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Various classes of fishnet Feynman graphs are shown to feature a Yangian symmetry over the conformal
algebra. We explicitly discuss scalar graphs in three, four and six spacetime dimensions as well as the
inclusion of fermions in four dimensions. The Yangian symmetry results in novel differential equations for
these families of largely unsolved Feynman integrals. Notably, the considered fishnet graphs in three and
four dimensions dominate the correlation functions and scattering amplitudes in specific double-scaling
limits of planar, γ-twisted N ¼ 4 super Yang–Mills or Aharony-Bergman-Jafferis-Maldacena (ABJM)
theory. Consequently, the study of fishnet graphs allows us to get deep insights into the integrability of the
planar AdS=CFT correspondence.
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I. INTRODUCTION

Feynman diagrams represent the main tool for the study
of complex physical phenomena—from fundamental inter-
actions of elementary particles to diverse solid state
systems. In spite of the great progress in computing
individual Feynman graphs with multiple loop integrations,
examples of exact all-loop results for important physical
quantities (such as amplitudes, correlators, etc.) are rare in
dimensions greater than two. Remarkably, there exist
certain types of planar graphs with a particularly regular
structure, which may be calculable at any loop order.
Examples are the regular tilings of the two-dimensional
plane. These diagrams become accessible due to their
integrability properties, in close analogy to the quantum
integrable one-dimensional Heisenberg spin chains. Apart
from providing new, powerful methods for the computation
of large classes of particular Feynman graphs, these
observations reveal the interplay between various physical
systems and a rich variety of mathematical aspects related
to quantum integrability.
A prime example in the above class of Feynman graphs

are scalar fishnets in four dimensions, built from four-point
vertices connected by massless propagators (cf. Fig. 1).
These represent one of the three regular tilings of the
Euclidean plane and, except for the simplest example,
solving this class of Feynman integrals for generic external
parameters is an open problem. On the other hand, these
square fishnets are subject to outstanding properties: First,
they feature a (dual) conformal Lie algebra symmetry,

which makes it natural to express them using conformal
cross ratios. They are finite, i.e. free of IR or UV
divergencies, such that their conformal symmetry is unbro-
ken for generic kinematics. Moreover, A. Zamolodchikov
demonstrated that scalar fishnet graphs can be interpreted
as integrable vertex models [1]. Furthermore, in the
planar limit fishnet graphs dominate physical quantities,
such as scattering amplitudes and correlators, of the
biscalar conformal field theory (CFT) recently found by
Ö. Gürdogan and one of the authors [2] as a specific
double-scaling limit of γ-twisted N ¼ 4 SYM theory. This
nonunitary CFT is defined by the Lagrangian

Lϕ ¼ NcTrð∂μϕ†
1∂μϕ1 þ ∂μϕ†

2∂μϕ2 þ ξ2ϕ†
1ϕ

†
2ϕ1ϕ2Þ: ð1Þ

Its basic physical quantities (anomalous dimensions, cor-
relators etc.) are determined by a very limited number of
Feynman graphs at each loop order and efficiently calcu-
lable via integrability [3,4].
In this paper we add a further remarkable property to

the above list of features of fishnet graphs. We demonstrate
that their conformal symmetry extends to a nonlocal
Yangian symmetry. This symmetry yields novel differential

FIG. 1. Example of a conformal scalar fishnet Feynman graph
in four dimensions. Filled blobs denote loop integrations, white
blobs represent external points xk.
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constraint equations for this class of Feynman integrals.
More technical details can be found in the accompanying
papers [5,6].
A single scalar fishnet graph of the above type represents

a single-trace correlator of the biscalar theory:

Kðx1;…; xnÞ ¼ hTr½χ1ðx1Þ…χnðxnÞ�i: ð2Þ

Here χk ∈ fϕ1;ϕ2;ϕ
†
1;ϕ

†
2g and xi is the spacetime coor-

dinate of the field χi. Importantly, via the relation to this bi-
scalar model, we define a CFT for the all-loop study of
Yangian-invariant correlators and scattering amplitudes,
similar to those appearing in AdS=CFT. After having
discussed the above scalar fishnets in four dimensions,
we will show that the class of Yangian-invariant Feynman
graphs is actually much richer and extends to different
dimensions, particle species and more exotic tilings of
the plane.

II. THE BOX AND THE YANGIAN

The most elementary representative in the class of fishnet
graphs is the scalar box integral [7], cf. Fig. 2. In fact, this
integral is the only member of this family, which has been
solved explicitly. It is conveniently written in terms of
variables xi which can be related to dual momenta via
pμ
i ¼ xμi − xμiþ1. The scalar box integral then reads

I4 ¼
Z

d4x0
1

x201x
2
02x

2
03x

2
04

; ð3Þ

and evaluates to a combination of logs and dilogs of
conformal cross ratios [8]. The above box integral (3)—
as well as all fishnet graphs composed from such elemen-
tary boxes—are invariant under the conformal algebra
soð2; 4Þ. On a generic scalar fishnet graph, the conformal
generators are represented via their usual tensor product
representation JA ¼ P

n
j¼1 J

A
j with the index j labeling the

external legs and the index A enumerating the following
differential operators:

D¼−ixμ∂μ− iΔ; Lμν ¼ ixμ∂ν− ixν∂μþSμν;

Pμ ¼−i∂μ; Kμ ¼ 2xνLνμ− iðxνxνÞ∂xμ − 2iΔxμ: ð4Þ

As long as we consider only scalars, we have Sμν ¼ 0.
The Yangian Hopf algebra over the conformal algebra is

generated by the above Lie algebra generators and an
additional set of bilocal level-one generators of the form

ĴA ¼ fABC
Xn
k¼1

Xk−1
j¼1

JCj J
B
k þ

Xn
j¼1

vjJAj : ð5Þ

Here fABC denotes the structure constants of the conformal
algebra and the (a priori undetermined) variables vj para-
metrize an external automorphism of the Yangian. The
level-one generators obey the commutation relations
½JA; ĴB� ¼ fABCĴ

C.
The conformal algebra ensures the full Yangian sym-

metry, as soon as invariance under a single level-one
generator and the full level-zero algebra holds. A conven-
ient choice for demonstrating this invariance is the level-
one momentum generator ĴA ∼ P̂ given by

P̂μ ¼ −
i
2

Xn
j<k¼1

½ðLμν
j þ ημνDjÞPk;ν − ðj ↔ kÞ� þ

Xn
j¼1

vjP
μ
j :

ð6Þ

We may explicitly act with this generator onto the box
integral (3) to find P̂μI4¼

P
4
j¼1ðvjþjÞPμj I4. Hence, fixing

the parameters vj according to

vboxj ≔ −j; ð7Þ

the box integral is indeed Yangian invariant. Parametrizing
the box as I4 ¼ 1

x2
13
x2
24

Φðu; vÞ, with the conformal cross

ratios u ¼ x2
12
x2
34

x2
13
x2
24

and v ¼ x2
14
x2
23

x2
13
x2
24

, this statement boils down to

the following second order differential equation,

0 ¼ Φþ ð3u − 1Þ ∂Φ∂u þ 3v
∂Φ
∂v þ ðu − 1Þu ∂

2Φ
∂u2

þ v2
∂2Φ
∂v2 þ 2uv

∂2Φ
∂u∂v ; ð8Þ

as well as the same equation with u and v interchanged.
Notably, the above box integral has a cyclic shift

symmetry xk → xkþ1. For vj ¼ 0 with j ¼ 1;…; 4, this
symmetry is violated by the level-one generators in (5).
Crucially, the choice of parameters (7) precisely restores
this cyclic symmetry. In the case of the Yangian symmetry
of tree-level amplitudes in N ¼ 4 SYM theory (where
vj ¼ 0) this cyclicity is only possible due to the vanishing
dual Coxeter number of the underlying Lie algebra

(a) (b)

FIG. 2. The box integral in momentum (black) and dual (green)
coordinate space. It will be convenient to distinguish (a) off-shell
and (b) on-shell external momenta. Note the relabeling of
coordinates with respect to (3).
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psuð2; 2j4Þ. The above example thus shows that a vanish-
ing dual Coxeter number is not necessary for the existence
of cyclic Yangian invariants.
We will now show that Yangian differential equations,

similar to (8), also hold for generic fishnet graphs.

III. SCALAR FISHNETS AND MONODROMY

Generic scalar fishnet graphs (cf. Fig. 1) are composed of
the above box diagrams. In order to demonstrate their
Yangian symmetry, we rephrase the Yangian algebra in
terms of the powerful RTT-formulation. Here, the Yangian
generators are packaged into a monodromy matrix

TðuÞ≃ 1þ 1

u
Jþ 1

u2
Ĵþ � � � ; ð9Þ

and the algebra relations are formulated via the Yang–
Baxter equation with Yang’s R-matrix RðuÞ ¼ 1þ uP:

R12ðu − vÞT1ðuÞT2ðvÞ ¼ T2ðvÞT1ðuÞR12ðu − vÞ: ð10Þ

We explicitly solve this RTT-relation by defining the
monodromy as a product of conformal Lax operators [9]

Lk;αβðuþk ; u−k Þ ¼ uk1k;αβ þ
1

2
Mab

αβJ
Δk
k;ab; ð11Þ

each of which obeys (10) with Tk → Lk. Here we
package the inhomogeneities uk and the conformal dimen-
sions Δk into the symmetric variables uþk ≔ uk þ Δk−4

2
and

u−k ≔ uk −
Δk
2
. The Jk;ab denote the differential representa-

tion of the conformal algebra displayed in (4), and we
have Mab ¼ i

4
½Γa;Γb�jupper block, with Γa representing six-

dimensional gamma matrices for R2;4. The Yangian sym-
metry of the box integral I4 and its n-point generalizations
In now translates into the eigenvalue equation [10]

Tðu⃗ÞIn ¼ λðu⃗ÞIn1; ð12Þ

where Tðu⃗Þ denotes the inhomogeneous monodromy

Tðu⃗Þ ¼ Lnðuþn ; u−n ÞLn−1ðuþn−1; u−n−1Þ…L1ðuþ1 ; u−1 Þ: ð13Þ

The choice of parameters u�k depends on the diagram
under consideration. It will be convenient to introduce the
notation ½δþk ; δ−k � ≔ ðuþ δþk ; uþ δ−k Þ and ½δk� ≔ uþ δk.
By convention we choose the parameters on the boundary
legs at the top to be [1, 2]. Then the parameters on the right,
bottom or left boundary legs have to be [2, 3], [3, 4] or
[4, 5], respectively (see Fig. 3 for an example). The Lax
operator defined in (11) acts on an auxiliary and a quantum
space. While the product in (13) is taken in the auxiliary
space, each Lax operator acts on one external leg of the
considered graph (the quantum space).

Proving the invariance statement (12) boils down to
employing the lasso method [5], i.e. to moving the
monodromy through a given graph as displayed in
Fig. 3. The most important relation used in this process
is the intertwining relation for the Lax operator and the
x-space propagator, cf. Fig. 4(a):

1

x212
L2½δ; •�L1½⋆; δþ 1� ¼ L2½δþ 1; •�L1½⋆; δ� 1

x212
: ð14Þ

Moreover, we can move a product of Lax operators
through an integration vertex via the following relation,
cf. Fig. 4(b):

Z
d4x0L2½δþ 1; δþ 2�L1½δ; δþ 1� 1

x201x
2
02x

2
03x

2
04

¼ ½δþ 2�
Z

d4x0
1

x201x
2
02

L0½δþ 1; δþ 1� 1

x203x
2
04

: ð15Þ

A third relation of this type is depicted in Fig. 4(c). Finally,
the Lax operator and its partially integrated version denoted
by LT act on a constant function as

(a) (b)

FIG. 3. (a) Monodromy encircling a sample fishnet graph
representing the left-hand side of (12). (b) Intermediate step of
the proof of Yangian symmetry.

(a)

(b)

(c)

FIG. 4. Rules employed to prove the Yangian invariance.
(a) The intertwining relation (14). (b) and (c) Pulling the
monodromy contour through an integration vertex, cf. (15).
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Lαβ½δ; δþ 2� · 1 ¼ LT
αβ½δþ 2; δ� · 1 ¼ ½δþ 2�δαβ: ð16Þ

These rules are sufficient to move the monodromy contour
in Fig. 3(a) through the whole graph to end up with the
eigenvalue on the right-hand side of (12). See Fig. 3(b) for
an intermediate step. The eigenvalue λðu⃗Þ in (12) is
composed of the factors picked up in this process via
(15) and (16), cf. [5] for explicit expressions.

IV. OFF- AND ON-SHELL LEGS

Above the external variables xμi were unconstrained.
To interpret the xi as region momenta for a scattering
amplitude with massless on-shell legs, we require p2

k ¼
ðxk − xkþ1Þ2 ¼ 0. Notably, the delta function imposing this
constraint obeys the same intertwining relation as the
propagator in (14):

δðx212ÞL2½δ; •�L1½⋆; δþ 1�
¼ L2½δþ 1; •�L1½⋆; δ�δðx212Þ: ð17Þ

We may thus extend the above construction by introducing
dashed lines alias delta functions into the graphs, see Fig. 5
for the double-box example. Due to (14) and (17),
propagators and delta functions are algebraically inter-
changeable. Hence, we can set external points (cf. Fig. 5) or
internal propagators on shell via insertion of delta func-
tions. Note, however, that the conformal symmetry of
massless amplitudes typically shows an anomalylike
behavior for collinear configurations. This can be realized
in subtle ways and may require additional contributions to
the symmetry generators, cf. e.g. [11–15]. The investiga-
tion of this point is in progress.
The generalized boundary configurations as displayed

in Fig. 5 require to adapt the inhomogeneities. As can be
seen for that example, the conformal dimension Δk ¼
δþk − δ−k þ 2 entering the Lax operator L½δþk ; δ−k � corre-
sponds to the number of attached propagators, cf. [5].
Notably, the central intertwining relation (14) general-

izes to arbitrary powers 2α of the propagator:

1

x2α12
L2½δ; •�L1½⋆; δþ α� ¼ L2½δþ α; •�L1½⋆; δ� 1

x2α12
: ð18Þ

This allows us to construct Yangian-invariant deformations
of the above correlators and amplitudes. These represent
loop-level analogues of the tree-level amplitude deforma-
tions found in N ¼ 4 SYM and Aharony-Bergman-
Jafferis-Maldacena (ABJM) theory [16,17]. Here the
powers αk of propagators entering a vertex obey the
conformal constraint

P
kαk ¼ 4.

The theory defined by (1) is known to generate double-
trace interactions ðTrðϕjϕjÞTrðϕ†

jϕ
†
jÞÞ, ðTrðϕjϕjÞTrðϕ†

jϕ
†
jÞÞ

and ðTrðϕ1ϕ
†
2ÞTrðϕ2ϕ

†
1ÞÞ due to quantum corrections [18].

Note that these do not contribute to the correlator (2) at
leading order in ðNcÞ and hence to the considered planar
observables.

V. INCLUDING FERMIONS

The procedure to obtain integrable quantum field theo-
ries as limits of γ-deformedN ¼ 4 SYM theory suggests to
consider more general particle species. Adjusting the limit
appropriately, one may for instance obtain an interaction
Lagrangian including scalars and fermions [3]:

Lint
ϕψ ¼ NcTrðξ21ϕ†

3ϕ
†
1ϕ

3ϕ1 þ ξ22ϕ
†
2ϕ

†
1ϕ

2ϕ1

þ
ffiffiffiffiffiffiffiffiffi
ξ1ξ2

p
ðψ̄1ϕ

1ψ̄4 − ψ1ϕ†
1ψ

4ÞÞ: ð19Þ

Consider e.g. the following three-loop Feynman graph built
from the above Yukawa vertices:

Here dotted lines denote Fermion propagators. The corre-
sponding integral reads

Iϕψ ¼
Z

d4x0d4x0̄d
4x00

P⃖
∂ ~μ

0̄
μ2 P⃗~μ0̄∂μ0 P⃖

∂ ~μ
00

μ0 P⃖~μ00
μ5

x210x
2
30̄
x2
400

; ð20Þ

where the Fermion propagators are expressed using the
notation

P⃖A2

A1
¼ hA1jx12jA2�

x412
; P⃗A2

A1
¼ ½A2jx12jA1i

x412
: ð21Þ

We employ dummy suð2Þ spinors with brackets hμj and ½ ~μj,
respectively, in order to avoid explicit indices. Notably, also
the propagators (21) obey intertwining relations including
Lax operators Lf and Lf̄ in the ð1

2
; 0Þ and ð0; 1

2
Þ representa-

tions of the Lorentz group, respectively, for instance

FIG. 5. Double-box integral with massless external legs.
Dashed black lines represent delta functions δðx2i;iþ1Þ forcing
the momenta (dotted lines) on shell.
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Lf
2

�
uþ 3

2
; •

�
L1ð⋆; uÞP⃖∂ ~μ1

μ2 ¼ P⃖
∂ ~μ1
μ2 L2ðu; •ÞLf̄

1

�
⋆; uþ 3

2

�
:

ð22Þ

Here the operators Lf and Lf̄ are defined via (11), but
now with nonzero spin matrices S in (4). Acting on
the above spinors, we have Sfρσ ¼ μ · σþρσ · ∂μ and Sf̄ρσ ¼
~μ · σ−ρσ · ∂ ~μ, where σ�ρσ ¼ i

4
ðσ�ρ σ∓σ − σ�σ σ

∓
ρ Þ and σ�μ ¼

ðσ0;�σ1;�σ2;�σ3Þμ; for more details see [6,9]. Also in
this case proving the Yangian invariance boils down to
pulling the monodromy through propagators and vertices.
The fermionic Lax operators are not proportional to the
identity when acting on a constant [cf. (16) for the scalar
case] but cancel via Lf̄LfP ∼ P on the propagator P.
If we consider the model (19) and an amplitude that

describes the scattering of both types of fermions and only
the boson ϕ1, this scattering process corresponds to a single
“brick wall” Feynman graph, whose bulk structure is given
by a regular fishnet lattice consisting of only Yukawa
vertices, e.g.

This type of integrable fishnet is new with respect
to the examples given in [1]. If we also include the
other two types of bosons of (19), each color-ordered
amplitude is represented by a single Yangian-invariant
graph with a mixture of rectangular and hexagonal fishnet
structures.

VI. THREE AND SIX DIMENSIONS

Instead of considering the parameter α in (18) as a
deformation in 4d, we may associate it with the spacetime
dimension d via α ¼ d−2

2
and replace the four-dimensional

Lax operators Lk by an appropriate d-dimensional counter-
part Ld

k , cf. [6]. Then the above off-shell construction
generalizes to the cases of amplitudes in d ¼ 3 and d ¼ 6
spacetime dimensions built from scalar six- and three-point
vertices, respectively. The above action of the scalar Lax
operator on the vacuum (16) becomes

Ld
αβ

�
δ;δþd

2

�
·1¼LdT

αβ

�
δþd

2
;δ

�
·1¼

�
δþd

2

�
δαβ: ð23Þ

For d ¼ 3 and d ¼ 6 the scalar graphs form triangular
and hexagonal fishnets, respectively. These complete
the set of regular tilings of the plane—all furnishing
Yangian-invariant scalar Feynman diagrams, cf. Table I.
Corresponding field theories were recently proposed in

[3,19]. While the three-dimensional triangle graphs arise
from scalar limits of planar, γ-deformed ABJM theory [3],
a six-dimensional “mother” theory is not known.
Due to the dimensionality of the propagators, in three

and six dimensions we cannot use the naive trick to replace
the propagator by a delta function δðx2ijÞ in order to go on
shell, cf. Table I and (17). It is possible, however, to set up a
momentum space Lax formalism to show the Yangian
invariance of on-shell graphs [6].

VII. CONCLUSIONS AND OUTLOOK

The Yangian algebra underlies the Bethe ansatz and the
quantum inverse scattering method. Its finding in the
present context gives hope for the applicability of similar
solution techniques to the largely unsolved class of fishnet
integrals (cf. [20] in this context [21]). In four dimensions
merely the box integral is solved [8] and already the double
box is expected to yield complicated elliptic functions [22].
This renders new insights into the mathematical structure of
fishnet integrals valuable.
The above classes of Feynman graphs define specific

double-scaling limits of scattering amplitudes in planar γ-
deformed N ¼ 4 SYM and ABJM theory. This suggests a
set of nontrivial, integrable and nonsupersymmetric CFTs
in four dimensions, whose existence puts understanding the
origins of integrability of the respective “mother” theories
within reach. This finding is also remarkable since the
study of symmetry-invariant subsectors has been crucial for
developing the powerful integrability tools for the spectrum
of AdS=CFT. In particular, our results show that cyclic
Yangian-invariant scattering amplitudes exist even if the
dual Coxeter number of the underlying symmetry algebra
does not vanish, i.e. for cases different from the fullN ¼ 4
SYM or ABJM theory.
A further important goal is to establish the Yangian

symmetry for the most general double-scaled model
of [2], containing three couplings, three bosons and three
fermions.
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