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Viscous corrections to electromagnetic emissivities in QCD
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We provide a general framework for the derivation of the hydrodynamical corrections to the QCD
electromagnetic emissivities in a viscous fluid. Assuming that the emission times are short in comparison to
the fluid evolution time, we show that the leading corrections in the fluid gradients are controlled by the
bulk and shear tensors times pertinent response functions involving the energy-momentum tensor. In a
hadronic fluid phase, we detail these contributions using spectral functions. Using the vector dominance
approximation, we show that the bulk viscosity correction to the photon rate is sizable, while the shear
viscosity is negligible for about all frequencies. In the partonic phase near the transition temperature, we
provide an assessment of the viscous corrections to the photon and dilepton emissions, using a
nonperturbative quark-gluon plasma with soft thermal gluonic corrections in the form of operators of
leading mass dimension. Again, the thermal bulk viscosity corrections are found to be larger than the
thermal shear viscosity corrections at all energies for both the photon and dilepton in the partonic phase.
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I. INTRODUCTION

One of the major achievements of the heavy ion program at
the Relativistic Heavy Ion Collider and now also at the LHC
is the emergence of a new state of matter under extreme
conditions, the strongly coupled quark gluon plasma (sQGP)
with near-ideal liquid properties [ [-6]. The prompt release of
a large entropy in the early partonic phase together with a
rapid thermalization and short mean free paths points to a
partonic fluid. The anisotropies of the produced hadrons and
photons suggest a near-ideal fluid [7-13].

Small deviations from the ideal limit appear to follow
from dissipative effects, suggesting that the shear viscosity
of the sQGP fluid is very close to its quantum bound [14].
However, this interpretation requires some care since the
emitted hadrons interact strongly throughout the fluid
history and particularly in the late stages of the evolution
composed essentially of a fluid of hadrons. In contrast, the
emitted photons or dileptons are continuously emitted
throughout the evolution of the fluid without secondary
interactions. They provide for an alternative probe of the
nature and strength of these viscous corrections.

So far, most of the hydrodynamical corrections to the
electromagnetic emissivities have made use of weakly
coupled kinetic theory to modify the phase space distri-
butions of either partons or hadrons in 2 — 2 rate processes
[15]. Holographic calculations for the electromagnetic
emissivities for N =4 supersymmetry (SUSY) were
carried in near equilibrium in Ref. [16] and far from
equilibrium in Ref. [17]. In light of this, it is important
to seek a full nonperturbative analysis of the electromag-
netic emissivities in a viscous QCD fluid that relies solely
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on a near-equilibrium approximation and a fluid gradient
expansion.

The purpose of this paper is to provide such a framework
for the analysis of the emission of photons and dileptons from
a nonideal hydrodynamical QCD fluid that does not rely on
perturbation theory. Assuming that the electromagnetic
emission time is shorter than the fluid unfolding time, we
show how to organize the rates in the near-equilibrium
phase by expanding in the fluid derivatives. The emerging
fluid bulk and shear tensors are multiplied by pertinent
correlation functions involving the energy-momentum tensor
in equilibrium.

The organization of the paper is as follows. In Sec. I, we
show how to assess the electromagnetic emissivities in a
fluid near equilibrium by capturing the slow fluid flow in a
density matrix. In Sec. III, we show that in leading order in
the fluid gradients the electromagnetic emissivities receive
contributions proportional to the bulk and shear tensors
times Kubo-like response functions involving the energy-
momentum tensor. In Sec. IV, we analyze the leading
viscous corrections to the electromagnetic emissivities in
the hadronic phase, and in Sec. V, we analyze them in a
nonperturbative partonic phase. Our conclusions are in
Sec. VI. A background field analysis for the soft gluon
corrections in the partonic phase is outlined in Appendix A.
We also detail the leading contribution to the photon
thermal viscous corrections in Appendix B.

II. PHOTON EMISSION IN A FLUID

In thermal equilibrium, the photon emission rate is fixed by
the Wightman function for the electromagnetic current [18]

dary B ag”
= aa G, (1)

with
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The averaging is carried over the state of maximum entropy or
equivalently a thermal distribution of fixed temperature 1/.
In writing (2), space-time translational invariance is assumed.
Most studies of photon emission at collider energies have
relied on (1), with some recent exceptions using modifications
based on kinetic theory.

For a system far out of equilibrium, its evolution and
emission rates are convoluted. However, for large times, the
system nears equilibrium, and its evolution follows the lore
of hydrodynamics. In this regime, the microscopic electro-
magnetic emission rates can be assumed to occur on time
scales shorter than the times it takes for the fluid to flow. In
this decoupling approximation, we may ask for the changes
caused by a fluid velocity profile on the electromagnetic
emissivities of a QCD fluid, for instance.

With this in mind, we may still rely on (2) at any time 7
since space-time microscopic translational invariance
holds. Now, consider the emission on a fluid timelike
surface defined by 7 = constant, and canonically quantize
the field theory on this surface. Let ¢; be a generic operator
on this surface. Its time evolution proceeds through

¢i(1.%) = p(i + 1.5) = eMp(1. X) e~ ™! (3)
with the canonical Hamiltonian H = H|¢;, 7;]. The emis-
sion on this timelike surface is still controlled by the
general Wightman function

(G, (1.3)) = Tr(p(1)J5,(0.0)J5, (1. %) (4)

with an initial density operator at 7, < 7. For a state in
equilibrium, we have

plis) = plf) = e(HI=F), (5)

However, for a state near equilibrium, we define

1 o -

plio) = p(DU(L.To) = p()T,edo =020 (g

T, is the ordering along the 7 line. The operator X is a
measure of the entropy change from 7, — 7 as discussed in

Ref. [19]. For our case, it is sufficient to note that it follows
from the response to the insertion of f d4x8,ﬂjT,»j,

1 1
(i —ifr, i) = 8l~ﬂj/ dt’/ ded®X'T (X1 = itp;),
% 0
(7)

for a time-independent but spatially dependent fluid veloc-
ity ;. We note that (6) can be equally defined through
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plio) = U(L.To)p(7) = Treh “=0HFeil o) ()
For 7>1, the averaging over p(7,) asymptotes the
equilibrium average captured by p(7), modulo derivative
corrections due to the fluid gradients as captured in Z. In
what will follow, we will set f = f; for notational
simplicity.

III. GRADIENT EXPANSION

For a baryon free fluid flow characterized locally by f3;, we
can now organize (4) using an expansion in fluid gradients
0,p;. For a given time 7, the leading contribution emerges
only by keeping p(7) in (6). In this order, Eq. (4) yields (1) in
equilibrium. The fluid gradient corrections appear at next-to-
leading order by expanding the z-ordered exponent and
retaining only the first gradient correction in Z,

p(io) p(i)(1 vy / "ar /0 e d TR irﬂ))

P 1
~ (1 - 0,p; /Idt’A ded®X'T;(X. 1 + iT/)’))p(?).
)

©)

Inserting (9) in (4) yields the first-order fluid gradient
correction to the electromagnetic emissivities

(G t/w(t X)), ® —/; dt’/l de(T;(f —izf,q = 0)
xJ7(0)J3,(x)) 40
/dt/ de(T;;(f —izp,q = 0)
xJ3(0)J7(x)) 403 (10)

with @ = 0,,/,,/3. The transverse and traceless shear veloc-
ity tensor is defined as

1
0ij =3 <aiﬁj +0p; — §5tjan1ﬂ'")' (1)

Equation (10) involves the causal change in the electromag-
netic emissivity caused by the fluid bulk and shear parts of the
energy-momentum tensor 7';;, while evolving from 7, — 7.

The Kubo-like three-point response function in (10) can
be made more explicit by defining

7 1
:/ dt’A dr/d3x’Tij(t’ﬂFirﬂ,f’) (12)
)

so that
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(G5, (10)), % =(0703,(0)3 ()0

<0i_j']?;4 (O)J;D(X»Ui j
(13)

The equivalence between the left-right decomposition in
(9) suggests that the operator ij commutes with the
Hamiltonian. Indeed, we have

HOjE —z/ dt/ dr/d3x8t/T,]tZFlfﬂx)

_j:ﬂ/to A dX(Ty(t F ip5)— Ty (1)) (14)

If the decorrelation time in the Kubo-like result (13) is short
in comparison to the fluid evolution time, we may regard
ty =1 —1, as large. This will be understood throughout.
Therefore, the commutator in (14) vanishes modulo asymp-
totic terms. We note that the operator O;; is related to the
time integration of the first moment of the momentum
density, which is conserved,

) / dx(x,T9(1, %)) = / & x(x;0,T)(1, X))
- [ @xtanrie)
_ / BT (1.7). (15)

It follows that its expectation value is proportional to the
time length ¢y characteristic of the hydrodynamical evo-
lution, which is assumed to be much larger than the
characteristic time for electromagnetic emission. This point
will become clear in the explicit calculations to follow.

IV. HADRONIC PHASE

In a QCD fluid, the analysis of the response functions
depends on the nature of the underlying phase. At low
temperatures, the fluid is mostly hadronic, while at high
temperature, it is partonic but strongly coupled near the
crossover temperature. In the hadronic phase with zero
baryon density and no strangeness, Eq. (13) can be
organized by expanding it in increasing densities of the
lightest stable thermal hadrons, i.e., pions following similar
analyses for the equilibrium rates in Ref. [20]. Specifically,
we have

G5 (x) = Tr(e /-1 0% (J(3)J (2 -1))
1 S
~Gioet [ (i), Gty [(@indin G5,

(16)

where we have defined the unordered and connected matrix
elements

e
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Gin (%)
— {0 (K ).t (k) (2 (E = )| (K ).t (K, )

(17)
with the pion thermal phase space factors (E? = 1212 + m2)

Bh; 1y kik;

n)is = Gmyp2E, E,

np(E;)(1+ng(E;))  (18)

and the identification 7; = 275(0g). This can be justified
by explicitly performing the trace using the in states. For
instance, for the one-pion connected pieces, we have

> alky)... n(ky,))

n,[k]

I’l2 _n k ik P
=) ...Zn—1<ﬂ(kl)|u|ﬂ(kl)>e 1PEy, 1172
1

7 (ky) e 05T |x(ky)...

nyky,...  npk El
Pk ty kik;
:e_/}FO/(2H)32;C E]I’lB(] +nB)<ﬂ'(k)|JJ|ﬂ'(k)>

(19)

When comparing the viscous corrected hadronic con-
tributions in (16) and (17) to the uncorrected ones, the
difference is in the insertion of the operator 0?; over the
external pion in states. 0?; is essentially the energy-
momentum tensor, which, once inserted, amounts to a
change in the one-pion phase space

&Pk 1 Bk 1 tykk;
— _) —_— .
(277.')3 2Ek (27[)3 2Ek Ek

These are essentially the corrections induced by the
viscosity on the hadronic emissivities which are still
captured by the hadronic matrix elements (nz|JJ|nx).
For fty ~ 1 and f ~ 1/m,, these corrections are of order
tykk/E; ~1/+/2. A more quantitative assessment of these
corrections will be given below.

A. Gy,

The contributions to ijvo,, in (16) follow from 27,4, ...
insertions in the intermediate state and are all found to
vanish. Indeed, consider the leading 27 insertion to G

contribution

ij,0m>
Gijox(x) = (01051 (X)J (% - x)|0)
Pk, dk I
Gaat, 25, OH (k) k)
x (at (ky)a™ (k)| (%)J (X — x)[0), (20)

where the overall factor 2 accounts for the two charged
pions. The covariantized transition matrix element in (20)
in leading order in the pion momentum reads
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(O (2, %) |7 (k1 )7 (k2))

—it(E\+E,)+i¥-(k; +h)

k2;4klu - gﬂv(_kl ' k2 - mzzr)) (21)

= e

X (_klukZV -

At asymptotic times or large ¢ as required by the out-field
condition, this contribution vanishes, owing to the non-
vanishing Fourier component in time. This result is con-
sistent with the fact that O,,, connects only states with
E, = E,. Clearly, this result carries to all 2nz insertions,
making G, = 0.

ij,0n
B. Gj, contribution

The leading correction to (13) arises from the thermal

one-pion contribution to G7,. Specifically, we have

&Pk ty kyiky;
(27[)3 2E1 El

(o (k) () (% =

(dmy);;GT,(x) = ng(1+ ng)

x|z (k). (22)

which is seen to involve part of the forward photon-pion
scattering amplitude. Its explicit form follows from the
general strictures of broken chiral symmetry, crossing
symmetry, and unitarity [20,21],

i By ty kyik;
.G = = o 1
(dﬂl)leln(Q) (2”)3 ZEI El nB( +n3)
6
. (‘F("l )Pl (k- q>2>).

(23)

Here, I1, is the AA correlation function of the axial-vector
current in the vacuum [20]. Its spectral form follows from z-
decay measurements into an odd number of pions. The
result (23) grows linearly with the hydrodynamical time 74,
that is, the time it takes the externally applied hydrody-
namical gradient ;; to change. This time is proportional
to the transport mean free path 75 ~ Ang, which in turn is
determined by the viscosities,

n

ty — t”ze—&—p shear

Here, n and ¢ are the shear and bulk viscosities, respec-
tively, and e and p are the energy and pressure densities,
respectively. These hydrodynamical times will be under-
stood in the results to follow.

The higher-order corrections G5, ... in (16) are sup-
pressed by additional viscous phase space factors:
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/ d3k tH kk ﬁtH d3k ng ﬁtH
I B e : | B _
(223 2E.E. " 2/ (2n)2E,

=K;——=.
V2

It is readily checked that in the range of temperatures
0 < 1/(pm,) < 1 the effective number of pions k, remains
small with 0 < x, < 1/2.

C. Viscous photon rate

The viscous corrections to the photon rates due to a
baryon free fluid of hadrons follow from the results in (1)—
(13) and in (16)—(23). Specifically, if we insert (23) into (1),
we obtain

Ty A
&Pk 27w ) (27)32E(fEF-1)* E

x (20,;P;jcos?0,, + 9,,N,;sin’6 )
(  (p - kPImIL (p - k) >) (25)

L Py - ij = 0ij = kikjs
the identity

after making use of

[ @ ppibFv
:2Pl~j/d3pcoszt9,,F(p,k)+Nij/d3psin26’pF(p,k).

Now, we define the bulk parameter 0 =0,p,/3 and the
shear parameter ¢ = o; ]k k and rewrite

20,5P;jcos* 0, +0;p;N;;sin*0, = 6(3cos?6, — 1) + 20,
(26)

in terms of which (25) reads

ary a / dp 1 et p?
&Pk 27w ) 2z)2E(fF -1 E
x (t,0(3c0s@,, — 1) + 21,0)

x (— 2 (= kP (p - k>2>) @7)

after using the substitution (24).

For comparison, the equilibrium photon rates (1) in the
hadronic phase can also be calculated using the Wightman
function with the result

dr's a
d3k Pt

Bp 11
(27)32E P — 1

< (=P (p-47). 28
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However, Eq. (28) to this order does not enforce the Kubo-
Martin-Schwinger (KMS) condition,

G=(q) ImiG* (q). (29)

- e/jqo +1

which reflects on the causal character of the emissivities. To
enforce this condition requires resumming higher-order
contributions from the expansion in (16). This is possible,
and the result is [20]

drty 1 a/d3p1 1
&Pk P+ 177w ) (27)32EF —1

x <;2 (p + k)M ImIL, ((p + k)?) + (k — —k)).
(30)

The chief outcomes of this resummation are twofold: a) the
appearance of an overall factor of 1/(e#® + 1) and b) a
crossing of the spectral function in the integrand that yields
the full forward y*z — y*z Feynman amplitude. We now
apply these observations to (27) to obtain

dry, 1 a / dAp 1 fE p?
&Pk e+ 127%0 ) (27)2E (efF—1)* E

x (t,6(3c08%@, — 1) + 21,0)
< (=3 (o= P (p = ) + (6= —8)).
(31)

Equation (31) is our final result for the leading viscous
correction to the hadronic rate using spectral functions. The
total viscous photon hadronic rate follows from (30) plus
(31) as

dl  dl, dI,
=200t 32
Tk Ik Pk (32)

D. Vector dominance

For a simple estimate of the size of the viscous
corrections, we will use the unsummed rates I'j; and make
use of the vector dominance model (VDM) to saturate
ImIly,. Specifically, we set

r
Il (s) ~ f3 ——— 5 (33)
— A

m )Z—I—%z

with the axial constant f, =~ f,. Here, m, and I" are the
mass and width of the axial-meson a1, with typically m, =
1230 MeV and I = 250 MeV. Inserting (33) in (27) yields
the VDM result for the (unsummed) viscous photon rate
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3a fir/p“dpdcose,, ePE

8t f2 E? (ePE —1)?

1 3
X ((tCG -3 t,16> + > tnocos20p>

E—pcosd,
X .
(m3 + 2Ew — 2pwcosb,)> + 5

dary
&k

(34)

Equation (34) simplifies further as fm, — 0 (chiral limit),

drs 3 2 00 PE
le_%f% / EYdE———
&k T8 2 (E 1)

X <(l§9—%tna>fl(E) +%tnaf2(E)>, (35)

where we have kept m, as an infrared regulator in the

integration, with
2
(m +2Ew(1 - x))* +15

e = [ ax
x*(1 - x)

f2(E) = /—1 & (m3 +2Ew(1 —x))> + 5

1-—x

(36)

Equation (34) is seen to vanish for zero width I". To leading
order in I', Eq. (36) simplifies

1 4
mif1(E) = fi(x) = el <]n(1 +dx) — 1 +x4x>

mfxfz(E) R fo(x) = 167

X X 2
—8x(l 4+ x) — %) (37)

b ((3 +20)(1 4 2%) In(1 + 4x)

with x = Ew/m?. Changing the integration variable to x in
(34) gives

2
dars 3a fimd s
e Ay

© x3e w
R PV —
A’k 167* f20* " Jozo iy
fﬂ mi (e o = 1)2

x (2t0f(x) + 1,06(3f2(x) = f1(x))). (38)

For comparison, the (unsummed) equilibrium VDM rate
(28) in the same approximation reads

(i_réziif%mgr/“ a0 )
d k 871' f n) myw /}mAx
T rn?\ e o — 1

where the lower bound stems from

(p+k)? =2Ew(1 —cos6,) = mj. (40)
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The ratio of the (unsummed) viscous rate (35) to the
equilibrium rate (39) takes the simple form

drs 2 00 2 -1
Ly Ma / de > {1 (x)
dF§ 2w mz® Py

mi e o - 1
3 ﬂmzAx
©0 X' e o
x (26,0 | dx———"—f,(x)
mgw /imix 2
mi (e o — 1)
/f’mix

3

o X e o
+ 1,0 dx————
mg® My X
1 I A 2
mi (6‘ @ = 1)

(3200~ f1 <x>>). (41)

In Fig. 1, we show the bulk contribution R in (41) as the
solid-blue curve and the shear contribution R, in (41) as the
orange-dashed curve over a range of frequencies @ in GeV
for a temperature 1/ = m,. We have set the shear and bulk
factors to 8 =0 =1 and fixed the relaxation times to
t, = t; = p. The smallness of the shear contribution stems
from the near cancellation of the 3f, — f in the integrand
of (41). The bulk contribution dwarfs the shear contri-
bution in the VDM approximation for about all frequencies.
The bulk contribution is also opposite in sign to the
shear contribution in leading order. At currently available
collider energies, a typical AA collision triggers a hadronic
fluid with a size L~10fm. For temperatures
T =~ 200 MeV, that results in fluid gradients of the size
O~oc~1/TL~1/10. When combined with the result
shown in Fig. 1, this estimate shows that the bulk viscosity
correction to the hadronic rate is about 30% across all
frequencies, while the shear viscosity correction is negli-
gible. Overall, the bulk hydrodynamical correction appears
sizable even in the late stage of the hadronic evolution with
small gradients in the form of a small 6 = 0,4;/3. These
observations deserve to be further checked in current
hydrodynamical assessments of the electromagnetic emis-
sivities and without the VDM approximation through the
use of the full axial spectral weight.

Rog¢

w [GeV]

0.4 0.6 0.8 1.0 1.2
-0.5

-1.0
-1.5
-2.0
-25

30—

FIG. 1. Ratio (41) for the bulk hadron contribution R, (blue-
solid curve) vs w and for the hadron shear contribution R,
(orange-dashed curve) vs @ in the VDM approximation, for
p=1/m,, and equal relaxation times f; =t, = for fixed
0=0c=1.
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E. Viscous dilepton rate

The previous results extend to the dilepton rates as well if
we recall that for dilepton emissivities Eq. (1) needs to be
changed to

leO aleg”” <
qu = _W <Gﬂl/(Q)>0 (42)

with the leptonic factor

2m2 4m2 1
o= (1420 (1-41) @
q q

with the threshold ¢ > 4m? and typically [ = e, u. The
equilibrium contributions to (42) in the hadronic phase
have been discussed in detail using spectral functions in
Ref. [22] and hadronic processes in Ref. [23]. From the
spectral functions analysis, the result is [22]

dRO - a2 B 2

Fq " e

Pp 11
—3¢2ImITy (4> ar -
x( q-lm V(q)+/(27r)32EeﬂE—l
12
X <qulmnv(q2)
6 2 2
_f_z(P_C]) ImI, ((p — q)* +q = —q)
8
+ 7 ((p - q)* — mzg*)ImILy (g%) x ReAg(p — q)

+q—>—q>>. (44)

The nonequilibrium viscous correction in the hadronic
phase follows a similar reasoning as that given for the
photons. A rerun of the preceding reasoning shows that

fi,Oﬂ also vanishes in this case. However, G, does not,

and the result is

(d”)ijGTn(‘]vk)
dk n kik;
(271')3 2E Ek

—]% (k— )i, ((k = g)?)

)ngu + ) (E il (¢?)

+ % (k- q)* = mzq*)Imlly(g?) x ReAg(k - q))'
(45)

Here, Il is the VV correlation of the vector current in the
vacuum, and Ay is the retarded pion propagator [20]. The
spectral form of IT, follows from eTe™ annihilation.
The last bracket in (45) is only the crossed y*z — y*x
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scattering amplitude 7 ,, which is seen to reduce to (23) at

the photon point or g> = 0. In terms of (45), the resummed
viscous corrections to the dilepton emissivities in a had-
ronic fluid take the following final form:

*dpdcosf, 1 e/F
(2z)3  2E(efE—-1)?

1 3 12
X <<l§9—21,70> +2I,IGC0329 > <fzq21mHV(q2)

—é%p—wqmﬂdw—qf+q*—w

Fq 3REPT

dR, 4a*B 1 j/p

12
f — ((p-9)* = mzg*)ImIly (¢*) x ReAg(p — q)
%-q—>—q>- (46)

The total viscous hadronic rate for dilepton emission is (44)
plus (46),

dR dR, dR
7o TO Tl (47)
dq d'q d'q

V. PARTONIC PHASE

At high temperature, the fluid is that of strongly coupled
partoniclike constituents (sSQGP). We will treat it in leading
order as made of partonic constituents in the presence of
soft gluonic fields. Typically, the soft gluons are magnetic
(scale ¢°T). The soft corrections will be estimated as
operator insertions in leading dimensions as in Ref. [24].
A similar proposal using soft insertions for the electro-
magnetic emissivities was also suggested in Ref. [25]. With
this in mind, and for the generic process [p;| = [q/] + 7,
the unordered Wightman function reads [18]

_G”<

-/ H SELLIEE) | pemtie

J

x (2;;)45@1,,. - ;qj “a) Mg )

3 out

32E0ut 1+ n(E;?m))

The effects of the viscous corrections amount to
additional contributions to the initial and final distribution
functions. We now detail them for both dilepton and photon
emissions.

A. Dileptons

We now seek to organize the dilepton emissivities in the
nonperturbative partonic phase as

PHYSICAL REVIEW D 96, 116021 (2017)

T \%4 n n

dS_R _ d3[R0p d3[R1p L d3Rg 4 d3RY
d*q d*q d*q d*q d*q

(49)

with the first contribution Rgp as the thermal perturbative
rate, the second contribution IRY” as the viscous perturba-
tive correction, the third contribution R!" as the thermal
and nonperturbative correction of leading mass dimension
in the external fields, and finally the fourth contribution

[RY” as the viscous nonperturbative contribution in the
leading mass dimension. The separation into perturbative
(thermal and electric) and nonperturbative (magnetic) in
the thermal state follows a similar reasoning for the use of
the operator product expansion (OPE) expansion in the
QCD sum rules for the hadronic correlators in the QCD
vacuum. We now proceed to evaluate each of these
contributions sequentially as (54), (61), (66), and (73),
to be detailed below.

1. Thermal perturbative contribution

In leading order, the perturbative dilepton emissivity
corresponds to an in state with a single gg as illustrated in
Fig. 3, and its contribution to (48) is (omitting all charge
factors)

2 go+lal

G ()= L[
Gﬂ(q>_7[|q|40+\q|

dkf/l (k)f—/l (q() - k)

2 gt
= nB(qo)%L (] _fﬂ(k) —f—ﬂ(% - k))
2

%”B(%)(

n,n
e
Blg|  \ninZ,

(50)

= ng(qo)

We have defined the Fermi distributions at finite chemical
potential y as

1
fiulq) = T 1 (51)
and their associated shifted distributions
nt = ! (52)
B BlaoElaD/2F e 1

The emergence of the Bose distribution nz = 1/(ef% — 1)
in (50) reflects on the KMS condition

G~ (g) = 2n(g0)ImiGL* (q) (53)
at finite temperature and chemical potential 4 in leading
order. The finite chemical potential will be traded below for
a complex chemical potential for a fixed color species and

identified with the insertion of a soft A, contribution in the
strongly coupled QGP [24,25]. For u = 0, Eq. (50), when
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inserted in the general formula for dilepton emission (42)
and upon restoring the color-flavor factor for partons
N Cé?- /2, yields the leading partonic dilepton rate

dR)?  —-a’B 1

d*q 37 P —1
1 2 nt
(L @2> <1+—ln<—>> 54
<4n sz:f Blal \n~ 34

with dp = N, the color dimension of the quark represen-
tation and n* = ni,. Here, e, is the electromagnetic
charge of a quark of flavor f. In this order, the emission is
isotropic.

2. Viscous perturbative contribution

The viscous corrections to the perturbative quark and
gluon processes follow exactly along the general arguments
we presented earlier in Secs. II and III. Specifically, for the
fermionic Wightman functions

=
=
<
R
~~
=
=

Gop(x) = = (wp( (55)

the 7';; insertions amounts to additional contributions, and
in leading order, we have

mf

G<() = L n(k) (6 - 6%)
= 0 (k) (1 = (k) 6 +67)
G* (k) = ’Z‘(l—n)(é-—m
tHaﬁjklk (1 = n)(6- + 6%) (56)

with 6% =6(ky F k). In the real-time or double-line
formalism, the total emission rate follows from the 12
Wightman function, where the effects of the T;; insertions
amount to modifying the in-state population by

kik;
and the out-state population by
n—->1l-n—-ty

kik:

With this in mind, the viscous corrections to the leading-
order dilepton emission at finite chemical potential (50) is

PHYSICAL REVIEW D 96, 116021 (2017)

qo+\q\ kik-

7 A kik;
D / (=) a0 R (59

which can be reorganized as follows:

2

z|q|
5 . ll();\ll\
« (# / dikf, (1 = £,)f (0 = )

0-lal
7

tHaﬁ]

3@161 _ 51” qo;\fi\
* #[ gl dkkf, (1 = fu)f-u(q0 = k)
2
2
g <|Ci10| 2q|j1|q;<_> e ‘/‘>~ (60)

The p = 0 contribution in (60) yields the viscous pertur-
bative contribution to the dilepton rate (54). More specifi-
cally, we have

dRYp o azB 1 « Z
d*q 37 P -1 4z dr |q|

21,0 —
% ( 59 t’76
2

g0+
3% loz\q\

go=ld|

dikk(1 = f = f)(1 = f)

" @_2%61_)2) |
(2% (o1
where we have defined the fermionic distributions f =
fo(k) and f = fo(qo — k) for = 0.

In Fig. 2, we show the ratio dR,” /dR/” of the thermal
viscous contribution (61) to the free thermal contribution
(54), for dilepton emission at ¢ = (2w, @) as a function of
pw, after setting t, = t, = f and § = 6 = 1. The orange-
dashed line is the shear ratio, while the blue-solid line is the
bulk ratio. Again, the bulk contribution is larger than the
shear contribution, and both are positive and increasing
with fw.

j S dkk(1 = f — F)(1 = f)

0=ldl
2

3. Thermal nonperturbative contribution

The partonic phase near the transition temperature still
carries soft gluons [24,25]. Their effects is to modify both
the thermal and viscous rates. A way to assess these
nonperturbative effects is to organize these modifications
as power corrections through gluonic operators insertions
of increasing dimension A =2, 4 in the JJ correlation
function. In Fig. 3, we illustrate the leading soft gluonic
insertions on the dilepton emissivities. Typically, these
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R

35¢
3.0
25¢

20¢

. . . . . . ~ Bw
0.8 1.0 1.2 1.4 1.6 1.8 2.0

FIG.2. Ratio dR;”/dR[? for the thermal perturbative dilepton
bulk contribution R; (blue-solid curve) vs fw and for the thermal
perturbative shear dilepton contribution R, (orange-dashed
curve) vs ffw and ¢ = (2w, ®). We have set the relaxation times
tr=1,=p and fixed 0 = o = 1.

e S &

FIG. 3. Thermal dilepton emission including the leading
perturbative term (top) and the leading soft and nonperturbative
corrections (bottom). The blob refers to gluon insertions of
leading dimensions (gA4)?, (gE)?, and (gB)>.

contributions are of the form (gA,)?, (gE)?, (9B)?, ... and
of order (¢°T)A.

Since a constant gA, acts as an imaginary colored
chemical potential on the quark line, the leading operator
insertion (gA,)? is readily obtained from the quadratic u
contribution stemming from the fermionic propagator at
finite chemical potential, with the identification

# = =((9A4)%). (62)
A proof of this is given in Appendix A using the back-

ground field method. With this in mind, the quadratic
contribution stemming from (50) is

()
_ +21n(2+> (B (1 =) = (1 =)
+ O®u*), (63)

PHYSICAL REVIEW D 96, 116021 (2017)

which corrects the perturbative dilepton rate (54) by the
nonperturbative contribution

A8 1 1 A
L COYALTN
« <Ig)( Aoty —n-(=n7).  (64)

The effects of (gE)? and (gB)? can be calculated by general
arguments using the background field method [24], as
briefly recalled in the Appendix A. The net result can be
understood using the simple substitution

(0A9)2) — ((9A0)) —61q2<<gE>2> +31q2<(93)z>, (65)

a proof of which is given in Appendix A. The substitution
can be understood as (gqA,) ~ gE ~ gB. The factor of % is
from averaging over the vector orientations. The extra — % in
front of the electric contribution is due to the use of a fixed
thermal frame and the fact that (gE)* ~ —(gB)? in Euclidean
space. Hence, the final nonperturbative corrections to the
dilepton rate (54) in leading operator insertions are

dRI" B 1 (1 Az
diq =30 o1 \an 2

x (—((gA4)2> + 6%2 ((9E)*) — 3—;2 <(gB)2>>

<(L)o-ny-na-n))

in agreement with the result in Ref. [24]. The typical values
of the soft condensate insertions in (66) are discussed in
Refs. [4,24].

4. Viscous nonperturbative contribution

The viscous and nonperturbative corrections to (61) can
be obtained using the same reasoning developed above for
the nonperturbative thermal corrections. For that, we
expand the general result (60) to quadratic order in y, by
expanding the fermionic occupation number

fo= £+ Buf (1= 1) 5 BRRF( = £)(1=21) + O,
(67)

Now, we use the identity
/ Fuoll = £)f o = B[]
= ny(40) / (U= f = Foslgo =KD = £)[] (68)
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and expand the integrand in u. The quadratic contribution
reads

(U= fu=Fo) (L= f) + (= —p)),2
=+2f(1=f)2Bf =)+ f(1-f)1=2f)(f-1)
+HFA=HA=20)(f-1)=2f(1=H)f1=F).  (69)

With the help of the identity

2f(1=f)*(3f-1)
= (1+ng(q0))(1 = F = (F(1=2f) + F(1 =2f))
—2ng(qo)(1 + np(qe)(1 = f = f)2 (70)

The u? correction to (59) is

e
(ﬁ.u)QtHaiﬂjM

5= 0id,
2
38i8,-5;

(ngFy+np(1+np)Fr+ng(1+ng)Fs)

+ (”BF1+”B(1+nB)F2+n%3(1+nB)F3>>7

(71)

where we have defined

Fi = +2/dkkf(1 —PRGf-1)

2
Fy = +2/dkkf(1 — PG - 1)<%_2|q‘1+|z_>

Ff=—/dwa—f—fxﬂ1—wv+ﬂl—ﬁw
Fr= —/dkk(l CF- DU =2f) + F(1=27))
o (90 _24+9-)?
(m mk>
Fy = —Z/dkk(l —f—f)?

~ F 2 2
Foma faua-fopp(B -2

Using the operator substitutions (62)—(65) for yx* in (71)
leads to the nonperturbative corrections to the viscous
dilepton emission rate (61) in the form [nz = ng(q)]

PHYSICAL REVIEW D 96, 116021 (2017)
drR{" o’B p? 1 q*
— —d 02 _—
d*q 3mq’el—1 (477 sz:ef> nlq|
x (—((gA0)) + 5 ((9EP) —2 ((gB))
4 6q2 3q2
" <2t§9—t,,0 (
2

ngF+np(1+ng)Fy+nk(1+ng)Fs)

3t,o, - - -
+TH(HBF1 +n3(l —l—nB)Fz—l-nzB(l—FnB)Fg)) .
(73)

B. Photons

Following the dilepton analysis, we now seek to organize
the photon emissivities in the nonperturbative partonic
phase as

xdT  &PTy Ty Ty
Bk Pk &k &Pk

d°Ty"
d*k

+ (74)
with the first contribution Fg” as the thermal perturbative
rate, the second contribution FY” as the viscous perturba-
tive correction, the third contribution Fg ™ as the thermal and
nonperturbative correction of leading mass dimension in
the external fields, and finally the fourth contribution FY”
as the viscous nonperturbative contribution in leading mass
dimension in the external fields. We now proceed to

evaluate each of these contributions sequentially as (87),
(96), (102), and (105), to be detailed below.

1. General

The photon analysis is more involved since the in state
with ¢g is kinematically not allowed. The partonic photon

— —o (/L ——V —
®

T T T TOO-e—

—— —— ——/y
®

T e

FIG. 4. Thermal photon emission including the leading per-
turbative term and the leading soft and nonperturbative correc-
tions. The blob refers to gluon insertions of leading dimensions
(9A4)?, (gE)?, and (gB)?. Soft vertex insertions as in Fig. 3 are
also included but not shown. The last two contributions are not
allowed without the soft insertions.
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emission proceeds through 1) the Compton channel, with
qg — yq or gg — yq, and 2) the pair annihilation channel
with gg — gy, as illustrated in Fig. 4. Specifically, we have

N
Gc<ompt0n = m/ de[|MC(S, t)|2

x / dE\dEsf,(E))f (Es)(1 — £, + Es — E))
L O(E\+E,—E)

4+
VaE: +bE| +c

with £ = @ = k throughout, and

- —H

(75)

N
G =——— [ dsdt|M,(s,1)|?
o = 537 [ A5, (5.0

X/dEldEZfﬂ(El)f—/t(EZ)(l+fg(El+E2_E))
« O(E, + E, - E)

VaE? + bE, + ¢

The leading perturbative contributions to the squared
matrix elements are

(76)

M P 2 2
M5t wP s
1672 us
M, (s, 1, u)|? u> + 12
— = 4 8aa,——, 77
1672 +oaa; ut (77)
and the color-flavor factor is
03 = Crdpy &3 (78)
f

The Mandelstam variables and the kinematical parameters
a, b, and c are collectively defined as

s=(p1+p2)

t=(p-p)

a=—(s+1)?

b=2(s+1)(Es—Et)

c = st(s+1t) — (Es + E»t)? (79)

with s 4 ¢ + u = 0. The ranges of the integrations are s > 0
and —s <t <0. However, the s integration is infrared
sensitive, so the integration range will be modified to s >
m? with the squared thermal quark mass m?. = za,Cr/f*
as a regulator. These results are in agreement with those
first reported in Ref. [26].

PHYSICAL REVIEW D 96, 116021 (2017)

2. Thermal perturbative contribution

In this section, we will detail the approximations in the
reduction of (75) and (76) in leading order, as they will be
used for the viscous contributions as well. Following
Ref. [26], we can unwind the integrations through the
Boltzmann approximation

Fo(E))fy(E) ~ e PEHE)  oPE (80)

in terms of which the integrand is typically of the form

O(E, + E, — E)

VaE> +bE| + ¢

After the change of variables E; = x’ + y, E, = x' — y, this
integral simplifies

/ dx" [ dy \/s

with the integration over y giving just Z. From the constraint
S

/ dE,dE,f(E, + E, — E) (81)

f(2x' — )
(y=y2)1 =)

(82)

2(E\+ E,—E)E(1 —cosBy) = s, (83)
where cos 034 = p3 - ps, we find that 2x" — E = 2x > g7,
and (81) gives

27” ® dxf(2x). (84)
For either distribution f = [,V 7> We obtain
zln(l + e )l (85)

ps

The ¢ integrations can be carried explicitly with the results

dt
[Smsop
S
—m2\ 1(. 2md
= 12872%aa; <ln<s ;nT> +—< —ﬁ>>
my 2 s
dt
x [ty .0
2 2 2
— 2567%aa, <ln (s ;"T> - (1 —ﬂ»
my s

Again, the infrared cutoff satisfies 2m3 <'s, —s + m% <
t < —m3. With the above in mind, the leading equilibrium
photon emission from a perturbative QCD plasma asso-
ciated to the Compton gg — gy and pair creation gg — yg
processes is [26]

(86)
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ary?  aa, 11
Pk 1 Ep*elt —1

(L) () ) om

Here, C is a constant. The emission rate to this order is
isotropic. In (87), the overall substitution

1
e_ﬁE - W (88)

was made to recover the causal prefactor required by the
KMS condition for the retarded process as in (53).

Finally, we remark that the perturbative photon rate (87)
receives additional perturbative corrections to the same
order in aa, through collinear bremsstrahlung [27]. This
effect and its resummation will not be discussed here.
Instead, we will focus on the potentially soft gluonic
corrections that are also important near the transition
temperature, as we now detail.

3. Viscous perturbative contributions

As we noted in the dilepton rates above, the viscous
corrections in leading order correspond to the pertinent
insertions of k;k; on the partonic lines as given in (57)-
(58). These gradient insertions break the isotropic character
of the integrations with the typical integral structures

i — q:q;
q,»qj/coszé?—f—w/(l — cos? 6)

3cos?0—1 1 —cos?8
:Cqu/'/2+5ij/2v (89)

where the scattering angles are defined as

t+2EE,
cosf = ————
2EE,
2EE
cos, = LT =2E2
2EE,
2(E\+E,—-E)E —
cosf; = (Er+ B = B)E—s (90)

2E(E, + E, - E)

The angles 0, , ; refer to the angles between particles 1, 2,
and 3 and y flying along the z direction, in the process
labeled as 1 + 2 — 3 + y. To proceed, we now make two
kinematical approximations to simplify the integration
analyses to follow. The first is to follow (A2) and
approximate the population factors by

Fe(ED(1 = fa(E0))f 4(Ey) m e PEETH
Fau(ED)(fo)(1+ fo) mePErBz0 - (91)
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and the second is to replace E;, in cos(f;,) by
E\,~ (E| + E,)/2. These approximations will allow us
to extract explicit estimates for the viscous perturbative and
nonperturbative effects. They will be tested against realistic
hydrodynamical evolution of the rates in the future. With
this in mind, the viscous corrections to the Compton (75)
and pair (76) are, respectively, given by

= qiq; P j
G,
2 2
- 4iq;
2

-G; = tHaiﬂj<

8ij

where the upper labels P and T follow the separation into 1
and cos?@ in the decomposition in (89). The Compton
kernels are

N 1 dsdt
P ~
Gi = 8AE T 1 / M. (s, 1)[?

0 2x+ E
o A e i
& e + 1

2xe/}(2x_”>
(e/f(2x—ﬂ) + ])2>

Tt —u
Ge~ 8(21:)3Ee/”(E—/14) oy / det|M o 0F
& T
BQRx—p) (1 — )2
- 2xe(zeﬁ(2:ﬂ§ 1+ 14)?) ) e -

and the pair production kernels are

N 1 dsdt
Py M
G 8(2ﬂ)3EeﬂE—1/ M, (s 1)
X/Ood 2x+E+ 2xel?x
x
ﬁ e/in -1 (eﬂ2x _ 1)2
N 1 dsdt
Gl M
P S(Zﬂ)SEeﬂE—l/ | ( 2
I+(Y+1)

" oodx 2x+ E— E+ B
S e/m—l

8E

N 2xef(1-75-)2
@12 )
(94)

which are independent of the chemical potential . In both
kernels in (93) and (94), the substitution (88) was performed
to recover the causal prefactor required by the KMS con-
dition. In terms of the hydrodynamical times, Eq. (92) reads
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_G< = (2t§0 — O p N 3t,0 GT>

2 2
2.0 -1 3
_G;_< —Cah+ Z”UG;), (95)

and the perturbative viscous correction to the photon rate
takes the final form

V
T -1
dk (2n)2E

(GZ + G )umo (96)

after setting 4 = 0 in (93). In Appendix B, we make explicit
the contributions to(96). The ratio of the leading shear and
bulk thermal contributions in (96) to the leading thermal
perturbative photon contribution (87) is found to be

&drrr 1 1 7¢
R, = shearz<E+E(A1—2A2———ﬂ—23>>tn6

&r7 3

&Brer 1/2 14¢
Rr=—bky (E4+-(24+323) )10 97
¢ d3Fg ( +ﬁ<3+ 2 ¢ ( )

with £ = w = k. Here, A, are functions of E defined in
(B10), which asymptote zero at large E exponentially, and {5
refers to the Riemann zeta function. In Fig. 5, we show the
ratios (97) vs pw with w = E, for t; =1, = f and fixed
60 = o = 1. The thermal viscous corrections to the photon
emissivities become linearly large at large £ = w > 1/p.
Since Eq. (97) were derived for large E = @ > 1/, the low
E = w < 1/p part of the curve receives additional correc-
tions. Note that the constants contributions were dropped
from both the perturbative and viscous rates at large
E=w>1/p.

4. Thermal nonperturbative contributions

To obtain the thermal nonperturbative corrections to the
photon rates, we proceed as in the case of the dilepton rates

R3,§
6,

Bw

FIG. 5. Ratios (97) for the photon thermal bulk contribution R,
(blue-solid curve) vs pfw, and for the photon thermal shear
contribution R, (orange-dashed curve) vs fw and equal relaxation
times t, = t, = f for fixed 0 = o = 1.
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above, by expanding (93) to order y? and then trading y? as
in (62). With this in mind, we have

=G|, = (Bu)* (G + Gs) (98)
with

N
16(27)°BE "

dsdt .
x [ S M s 0PI+ )
N

G] = B(1+n3)(1+2n3)

fs

N dsdt e+
G, = M (s, 1)) ————. 99
= teaar™ | o MO 99
The associated nonperturbative photon rate is
ﬁ2
—7(2ﬂ)32E<<9A4)2>(G1 + G3) 05 (100)

which corresponds to the leading soft gluon insertion to the
Compton process. We now note that, even though the
perturbative annihilation process gg — y is kinematically
forbidden, its counterpart in the presence of external fields
(gE) and (gB) is not. This contribution can be obtained
from the y* — gg process in (66) after suitably multiplying
by ¢* and then taking ¢g*> — 0 to recover the photon point
through the dilepton-photon identity

T 3r . 2d4R
q0 3 1 -
d*q

7q 28 i\ Hov

The outcome combined with (100) gives
aryn a1 1
= —d o2
Pk 2ﬂ2EeﬂE—l<47r F;ef>
% (L((gB) - 2 {(9BY)
6"\ 3\
b 1 1
% (jgp) 0 =m0 =1 =n))

/))2
(27)32E

<<gA4)2>(G1 + GZ)#:O' (102)

The explicit forms of G, , follow the same analysis detailed
in Appendix B. This is our final result for the thermal and
nonperturbative contributions for the photon emissivity, in
leading mass dimensions.

5. Viscous nonperturbative contributions

The viscous nonperturbative contributions of the type
{(gA4)?) are readily obtained by expanding (93) in powers
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of u? and using the identification y> — —((gA4)?) as we
discussed above. We note that the y dependence drops out
of the pair production rate (94). More specifically, we have
for the Compton contribution to second order in x>

|

Gs = (14 n5(E))(142n5(E))GL +gp

dsdt

T N
G = (1 na(E) (1 + 20(E) G+ ) /

—2x<1—$>2f(1—f)(6f2—6f+1)>.

Here, we have set f = f(2x) = 1/(ef* +

&cryn -1
&k (27)2E

a a2 B
+2ﬂ2EeﬂE (471’ FZ ) (
21,0 —

% < 4'9 IHU

2

B 2t:0 —t,0 3t,0
—<2ﬂ)32E<<gA4>2> Gy Gy ).

G=(E)

The first contribution stems again from the g> — 0 of the
nonperturbative viscous contribution for the y* — ¢g rate
in (73) using (101), and the last contribution follows from
(103) after inserting it in (95) and combining it with (96)
following the substitution u? — —((gA4)?). Again, the
explicit forms of G;4 follow the same analysis detailed
in Appendix B. Equation (105) is our final result for the
viscous and nonperturbative corrections to the photon rates
in leading mass dimensions.

VI. CONCLUSION

We have provided a general framework for analyzing
near-equilibrium hydrodynamical corrections to the photon
and dilepton emissivities in QCD. Assuming that the
emission times are short in comparison to the hydrody-
namical evolution times, we have developed the rates by
expanding the evolving fluid density matrix in derivatives
of the fluid gradients. In leading order, the electromagnetic
rates get corrected by bulk and shear viscous contributions
in the form of Kubo-like response functions involving the
energy-momentum tensor.

We have analyzed the viscous corrections in a hadronic
fluid below the QCD transition temperature for both the
photon and dilepton emissivities. A simple estimate of the
photon rate using vector dominance in the chiral limit

M. (s, )|2/:°<<2x+E—%+

PHYSICAL REVIEW D 96, 116021 (2017)
Gl lw* = (Pu)*Gs  Gll,p = (Pu)*G4  (103)

with

N E) / Bl (.02 / (x4 E)f(1=f) =26 (1 - £) (62— 6f + 1))

8E
£+ (s+1)?
8xE?

>f(1—f)

8E

(104)

1). The nonperturbative viscous corrections to the photon rates are

o) -3 a8

3t,0 - - -
(npFy + ng(1 4 ng)Fy + ng(1 4 np)F3) +T”(”BF1 +np(1 +ng)Fy +ng(1+ ”B)F3)>

(105)

|

shows that the bulk viscosity corrections are much larger
than the shear viscosity corrections for about all frequen-
cies. The former are still sizable in the late stages of the
hadronic evolution. These observations are interesting to
check in a full hydrodynamical analysis of the photon
emissivities at present colliders. Similar corrections were
also shown to occur in the dilepton emission rates.

We have also analyzed the viscous corrections in a
strongly coupled quark gluon plasma for temperatures
higher than but close to the transition temperature, as probed
by current colliders. The nonperturbative character of the
sQGP is developed by correcting the thermal perturbative
rates with soft gluonic insertions in the form of gluonic
operators of increasing mass dimensions, in the spirit of the
OPE expansion for the QCD vacuum correlation functions.
The partonic thermal bulk viscous corrections to the dilepton
and photon rates are observed to be more sizable than their
shear counterparts with increasing dilepton and photon
energies. As our calculations were carried out at finite
chemical potential 4 which was traded by an expansion
with igA,, they also provide for the viscous corrected
electromagnetic rates at finite chemical potential as well.

The shortcomings of our analysis stem from our decou-
pling approximation that the hydrodynamical gradients
decorrelate on time scales that are larger than the electro-
magnetic emission times and also our also assessment of
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only the leading gradient corrections. To improve on this is
more challenging technically, but straightforward concep-
tually. Without the viscous corrections, the hadronic rates
and the partonic rates with the leading soft corrections are
discussed in details in Refs. [4,28], and their implementa-
tion in a realistic hydrodynamical simulation is carried out
in Ref. [28]. The rates are summarized in Appendix C for
convenience by any hydrodynamical collaboration. The
viscous corrections to the hadronic and partonic emissiv-
ities can and should be assessed in current analyses with
hydrodynamical base evolution, in particular, their effects
on the currently reported photon flow [6,15,28].
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APPENDIX A: BACKGROUND FIELD ANALYSIS

In this Appendix, we briefly outline how to correct the
Wightman function for the JJ correlator using the back-
ground field method as initially discussed in Ref. [24] and
illustrated in Fig. 6. The soft gluon corrections are indicated
by a blob. For the case of the leading (gA4)? insertion
discussed above, this construction relies directly on
Feynman diagrams in the background field method, rather
than the observation that A, plays the role of a colored
chemical potential, and therefore can be traded by a real
chemical potential as we discussed above. It also shows
how the (gE)?> and (gB)> corrections are obtained.
Throughout this Appendix, the analysis is in Euclidean
space, and we will set A4, = Ay.

Using the Fock-Schwinger gauge for the background
fields, we can explicitly rewrite the gauge fields as an
expansion in increasing covariant derivatives of the field
strengths,

AO :A0+XiDiA0+"'

. k+2
Ai:ijji+Z X!
k=1 :

-~ ,
N/\/\A\ AVAVAV]
\\ ~
o 7t>m «M<§fy .
A
FIG. 6. The thermal JJ correlation function in Euclidean space.

The soft gluon insertions of the type (gA4)?, (gE)?, (gB)? are
indicated by a blob.

F
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The fermion propagator in these external fields takes the

form
S(q) =/d4xe‘i‘1"‘ x ! 0
—iy-D| /’

For simplicity, consider first the presence of a magnetic
field B by limiting the external gauge field in D to A;.
Expanding (A2) to first order in B, we have

(A2)

4, g4 4
S1(q)=— /(d a1d°q q1v . qxy .08 (41—612')6,-51].)5,

l y l i 9
20'2n)* 7 VT @3 Oq1—qo)
(A3)
S1(q) = —igSo(q)F;;7'9:S0(q)
q
So(q) = ? (Ad)

After a simple reduction, we have to first order in B

gFij

Sy[B] = —i ?r’%r" : (AS)

The second-order correction in B follows by expanding
further in (A2), giving the contribution

= 9°So(q1)F ¥’ So(q2) Friy'So(q3)

X 85]2—5135(QZ - Q3>aq|—426(ch - qz)’ (A6)
which can be reduced by first partially integrating with
respect to g3, and then partially integrating with respect to
¢,, to obtain

ngiijl

e Aqir
S,[B] = - . q(i/’}"‘r’yl—T’r"ﬁ[y’)- (A7)

Color-spin averaging (A7) using
1,
<Flemn> = gg <B >(5km51n - 5kn51m)

leads to the B? correction to the fermionic propagator

(s:18) =222 (o~ Bor).

(A8)

Using similar arguments to those presented for the
magnetic B, we can derive the corrections in Ay and E
to second order. The results are for the electric field
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gDiAy [ o 4qoa;
Rl <J"WO qozq q)

SI[E] = q

(16) = 2, + aurary
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The leading magnetic correction to the Wightman
function for the JJ correlator in Euclidean space is

(Cau(q: [B])) = e*((9B)*) (1) + 1)

=2 25
_ 1 28q3 1643|g 1, =10 3 1] @i = O
S =37 3 4 01+42=q 1192
20 , 8|g a)la)z—l—i‘“fz
fo=—5+ (A9) I, =-2 —_— (A11)
30 3¢ qr§=q 914>
and for 4, with ¢ = (w, ¢) and the shorthand notation
SilAo] = —ﬂﬁ}’o% Z 3 / dr
- 4
ngz w,=zT(2n+1)
AP [Ao] = —604470%70%‘ (AlO)
q The leading A, correction is
(T (@: [A])) = €*((9A40)*) (15 + 1)
=5 wlwz(w?—3|65|2):(23w?— 1411%)4: - 4>
q1+q2=q 049>
et 3 WGP IBP) + 400 -6 )
- 44 :
N+a02=9 1192

Here, 1, follows from the soft insertion in the second
contribution (bottom) of Fig. 6, and I; follows from
the soft insertion in the first contribution (bottom) of
Fig. 6.

If we set the external momentum g = (g, O) then (A11)
and (A12) can be reduced to

32
I = g (29015, + 157 + g3147 — I55)

I, = (2112 a3l + 4qol3, +41%)

3
= 4(=3qol3, +4qol3° + 219 — 1)
2(

24519 = a1z + 2q01%, + 1n) (A13)

with the following notation:

ki Lkt

ryt=N"_—_n (A14)
Zk:kZm(k + q)Zn

Some useful properties of these integrals can be found in

Ref. [29]. In particular, we have the identity

|
The magnetic contribution 7, in (Al3) diverges in the
infrared at zero temperature. This contribution can be
reabsorbed in the definition of mgq at zero temperature.
This will be assumed at finite temperature as well. Since
the chiral condensate vanishes in the partonic phase, we
will set this self energy—type contribution to zero. The same
will be assumed for the analog electric contribution. With
this in mind, the electric and magnetic contributions
following from the soft gluon insertions contribute to the
JJ correlator as

(Tiu(q: [E. B))) = —4€*((9E)*) (2112 = q122)

+ 2B + ((9B))

X (2115 — g3l + 4qol5, + 419).
(A16)

The asymmetry between the electric and magnetic field is
due to the breaking of Lorentz invariance introduced by the
heat bath. The Matsubara summation in the I integrals
reduces to a zero temperature plus a finite temperature part
through the use of
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Z BF(,) = /_+ioo+i0d_.z <%_f(z)>(F(Z> + F(-2)) (A17)

w,=rT(2n+1) ioorti0 2170

with f(z) a thermal Fermi distribution. The analytical continuation of the Euclidean correlator to its Minkowski counterpart
follows through the discontinuity

I (w) = Discl';, (go — —i(w £ i€)). (A18)

_
i(ef” —1)

The results for the (gA,)? insertion are in complete agreement with those obtained using a chemical potential and then the
substitution (62). The results for the (gE)?, (gB)? insertions correspond to the substitution (65).

APPENDIX B: LEADING THERMAL VISCOUS PHOTON CORRECTION

In this Appendix, we detail the calculations leading to (97). We start by performing the integrals

dt 2m$ 25? —m?
/—(t2+ (s + )M (s, 1) = 1287%aa, x | — 2L 4 mb + mhs — =+ In L
s 3s 3 my
dt 8m$ 10s? —m3
/?(l‘2 + (s +1)?)|M,(s.1)|* = 1287%aa, x <%—4m‘} + 8m2s —Ts+2s2 ln<sm#>> (B1)
T

Much like the leading perturbative thermal contribution (87), the viscous thermal contributions are also infrared sensitive.
The leading singularities are logarithmic. For the Compton G, and the pair G, amplitudes, they are

nsp

N  1287%aa, [ s —m3\ = (=1)" e 1 1 nsp
G ~ s dsl T E E——(1=-=)(14+-—
< ¥ 8(2n)YpE 1 Asz s n( m2 >n=1 n ( ﬂ< n>< + 4E>>

N  1287%aa, [~ m\ = (—1)"+emair 1 1 nsp
-~ s [ ast E——(1-=)(1+28) 42 -1
Ge 4(27)’BE e’F -1 Lm;_ ’ n( 7 )nl ( ﬂ( n)( +4E> » ))
© 2 2
—l—/ dx(—1)"+1e=2nbx > P (B2)
. 4F*(x+%) 8F%x

8

I

and

N  1287z%aa, [ s —m3\ e 1 1 nsp
Gh ~ S [ dsl L E+—(14+=)(1+-%
Pt () 5 (e () (15)

N  1287%aa, [« §—m%\ <= e 1 1 nsf s
T~ . 1 L E+-(14+=)(1+-L)—= 1
O™ 3nypE -1 lm;d”( )T (B (1+2) (1+58) -2

—|—/°o dxe™2mP s +n s . (B3)
A 4E*(x+ %) 8E%x

8E

For a small infrared cutoff m;, we now define the useful integrals

/ dss*In =T o= = k! n(——)+¢C (B4)
2m3, mr ”ﬂ mr

- —2nfix AE o [ 4E\ k+1 —2npa(u-1)
/ dsskln<s TT)/dxe :k!ln(—z)/ <—> S du+C. (B5)
2 my £ X+ta mz) Ji unf u

T

and
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Collecting the above results yields for the Compton and pair amplitudes

N  1287z%aa AE (=1)m-t 2
GP = s (1 E-=
s -1 ()5 (5

n=1

N 12872%« AE (=1)!
GT = 11 E+=
T Ty (“(ﬂm%) <; n? ( i

N 1287%aq n
P 22n) B efF -1

+
N 12872 4E 1
G, = 30 X (n (X2 = (| E-
2(27)3p% ePF -1 m3 “~n

where we have defined

s e—2nﬂa(u—1)
Ik(n,a):/ ————du
1 u
(n.0) = (B8)
n,
k+1°

Here, C,, 34 are constants. After further simplifications,
we finally obtain

or _ _ 2maaN ( 2<1 9g3)> (4E>
CTIREE-) T B pm}
or _ _4maaN ( g(l 6C3>> (4E>
P 3ﬁ2( PE _ ] ﬂ ﬁm%
2 N 2 AFE
! =it (£ ) ()

2raa,N 2 AE
G} = ST (E _BA2> " (ﬂﬁ) (B9)

with the E-dependent functions

D))
()

603 24— 1 E\ n
A2:1+7—F —3<14(H,E>+§I4(I’l,0>> (BIO)

n=1 n
Here, {3 = {(3) ~ 1.202 refers to the Riemann zeta func-
tion. Throughout, N is given in (78).

APPENDIX C: FORMULA SUMMARY

Here, we summarize our pertinent results for the viscous
corrections for the electromagnetic emissivities, which
could be used in hydrodynamical calculations:
(1) Viscous photon hadronic rates: Equation (32),
which is equal to (30) plus (31).

(2) Viscous dilepton hadronic rates: Equation (47),
which is equal to (44) plus (46).

(3) Viscous dilepton hadronic rates: Equation (49),
which is equal to (54) plus (61) plus (66) plus (73).

(4) Viscous photon partonic rates: Equation (74), which
is equal to (87) plus (96) plus (102) plus (105).
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