional ionization, and collisional
excitation as well as the rates of number density change. We also include the heating rate due to
photoionization. The work serves as the first step to realize a numerical simulation including a dissipative
dark sector, which hopefully can shed more light on the formation and properties of a dark disk originating
from dark matter self-interactions.
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I. INTRODUCTION

The existence of dark matter is one of the greatest
mysteries in the Universe. Very little about it is known: it is
mostly cold, collisionless, and does not interact directly
with light. Therefore, an increasing number of theoretical
possibilities have been considered. One pressing question
facing dark matter hunters is whether there could be new
possibilities leading to novel phenomenology and search
strategies. Here, we revisit and relax some traditional
assumptions, namely that dark matter is single component
and thus should have no dissipative dynamics due to the
halo shape constraints. Indeed as shown in Refs. [1,2], if
dark matter consists of multiple species, a subdominant
component is still allowed to have dissipative dynamics,
possibly resulting in a dark disk with interesting conse-
quences. Possible effects of such a dark disk and variants of
the scenario have been studied further in Refs. [3–12].
One missing piece in the study of partially dissipative

dark matter is a numerical test of the proposal in hydro-
dynamical simulations. Such a simulation requires a
prescription containing equations governing the evolution
of energy densities and the number densities of each
species in the dark sector, similar to simulations of baryons
based on the radiative cooling rates. Our goal in this article
is to provide such a cooling prescription for the dark sector
as an input to numerical simulations, which could hopefully
shed light on the feasibility of such a multicomponent dark
matter scenario and its variants.
Following Refs. [1,2], we consider the simplest partially

dissipative dark matter scenario with the dissipative dark

sector containing a dark electron (“coolant” C) and a dark
proton (denoted as X), completely analogous to the
ordinary baryonic sector. Both of them feel a dark Uð1Þ
force mediated by a massless dark photon γD. The dark
sector is assumed to be asymmetric, i.e., that there is a
relative overabundance of dark electrons and protons
compared to their antiparticles.
In the early Universe, C and X could become bound into

dark atoms. Yet when galaxies form and dark matter falling
into galaxies is shock heated to the virial temperature, the
dark atoms are ionized and C and X form a dark plasma
distributed throughout the halo. The dark plasma then cools
through Compton scattering of C on the dark cosmic
background photons and through dark bremsstrahlung.
When the temperature drops to around the dark binding
energy, dark recombination happens again. Further cooling
is possible through recombination and ion-atom collisional
processes. In short, cooling of the dissipative dark sector is
basically parallel to that of the ordinary baryons. In this
article, we derive the energy loss rates of radiative cooling
processes that transfer energy from the dark ions and dark
atoms to the dark photon background. We also present
ionization and recombination coefficients (rates of the
ionization and recombination processes) that change the
fractions of dark ions and atoms. These rates can be
incorporated into cosmological hydrodynamical simulations
such as Illustris [13,14], Eagle [15], and Horizon-AGN [16].
The scenario we study resembles the traditional atomic

dark matter models [17–22] but with two important
differences: the dark ions and atoms collide to dissipate
energy, and the dissipative sector is only a subdominant
component of dark matter. This is in contrast with
Refs. [23,24], in which all of the dark matter is assumed
to be dissipative. Another recent two-component model of
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dark matter with a dominant noninteracting component
and a dark plasma component in Refs. [25,26] is similar
to our scenario in having multiple species of dark
matter and an unbroken dark Uð1Þ that the interacting
component is charged under. However, the study there
focuses on the parameter space in which the radiative
cooling of the interacting component is ineffective at
astronomical scales.
The derivations presented here are based on several

approximations, which we justify. The goal is to present
relatively simple and easily computable analytic equations
with explicit dependence on the free parameters in the
model, including dark electron mass mC, dark proton mass
mX, dark fine-structure constant αD, and temperature T. As
a consistency check, we show that the equations yield
results agreeing with numerical formulas from the literature
on baryonic radiative cooling when the free parameters take
the standard model values.
Except where otherwise noted, derivations are performed

in natural units, in which ℏ ¼ c ¼ kB ¼ ϵ0 ¼ 1, and final
answers are presented in cgs units, following conventions
in the astrophysics literature. Our notation is summarized in
Table I.
The paper is organized as follows. In Sec. II we derive or

quote energy loss rates due to Compton scattering, brems-
strahlung, recombination, collisional ionization, and colli-
sional excitation. For processes that change the number
densities of different species, we also present the rates at
which the processes occur. In Sec. III, we quote the rate of
the reverse process, photoionization, that transfers energy
from dark photons to dark atoms. In Sec. IV, we discuss the
parameter space to which our results are applicable and
justify the approximations used in our derivations. We
conclude in Sec. V.

II. COOLING PROCESSES AND RATES

In this section, we calculate the rates at which the light
dark ions, C, lose kinetic energy due to the following
processes:

(i) Inverse Compton scattering: CγD → CγD;
(ii) Bremsstrahlung: XC → XCγD;
(iii) Recombination: XC → HDγD;
(iv) Collisional ionization: HDC → XCC;
(v) Collisional excitation: HDC → H�

DC → HDCγD,
in which H�

D is an excited state of the dark atom. We also
calculate the rates of the processes that change the number
densities of different species.
We assume that the dark plasma is optically thin, i.e., that

dark photons emitted in cooling processes pass through it
without being reabsorbed. We only consider the case with
mX ≫ mC. Thus the reduced mass of the dark atom can be
approximated by mC. We also assume that the dark
electrons’ speeds follow a Maxwell-Boltzmann distribu-
tion. Since the dark electron, C, moves more quickly than
the heavier dark proton, X, the relative speed between the C
and X (orHD) can be approximated by C’s speed. We make
several additional approximations in deriving different
rates. All of the assumptions and approximations are
discussed in more detail in Sec. IV.
Under these assumptions, if σiðvÞ is the cross section of

process i, given that the reactants collide at a relative speed
v, the rate of process i per volume is

Ri ¼ nAnBhσivi; ð1Þ

where nA and nB are the number densities of the reactants A
and B. The h� � �i represents the thermal average. Similarly,
if a collision at a relative speed v leads to an energy loss of
the incident particle, ElðvÞ, the rate of energy loss per
volume is

Pi ¼ nAnBhElσivi: ð2Þ

The thermal averages are performed over the Maxwell-
Boltzmann distribution,

fðvÞ ¼
�
mC

2πT

�
3=2

4πv2e−
mCv2

2T : ð3Þ

A. Inverse Compton scattering

In inverse Compton scattering, an energetic dark electron
scatters off of a dark photon and transfers some of its
energy to the photon. A simple way to compute the energy
loss rate due to this process is to transform to the rest frame
of the electron before the collision. In this frame, as long as
the photon energy is much smaller than the dark electron
mass, the process reduces to Thomson scattering. One can
find the acceleration of the electron due to the incident
electromagnetic radiation and then calculate the power that

TABLE I. Summary of the notation used in the paper.

Symbol Meaning

X Dark proton
C Dark electron
HD Dark hydrogen atom (bound state of X and C)
γD Dark photon
nC Dark electron number density
nX Dark proton number density
nHD

Dark atom number density
σ Cross section
αD Dark fine-structure constant
T Temperature
K Kinetic energy of incident particle before collision
v Relative speed between the reactant particles
mC Dark electron mass
mX Dark proton mass
Ry Dark Rydberg energy: 1

2
α2DmC

a0 Dark Bohr radius: 1
αDmC

P Thermally averaged energy loss rate per unit volume
R Thermally averaged process rate per unit volume
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it radiates. The energy loss rate per volume in the non-
relativistic limit is [27]

PCompton ¼
4ðT − TγÞ

mC
σTnC

π2

15
T4
γ ;

¼ nC
cm−3 1.9 × 10−37 erg=cm3=s

×
T − Tγ

1 K

�
511 keV

mC

�
3
�

αD
10−2

�
2
�

Tγ

1 K

�
4

; ð4Þ

where Tγ is the dark photon background temperature,
which depends on the redshift z. Suppose that the current
dark photon temperature is T0

γ ¼ Tγðz ¼ 0Þ ¼ TCMB=2≈
1.35 K; then TγðzÞ ¼ ð1þ zÞ × 1.35 K. σT is the dark
Thomson scattering cross section,

σT ¼ 8π

3

�
αD
mC

�
2

: ð5Þ

Note that this process does not affect number densities of
dark electrons.

B. Bremsstrahlung

In thermal bremsstrahlung, dark electrons scatter off dark
protons. As an electron is accelerated, it radiates away some
of its initial energy. This process can be treated classically,
provided that we restrict the impact parameter b to

b > bð1Þmin ≡ 2π

mCv
; ð6Þ

the limit set by the uncertainty principle. To the lowest
order, we can assume that the electron’s trajectory is not
modified by the loss of energy and is approximately a
straight line; and we can neglect all forces other than
Coulomb attraction, provided that

b > bð2Þmin ≡ 4αD
πmCv2

; ð7Þ

which can be obtained by stipulating that the change in
velocity due to the acceleration normal to the trajectory is
much smaller than the velocity. Strictly speaking, only

when bð2Þmin ≫ bð1Þmin or, equivalently, the electron kinetic
energy is much smaller than the Ryderberg energy of the
dark atom, can the classical description together with the
straight-line approximation be applied. However, the for-
mula obtained still has the correct parametric dependence
and the correction from a full quantum treatment only
modifies the classical result by a free-free Gaunt factor gff.
In the nonrelativistic limit, the energy loss rate per

volume due to bremsstrahlung is [28]

Pbrems ¼ nXnC
16

3

ffiffiffiffiffiffi
2π

3

r
α3D
m2

C

ffiffiffiffiffiffiffiffiffiffi
mCT

p
ḡff

¼ nC
cm−3

nX
cm−3 3.7 × 10−27 erg=cm3=s

×

�
511 keV

mC

�
3=2
�

αD
10−2

�
3
�

T
1 K

�
1=2

ḡff ; ð8Þ

where ḡff is the thermally averaged free-free Gaunt factor.
As a first-order approximation we take ḡff to be 1, which is
justified in Sec. IV E. As is the case for inverse Compton
scattering, bremsstrahlung does not affect number densities
of dark electrons, so we do not have to compute the
process rate.

C. Recombination

In recombination, a free dark electron and a free dark
proton recombine to form a dark hydrogen atom, radiating
away a fraction of the incident electron’s kinetic energy.
However, the temperature, which is proportional to the
average kinetic energy of the free electrons, does not
change. We estimate the rate, Rrec, at which this process
occurs, which is necessary to keep track of the number
densities of ions and atoms, as well as the kinetic energy
loss rate.
It is standard to derive the recombination cross section

from the photoionization cross section (e.g., Ref. [29])
using the Milne relation, which is a detailed balancing
relation [30]. Below we discuss a simper and more intuitive
method following Ref. [31]. The key point of this method is
that recombination can be treated as a special case of
bremsstrahlung in which the electron radiates enough
energy to become bound to the proton. This argument is
heuristic, as the bremsstrahlung spectrum is derived by
assuming that the electron trajectory is nearly unmodified
by the radiation reaction force, whereas in this case it is
heavily modified as the electron is captured. Nevertheless,
the result obtained has the correct parametric dependence
and only differs from the quantum result by a bound-free
Gaunt factor gbf.
The differential cross section for emitting a dark photon

with frequency ω through bremsstrahlung off of a dark
proton is

dσbrem ¼ 16πα3D
33=2m2

Cv
2ω

dω: ð9Þ

If the dark electron is captured by the proton and recom-
bines into a bound state with principal quantum number n,
the frequency of the dark photon is given by

ωn ¼ K þ α2DmC

2n2
; ð10Þ

where K ¼ mCv2=2 is the initial kinetic energy of the dark
electron. This leads to
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jΔωj ¼ α2DmCΔn
n3

:

Note that Δn is not really a differential but is equal
to unity. Plugging this into Eq. (9) and replacing dω by

Δω
ΔnΔn, the cross section for recombining to an energy level
n is

σrec;n ¼
32πα5D

33=2m2
Cv

2n3ðv2 þ α2D
n2 Þ

: ð11Þ

A full quantum calculation gives the same result multiplied
by a Gaunt factor gbf. The Gaunt factor depends on n and

K=Ry ¼ v2=α2D where the Rydberg energy is Ry ¼ α2DmC

2
.

It is well known that during the recombination epoch of
ordinary baryons before galaxy formation, electrons and
protons dominantly recombine into the 2s or 2p states [32].
Atoms in the 2p state decay to the ground state by emitting
a Lyman-α photon while atoms in the 2s states decay to the
ground state by simultaneous emission of two photons. The
direct recombination into the ground state is negligible since
the density of hydrogen nuclei is very high ∼400 cm−3 (at
z ≈ 1300) and the emitted photons are absorbed very
quickly. Similarly, because the Lyman-α photons usually
get reabsorbed, the rare 2s → 1s transition becomes impor-
tant since neither of the two photons from the 2s decay has
enough energy to excite the atom. The recombination
considered here happens in galaxies with much lower atomic
density and the gas is optically thin (more details can be
found in Sec. IV D). Thus we include recombination to the
ground state as well as to the excited states.

1. Recombination rate

The thermally averaged recombination rate, summed
over all energy levels, is

Rrec

nXnC
≡X∞

n¼1

hσrec;nvi ¼
211=2π1=2α5D
33=2m1=2

C T3=2

Z
∞

0

X∞
n¼1

ue−u
2

u2n3 þ y2n
gbfðn; u2=y2Þdu; y2 ≡ Ry

T
¼ mcα

2
D

2T

≈

8>>>>>>>><
>>>>>>>>:

29=2π1=2α3D
33=2m3=2

C T1=2 ½1.744þ logðy2Þ þ 1
6y2� y ≫ 1

¼ 8.4 × 10−14 cm3

s ð αD
10−2

Þ3ð511 keV
mC

Þ3=2ð105 K
T Þ1=2½1.744þ log y2 þ 1

6y2�;
25=2π1=2α5D
35=2m1=2

C T3=2 ½−4.66 − 15 log y2 þ y2ð5.42 − 14 log y2Þ� y ≪ 1

¼ 1.3 × 10−15 cm3

s ð αD
10−2

Þ5ð511 keV
mC

Þ1=2ð106 K
T Þ3=2½−4.66 − 15 log y2 þ y2ð5.42 − 14 log y2Þ�;

ð12Þ

where in second lines, we have set gbf to be 1 (the
justification can be found in Sec. IV E), approximated
the sum over n using the Euler-Maclaurin formula and
expanded in the indicated limits. The result for y ≫ 1 was
also obtained in Ref. [31].
In Fig. 1, we compare the full formula [first line of

Eq. (12)], the different limits [rest of Eq. (12)], and the
result quoted in Ref. [33], assuming the standard model
parameters. The figure demonstrates that, given the stan-
dard model values, the full formula as a sum over all

energy levels in Eq. (12) matches the numerical formula
in Ref. [33] very well. The analytic formulas in the large
and small y limits agree almost exactly with the full
formula in their valid regimes, and the two limits merge
around T ∼ Ry.

2. Energy loss rate

The thermally averaged (kinetic) energy loss rate per
volume, divided by nC and nX, is given by

104 105 106 107

T (K)

10-15

10-14

10-13

10-12

Eq. 11 w/o approximation (setting g=1)
Abel et al (1997)
Large y approximation
Small y approximation
Rydberg Energy

FIG. 1. Radiative recombination rates as a function of T using
Eq. (12), either the full sum formula (black, solid) or different
limits (large y, red dashed-dot; small y, red dotted), compared to
the fit (blue dashed) of Ref. [33] (which is a fit to the analytic
formula given by Ref. [34]), setting the parameters to the standard
model values. The vertical dashed line corresponds to T ¼ Ry
around which dark recombination happens and the numbers of
ions start to decrease.
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Prec

nXnC
¼
X∞
n¼1

��
1

2
mCv2

�
σrec;nv

�

¼ 211=2π1=2α5D
33=2m1=2

C T1=2

Z
∞

0

X∞
n¼1

u3e−u
2

n3u2 þ y2n
gbfðn; u2=y2Þdu y2 ≡mcα

2
D

2T

≈

8>>>>>>>><
>>>>>>>>:

29=2π1=2α3DT
1=2

33=2m3=2
C

½0.74þ log y2 þ 1
3y2�

¼ 1.2 × 10−24 erg·cm3

s ð αD
10−2

Þ3ð511 keV
mC

Þ3=2ð T
105 K

Þ1=2½0.74þ log y2 þ 1
3y2� y ≫ 1

25=2π1=2α5D
33=2m1=2

C T1=2 ½5þ y2ð2.860þ 14
3
log y2Þ�

¼ 5.4 × 10−25 erg·cm3

s ð αD
10−2

Þ5ð511 keV
mC

Þ1=2ð106 K
T Þ1=2½5þ y2ð2.860þ 14

3
log y2Þ� y ≪ 1;

ð13Þ

where nX, nC are in units of 1=cm3. In deriving the two
limits, we approximate the sum using the Euler-Maclaurin
formula as before. The rates computed using different lines
of Eq. (13) with the standard model parameters are shown
in Fig. 2. Again there is good agreement between our
results and the numerical formula in Ref. [34] within 50%
in the entire T range.

D. Collisional ionization

In collisional ionization, a charged particle collides with
a dark hydrogen atom and ionizes it. The charged particle
can be either a dark proton or a dark electron. Here we
consider only dark electrons since the rate of collisional
ionization due to proton impact is small (see discussion in
Sec. IV H). We use the binary encounter approximation, in

which the dark hydrogen nucleus is ignored and the bound
electron is treated as a free electron at rest. The atom is
considered ionized if the final kinetic energy of the bound
electron is greater than the binding energy. We only
consider ionization from the ground state.
Using the binary encounter approximation, the cross

section can be calculated classically (it was first obtained
by Thomson in 1912, cf., Ref. [35]),

σion;binary ¼
4π

m2
Cv

2

�
1 −

α2D
v2

�
¼ 4πa20xð1 − xÞ; with

x ¼ α2D
v2

¼ Ry
K

; ð14Þ

where a0 ¼ 1=ðαDmCÞ is the Bohr radius. This approxi-
mation can be further improved. For instance, Burgess
accounts for an exchange interaction (due to the fact that
the scattered and ejected electrons are indistinguishable)
and for the fact that the incident electron gains a kinetic
energy (e.g., of the order of the binding energy) due to the
nucleus prior to the collision [36]. More recently, Kim and
Rudd developed the binary-encounter-Bethe (BEB) model,
which combines the binary encounter approximation and
the Bethe theory for fast (v ≫ αD) incident electrons [37].
The total ionization cross section based on the BEB model
is given by

σion;BEB ¼ 4πa20
x

1þ 2x

�
1 − x −

1 − x2

2
ln xþ x log x

1þ x

�
;

with x ¼ α2D
v2

¼ Ry
K

: ð15Þ

We set the differential oscillator strength in the BEB model
to one to get the equation above. This is generally true to
the leading order except for resonances, which are unim-
portant for our discussion. Both cross sections are of the
same order of magnitude but differ by an order one number
numerically. For the purpose of simulation, either formula
can be used since an order one number does not alter the
result significantly.

104 105 106 107

T (K)

1

2

3

4

5

6

7

8
9

10
10-25

Eq. 12 w/o approximation (setting g=1)
Fit from Ferland et al (1992)
Large y approximation
Small y approximation
Rydberg Energy

FIG. 2. Energy loss rate (normalized by nCnX) due to radiative
recombination as a function of T, using Eq. (13), either the full
sum formula (black, solid) or different limits (large y, red dashed-
dot; small y, red dotted), compared to the fit formula in Ref. [34]
(blue dashed), setting the parameters to the standard model
values. As in Fig. 1, the vertical dashed line corresponds to
T ¼ Ry around which dark recombination happens.
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The ionization rate is then

Rion

nCnHD

¼ hσionvi

¼ 27=2
ffiffiffi
π

p

m3=2
C T1=2

f̄ðy2Þ; y2 ¼ α2DmC

2T

¼ 2.2 × 10−7 cm3=s

�
511 keV

mC

�
3=2
�
105 K
T

�
1=2

f̄ðy2Þ; ð16Þ

where nC and nHD
are in units of 1=cm3 and the function f̄ðy2Þ is defined as

f̄ðy2Þ ¼
8<
:
R
∞
y ð1 − y2

u2Þue−u
2

du; for σion;binaryR
∞
y

ue−u
2

1þ2y2=u2

�
1 − y2

u2 −
1−ðy2

u2
Þ2

2
lnðy2u2Þ þ

y2

u2
logy

2

u2

1þy2

u2

�
du for σion;BEB:

ð17Þ

The rate of electron kinetic energy loss per volume, normalized by nCnHD
, is then

Pion

nCnHD

¼ 1

2
α2DmC

Rion

nCnHD

¼ 9 × 10−18
erg · cm3

s

�
αD
10−2

�
2
�
511 keV

mC

�
1=2
�
105 K
T

�
1=2

f̄ðyÞ; ð18Þ

where nC and nHD
are in units of 1=cm3.

In Fig. 3, we compare our energy loss rates based on
either the cross section in Eq. (14) or (15) with the result
quoted in Ref. [33], assuming standard model input values.
The binary encounter approximation and Ref. [33] agree

within a factor of 2–3, while the BEB model and Ref. [33]
agree within 20%.

E. Collisional excitation

Collisional excitation is the inelastic collision of a free
dark electron with a dark hydrogen atom. The atom is

104 105 106 107

T (K)

10-19

10-18

BEB Model
Abel et al (1997)
Binary Encounter Approximation
Rydberg Energy

FIG. 3. Kinetic energy loss rate as a function of temperature due
to collisional ionization, divided by nC and nHD

, using the
standard model parameters. The results based on Eq. (14)
(red, dash-dotted) and Eq. (15) (black, solid) agree with the
formula quoted in Ref. [33] (blue, dashed). The vertical dotted
line corresponds to T ¼ Ry around which the collisional proc-
esses are effective.

104 105 106 107

T (K)

10-20

10-19

10-18

Eq. 22
Callaway (1994)
Cen (1992)
Rydberg Energy

FIG. 4. Rates of energy loss due to collisional excitation as a
function of temperature, using the standard model parameters.
The result based on Eq. (24) (black, solid) agrees reasonably well
with the fit in Ref. [38] (blue, solid) as well as the result quoted in
Ref. [39] (blue, dashed). The vertical dotted line corresponds to
T ¼ Ry around which the collisional processes are effective.
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excited to a higher energy level and the incident electron
loses energy. The excited state then decays back to the
lower energy level and releases the energy as dark photons
escape the dark plasma. We only consider the transition
from the ground state.
We compute the rates using the plane-wave Born

approximation. The Hamiltonian for collisional excitation
in the position basis is

H ¼ −
1

2mC
∇2

1 −
1

2mC
∇2

2 −
αD
r2

−
αD
r1

þ αD
jr1 − r2j

; ð19Þ

where r1 is the position of the free electron, and r2 is the
position of the bound electron. In the Born approximation,
H1 ≡ − αD

r1
þ αD

jr1−r2j is treated as a small perturbation on the
rest of the Hamiltonian (cf., Ref. [40]). The scattering
amplitude M is then proportional to hfjH1jii, where the
initial and final states are products of free particle wave
functions and hydrogen wave functions. After integrating
over r1, we find that

MðΩÞ ¼ −ð2πÞ2mC

ffiffiffiffi
k0

k

r
hfjH1jii

¼ 2αDmC

q2

ffiffiffiffi
k0

k

r Z
d3r2ψ�

n0l0m0 ðr2Þψnlmðr2Þe−iq·r2 ;

ð20Þ
where k and k0 are the initial and final momentum of the
free electron, respectively, and q ¼ k0 − k is the momen-
tum transfer. By energy conservation, the difference in
magnitude of k and k0 is determined by the change in
energy level of the hydrogen atom from n to n0. For the
particular case of a 1s → 2p transition, we have

dσ1s→2p;Born

dΩ
¼ jMðΩÞj2 ¼ 217

310q2ð1þ 4
9
ð q
αDmC

Þ2Þ6
k0

k
: ð21Þ

The total cross section can then be obtained by changing
variables from dðcos θÞ to dq ¼ − kk0

q dðcos θÞ and
integrating over dq,

σ1s→2p;Born ¼
2π

kk0

Z
qmax

qmin

dσ
dΩ

qdq ¼ 218

310

�
π

m2
Cv

2

�Z ðkþk0Þa0

ðk−k0Þa0

dx
x

1

ð1þ 4x2=9Þ6

≈
218

310

�
π

m2
Cv

2

�
log

�
4v
αD

�
¼ 4πa20

�
215

310

�
Ry
K

log

�
16K
Ry

�
; v ≫ αDðK ≫ RyÞ; ð22Þ

where in the second line, we take the limit v ≫ αD or equivalently, K ≫ Ry. The logarithm originates from 1=q2 in the
differential cross section. For ordinary electron-impact collisional excitation, the leading-order Born approximation gives a
result that agrees with the experimental data within a factor of 2. Reference [41] demonstrates that an empirical scaling
called BE scaling improves this result to match the data better, especially at lower incident kinetic energy (v ∼ αD). It is
defined as

σnl→n0l0;BE ¼ σnl→n0l0;Born

�
K

K þ Ryþ ΔE

�
; ð23Þ

where ΔE is the excitation energy.1 We discuss the reasoning behind BE scaling in Sec. IV. We have checked (not shown
here) that the cross section obtained by integrating the first line of Eq. (22) numerically and then rescaled by Eq. (23)
matches the result in Ref. [41].
Finally, the energy loss rate (divided by the electron and atom number densities) is

P1s→2p

nCnHD;1s

¼ 3

8
mCα

2
Dhσ1s→2pvi

¼ 7.4 × 10−18 erg · cm3=s

�
αD
10−2

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
511 keV

mC

s ffiffiffiffiffiffiffiffiffiffiffiffi
105 K
T

r
g

�
mα2D
2T

�

where gðy2Þ ¼
Z

∞ffiffi
3

p
2
y
du

ue−u
2

1þ 7y2

4u2

Z
xþ

x−

dx
x

1

ð1þ 4x2
9
Þ6 ; with x� ¼ u

y

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3

4

y2

u2

s !

≈
Z

du
ue−u

2

1þ 7y2

4u2

�
log

�
4u
y

�
þ � � �

�
: ð24Þ

1In Ref. [41], Ry is denoted by B and ΔE is denoted by E so it is called BE scaling.
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The lower bound in the integration of u comes from the requirement that the kinetic energy of the incident electron has to be
larger than 3=4 Ry to trigger the transition. In the second line of gðy2Þ, we keep the leading term in the expansion at large
u=y. The results presented here use the BE rescaled Born cross section.
Let us compare this to the 1s → 2s transition. Following the same procedure, we find that the total cross section for the

1s → 2s transition is

σ1s→2s;Born ¼
2π

kk0

Z
qmax

qmin

dσ
dΩ

qdq ¼ 220

312

�
π

m2
Cv

2

�Z ðkþk0Þa0

ðk−k0Þa0
dx

x
ð1þ 4x2=9Þ6

≈
217

310 × 5

�
π

m2
Cv

2

�
¼ 4πa20

�
215

310 × 5

�
Ry
K

; v ≫ αDðK ≫ RyÞ: ð25Þ

The radiated power is given by

P1s→2s

nCnHD;1s

¼ 3

8
mCα

2
Dhσ1s→2svi

¼ 3.3 × 10−18 erg · cm3=s

�
αD
10−2

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
511 keV

mC

s ffiffiffiffiffiffiffiffiffiffiffiffi
105 K
T

r
h

�
mα2D
2T

�

where hðy2Þ ¼
Z

∞ffiffi
3

p
2
y
du

ue−u
2

1þ 7y2

4u2

Z
xþ

x−

dx
x

ð1þ 4x2
9
Þ6 ; with x� ¼ u

y

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3

4

y2

u2

s !

≈
Z

du
ue−u

2

1þ 7y2

4u2

�
9

40
þ � � �

�
: ð26Þ

Comparing Eq. (24) and Eq. (26), one can see that 1s → 2p
dominates over 1s → 2s by at least a factor of 10. This is
because the 1s → 2p differential cross section peaks at
small angles and the total scattering decreases less rapidly
with increasing energy at high energies. Aiming to get the
energy loss rate correct within an order of magnitude, we

ignore the 1s → 2s transition as well as all other transitions
from the ground state to excited states except 1s → 2p.
Using the standard model values of the input parameters,

we plot the energy loss rate as a function of temperature
based on Eq. (24) in Fig. 4 and compare it to the results in
Refs. [38,39]. All three results agree with each other within

104 105 106 107

T (K)

10-26

10-24

10-22

10-20

10-18

10-16

Collisional Excitation
Collisional Ionization
Bremsstrahlung
Recombination
Rydberg Energy

FIG. 5. Comparison of the energy loss rates due to indicated processes as a function of temperature, assuming the standard model input
values. Note that the relevant number densities are not the same for each process. Namely, the collisional ionization and excitation rates
are proportional to nCnHD

, whereas the bremsstrahlung and recombination rates are proportional to nCnX.
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an order of magnitude. Our result agrees with that in
Ref. [38] within a factor of 2, which is better than the
agreement with the older result quoted in Ref. [39].

F. Summary

In Fig. 5, we present energy loss rates due to the
processes studied in this section as a function of temper-
ature, assuming the standard model input values. Note that
the energy loss rates we present are normalized by the
number densities of reactant particles. Even though energy
loss rates due to the collisional processes are greatest at
T ≫ Ry, there are very few dark atoms at such high
temperatures, and so these processes are, in fact, sup-
pressed compared to ionic processes such as bremsstrah-
lung. For ordinary baryons, simulations (e.g., Ref. [42])
show that bremsstrahlung (free-free emission) dominates
at T > 106 K. At temperatures between 104.3 and 105 K
(1.7–8.6 eV), collisional processes are the dominant
sources of cooling. Below 104 K, the gas is entirely neutral
and the cooling rate is essentially 0.

III. HEATING PROCESS: PHOTOIONIZATION

Photoionization, HDγD → XC, is the inverse process of
radiative recombination and heats the dark plasma. We only
consider ionization from the ground state of the dark
hydrogen. We also ignore photoexcitation of hydrogen
because the atom spontaneously decays back to the ground
state, resulting in no net change. The cross section of
photoionization is [30]

σphotoðωÞ ¼
25π2α7Dm

2
C

3ω4

e−4ðarctan τÞ=τ

1 − e−2π=τ

¼ 3 × 10−18 cm2

�
αD
10−2

�
7
�

mC

511 keV

�
2

×

�
30 eV
ω

�
4
��

e−4ðarctan τÞ=τ

1 − e−2π=τ

�
=0.02

�
; ð27Þ

where τ ¼ ðω=ω0 − 1Þ1=2 and ω0 is the dark hydrogen
ionization energy in units of eV, which is equal to the
Rydberg energy 1

2
α2DmC. The process happens at a rate

Rphoto ¼ nHD

Z
∞

ω0

4πσphotoðωÞ
iðωÞ
ω

dω; ð28Þ

where iðωÞ is the intensity of the dark cosmic microwave
background (CMB). The rate of energy transfer is given by

Pphoto ¼ −nHD

Z
∞

ω0

4πσphotoðωÞ
iðωÞ
ω

�
ω −

1

2
α2DmC

�
dω;

ð29Þ

where the minus sign denotes that this process adds energy
to the dark plasma.

IV. VALIDITY OF RESULTS

In this section we discuss each of the assumptions that
we have made in the previous two sections and determine
the region of the parameter space in which these assump-
tions are valid. Throughout our derivations, we assume
αD ≪ 1 so that perturbative calculations are valid.

A. Ionization and nonrelativistic electrons

When dark atoms (formed during recombination before
galaxy formation) initially fall into the overdense region in
the early Universe, they are shock heated to a high virial
temperature, which is estimated to be [1]

Tvir ¼
GNMμ

5Rvir
≈ 5 × 105 K

M

Mgal
DM

mX

1 GeV
110 kpc
Rvir

; ð30Þ

where M stands for the mass of the virial cluster and
Mgal

DM ¼ 1012 M⊙ is the fiducial value for the mass of dark
matter in the Milky Way galaxy. μ ¼ ρ=n is the average
mass of a particle in the dark plasma. Assuming that about
equal numbers of X and C are present in early galaxies,
μ¼ðmXþmCÞ=2≈mX=2 provided mC ≪ mX. We assume
that the virial temperature is high enough so that the dark
atoms are ionized entirely and we only need to consider
ion-ion and ion-atom scattering processes. This amounts to
the requirement Tvir > Ry, which can be translated into an
upper bound on mC=mX,

mC

mX
< 8.6 × 10−4

M

Mgal
DM

110 kpc
Rvir

�
10−2

αD

�
2

: ð31Þ

Throughout the paper, we assume mC ≪ mX and approxi-
mate the reduced mass of the atom by mC. Note that if dark
atoms were not ionized, they could still cool through purely
atomic processes, which are saved for future work.
The derivations of the cooling functions presented in

Sec. II also assume that the dark electrons are nonrelativ-
istic. This is true when the temperature of the virialized
electrons is below

Trel ≈ 3 × 109 K

�
mC

511 KeV

�
:

If Tvir < Trel, it is valid to treat the dark electrons as
nonrelativistic particles in all the subsequent cooling
processes. This leads to a lower bound on the mass ratio
mC=mX,

10−7
M

Mgal
DM

110 kpc
Rvir

<
mC

mX
: ð32Þ
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B. Cooling in equilibrium

Before dark recombination, it is mostly the light ions, the
C particles, that lose energy through bremsstrahlung and
Compton scattering. The heavy ions X could cool through
Rutherford scattering on the C particles. The cross section
of Rutherford scattering between different ions in the dark
plasma is given by

σR ¼ 8πα2D
m2

Cv
4
ln

�
1þmCv2C

αD
bmax

�
; ð33Þ

≈
8πα2D
ð3TÞ2 ln

�
1þ 3T

αD
bmax

�
; ð34Þ

where, to get the second line, we used the fact that the
kinetic energy is set by the temperature of the plasma,
mCv2 ≈ 3T. Notice that the cross section [Eq. (34)] is
universal for CC, XX, and XC scatterings as long as all ions
are in thermal equilibrium and share a common temperature
T. bmax is the maximal impact parameter leading to an
effective scattering. Very roughly, we take bmax ¼ 1=n1=3C .
For simplicity, we take nC ¼ nX given by

nC ¼ nX ≈ 7 × 10−5 cm−3

×

�
ϵ

0.01

��
1 GeV
mX

�
M

Mgal
DM

�
110 kpc
Rvir

�
3

; ð35Þ

where ϵ ¼ 0.01 is the fraction of energy density in
dissipative dark matter, compared to the total dark matter.
In deriving this, we assumed that dissipative dark matter
spreads uniformly in a 110 kpc radius virial cluster.
The rate of energy equilibration through Rutherford

scattering is [43]

Peq

nXnC
¼ 2

ffiffiffi
π

p
α2D

mX

�
mC

T

�
1=2

ln

�
1þ 3T

αDn
1=3
C

�
: ð36Þ

In deriving the formula, we assume that the energies of
electron and proton are always of the same order. If the rate
is larger than the bremsstrahlung rate in Eq. (8), the cooling
of the heavy particles happens adiabatically. At Tvir in
Eq. (30), this turns into a lower bound on the mass ratio
mC=mX,

mC

mX
≳ 2 × 10−5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αD
10−2

M

Mgal
DM

110 kpc
Rvir

s
; ð37Þ

where we approximate the log factor as 1.

C. Dark plasma as fluid

The easiest way to add the dissipative dark sector to a
hydrodynamical simulation is to include it as an additional
fluid component. In this section, we identify parameter

space in which the dark plasma can be treated as a fluid. We
require the mean free path of charged particles to be smaller
than the resolution of the state-of-art hydrodynamical
simulation. The mean free path for Rutherford scattering
of charged particles in plasma is

l ¼ 1

σRnC
¼ 9T2

8πα2DnC

�
ln
�
1þ 3T

αD
bmax

��
−1
; ð38Þ

≈10−3 pc

�
cm−3

nC

��
T

106 K

�
2
�
10−2

αD

�
2
�

21

ln ð1þ 3T
αDn

1=3
C

Þ
�
;

ð39Þ

≈3.7 pc

�
0.01
ϵ

��
mX

1 GeV

�
3
�
10−2

αD

�
2 M

Mgal
DM

Rvir

110 kpc
;

ð40Þ

where in the last line, we used the number density in
Eq. (35) and the initial virial temperature in Eq. (30). We
assumed that dissipative dark matter spreads uniformly in a
110 kpc radius virial cluster. The resolution of current
simulations is below 100 pc. For example, the smallest
scale over which the hydrodynamics is resolved is 48 pc in
Illustris simulation [13,14]. Requiring l < 50 pc, we find
that the fluid approximation is valid if

�
0.01
ϵ

��
mX

1 GeV

�
3
�
10−2

αD

�
2 M

Mgal
DM

Rvir

110 kpc
< 13.5: ð41Þ

For X with mass above GeV and αD ≪ 10−2, the fluid
approximation breaks down and calls for new ways to
include them in a simulation, which we do not explore here.
There are a few comments in order.
(i) Our estimate is conservative. If the dissipative dark

matter spatial distribution were concentrated in a
smaller region (with radius less than 110 kpc), the
number density would be larger and the mean free
path would be even shorter.

(ii) We estimate the mean free path for a virialized halo.
What about particles in the intergalactic medium
that have not fallen into an overdense region? Today
the critical density is ρc ≈ 5 × 10−6 GeV=cm3. So in
the intergalactic medium the number densities are
n ∼ ϵρc=mX ∼ 5 × 10−8 cm−3. On the other hand,
the temperatures are also much lower. If we plug in
the dark CMB temperature of order 1 K, we see that
they have l even smaller than inside the halo. Their
density is lower but the temperature is much lower
still, and this increases the scattering rate.

(iii) Nonrelativistic particles have a temperature that
changes with z in a different manner than a relativ-
istic gas. The temperature of nonrelativistic gas
changes as T ∼ p=ρ ∼ 1=a2. Thus, if at early times
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the X and C particles were in equilibrium with the
CMB, they will be colder than the CMB now and
our estimate that they have small mean free path is
safe since l ∝ T2.

(iv) Assuming the simulations start from z ∼ 100, we
also want to check if the fluid approximation is valid
for early times. Also, we should check whether it is
valid at late times for particles that do not have
enhanced density from falling into a halo. At early
times, Compton scattering is also important. The
mean free path for Compton scattering is

l ¼ 1

σTnγ
¼ 3m2

C

8πα2Dnγ
ð42Þ

≈0.005 pc

�
mC

511 KeV

�
2
�
10−2

αD

�
2
�

101

ð1þ zÞ
�

3

;

ð43Þ

where in the second line we used nγ ¼
2ζð3ÞðT0

Dð1þ zÞÞ3=π2 with the current dark CMB
temperature, T0

D, half of our CMB temperature
2.7 K. So at early times the electrons (C particles)
are Compton scattering frequently off the CMB; this
holds until z ∼ 10. For the heavy field X, Rutherford
scattering still dominates.

(v) If we extrapolate back in time, n ∝ ð1þ zÞ3,
whereas T ∝ ð1þ zÞ2 while the particles are kineti-
cally decoupled from the CMB (behaving as non-
relativistic particles in an adiabatically expanding
universe) or T ∝ ð1þ zÞ if the particles are interact-
ing frequently with the CMB. Being conservative, if
we put in T ∝ ð1þ zÞ2 beginning at T ¼ 1 K now,
and n growing relative to ϵ times the critical density,
the estimate shows that l is still small at z ¼ 100.

(vi) When a considerable fraction of ions is recombined
into dark hydrogen atoms, dark electrons could also
scatter off dark atoms elastically with a cross section

σelastic ¼
7π

3m2
Cv

2
× z

�
v2

α2D

�
;

≈
7π

9mCT
× z

�
3T

α2DmC

�
;

with zðxÞ ¼ xðx2 þ 18x=7þ 12=7Þ
ð1þ xÞ3 : ð44Þ

This was obtained by leading-order Born approxi-
mation. When T ∼ α2DmC=2, dark atoms start to
form and the function z gives an order one dimen-
sionless number. The mean free path for the C −HD
elastic scattering is then

l ¼ 1

σelasticnHD

¼ 9mCT
7πnHD

1

zð 3T
α2DmC

Þ

≈ 44 pc

�
x

zðxÞ
��

αD
10−2

�
2
�

mC

511 keV

�
2

×

�
0.01
ϵ

��
mX

1 GeV

�
Mgal

DM

M

�
Rvir

110 kpc

�
3 1

r
;

ð45Þ

where x ¼ 3T=ðα2DmCÞ and r is the fraction of C
particles that are recombined into atoms and in the
second line, we used Eq. (35). Thus when the
fraction of ions is order 1, Rutherford scattering
still dominates. When most ions are recombined
into atoms, the mean free path of the electrons
(scattering with the atoms) is below 1 pc for
ϵ ¼ 0.01, αD ¼ 0.01, and mX ≲ 0.036 GeV. Yet at
that point, cooling through ion-atom collisions
ceases to be efficient. Further cooling is possible
with atomic and molecular processes, which goes
beyond the scope of this paper.

D. Dark plasma is optically thin

In all the processes in which dark photons are emitted,
they must escape from the galaxy and carry away energy
without being reabsorbed. A dark photon scatters with
light C particles, so the mean free path of γD can be
approximated as [1]

l ¼ 1

σTnC
¼ 3m2

C

8πα2DnC
≈ 4 × 106 kpc

�
mC

511 keV

�
2
�
10−2

αD

�
2

×

�
0.01
ϵ

��
mX

1 GeV

��
Mgal

DM

M

��
Rvir

110 kpc

�
3

; ð46Þ

in which we have used the Thomson cross section for γD–C
scattering with the number density in Eq. (35). The long
mean free path demonstrates that dark photons definitely
escape the galaxy at early times.
When dark recombination happens, one also needs to

check how fast the emitted energetic photons are absorbed.
Given the photon-ionization cross section in Eq. (27), the
mean free path for photons with energy ∼Ry is

l ¼ 1

σphotonHD

≈ 1.6 kpc

�
10−2

αD

�
7
�
511 keV

mC

�
2
�

ω

30 eV

�
4
�
0.01
ϵ

�

×

�
mX

1 GeV

��
Mgal

DM

M

��
Rvir

110 kpc

�
3 1

r
ð47Þ

where the reference number for ω, 30 eV, is chosen to
be close to the Rydberg energy for αD ¼ 10−2 and
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mC ¼ 511 keV. r is the fraction of C particles that are
recombined into atoms. When the fraction of ions con-
verting into atoms is large enough and the mean free path is
smaller than the galaxy size, the assumption that gas is
optically thin breaks down. When that happens, cooling
is no longer efficient.

E. Gaunt factors

Gaunt factors for free-free (bremsstrahlung) and free-
bound (recombination) processes have been computed by
Refs. [29,44,45]. The free-free Gaunt factors have been
presented as a function of ω=T, the emitted photon energy
divided by the temperature (or equivalently the initial
kinetic energy of the dark electrons). They are between
1 and 3 for 10−3 < ω=T < 1. For even smaller ω=T, the
emitted photon contributes negligibly to the kinetic energy
loss. Thus, for simplicity, we take the free-free Gaunt
factors to be 1.
The free-bound Gaunt factor has been computed as a

function of K=Ry for various energy levels of the dark
atom. As depicted in Fig. 19 of Ref. [29], for all energy
levels, it is approximately 1 when the initial kinetic energy
is at or below 2.7 times the Rydberg energy of the dark
atom. Simple analytic formulas exist for low energy levels.
For instance, for n ¼ 1,

gfb;ðn¼1Þ ¼ 8
ffiffiffi
3

p
π

α2D
v2 þ α2D

e−4 arctan τ=τ

1 − e−2π=τ
; ð48Þ

where τ ¼
ffiffiffiffi
K
Ry

q
. From these analytic formulas, we see that

free-bound Gaunt factors are about 1 when K is near the
Rydberg energy and drop to 0.5 when K=Ry ∼ 100. For
even higher temperatures and kinetic energies of the
incident electrons, the recombination rate is small anyway
and contributes negligibly to the cooling. Thus, it is
reasonable to approximate gfb as 1.

F. Binary encounter approximation

We used the binary encounter approximation in
obtaining rates of collisional ionization. As discussed in
Ref. [35], the binary encounter approximation and its
variants perform as well as quantum mechanical approx-
imations. The underlying reason for this agreement is that
the Rutherford formula, on which the approximation is
based, holds in both classical and quantum mechanics.
In the binary encounter approximation, we assume that

the effect of the nucleus is negligible, or that its effect is
simply to accelerate the free electron (in Burgess’ improve-
ment). Essentially, we assume that the electric force
between the free incident electron and the bound electron
is much greater than that between the nucleus and the
bound electron. This assumption amounts to b≲ a0, where
b is the impact parameter. This is a self-consistent
assumption and also agrees with the physical intuition that

collisions at large impact parameter do not lead to ioniza-
tion. One can check that the maximal impact parameter
leading to collisional ionization is about a0, performing the
calculation within the classical binary encounter approxi-
mation. The resulting cross section in Eq. (14) is also
consistent with the approximation. Using the classical
binary approximation, the cross section takes the maximal
value of πa20 when x≡ α2D=v

2 ¼ 1=2. The effective impact
parameter beff, defined by σion;binary ¼ πb2eff, is thus always
smaller than or at most equal to a0.
In principle, one could solve the Schrödinger equation

numerically to get a precise result on a more solid ground.
Yet the collisional breakup of a bound state of two particles
in a system of three charged particles turns out to be a very
difficult problem. The key issue is that the wave function
for systems with three or more charged particles in the
presence of the long-range Coloumb force was unknown.
The problem has been tackled successfully numerically by
Rescigno et al. in Ref. [46] and by Barlett in Ref. [47] using
the so-called “exterior complex scaling” method. Yet the
method is computationally intensive and one has to solve
systems of complex linear equation on the order of 5 million
by 5 million [46]. Thus we do not pursue this direction.

G. Born approximation and BE scaling

From the discussion in Sec. II E, one can see that in gen-
eral, the first-order Born cross section for different colli-
sional atomic transitions can be written systematically as

σBorn ¼ 4πa20
Ry
K

FBorn

�
Ry
K

�
; ð49Þ

where FBorn is the collision strength (which needs to be
multiplied by a constant to be consistent with the standard
definition of the collision strength). Strictly speaking, the
Born approximation is valid at large incident energy
K ≫ Ry. It overestimates the cross section by an order
one number at K ∼ Ry. This is corrected by BE scaling in
Eq. (23). At large K, BE scaling does not change the result
from the Born approximation significantly. Yet it reduces the
cross section at lower K and shifts the peak of the cross
section to a higher K. The qualitative justification, similar to
Burgess’ improvement for the collisional ionization, is that
the effective incident energy seen by the bound electron is K
plus the potential energy of the bound electron. So far BE
scaling is not derived from first principles. Thus the
combination Ryþ ΔE in the BE scaling equation cannot
be taken as a rigid rule. It only serves as an indicator of the
order of magnitude of a constant shift to be added to the
kinetic energy of the incident electron.

H. Neglecting proton-hydrogen collisions

The dark proton-impact collisional processes are most
effective when the incident proton’s velocity is on the order
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of αD, giving a cross section of order πa20. Yet if the protons
are in thermal equilibrium with the electrons, their average

velocity, v ∼
ffiffiffiffiffi
3T
mX

q
, is much less than αD at low temper-

atures when there are hydrogen atoms present. At velocities
much smaller than αD, the inelastic collisional cross
sections are several orders of magnitude below πa20 and
are thus negligible compared to those of electron-impact
collisional processes [48–50]. This can be understood
heuristically in the classical picture. Consider the case of
collisional ionization. Imagine a dark electron in a stable
orbit around a dark proton. A free proton approaches the
electron slowly. As it approaches, the electron falls into the
potential well of the new proton. Because the proton
approaches slowly, the relative velocity between the elec-
tron and the incident proton is not great enough for the
electron to escape the potential well. The electron becomes
bound to the incident proton and is dragged along with it.
This happens as long as the proton is moving at a speed
smaller than the escape velocity of the electron, which is
αD. Thus, as long as T ≪ mXα

2
D, we can ignore proton-

initiated impacts. At higher temperatures, T ≳mXα
2
D, the

proton-impact collisional ionization process is turned on.
Yet all of the hydrogen atoms have already been ionized at
such high temperatures. Thus nHD

≈ 0 and it is safe to
ignore the proton-impact processes.

I. Neglecting other collisions

We have also neglected C − C and X − X collisions. The
reasons for neglecting these processes are the same as for
neglecting them in discussing cooling of ordinary baryons.
For example, consider electron-electron collisions. As
summarized by Ref. [51], in the nonrelativistic limit and
in the rest frame of one of the electrons, the cross section
for emitting a photon of energy ω due to bremsstrahlung off
of another electron is

dσ
dω

¼ 4

15

α5Da
2
0

ω
F

�
8ω

mCv2

�
; ð50Þ

where

FðxÞ ¼
�
17 −

3x2

ð2 − xÞ2
� ffiffiffiffiffiffiffiffiffiffiffi

1 − x
p

þ 12ð2 − xÞ4 − 7x2ð2 − xÞ2 − 3x4

ð2 − xÞ3 ln
1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − x
pffiffiffi
x

p :

ð51Þ

The energy loss rate due to electron-electron bremsstrah-
lung is

P
n2C

∼
Z

dω

�
dσ
dω

ωv

�

∼ α5Da
2
0

�
mC

T

�
3=2
Z

∞

0
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2T
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0

dωF
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�

∼ α4Da0

�
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3=2
Z

∞

0
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mC

�
T
mC

�
3=2

: ð52Þ

This is negligible compared to the rates of other processes.
For instance, comparing it with the C − X bremsstrahlung
rate in Eq. (8), we find that the rate of C − C bremsstrah-
lung is suppressed by T=mC (we only consider nonrela-
tivistic processes with T ≪ mC as discussed in Sec. IVA).
The suppression is due to the fact that C − X collision
involves dipole radiation, while C − C collision involves
quadrupole radiation.

V. CONCLUSIONS AND OUTLOOK

Given the little knowledge we have about dark matter, it
is important to explore new possible dark matter models. In
this paper, we consider a multicomponent dark matter
scenario with a subdominant component dissipating
energy, analogous to ordinary baryons. Specifically we
consider the simplest possibility, in which the dissipative
dark sector consists of a dark electron and proton both
charged under a gauged Uð1Þ. We have computed cooling
functions, including energy dissipation rates and rates of
processes that change the number densities of different
species, for the following processes: Compton scattering,
bremsstrahlung, recombination, collisional ionization, and
collisional excitation. We also consider photoionization
that heats the dark plasma. This paper is the first publication
of analytic formulas for the cooling processes, other than
Compton scattering and bremsstrahlung, in the dark matter
literature, which includes dependence on the dark elec-
tron’s mass, the fine-structure coupling, the temperature,
and other relevant parameters. We also discuss the approx-
imations we rely on to derive the formulas and identify the
parameter space in which our results are applicable (the
relevant formulas are listed in Table II). The key results are
summarized in Table III. These cooling functions can be

TABLE II. Main assumptions for the derived cooling functions
and relevant formulas to check the validity of the assumptions.

Assumptions Formulas to check

Ionization and nonrelativistic
electrons

Eqs. (31) and (32)

Cooling in equilibrium Eq. (37)
Dark fluid Eqs. (41), (43), and (45)
Optically thin Eqs. (46) and (47)
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fed into numerical simulations including a subdominant
dissipative component to get a more definite answer as to
whether and how a dark disk could be formed and estimate
important properties of a possible dark disk such as its
height and surface density. The numerical results could be
further compared with the upcoming Gaia data, hopefully
to settle the debate on whether a dark disk formed from a
dissipative component is allowed.
In this article, we assume that dark atoms falling into

galaxies get ionized initially and cool through ion-ion and

ion-atom collisional processes. We do not consider the
parameter space with a large binding energy so that the dark
atoms are not ionized by shock waves. We also do not
consider further cooling through atomic and molecular
processes once the dark ions are entirely recombined into
atoms.2 These processes could be important to study the
formation of smaller compact objects such as dark stars. We
leave them for future work.
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