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We argue how to identify the supersymmetric quiver quantum mechanics description of BPS states,
which arise in string theory in brane systems representing knots. This leads to a surprising relation between
knots and quivers: to a given knot, we associate a quiver, so that various types of knot invariants are
expressed in terms of characteristics of a moduli space of representations of the corresponding quiver. This
statement can be regarded as a novel type of categorification of knot invariants, and among its various
consequences we find that Labastida-Mariño-Ooguri-Vafa (LMOV) invariants of a knot can be expressed in
terms of motivic Donaldson-Thomas invariants of the corresponding quiver; this proves integrality of
LMOV invariants (once the corresponding quiver is identified), conjectured originally based on string
theory and M-theory arguments.
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I. INTRODUCTION

In last few decades many intricate links between high
energy physics and contemporary mathematics have been
found. These links not only helped to solve some specific
problems, but also led to discovery of deep and earlier
unforeseen relations between different branches of math-
ematics. In this paper, we present a new chain of con-
nections that in a similar vein relates a physical system—of
appropriately engineered branes in string theory—with
mathematical knot theory on one hand and quiver repre-
sentation theory on the other hand, thereby revealing deep
links between these theories.
It is particularly interesting to determine exact results in

string theory. One source of such results is topological
string amplitudes. Mathematically they encode Gromov-
Witten invariants, and from a physics perspective they
capture degeneracies of BPS states formed by D-branes. In
case of closed string theory, these degeneracies are referred
to as Gopakumar-Vafa invariants and are also conjecturally
related to Donaldson-Thomas invariants of underlying
Calabi-Yau manifolds [1–3].
Analogous conjectures have been formulated for systems

with additional branes. Mathematically they encode open
Gromov-Witten invariants, and physically they capture
degeneracies of D-branes with boundaries. Furthermore,
it has been conjectured that, in a system with an appropriate
choice of Calabi-Yau manifold and brane configuration,
such open amplitudes encode knot invariants, in particular,
colored HOMFLY-PT polynomials [4–6]. This relation is a
nontrivial consequence of famous relations between knot

invariants, Chern-Simons gauge theory, and topological
string theory [7,8]. This relation also predicts, that—
analogously to the closed string case—colored HOMFLY-
PT polynomials are encoded in BPS invariants, referred to
as Labastida-Mariño-Ooguri-Vafa (LMOV) invariants (or
Ooguri-Vafa invariants) [4–6]. Integrality of these invariants
is an important statement for both string theory and knot
theory, however, it has been verified only in very specific
cases, e.g., in [4–6,9,10], and more recently for some
infinite families of knots and representations [11,12]. An
attempt to prove this conjecture—which, however, raised
some criticism—has been made in [13].
By standard arguments [4,14,15], BPS states in brane

systems—in particular those describing knots—should have
a description in terms of supersymmetric quantummechanics
on their world volume, which, however, has not been
identified to date. In this paper, we argue that such a
description actually involves quiver quantum mechanics,
and we identify relevant quivers. To this end, we also recall
that, in another line of research, it was argued that BPS states
in string theory form algebras [16]. More recently, it has been
postulated that such algebras can be identified with cohomo-
logical Hall algebras [17], and the associated theory of wall
crossing and motivic Donaldson-Thomas (DT) invariants
turned out to play an important role in supersymmetric gauge
theories and string theory. From a mathematical perspective,
these ideas can be naturally implemented in the framework of
quiver representations and their moduli spaces [17–19].
In this paper, we argue that BPS states enumerated by

motivic Donaldson-Thomas invariants of quiver moduli
spaces should be identified with those arising in the
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supersymmetric quiver quantum mechanics description of
brane systems encoding knots. This observation has far-
reaching consequences: it leads to new ways of interpreting
and computing BPS numbers and to the (idea of the) proof
of the famous LMOV conjecture (and the actual proof for a
large class of knots, for which the corresponding quivers
are identified). From a mathematical perspective, we find
direct, unexpected relations between knots and quiver
representation theory, which, in particular, lead to a novel
categorification of knot invariants.
In more detail, we claim that, to each knot, one can

associate a quiver, for which the moduli space of represen-
tations encodes various types of knot invariants, including
colored HOMFLY-PT polynomials, homological invariants,
etc. In particular, LMOV invariants of a given knot can be
expressed in terms ofmotivic Donaldson-Thomas invariants
of the corresponding quiver, and integrality of the latter
implies integrality of the former ones,which is how the proof
of the LMOV conjecture follows. Identification of some
quantities on both sides of the “knots-quivers” duality is
summarized in Table I. As an example, a quiver correspond-
ing to the trefoil knot is shown in Fig. 1.

II. KNOT INVARIANTS, KNOT HOMOLOGIES,
AND LMOV CONJECTURE

Ever since its birth, knot theory has attracted the attention
of physicists, and various knot invariants turned out to have
physical interpretation. In particular, various knot polyno-
mials have been reinterpreted as expectation values in
Chern-Simons theory in [7] and, subsequently, they were
expressed in terms of topological string theory amplitudes
[8]. In [4], the topological string setup was related to M
theory, and it was argued that colored HOMFLY-PT poly-
nomials are encoded in LMOV invariants, which count

bound states of open M2-branes with M5-branes. In this
work, we show, among others, how—so far conjectural—
integrality of these invariants can be proven.
Furthermore, more recent homological knot invariants,

such as Khovanov homology and its more involved cousins
[20–22], have been also realized in brane systems in string
theory, also revealing yet to be proved new properties of
those invariants [23–25]. In what follows, we show that
certain information about homological knot invariants is
also encoded in quiver moduli spaces.
Let us introduce first the generating function of Sr-

colored HOMFLY-PT polynomials, which will be the main
object of the subsequent analysis, as well as corresponding
LMOV invariants. To start with, consider the Ooguri-Vafa
generating function [4–6,26]

ZðU;VÞ¼
X
R

TrRUTrRV¼ exp

�X∞
n¼1

1

n
TrUnTrVn

�
; ð1Þ

where U ¼ P exp
H
K A is the holonomy of UðNÞ Chern-

Simons gauge field along a knot K, V plays a role of a
source, and the sum runs over all representations R, i.e., all
two-dimensional partitions. The LMOV conjecture states
that the expectation value of (2) takes the form

hZðU;VÞi¼
X
R

P̄Rða;qÞTrRV

¼ exp

�X∞
n¼1

X
R

1

n
fRðan;qnÞTrRVn

�
; ð2Þ

where the expectation value of the holonomy is identified
with the unreduced HOMFLY-PT polynomial of a knot
K, hTrRUi ¼ P̄Rða; qÞ ¼ P01

R PRða; qÞ (where P01
R is the

unknot factor), and the functions

fRða; qÞ ¼
X
i;j

NR;i;jaiqj

q − q−1
ð3Þ

encode conjecturally integer LMOV (or Ooguri-Vafa) invar-
iants NR;i;j, counting bound states of M2-branes ending on
M5-branes. These functions take the form of universal
polynomials in colored HOMFLY-PT polynomials.
In what follows, we consider the one-dimensional source

V ¼ x. In this case, TrRV ≠ 0 only for symmetric repre-
sentations R ¼ Sr, so that TrSrðxÞ ¼ xr. Let us denote
PðxÞ ¼ hZðU; xÞi, and let P̄rða; qÞ denote the Sr-colored
HOMFLY-PT polynomial of K, so that (2) takes the form

PðxÞ ¼
X∞
r¼0

P̄rða; qÞxr ¼ e
P

r;n≥1
1
nfrðan;qnÞxnr : ð4Þ

In this case, frða;qÞ≡fSrða;qÞ¼
P

i;j
Nr;i;jaiqj

q−q−1 , for Nr;i;j ≡
NSr;i;j, are polynomials of P̄r=d1ðad2 ; qd2Þ for all divisors d1
and d2 of r, e.g., f1ða; qÞ ¼ P̄1ða; qÞ,FIG. 1. Trefoil knot and the corresponding quiver.

TABLE I. Identification of quantities associated with knots
and quivers.

Knots Quivers

Homological degrees, framing Number of arrows and loops
Colored HOMFLY-PT Motivic generating series
LMOV invariants Motivic DT invariants
Classical LMOV invariants Numerical DT invariants
Algebra of BPS states Cohomological Hall algebra
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f2ða; qÞ ¼ P̄2ða; qÞ −
1

2
P̄1ða; qÞ2 −

1

2
P̄1ða2; q2Þ; ð5Þ

etc. It follows that (4) can be rewritten in product form

PðxÞ ¼
Y

r≥1;i;j;k≥0
ð1 − xraiqjþ2kþ1ÞNr;i;j : ð6Þ

Integrality of BPS degeneracies Nr;i;j encoded in this
product is one important outcome of our work.
Another outcome of our work is a surprising relation of

colored HOMFLY-PT polynomials, or their generating
function (4), to superpolynomials, i.e., the Poincaré poly-
nomials of the uncolored HOMFLY-PT homologies of
knots [24]. More generally, one can consider colored
HOMFLY-PT homology HSr

i;j;k that has not been defined
rigorously by mathematicians, however, its conjectural
(reduced) colored superpolynomial

Prða; q; tÞ ¼
X
i;j;k

aiqjtk dimHSr
i;j;k ð7Þ

can be very effectively computed for various families of
knots, using the formalism of differentials [24,25,27,28].
Note that generalizations of the LMOV conjecture to the
case of superpolynomials have been considered in [11,29].
For example, for trefoil knot 31, Eq. (7) takes the

form [30]

Prða;q;tÞ¼
a2r

q2r
Xr

k¼0

�
r

k

�
q2kðrþ1Þt2k

Yk
i¼1

ð1þa2q2ði−2ÞtÞ; ð8Þ

where ½rk� ¼ ðq2;q2Þr
ðq2;q2Þkðq2;q2Þr−k, and the q-Pochhammer symbol

is defined as ðz; qÞn ¼
Q

n−1
i¼0 ð1 − zqiÞ. For t ¼ −1, (8)

specializes to the reduced colored HOMFLY-PT polyno-
mial, while in the uncolored (r ¼ 1) case, it reduces to

P1ða; q; tÞ ¼
a2

q2
þ a2q2t2 þ a4t3: ð9Þ

The monomials in this expression correspond to generators
of the HOMFLY-PT homology, and powers of t in each
monomial—in this example, taking values (0,2,3)—are
referred to as homological degrees.

III. MODULI OF QUIVER REPRESENTATIONS

We now turn to a seemingly unrelated field of moduli of
quiver representations. A quiverQ is an oriented graph with
a finite set of vertices Q0 and a finite number of arrows
between vertices α∶i → j. On ZQ0, we define the Euler
form of Q by hd; eiQ ¼ P

i∈Q0
diei −

P
α∶i→jdiej. A quiver

representation assigns to each vertex i ∈ Q0 a vector space
of dimension di and a linear map to each arrow. Recently, it
turned out that the structure of moduli spaces of quiver
representations is very rich, and it is a natural playground
for the theory of (motivic) Donaldson-Thomas invariants,
cohomological Hall algebras, etc. In particular, various

explicit results that we use in what follows are known for
symmetric quivers, i.e., such that for any pair of vertices i
and j, the number of arrows from i to j equals the number
of arrows from j to i [17,31–33].
Of our main focus in what follows will be the following

motivic generating series assigned to a symmetric quiver

PQðxÞ ¼
X

d∈NQ0

ð−qÞ−hd;diQxd
Y
i∈Q0

Ydi
j¼1

1

1 − q−2j
; ð10Þ

where xd ¼ Q
i∈Q0

xdii . Motivic Donaldson-Thomas invar-
iants Ωd;j ≡ Ωd1;…;dm;j (with m denoting the number of
vertices) are then defined via the factorization

PQðxÞ ¼
Y
d≠0

Y
j∈Z

Y
k≥0

ð1 − xdqjþ2kþ1Þð−1Þjþ1Ωd;j ; ð11Þ

and proved to be positive integers [31]. In [32,33], two
geometric interpretations of coefficients ofΩdðqÞ are given:
as the intersection Betti numbers of the moduli space of all
semisimple representations of Q of dimension vector d, or
as the Chow-Betti numbers of the moduli space of all
simple representations of Q of dimension vector d.

IV. KNOT INVARIANTS FROM QUIVER
REPRESENTATION THEORY

We present now our main claim, which is the statement
that various types of knot invariants, for a given knot, are
encoded in the data of moduli spaces of quiver representa-
tions of a certain quiver, assigned to this knot. As explained
above, from a physical perspective, this is a consequence of
the supersymmetric quiver quantum mechanics description
of BPS states in brane systems representing knots. In detail,
this statement is a consequence of our observation that
generating functions of colored HOMFLY-PT polynomials
(4) can be written in the form

PðxÞ¼
X

d1;…;dm≥0
q
P

i;j
Ci;jdidj

Q
m
i¼1x

diqlidiaaidið−1ÞtidiQ
m
i¼1ðq2;q2Þdi

ð12Þ

where C is a symmetric m ×m matrix, and li, ai, and ti are
fixed integers. We checked that colored polynomials can be
rewritten in the form (12) in many examples, including all
knots up to six crossings, infinite series of twist or torus
knots, some knots with thick homology, etc., as will be
reported in detail in forthcoming works [34]. Based on this
ample evidence, we pose (12) as a general conjecture.
Remarkably, expression (12) has the same form as the

motivic generating function (10) of a certain quiver, up to
the identification q ↦ −q and the specialization

xi ¼ xaaiqli−1ð−1Þti : ð13Þ
In particular, terms proportional to xr in (12), with fixed
r, arise from sets of fdig such that r ¼ d1 þ � � � þ dm.
Rewriting of (4) in the form (12) means that the matrix
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C can be identified as a matrix representing a quiver
with m vertices, such that Ci;j denotes the number of
arrows from vertex i to j (and so Ci;i denotes the
number of loops at vertex i). Therefore, if colored
HOMFLY-PT polynomials for a given knot are known,
after rewriting the generating function (4) in the form
(12), from the form of C the corresponding quiver can
be identified. This also means that colored HOMFLY-PT
polynomials for a given knot are encoded in a finite
number of parameters that determine (12): the matrix C
and integers li, ai, and ti. Furthermore, these parameters
take specific values, which are encoded in the uncolored
superpolynomial. Recall that the uncolored, reduced
superpolynomial for a given knot (such as (9) for the
trefoil) is a sum of monomials of the form aaiqqi tti ,
which correspond to generators of the HOMFLY-PT
homology. We claim that the size of the matrix C (and
so the number of vertices in the corresponding quiver) is
equal to the number of such generators. Moreover, with
appropriate ordering of vertices, ti in (12) are to be
identified with homological degrees of generators of
HOMFLY-PT homology, diagonal elements of C are
also equal to homological degrees, i.e., Ci;i ¼ ti, coef-
ficients of linear powers of q take the form li ¼ qi − ti,
and ai are equal to a degree of generators of uncolored
HOMFLY homology. An additional minus sign in (12)
comes with the power determined by ti, so that it is
relevant only for the generators with odd t grading. Note
that it follows that homological degrees ti can be read
off from the generating series (4) rewritten in the
quiverlike form, i.e., they are given by the number of
loops in the corresponding quiver; this means that the
uncolored superpolynomial is encoded in the form of
colored HOMFLY-PT polynomials, which is a rather
nontrivial and previously unknown statement.
Note that the values of parameters li, ai, and Ci;i depend

in fact on a choice of normalization of P̄rða; qÞ. The values
mentioned above, related to the unreduced and uncolored
superpolynomial, arise when normalization includes only
the denominator of the colored HOMFLY-PT polynomial
of the unknot P̄rða; qÞ ¼ Prða; qÞ=ðq2; q2Þr. Perhaps more
familiar normalization by the full unknot polynomial

P̄rða; qÞ ¼ a−rqr ða
2;q2Þr

ðq2;q2Þr Prða; qÞ leads to identification

with another version of HOMFLY-PT homology and a
quiver of twice the size [34].
The above conjecture has very nontrivial conse-

quences. In general, it implies that various knot invariants
are specializations of certain quiver moduli invariants. In
particular, under the above specialization, the product
decomposition (11) is identified with the product
decomposition (6). It follows that LMOV invariants
Nr;i;j can be expressed as linear combinations (with
integer coefficients) of motivic Donaldson-Thomas invar-
iants Ωd;j ≡Ωd1;…;dm;j. As motivic Donaldson-Thomas

invariants are proven to be integer, it follows that
corresponding LMOV invariants are also integer, which
proves the LMOV conjecture. We are able to prove this
statement for many specific knots (and arbitrary sym-
metric representations), including some infinite families
of knots (e.g., twist knots, certain classes of torus knots),
analogously as in the case of trefoil knot, which is
analyzed in detail below. Moreover, the limit q → 1 of
the motivic generating series immediately implies
integrality of classical LMOV invariants br;i ¼

P
jNr;i;j

(considered, for example, in [11]), which are then
expressed in terms of (integer) numerical Donaldson-
Thomas invariants. Moreover, the fact that LMOV
invariants and (generating functions of) colored
HOMFLY-PT polynomials are expressed in terms of
motivic Donaldson-Thomas invariants—which arise as
certain Betti numbers of quiver moduli spaces—provides
a novel categorification of these knot invariants.
Some other relations between knots and quivers that

follow from our conjecture are listed in Table I. For
example, the framing by f ∈ Z changes the colored
HOMFLY-PT polynomial by a factor, that for Sr-symmetric
representation takes form a2frqrðr−1Þ. The term with quad-

ratic power of q, i.e., qfr
2 ¼ qfð

P
i
diÞ2 ¼ qf

P
i;j
didj shifts

all elements of C by f, which in the dual quiver adds f
loops at each vertex and f pairs of oppositely oriented
arrows between all pairs of vertices. Moreover, as predicted
in [17], the cohomological Hall algebra associated with a
quiver should be identified as the algebra of BPS states
[16], which deserves further studies in the context of brane
realization of knot invariants.

V. EXAMPLE: TREFOIL KNOT

We illustrate the above correspondence in the example of
the trefoil knot, whose reduced colored HOMFLY-
PT polynomials arise by setting t ¼ −1 in (8). Using

the q-binomial identity ðz; qÞk ¼
P

i½ki�ð−zÞiq
iði−1Þ

2 , the q-
binomial and the last product in (8) take the form

�
r

k

��
a2

q2
; q2

�
k
¼

Xk
i¼0

ðq2; q2Þrð− a2

q2Þiqiði−1Þ
ðq2; q2Þr−kðq2; q2Þiðq2; q2Þk−i

:

Introducing r ¼ d1 þ d2 þ d3, k ¼ d2 þ d3, i ¼ d3 with
di ≥ 0, and normalizing Prða; qÞ by ðq2; q2Þr, the generat-
ing function (4) can be rewritten as in (12)

PðxÞ¼
X∞
r¼0

Prða;qÞ
ðq2;q2Þr

xr

¼
X

d1;d2;d3≥0

q
P

i;j
Ci;jdidj−2d1−3d3ð−1Þd3a2d1þ2d2þ4d3x

P
i
di

ðq2;q2Þd1ðq2;q2Þd2ðq2;q2Þd3
ð14Þ
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with

C ¼
2
4 0 1 1

1 2 2

1 2 3

3
5

The corresponding quiver is shown in Fig. 1 and, as we
claimed above, its vertices correspond to generators of
HOMFLY-PT homology. Furthermore, diagonal elements
(0,2,3) of matrixC (representing numbers of loops at vertices
of thequiver) indeed agreewith homological degrees encoded
in the uncolored superpolynomial (9), coefficients li ¼ −2, 0,
3 of linear terms in di in the power of q in (14) are given by
li ¼ qi − ti, coefficients ai ¼ 2, 2, 4 in the power of a agree
with a degrees of generators of HOMFLY-PT homology, and
the additional minus sign ð−1Þd3 is determined by just one
generator with odd t degree t3 ¼ 3.
We stress that rewriting of the generating function of

colored HOMFLY-PT polynomials in the form (14)
guarantees that it can be written in a product form (11),
so that LMOV invariants are expressed as combinations
(with integer coefficients) of integer motivic Donaldson-
Thomas invariants Ωd1;d2;d3;j. This proves the LMOV con-
jecture for the 31 knot, for all symmetric representations.
As mentioned below (12), analogous calculations can be

done for many other knots, e.g., rewriting formulas from
[30]. A general formalism facilitating such computations
and their consequences will be presented in [34].

VI. SUMMARY

In this paper, we presented a surprising duality between
knots and quivers, which underlies the supersymmetric
quiver quantum mechanics description of BPS states in
brane systems describing knots. To conclude, let us indicate
various directions in which relations presented above could
be generalized. It is natural to expect that various proper-
ties, well known on one side of the duality, should have
their counterparts on the other side.
First, it is desirable to be able to identify a quiver

corresponding to a given knot more directly, not necessarily
taking advantage of colored HOMFLY-PT polynomials, on
which the method presented above relies.

Second, colored HOMFLY-PT polynomials and LMOV
invariants are naturally defined for arbitrary representa-
tions, while for symmetric representations they are related
to algebraic curves of A-polynomial type, as well as
recursion relations encoded in Â polynomials [11,12,35].
We expect that analogous objects should exist for quivers,
presumably generalizing observations in [18].
On the other hand, various properties of quivers, their

moduli spaces, and other related objects—in particular,
cohomological Hall algebra—should shed new light on
properties of knot invariants, in particular, knot homol-
ogies. Further, from the quiver representation viewpoint, it
is natural to split the generating parameter x into parameters
x1;…; xm, which implies a nontrivial refinement of LMOV
invariants (with a label d split into d1;…; dm), as in (11), as
well as of HOMFLY-PT polynomials.
It is also interesting to relate our results to other

developments, e.g., to the connection—albeit in a different
context—between (uncolored) HOMFLY-PT polynomials
and Donaldson-Thomas invariants in [36]. Then, the
generating functions (12) take the form of combinations
of q-series that appear in Nahm’s conjecture [37], which
indicates their relation to integrable systems and conformal
field theory.
We believe that the results and conjectures presented in

this paper are just a tip of the iceberg, which is worth
thorough exploration.
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