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We provide a general framework for the derivation of the hydrodynamical corrections to the QCD
electromagnetic emissivities in a viscous fluid. Assuming that the emission times are short in comparison to
the fluid evolution time, we show that the leading corrections in the fluid gradients are controlled by the
bulk and shear tensors times pertinent response functions involving the energy-momentum tensor. In a
hadronic fluid phase, we detail these contributions using spectral functions. Using the vector dominance
approximation, we show that the bulk viscosity correction to the photon rate is sizable, while the shear
viscosity is negligible for about all frequencies. In the partonic phase near the transition temperature, we
provide an assessment of the viscous corrections to the photon and dilepton emissions, using a
nonperturbative quark-gluon plasma with soft thermal gluonic corrections in the form of operators of
leading mass dimension. Again, the thermal bulk viscosity corrections are found to be larger than the
thermal shear viscosity corrections at all energies for both the photon and dilepton in the partonic phase.
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I. INTRODUCTION

Oneof themajor achievements of theheavy ionprogramat
the Relativistic Heavy Ion Collider and now also at the LHC
is the emergence of a new state of matter under extreme
conditions, the strongly coupled quark gluon plasma (sQGP)
with near-ideal liquid properties [1–6]. The prompt release of
a large entropy in the early partonic phase together with a
rapid thermalization and short mean free paths points to a
partonic fluid. The anisotropies of the produced hadrons and
photons suggest a near-ideal fluid [7–13].
Small deviations from the ideal limit appear to follow

from dissipative effects, suggesting that the shear viscosity
of the sQGP fluid is very close to its quantum bound [14].
However, this interpretation requires some care since the
emitted hadrons interact strongly throughout the fluid
history and particularly in the late stages of the evolution
composed essentially of a fluid of hadrons. In contrast, the
emitted photons or dileptons are continuously emitted
throughout the evolution of the fluid without secondary
interactions. They provide for an alternative probe of the
nature and strength of these viscous corrections.
So far, most of the hydrodynamical corrections to the

electromagnetic emissivities have made use of weakly
coupled kinetic theory to modify the phase space distri-
butions of either partons or hadrons in 2 → 2 rate processes
[15]. Holographic calculations for the electromagnetic
emissivities for N ¼ 4 supersymmetry (SUSY) were
carried in near equilibrium in Ref. [16] and far from
equilibrium in Ref. [17]. In light of this, it is important
to seek a full nonperturbative analysis of the electromag-
netic emissivities in a viscous QCD fluid that relies solely

on a near-equilibrium approximation and a fluid gradient
expansion.
The purpose of this paper is to provide such a framework

for the analysis of the emission of photons and dileptons from
a nonideal hydrodynamical QCD fluid that does not rely on
perturbation theory. Assuming that the electromagnetic
emission time is shorter than the fluid unfolding time, we
show how to organize the rates in the near-equilibrium
phase by expanding in the fluid derivatives. The emerging
fluid bulk and shear tensors are multiplied by pertinent
correlation functions involving the energy-momentum tensor
in equilibrium.
The organization of the paper is as follows. In Sec. II, we

show how to assess the electromagnetic emissivities in a
fluid near equilibrium by capturing the slow fluid flow in a
density matrix. In Sec. III, we show that in leading order in
the fluid gradients the electromagnetic emissivities receive
contributions proportional to the bulk and shear tensors
times Kubo-like response functions involving the energy-
momentum tensor. In Sec. IV, we analyze the leading
viscous corrections to the electromagnetic emissivities in
the hadronic phase, and in Sec. V, we analyze them in a
nonperturbative partonic phase. Our conclusions are in
Sec. VI. A background field analysis for the soft gluon
corrections in the partonic phase is outlined in Appendix A.
We also detail the leading contribution to the photon
thermal viscous corrections in Appendix B.

II. PHOTON EMISSION IN A FLUID

In thermal equilibrium, the photon emission rate is fixed by
the Wightman function for the electromagnetic current [18]

dΓ0

d3k
¼ −

αgμν

4π2jkj hG
<
μνðqÞi0 ð1Þ
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G<
μνðqÞ ¼

Z
d4xe−iq·xJμð0ÞJνðxÞ: ð2Þ

The averaging is carried over the state ofmaximumentropy or
equivalently a thermal distribution of fixed temperature 1=β.
Inwriting (2), space-time translational invariance is assumed.
Most studies of photon emission at collider energies have
reliedon (1),with some recent exceptions usingmodifications
based on kinetic theory.
For a system far out of equilibrium, its evolution and

emission rates are convoluted. However, for large times, the
system nears equilibrium, and its evolution follows the lore
of hydrodynamics. In this regime, the microscopic electro-
magnetic emission rates can be assumed to occur on time
scales shorter than the times it takes for the fluid to flow. In
this decoupling approximation, we may ask for the changes
caused by a fluid velocity profile on the electromagnetic
emissivities of a QCD fluid, for instance.
With this in mind, we may still rely on (2) at any time t̄

since space-time microscopic translational invariance
holds. Now, consider the emission on a fluid timelike
surface defined by t̄ ¼ constant, and canonically quantize
the field theory on this surface. Let ϕt̄ be a generic operator
on this surface. Its time evolution proceeds through

ϕt̄ðt; x⃗Þ≡ ϕðt̄þ t; x⃗Þ ¼ eiHtϕðt̄; x⃗Þe−iHt ð3Þ

with the canonical Hamiltonian H ¼ H½ϕt̄; π t̄�. The emis-
sion on this timelike surface is still controlled by the
general Wightman function

hG<
t̄μνðt; x⃗Þi ¼ Trðρðt̄0ÞJt̄μð0; 0⃗ÞJt̄νðt; x⃗ÞÞ ð4Þ

with an initial density operator at t̄0 < t̄. For a state in
equilibrium, we have

ρðt̄0Þ → ρðt̄Þ ¼ e−βt̄ðH−Ft̄Þ: ð5Þ

However, for a state near equilibrium, we define

ρðt̄0Þ ¼ ρðt̄ÞUðt̄; t̄0Þ≡ ρðt̄ÞTτe
R

1

0
dτΣðt̄−iβt̄τ;t̄0Þ: ð6Þ

Tτ is the ordering along the τ line. The operator Σ is a
measure of the entropy change from t̄0 → t̄ as discussed in
Ref. [19]. For our case, it is sufficient to note that it follows
from the response to the insertion of

R
d4x∂iβjTij,

Σðt̄ − iβτ; t̄0Þ ¼ ∂iβj

Z
t̄

t̄0

dt0
Z

1

0

dτd3x0Tijðx⃗0; t0 − iτβt̄Þ;

ð7Þ

for a time-independent but spatially dependent fluid veloc-
ity βi. We note that (6) can be equally defined through

ρðt̄0Þ ¼ ~Uðt̄; t̄0Þρðt̄Þ≡ T⋆
τ e
R

1

0
dτΣðt̄þiβt̄τ;t̄0Þρðt̄Þ: ð8Þ

For t̄ ≫ t̄0, the averaging over ρðt̄0Þ asymptotes the
equilibrium average captured by ρðt̄Þ, modulo derivative
corrections due to the fluid gradients as captured in Σ. In
what will follow, we will set β ¼ βt̄ for notational
simplicity.

III. GRADIENT EXPANSION

For a baryon free fluid flow characterized locally by βi, we
can now organize (4) using an expansion in fluid gradients
∂iβj. For a given time t̄, the leading contribution emerges
only by keeping ρðt̄Þ in (6). In this order, Eq. (4) yields (1) in
equilibrium. The fluid gradient corrections appear at next-to-
leading order by expanding the τ-ordered exponent and
retaining only the first gradient correction in Σ,

ρðt̄0Þ ≈ ρðt̄Þ
�
1 − ∂iβj

Z
t̄

t̄0

dt0
Z

1

0

dτd3x0Tijðx⃗0; t0 − iτβÞ
�

≈
�
1 − ∂iβj

Z
t̄

t̄0

dt0
Z

1

0

dτd3x0Tijðx⃗0; t0 þ iτβÞ
�
ρðt̄Þ:

ð9Þ

Inserting (9) in (4) yields the first-order fluid gradient
correction to the electromagnetic emissivities

hG<
t̄μνðt; x⃗Þi1 ≈ −

Z
t̄

t̄0

dt0
Z

1

0

dτhTiiðt0 − iτβ; q⃗ ¼ 0Þ

×Jt̄μð0ÞJt̄νðxÞiβθ

−
Z

t̄

t̄0

dt0
Z

1

0

dτhTijðt0 − iτβ; q⃗ ¼ 0Þ

×Jt̄μð0ÞJt̄νðxÞiβσij ð10Þ

with θ ¼ ∂mβm=3. The transverse and traceless shear veloc-
ity tensor is defined as

σij ¼
1

2

�
∂iβj þ ∂jβi −

2

3
δij∂mβm

�
: ð11Þ

Equation (10) involves the causal change in the electromag-
netic emissivity causedby the fluidbulk and shear parts of the
energy-momentum tensor Tij, while evolving from t̄0 → t̄.
The Kubo-like three-point response function in (10) can

be made more explicit by defining

O�
ij ¼

Z
t̄

t̄0

dt0
Z

1

0

dτ
Z

d3x0Tijðt0 ∓ iτβ; x⃗0Þ ð12Þ

so that
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D
G<
t̄μνðt; x⃗Þ

E
1
≈−hO−

iiJt̄μð0ÞJt̄νðxÞiθ− hO−
ijJt̄μð0ÞJt̄νðxÞiσij:

ð13Þ

The equivalence between the left-right decomposition in
(9) suggests that the operator O�

ij commutes with the
Hamiltonian. Indeed, we have

½H;O�
ij� ¼−i

Z
t̄

t̄0

dt0
Z

1

0

dτ
Z

d3x0∂t0Tijðt0 ∓ iτβ; x⃗0Þ

¼�1

β

Z
t̄

t̄0

dt0d3x0ðTijðt∓ iβ; x⃗Þ−Tijðt;x0ÞÞ: ð14Þ

If the decorrelation time in the Kubo-like result (13) is short
in comparison to the fluid evolution time, we may regard
tH ¼ t̄ − t̄0 as large. This will be understood throughout.
Therefore, the commutator in (14) vanishes modulo asymp-
totic terms. We note that the operator Oij is related to the
time integration of the first moment of the momentum
density, which is conserved,

∂t

Z
d3xðxiT0

jðt; x⃗ÞÞ ¼
Z

d3xðxi∂tT0
jðt; x⃗ÞÞ

¼ −
Z

d3xðxi∂kTk
jðt; x⃗ÞÞ

¼
Z

d3xTijðt; x⃗Þ: ð15Þ

It follows that its expectation value is proportional to the
time length tH characteristic of the hydrodynamical evo-
lution, which is assumed to be much larger than the
characteristic time for electromagnetic emission. This point
will become clear in the explicit calculations to follow.

IV. HADRONIC PHASE

In a QCD fluid, the analysis of the response functions
depends on the nature of the underlying phase. At low
temperatures, the fluid is mostly hadronic, while at high
temperature, it is partonic but strongly coupled near the
crossover temperature. In the hadronic phase with zero
baryon density and no strangeness, Eq. (13) can be
organized by expanding it in increasing densities of the
lightest stable thermal hadrons, i.e., pions following similar
analyses for the equilibrium rates in Ref. [20]. Specifically,
we have

G<
t̄ijðxÞ¼Trðe−βðH−FÞO�

ijðJðx̄ÞJðx̄−xÞÞÞ

¼G<
ij;0πþ

Z
ðd ~π1ÞijG<

1πþ
1

2!

Z
ðd ~π1d ~π2ÞijG<

2πþ��� ;

ð16Þ

where we have defined the unordered and connected matrix
elements

G<
nπðxÞ
¼ hπa1ðk1Þ…πanðknÞjJðx̄ÞJðx̄− xÞjπa1ðk1Þ…πanðknÞi

ð17Þ

with the pion thermal phase space factors (E2
i ¼ k⃗2i þm2

π)

ðd ~π1Þij ¼
d3ki
ð2πÞ3

tH
2Ei

kikj
Ei

nBðEiÞð1þ nBðEiÞÞ ð18Þ

and the identification tH ¼ 2πδð0EÞ. This can be justified
by explicitly performing the trace using the in states. For
instance, for the one-pion connected pieces, we haveX
n;½k�

hπðk1Þ…πðknÞje−βHO�
ijJJjπðk1Þ…πðknÞi

¼
X

n2;k2;…

…
X
n1;k1

n21
n1

hπðk1ÞjJJjπðk1Þie−n1βEk1
k1ik2j
E1

¼ e−βF0

Z
d3k
ð2πÞ3

tH
2Ek

kikj
Ek

nBð1þ nBÞhπðkÞjJJjπðkÞi:

ð19Þ
When comparing the viscous corrected hadronic con-

tributions in (16) and (17) to the uncorrected ones, the
difference is in the insertion of the operator O�

ij over the
external pion in states. O�

ij is essentially the energy-
momentum tensor, which, once inserted, amounts to a
change in the one-pion phase space

d3k
ð2πÞ3

1

2Ek
→

d3k
ð2πÞ3

1

2Ek

tHkikj
Ek

:

These are essentially the corrections induced by the
viscosity on the hadronic emissivities which are still
captured by the hadronic matrix elements hnπjJJjnπi.
For βtH ∼ 1 and β ∼ 1=mπ , these corrections are of order
tHkk=Ek ∼ 1=

ffiffiffi
2

p
. A more quantitative assessment of these

corrections will be given below.

A. G<
ij;0π contribution

The contributions to G<
ij;0π in (16) follow from 2π; 4π;…

insertions in the intermediate state and are all found to
vanish. Indeed, consider the leading 2π insertion to G<

ij;0π ,

G<
ij;0πðxÞ ¼ h0jO�

ijJðx̄ÞJðx̄ − xÞj0i

≈ 2

Z
d3k1d3k2

ð2πÞ62Ek12Ek2

h0jO�
ijjπþðk1Þπ−ðk2Þi

× hπþðk1Þπ−ðk2ÞjJðx̄ÞJðx̄ − xÞj0i; ð20Þ

where the overall factor 2 accounts for the two charged
pions. The covariantized transition matrix element in (20)
in leading order in the pion momentum reads
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h0jTμνðt; xÞjπþðk1Þπ−ðk2Þi
¼ e−itðE1þE2Þþix⃗·ðk⃗1þk⃗2Þ

× ð−k1μk2ν − k2μk1ν − gμνð−k1 · k2 −m2
πÞÞ: ð21Þ

At asymptotic times or large t as required by the out-field
condition, this contribution vanishes, owing to the non-
vanishing Fourier component in time. This result is con-
sistent with the fact that Omn connects only states with
Em ¼ En. Clearly, this result carries to all 2nπ insertions,
making G<

ij;0π ¼ 0.

B. G<
1π contribution

The leading correction to (13) arises from the thermal
one-pion contribution to G<

1π . Specifically, we have

ðd ~π1ÞijG<
1πðxÞ ¼

d3k1
ð2πÞ3

tH
2E1

k1ik1j
E1

nBð1þ nBÞ

× hπaðk1ÞjJðx̄ÞJðx̄ − xÞjπaðk1Þi; ð22Þ

which is seen to involve part of the forward photon-pion
scattering amplitude. Its explicit form follows from the
general strictures of broken chiral symmetry, crossing
symmetry, and unitarity [20,21],

ðd ~π1ÞijG<
1πðqÞ ¼

d3k1
ð2πÞ3

tH
2E1

k1ik1j
E1

nBð1þ nBÞ

×

�
−

6

f2π
ðk1 − qÞ2ImΠAððk1 − qÞ2Þ

�
:

ð23Þ

Here, ΠA is the AA correlation function of the axial-vector
current in the vacuum [20]. Its spectral form follows from τ-
decay measurements into an odd number of pions. The
result (23) grows linearly with the hydrodynamical time tH,
that is, the time it takes the externally applied hydrody-
namical gradient ∂iβj to change. This time is proportional
to the transport mean free path tH ≈ λmfp, which in turn is
determined by the viscosities,

tH → tη ≈
η

eþ p
shear

tH → tζ ≈
ζ

eþ p
bulk: ð24Þ

Here, η and ζ are the shear and bulk viscosities, respec-
tively, and e and p are the energy and pressure densities,
respectively. These hydrodynamical times will be under-
stood in the results to follow.
The higher-order corrections G<

2π;… in (16) are sup-
pressed by additional viscous phase space factors:

Z
d3k
ð2πÞ3

tH
2Ek

kk
Ek

nB ∼
βtHffiffiffi
2

p
Z

d3k
ð2πÞ3

nB
2Ek

¼ κπ
βtHffiffiffi
2

p :

It is readily checked that in the range of temperatures
0 < 1=ðβmπÞ < 1 the effective number of pions κπ remains
small with 0 < κπ < 1=2.

C. Viscous photon rate

The viscous corrections to the photon rates due to a
baryon free fluid of hadrons follow from the results in (1)–
(13) and in (16)–(23). Specifically, if we insert (23) into (1),
we obtain

dΓ<
1

d3k
¼ αtH

2π2ω

Z
d3p
ð2πÞ3

1

2E
eβE

ðeβE − 1Þ2
p2

E

× ð2∂iβjPijcos2θp þ ∂iβjNijsin2θpÞ

×

�
3

f2π
ðp − kÞ2ImΠAððp − kÞ2Þ

�
ð25Þ

with Pij ¼ k̂ik̂j and Nij ¼ δij − k̂ik̂j, after making use of
the identity

Z
d3pp̂ip̂jFðp;kÞ

¼ 2Pij

Z
d3pcos2θpFðp;kÞþNij

Z
d3psin2θpFðp;kÞ:

Now, we define the bulk parameter θ ¼ ∂mβm=3 and the
shear parameter σ ¼ σijk̂ik̂j and rewrite

2∂iβjPij cos2 θpþ∂iβjNij sin2 θp ¼ σð3cos2 θp−1Þþ2θ;

ð26Þ

in terms of which (25) reads

dΓ<
1

d3k
¼ −

α

2π2ω

Z
d3p
ð2πÞ3

1

2E
eβE

ðeβE − 1Þ2
p2

E

× ðtησð3cos2θp − 1Þ þ 2tζθÞ

×

�
−

3

f2π
ðp − kÞ2ImΠAððp − kÞ2Þ

�
ð27Þ

after using the substitution (24).
For comparison, the equilibrium photon rates (1) in the

hadronic phase can also be calculated using the Wightman
function with the result

dΓ<
0

d3k
¼ α

π2ω

Z
d3p
ð2πÞ3

1

2E
1

eβE − 1

×

�
3

f2π
ðp − kÞ2ImΠAððp − kÞ2Þ

�
: ð28Þ
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However, Eq. (28) to this order does not enforce the Kubo-
Martin-Schwinger (KMS) condition,

G<ðqÞ ¼ 2

eβq0 þ 1
ImiGFðqÞ; ð29Þ

which reflects on the causal character of the emissivities. To
enforce this condition requires resumming higher-order
contributions from the expansion in (16). This is possible,
and the result is [20]

dΓ0

d3k
¼ 1

eβω þ 1

α

π2ω

Z
d3p
ð2πÞ3

1

2E
1

eβE − 1

×

�
3

f2π
ðpþ kÞ2ImΠAððpþ kÞ2Þ þ ðk → −kÞ

�
:

ð30Þ

The chief outcomes of this resummation are twofold: a) the
appearance of an overall factor of 1=ðeβω þ 1Þ and b) a
crossing of the spectral function in the integrand that yields
the full forward γ�π → γ�π Feynman amplitude. We now
apply these observations to (27) to obtain

dΓ1

d3k
¼ −

1

eβω þ 1

α

2π2ω

Z
d3p
ð2πÞ3

1

2E
eβE

ðeβE − 1Þ2
p2

E

× ðtησð3cos2θp − 1Þ þ 2tζθÞ

×

�
−

3

f2π
ðp − kÞ2ImΠAððp − kÞ2Þ þ ðk → −kÞ

�
:

ð31Þ

Equation (31) is our final result for the leading viscous
correction to the hadronic rate using spectral functions. The
total viscous photon hadronic rate follows from (30) plus
(31) as

dΓ
d3k

¼ dΓ0

d3k
þ dΓ1

d3k
: ð32Þ

D. Vector dominance

For a simple estimate of the size of the viscous
corrections, we will use the unsummed rates Γ<

0;1 and make
use of the vector dominance model (VDM) to saturate
ImΠA. Specifically, we set

ImΠAðsÞ ≈ f2A
Γ
2

ðs −m2
AÞ2 þ Γ2

4

ð33Þ

with the axial constant fA ≈ fπ . Here, mA and Γ are the
mass and width of the axial-meson a1, with typicallymA ¼
1230 MeV and Γ ¼ 250 MeV. Inserting (33) in (27) yields
the VDM result for the (unsummed) viscous photon rate

dΓ<
1

d3k
≈ −

3α

8π4
f2A
f2π

Γ
Z

p4dpd cos θp
E2

eβE

ðeβE − 1Þ2

×

��
tζθ −

1

2
tησ

�
þ 3

2
tησcos2θp

�

×
E − p cos θp

ðm2
A þ 2Eω − 2pω cos θpÞ2 þ Γ2

4

: ð34Þ

Equation (34) simplifies further as βmπ → 0 (chiral limit),

dΓ<
1

d3k
≈ −

3α

8π4
f2A
f2π

Γ
Z

∞

mπ

E3dE
eβE

ðeβE − 1Þ2

×

��
tζθ −

1

2
tησ

�
f1ðEÞ þ

3

2
tησf2ðEÞ

�
; ð35Þ

where we have kept mπ as an infrared regulator in the
integration, with

f1ðEÞ ¼
Z

1

−1
dx

1 − x

ðm2
A þ 2Eωð1 − xÞÞ2 þ Γ2

4

f2ðEÞ ¼
Z

1

−1
dx

x2ð1 − xÞ
ðm2

A þ 2Eωð1 − xÞÞ2 þ Γ2

4

: ð36Þ

Equation (34) is seen to vanish for zero width Γ. To leading
order in Γ, Eq. (36) simplifies

m4
Af1ðEÞ ≈ f1ðxÞ ¼

1

4x2

�
lnð1þ 4xÞ − 4x

1þ 4x

�

m4
Af2ðEÞ ≈ f2ðxÞ ¼

1

16x4

�
ð3þ 2xÞð1þ 2xÞ lnð1þ 4xÞ

− 8xð1þ xÞ − 4xð1þ 2xÞ2
1þ 4x

�
ð37Þ

with x ¼ Eω=m2
A. Changing the integration variable to x in

(34) gives

dΓ<
1

d3k
≈ −

3α

16π4
f2Am

4
A

f2πω4
Γ
Z

∞

mπω

m2
A

dx
x3e

βm2
A
x

ω

ðe
βm2

A
x

ω − 1Þ2
× ð2tζθf1ðxÞ þ tησð3f2ðxÞ − f1ðxÞÞÞ: ð38Þ

For comparison, the (unsummed) equilibrium VDM rate
(28) in the same approximation reads

d3 ~Γ<
0

d3k
≈

3α

8π4
f2Am

2
A

f2πω3
Γ
Z

∞

mπω

m2
A

dx
x2f1ðxÞ
e
βm2

A
x

ω − 1

; ð39Þ

where the lower bound stems from

ðpþ kÞ2 ¼ 2Eωð1 − cos θpÞ ¼ m2
A: ð40Þ
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The ratio of the (unsummed) viscous rate (35) to the
equilibrium rate (39) takes the simple form

dΓ<
1

dΓ<
0

≈ −
m2

A

2ω

�Z
∞

mπω

m2
A

dx
x2f1ðxÞ
e
βm2

A
x

ω − 1

�−1

×

�
2tζθ

Z
∞

mπω

m2
A

dx
x3e

βm2
A
x

ω

ðe
βm2

A
x

ω − 1Þ2
f1ðxÞ

þ tησ
Z

∞

mπω

m2
A

dx
x3e

βm2
A
x

ω

ðe
βm2

A
x

ω − 1Þ2
ð3f2ðxÞ − f1ðxÞÞ

�
: ð41Þ

In Fig. 1, we show the bulk contribution Rζ in (41) as the
solid-blue curve and the shear contribution Rη in (41) as the
orange-dashed curve over a range of frequencies ω in GeV
for a temperature 1=β ¼ mπ . We have set the shear and bulk
factors to θ ¼ σ ¼ 1 and fixed the relaxation times to
tη ¼ tζ ¼ β. The smallness of the shear contribution stems
from the near cancellation of the 3f2 − f1 in the integrand
of (41). The bulk contribution dwarfs the shear contri-
bution in the VDM approximation for about all frequencies.
The bulk contribution is also opposite in sign to the
shear contribution in leading order. At currently available
collider energies, a typical AA collision triggers a hadronic
fluid with a size L ≈ 10 fm. For temperatures
T ≈ 200 MeV, that results in fluid gradients of the size
θ ≈ σ ≈ 1=TL ≈ 1=10. When combined with the result
shown in Fig. 1, this estimate shows that the bulk viscosity
correction to the hadronic rate is about 30% across all
frequencies, while the shear viscosity correction is negli-
gible. Overall, the bulk hydrodynamical correction appears
sizable even in the late stage of the hadronic evolution with
small gradients in the form of a small θ ¼ ∂iβi=3. These
observations deserve to be further checked in current
hydrodynamical assessments of the electromagnetic emis-
sivities and without the VDM approximation through the
use of the full axial spectral weight.

E. Viscous dilepton rate

The previous results extend to the dilepton rates as well if
we recall that for dilepton emissivities Eq. (1) needs to be
changed to

dR0

d4q
¼ −

α2Bgμν

6π3q2
hG<

μνðqÞi0 ð42Þ

with the leptonic factor

B ¼
�
1þ 2m2

l

q2

��
1 −

4m2
l

q2

�1
2 ð43Þ

with the threshold q2 > 4m2
l and typically l ¼ e, μ. The

equilibrium contributions to (42) in the hadronic phase
have been discussed in detail using spectral functions in
Ref. [22] and hadronic processes in Ref. [23]. From the
spectral functions analysis, the result is [22]

dR0

d4q
¼ −

α2

6π3
B
q2

2

eβω þ 1

×

�
−3q2ImΠVðq2Þ þ

Z
d3p
ð2πÞ3

1

2E
1

eβE − 1

×

�
12

f2π
q2ImΠVðq2Þ

−
6

f2π
ðp − qÞ2ImΠAððp − qÞ2 þ q → −qÞ

þ 8

f2π
ððp · qÞ2 −m2

πq2ÞImΠVðq2Þ × ReΔRðp − qÞ

þ q → −q
��

: ð44Þ

The nonequilibrium viscous correction in the hadronic
phase follows a similar reasoning as that given for the
photons. A rerun of the preceding reasoning shows that
G<

ij;0π also vanishes in this case. However, G<
1π does not,

and the result is

ðdπÞijG<
1πðq; kÞ

¼ d3k
ð2πÞ3

tH
2E

�
kikj
Ek

�
nBð1þ nBÞ

�
12

f2π
q2ImΠVðq2Þ

−
6

f2π

�
k − qÞ2ImΠAððk − qÞ2Þ

þ 8

f2π
ððk · qÞ2 −m2

πq2ÞImΠVðq2Þ × ReΔRðk − qÞ
�
:

ð45Þ

Here, ΠV is the VV correlation of the vector current in the
vacuum, and ΔR is the retarded pion propagator [20]. The
spectral form of ΠV follows from eþe− annihilation.
The last bracket in (45) is only the crossed γ�π → γ�π

FIG. 1. Ratio (41) for the bulk hadron contribution Rζ (blue-
solid curve) vs ω and for the hadron shear contribution Rη

(orange-dashed curve) vs ω in the VDM approximation, for
β ¼ 1=mπ , and equal relaxation times tζ ¼ tη ¼ β for fixed
θ ¼ σ ¼ 1.
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scattering amplitude T γ�π, which is seen to reduce to (23) at
the photon point or q2 ¼ 0. In terms of (45), the resummed
viscous corrections to the dilepton emissivities in a had-
ronic fluid take the following final form:

dR1

d4q
¼ −

4α2

3π2
B
q2

1

eβω þ 1

Z
p4dpd cosθp

ð2πÞ3
1

2E
eβE

ðeβE − 1Þ2

×

��
tζθ−

1

2
tησ

�
þ 3

2
tησcos2θp

��
12

f2π
q2ImΠVðq2Þ

−
6

f2π
ðp− qÞ2ImΠAððp− qÞ2 þ q→ −qÞ

þ 8

f2π
ððp · qÞ2 −m2

πq2ÞImΠVðq2Þ×ReΔRðp− qÞ

þ q→ −q
�
: ð46Þ

The total viscous hadronic rate for dilepton emission is (44)
plus (46),

dR
d4q

¼ dR0

d4q
þ dR1

d4q
: ð47Þ

V. PARTONIC PHASE

At high temperature, the fluid is that of strongly coupled
partoniclike constituents (sQGP). We will treat it in leading
order as made of partonic constituents in the presence of
soft gluonic fields. Typically, the soft gluons are magnetic
(scale g2T). The soft corrections will be estimated as
operator insertions in leading dimensions as in Ref. [24].
A similar proposal using soft insertions for the electro-
magnetic emissivities was also suggested in Ref. [25]. With
this in mind, and for the generic process ½pi� → ½qf� þ γ,
the unordered Wightman function reads [18]

−Gμ<
μ ðqÞ

¼
Z Y

i

d3pin
i

ð2πÞ32Ein
i
nðEin

i Þ
Y
j

d3qoutj

ð2πÞ32Eout
j

ð1� nðEout
j ÞÞ

× ð2πÞ4δ
�X

i

pi −
X
j

qj − q

�
jMi→fþγj2: ð48Þ

The effects of the viscous corrections amount to
additional contributions to the initial and final distribution
functions. We now detail them for both dilepton and photon
emissions.

A. Dileptons

We now seek to organize the dilepton emissivities in the
nonperturbative partonic phase as

d3R
d4q

¼ d3RTp
0

d4q
þ d3RVp

1

d4q
þ d3RTn

0

d4q
þ d3RVn

1

d4q
ð49Þ

with the first contribution RTp
0 as the thermal perturbative

rate, the second contribution RVp
1 as the viscous perturba-

tive correction, the third contribution RTn
0 as the thermal

and nonperturbative correction of leading mass dimension
in the external fields, and finally the fourth contribution
RVp

1 as the viscous nonperturbative contribution in the
leading mass dimension. The separation into perturbative
(thermal and electric) and nonperturbative (magnetic) in
the thermal state follows a similar reasoning for the use of
the operator product expansion (OPE) expansion in the
QCD sum rules for the hadronic correlators in the QCD
vacuum. We now proceed to evaluate each of these
contributions sequentially as (54), (61), (66), and (73),
to be detailed below.

1. Thermal perturbative contribution

In leading order, the perturbative dilepton emissivity
corresponds to an in state with a single qq̄ as illustrated in
Fig. 3, and its contribution to (48) is (omitting all charge
factors)

−Gμ<
μ ðqÞ ¼ q2

πjqj
Z q0þjqj

2

q0−jqj
2

dkfμðkÞf−μðq0 − kÞ

¼ nBðq0Þ
q2

πjqj
Z

qþ

q−
ð1 − fμðkÞ − f−μðq0 − kÞÞ

¼ nBðq0Þ
q2

π
nBðq0Þ

�
−1þ 1

βjqj ln
�
n−μ n−−μ
nþμ nþ−μ

��

ð50Þ
We have defined the Fermi distributions at finite chemical
potential μ as

f�μðqÞ ¼
1

eβðq0∓μÞ þ 1
ð51Þ

and their associated shifted distributions

n��μ ¼
1

eβðq0�jqjÞ=2∓βμ þ 1
: ð52Þ

The emergence of the Bose distribution nB ¼ 1=ðeβq0 − 1Þ
in (50) reflects on the KMS condition

Gμ<
μ ðqÞ ¼ 2nBðq0ÞImiGμR

μ ðqÞ ð53Þ

at finite temperature and chemical potential μ in leading
order. The finite chemical potential will be traded below for
a complex chemical potential for a fixed color species and
identified with the insertion of a soft A4 contribution in the
strongly coupled QGP [24,25]. For μ ¼ 0, Eq. (50), when
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inserted in the general formula for dilepton emission (42)
and upon restoring the color-flavor factor for partons
Ncê2f=2, yields the leading partonic dilepton rate

dRTp
0

d4q
¼ −α2B

3π3
1

eβq0 − 1

×

�
1

4π
dF

X
f

ê2f

��
1þ 2

βjqj ln
�
nþ

n−

��
ð54Þ

with dF ¼ Nc the color dimension of the quark represen-
tation and n� ≡ n��0. Here, eêf is the electromagnetic
charge of a quark of flavor f. In this order, the emission is
isotropic.

2. Viscous perturbative contribution

The viscous corrections to the perturbative quark and
gluon processes follow exactly along the general arguments
we presented earlier in Secs. II and III. Specifically, for the
fermionic Wightman functions

G>
αβðxÞ ¼ þhψαðxÞψ̄βð0Þi

G<
αβðxÞ ¼ −hψ̄βð0ÞψαðxÞi; ð55Þ

the Tij insertions amounts to additional contributions, and
in leading order, we have

G<ðkÞ ¼ −
π=k
E

nðk0Þðδ− − δþÞ

− tH∂iβj
kikj

E
π=k
E

nðk0Þð1 − nðk0ÞÞðδ− þ δþÞ

G>ðkÞ ¼ þ π=k
E

ð1 − nÞðδ− − δþÞ

− tH∂iβj
kikj

E
π=k
E

nð1 − nÞðδ− þ δþÞ ð56Þ

with δ� ≡ δðk0 ∓ kÞ. In the real-time or double-line
formalism, the total emission rate follows from the 12
Wightman function, where the effects of the Tij insertions
amount to modifying the in-state population by

n → nþ tH
kikj
E

∂iβjnð1� nÞ ð57Þ

and the out-state population by

n → 1 − n − tH
kikj
E

∂iβjnð1� nÞ: ð58Þ

With this in mind, the viscous corrections to the leading-
order dilepton emission at finite chemical potential (50) is

þ tH∂iβj
q2

πjqj
Z q0þjqj

2

q0−jqj
2

dkfμð1−fμÞf−μðq0−kÞkikj
k

þ tH∂iβj
q2

πjqj
Z q0þjqj

2

q0−jqj
2

dkf−μð1−f−μÞfμðq0−kÞkikj
k

; ð59Þ

which can be reorganized as follows:

tH∂iβj
q2

πjqj

×

�
δij − q̂iq̂j

2

Z q0þjqj
2

q0−jqj
2

dkkfμð1 − fμÞf−μðq0 − kÞ

þ 3q̂iq̂j − δij
2

Z q0þjqj
2

q0−jqj
2

dkkfμð1 − fμÞf−μðq0 − kÞ

×

�
q0
jqj − 2

qþq−
jqjk

�
2

þ μ → −μ
�
: ð60Þ

The μ ¼ 0 contribution in (60) yields the viscous pertur-
bative contribution to the dilepton rate (54). More specifi-
cally, we have

dRVp
1

d4q
¼ α2B

3π3
1

eβq0 − 1
×

�
1

4π
dF

X
f

ê2f

�
2

jqj

×

�
2tζθ − tησ

2

Z q0þjqj
2

q0−jqj
2

dkkð1 − f − ~fÞð1 − fÞ

þ 3tησ

2

Z q0þjqj
2

q0−jqj
2

dkkð1 − f − ~fÞð1 − fÞ

×

�
q0
jqj − 2

qþq−
jqjk

�
2
�
; ð61Þ

where we have defined the fermionic distributions f ≡
f0ðkÞ and ~f ≡ f0ðq0 − kÞ for μ ¼ 0.
In Fig. 2, we show the ratio dRVp

1 =dRTp
0 of the thermal

viscous contribution (61) to the free thermal contribution
(54), for dilepton emission at q ¼ ð2ω;ωÞ as a function of
βω, after setting tζ ¼ tη ¼ β and θ ¼ σ ¼ 1. The orange-
dashed line is the shear ratio, while the blue-solid line is the
bulk ratio. Again, the bulk contribution is larger than the
shear contribution, and both are positive and increasing
with βω.

3. Thermal nonperturbative contribution

The partonic phase near the transition temperature still
carries soft gluons [24,25]. Their effects is to modify both
the thermal and viscous rates. A way to assess these
nonperturbative effects is to organize these modifications
as power corrections through gluonic operators insertions
of increasing dimension Δ ¼ 2, 4 in the JJ correlation
function. In Fig. 3, we illustrate the leading soft gluonic
insertions on the dilepton emissivities. Typically, these
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contributions are of the form ðgA4Þ2; ðgEÞ2; ðgBÞ2;… and
of order ðg2TÞΔ.
Since a constant gA4 acts as an imaginary colored

chemical potential on the quark line, the leading operator
insertion ðgA4Þ2 is readily obtained from the quadratic μ
contribution stemming from the fermionic propagator at
finite chemical potential, with the identification

μ2 → −hðgA4Þ2i: ð62Þ

A proof of this is given in Appendix A using the back-
ground field method. With this in mind, the quadratic
contribution stemming from (50) is

ln

�
n−μ n−−μ
nþμ nþ−μ

�

¼ þ2 ln

�
n−
nþ

�
þ ðβμÞ2ðnþð1 − nþÞ − n−ð1 − n−ÞÞ

þOðμ4Þ; ð63Þ

which corrects the perturbative dilepton rate (54) by the
nonperturbative contribution

−
α2B
3π3

1

eβq0 − 1

�
1

4π
dF

X
f

ê2f

�
hðgA4Þ2i

×

�
β

jqj
�
ðnþð1 − nþÞ − n−ð1 − n−ÞÞ: ð64Þ

The effects of ðgEÞ2 and ðgBÞ2 can be calculated by general
arguments using the background field method [24], as
briefly recalled in the Appendix A. The net result can be
understood using the simple substitution

hðgA4Þ2i → hðgA4Þ2i −
1

6q2
hðgEÞ2i þ 1

3q2
hðgBÞ2i; ð65Þ

a proof of which is given in Appendix A. The substitution
can be understood as ðgqA4Þ ∼ gE ∼ gB. The factor of 1

3
is

from averaging over the vector orientations. The extra − 1
2
in

front of the electric contribution is due to the use of a fixed
thermal frame and the fact that ðgEÞ2 ∼ −ðgBÞ2 in Euclidean
space. Hence, the final nonperturbative corrections to the
dilepton rate (54) in leading operator insertions are

dRTn
0

d4q
¼ α2B

3π3
1

eβq0 − 1

�
1

4π
dF

X
f

ê2f

�

×

�
−hðgA4Þ2i þ

1

6q2
hðgEÞ2i − 1

3q2
hðgBÞ2i

�

×

�
β

jqj
�
ðnþð1 − nþÞ − n−ð1 − n−ÞÞ

�
ð66Þ

in agreement with the result in Ref. [24]. The typical values
of the soft condensate insertions in (66) are discussed in
Refs. [4,24].

4. Viscous nonperturbative contribution

The viscous and nonperturbative corrections to (61) can
be obtained using the same reasoning developed above for
the nonperturbative thermal corrections. For that, we
expand the general result (60) to quadratic order in μ, by
expanding the fermionic occupation number

fμ ¼ f þ βμfð1 − fÞ þ 1

2
ðβμÞ2fð1 − fÞð1 − 2fÞ þOðμ3Þ:

ð67Þ

Now, we use the identity

Z
fμð1 − fμÞf−μðq0 − kÞ½…�

¼ nBðq0Þ
Z

ð1 − fμ − f−μðq0 − kÞÞð1 − fμÞ½…� ð68Þ

FIG. 3. Thermal dilepton emission including the leading
perturbative term (top) and the leading soft and nonperturbative
corrections (bottom). The blob refers to gluon insertions of
leading dimensions ðgA4Þ2, ðgEÞ2, and ðgBÞ2.

FIG. 2. Ratio dRVp
1 =dRTp

0 for the thermal perturbative dilepton
bulk contribution Rζ (blue-solid curve) vs βω and for the thermal
perturbative shear dilepton contribution Rη (orange-dashed
curve) vs βω and q ¼ ð2ω;ωÞ. We have set the relaxation times
tζ ¼ tη ¼ β and fixed θ ¼ σ ¼ 1.
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and expand the integrand in μ. The quadratic contribution
reads

ðð1−fμ− ~f−μÞð1−fμÞþðμ→−μÞÞμ2
¼þ2fð1−fÞ2ð3f−1Þþfð1−fÞð1−2fÞð ~f−1Þ
þ ~fð1− ~fÞð1−2~fÞðf−1Þ−2fð1−fÞ ~fð1− ~fÞ: ð69Þ

With the help of the identity

2fð1 − fÞ2ð3f − 1Þ
¼ ð1þ nBðq0ÞÞð1 − ~f − fÞðfð1 − 2fÞ þ ~fð1 − 2~fÞÞ
− 2nBðq0Þð1þ nBðq0Þð1 − f − ~fÞ2; ð70Þ

The μ2 correction to (59) is

ðβμÞ2tH∂iβj
q2

πjqj

×

�
δij− q̂iq̂j

2
ðnBF1þnBð1þnBÞF2þn2Bð1þnBÞF3Þ

þ3q̂iq̂j−δij
2

ðnB ~F1þnBð1þnBÞ ~F2þn2Bð1þnBÞ ~F3Þ
�
;

ð71Þ

where we have defined

F1 ¼ þ2

Z
dkkfð1 − fÞ2ð3f − 1Þ

~F1 ¼ þ2

Z
dkkfð1 − fÞ2ð3f − 1Þ

�
q0
jqj −

2qþq−
jqjk

�
2

F2 ¼ −
Z

dkkð1 − ~f − fÞðfð1 − 2fÞ þ ~fð1 − 2~fÞÞ

~F2 ¼ −
Z

dkkð1 − ~f − fÞðfð1 − 2fÞ þ ~fð1 − 2~fÞÞ

×

�
q0
jqj −

2qþq−
jqjk

�
2

F3 ¼ −2
Z

dkkð1 − ~f − fÞ2

~F3 ¼ −2
Z

dkkð1 − ~f − fÞ2
�
q0
jqj −

2qþq−
jqjk

�
2

: ð72Þ

Using the operator substitutions (62)–(65) for μ2 in (71)
leads to the nonperturbative corrections to the viscous
dilepton emission rate (61) in the form ½nB ≡ nBðq0Þ�

dRVn
1

d4q
¼ α2B
3π3q2

β2

eβq0−1

�
1

4π
dF

X
f

ê2f

�
q2

πjqj

×

�
−hðgA4Þ2iþ

1

6q2
hðgEÞ2i− 1

3q2
hðgBÞ2i

�

×

�
2tζθ−tησ

2
ðnBF1þnBð1þnBÞF2þn2Bð1þnBÞF3Þ

þ3tησ

2
ðnB ~F1þnBð1þnBÞ ~F2þn2Bð1þnBÞ ~F3Þ

�
:

ð73Þ

B. Photons

Following the dilepton analysis, we now seek to organize
the photon emissivities in the nonperturbative partonic
phase as

xd3Γ
d3k

¼ d3ΓTp
0

d3k
þ d3ΓVp

1

d3k
þ d3ΓTn

0

d3k
þ d3ΓVn

1

d3k
ð74Þ

with the first contribution ΓTp
0 as the thermal perturbative

rate, the second contribution ΓVp
1 as the viscous perturba-

tive correction, the third contribution ΓTn
0 as the thermal and

nonperturbative correction of leading mass dimension in
the external fields, and finally the fourth contribution ΓVp

1

as the viscous nonperturbative contribution in leading mass
dimension in the external fields. We now proceed to
evaluate each of these contributions sequentially as (87),
(96), (102), and (105), to be detailed below.

1. General

The photon analysis is more involved since the in state
with qq̄ is kinematically not allowed. The partonic photon

FIG. 4. Thermal photon emission including the leading per-
turbative term and the leading soft and nonperturbative correc-
tions. The blob refers to gluon insertions of leading dimensions
ðgA4Þ2, ðgEÞ2, and ðgBÞ2. Soft vertex insertions as in Fig. 3 are
also included but not shown. The last two contributions are not
allowed without the soft insertions.
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emission proceeds through 1) the Compton channel, with
qg → γq or q̄g → γq̄, and 2) the pair annihilation channel
with q̄q → gγ, as illustrated in Fig. 4. Specifically, we have

G<
compton ¼

N
8ð2πÞ4E

Z
dsdtjMcðs; tÞj2

×
Z

dE1dE2fμðE1ÞfgðE2Þð1−fμðE1þE2 −EÞÞ

×
θðE1þE2−EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aE2

1þbE1þ c
p þμ→−μ ð75Þ

with E ¼ ω ¼ k throughout, and

G<
pair ¼

N
8ð2πÞ4E

Z
dsdtjMpðs; tÞj2

×
Z

dE1dE2fμðE1Þf−μðE2Þð1þ fgðE1 þE2 − EÞÞ

×
θðE1 þE2 − EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aE2

1 þ bE1 þ c
p : ð76Þ

The leading perturbative contributions to the squared
matrix elements are

jMcðs; t; uÞj2
16π2

¼ −8ααs
u2 þ s2

us
jMpðs; t; uÞj2

16π2
¼ þ8ααs

u2 þ t2

ut
; ð77Þ

and the color-flavor factor is

N ¼ N2
c − 1

2Nc
Nc

X
f

ê2f ≡ CFdF
X
f

ê2f: ð78Þ

The Mandelstam variables and the kinematical parameters
a, b, and c are collectively defined as

s ¼ ðp1 þ p2Þ2
t ¼ ðp − p1Þ2
a ¼ −ðsþ tÞ2
b ¼ 2ðsþ tÞðEs − E2tÞ
c ¼ stðsþ tÞ − ðEsþ E2tÞ2 ð79Þ

with sþ tþ u ¼ 0. The ranges of the integrations are s ≥ 0
and −s ≤ t ≤ 0. However, the s integration is infrared
sensitive, so the integration range will be modified to s ≥
m2

T with the squared thermal quark mass m2
T ¼ παsCF=β2

as a regulator. These results are in agreement with those
first reported in Ref. [26].

2. Thermal perturbative contribution

In this section, we will detail the approximations in the
reduction of (75) and (76) in leading order, as they will be
used for the viscous contributions as well. Following
Ref. [26], we can unwind the integrations through the
Boltzmann approximation

f0ðE1ÞfgðE2Þ ∼ e−βðE1þE2Þ ∼ e−βE ð80Þ

in terms of which the integrand is typically of the form

Z
dE1dE2fðE1 þ E2 − EÞ θðE1 þ E2 − EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aE2
1 þ bE1 þ c

p : ð81Þ

After the change of variables E1 ¼ x0 þ y, E2 ¼ x0 − y, this
integral simplifies

2

Z
dx0

Z
dy

fð2x0 − EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðy − y2Þðy1 − yÞ

p ð82Þ

with the integration over y giving just πs. From the constraint

2ðE1 þ E2 − EÞEð1 − cos θ34Þ ¼ s; ð83Þ

where cos θ34 ¼ p̂3 · p̂4, we find that 2x0 − E ¼ 2x ≥ s
8E,

and (81) gives

2π

s

Z
∞

s
8E

dxfð2xÞ: ð84Þ

For either distribution f ¼ 1
eβx�1

, we obtain

π

βs
lnð1� e−βs

4EÞ�1: ð85Þ

The t integrations can be carried explicitly with the results

Z
dt
s
jMcðs; tÞj2

¼ 128π2ααs

�
ln

�
s −m2

T

m2
T

�
þ 1

2

�
1 −

2m2
T

s

��

×
Z

dt
s
jMpðs; tÞj2

¼ 256π2ααs

�
ln

�
s −m2

T

m2
T

�
−
�
1 −

2m2
T

s

��
: ð86Þ

Again, the infrared cutoff satisfies 2m2
T ≤ s, −sþm2

T ≤
t ≤ −m2

T . With the above in mind, the leading equilibrium
photon emission from a perturbative QCD plasma asso-
ciated to the Compton qg → qγ and pair creation qq̄ → γg
processes is [26]

VISCOUS CORRECTIONS TO ELECTROMAGNETIC … PHYSICAL REVIEW D 96, 116021 (2017)

116021-11



dΓTp
0

d3k
¼ ααs

π

1

Eβ2
1

eβE − 1

×

�
1

4π
CFdF

X
f

ê2f

��
1

2
ln

�
4E
βm2

T

�
þ C

�
: ð87Þ

Here, C is a constant. The emission rate to this order is
isotropic. In (87), the overall substitution

e−βE →
1

eβE − 1
ð88Þ

was made to recover the causal prefactor required by the
KMS condition for the retarded process as in (53).
Finally, we remark that the perturbative photon rate (87)

receives additional perturbative corrections to the same
order in ααs through collinear bremsstrahlung [27]. This
effect and its resummation will not be discussed here.
Instead, we will focus on the potentially soft gluonic
corrections that are also important near the transition
temperature, as we now detail.

3. Viscous perturbative contributions

As we noted in the dilepton rates above, the viscous
corrections in leading order correspond to the pertinent
insertions of kikj on the partonic lines as given in (57)–
(58). These gradient insertions break the isotropic character
of the integrations with the typical integral structures

qiqj

Z
cos2 θ þ ðδij − qiqjÞ

2

Z
ð1 − cos2 θÞ

¼ qiqj

Z
3 cos2 θ − 1

2
þ δij

Z
1 − cos2 θ

2
; ð89Þ

where the scattering angles are defined as

cos θ1 ¼
tþ 2EE1

2EE1

cos θ2 ¼
uþ 2EE2

2EE2

cos θ3 ¼
2ðE1 þ E2 − EÞE − s
2EðE1 þ E2 − EÞ : ð90Þ

The angles θ1;2;3 refer to the angles between particles 1, 2,
and 3 and γ flying along the z direction, in the process
labeled as 1þ 2 → 3þ γ. To proceed, we now make two
kinematical approximations to simplify the integration
analyses to follow. The first is to follow (A2) and
approximate the population factors by

f�μðE1Þð1 − f�μðE1ÞÞfgðE2Þ ≈ e−βðE1þE2∓μÞ

f�μðE1ÞðfgÞð1þ fgÞ ≈ e−βðE1þE2∓μÞ; ð91Þ

and the second is to replace E1;2 in cosðθ1;2Þ by
E1;2 ≈ ðE1 þ E2Þ=2. These approximations will allow us
to extract explicit estimates for the viscous perturbative and
nonperturbative effects. They will be tested against realistic
hydrodynamical evolution of the rates in the future. With
this in mind, the viscous corrections to the Compton (75)
and pair (76) are, respectively, given by

−G<
c ¼ tH∂iβj

�
δij − q̂iq̂j

2
GP

c þ 3q̂iq̂j − δij
2

GT
c

�

−G<
p ¼ tH∂iβj

�
δij − q̂iq̂j

2
GP

p þ 3q̂iq̂j − δij
2

GT
p

�
; ð92Þ

where the upper labels P and T follow the separation into 1
and cos2 θ in the decomposition in (89). The Compton
kernels are

GP
c ≈

N
8ð2πÞ3E

1

eβðE−μÞ − 1

Z
dsdt
s

jMcðs; tÞj2

×
Z

∞

s
8E

dx

�
2xþ E

eβð2x−μÞ þ 1
−

2xeβð2x−μÞ

ðeβð2x−μÞ þ 1Þ2
�

þ μ → −μ

GT
c ≈

N
8ð2πÞ3E

1

eβðE−μÞ − 1

Z
dsdt
s

jMcðs; tÞj2

×
Z

∞

s
8E

dx

�
2xþ E − s

E þ t2þðsþtÞ2
8xE2

e
2x−μ
T þ 1

−
2xeβð2x−μÞð1 − s

4ExÞ2
ðeβð2x−μÞ þ 1Þ2

�
þ μ → −μ; ð93Þ

and the pair production kernels are

GP
p ≈

N
8ð2πÞ3E

1

eβE−1

Z
dsdt
s

jMpðs;tÞj2

×
Z

∞

s
8E

dx

�
2xþE
eβ2x−1

þ 2xeβ2x

ðeβ2x−1Þ2
�

GT
p≈

N
8ð2πÞ3E

1

eβE−1

Z
dsdt
s

jMpðs;tÞj2

×
Z

∞

s
8E

dx

�
2xþE− s

Eþ t2þðsþtÞ2
8xE2

eβ2x−1
þ2xeβ2xð1− s

4ExÞ2
ðeβ2x−1Þ2

�
;

ð94Þ

which are independent of the chemical potential μ. In both
kernels in (93) and (94), the substitution (88) was performed
to recover the causal prefactor required by the KMS con-
dition. In terms of the hydrodynamical times, Eq. (92) reads
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−G<
c ¼

�
2tζθ − tησ

2
GP

c þ 3tησ

2
GT

c

�

−G<
p ¼

�
2tζθ − tησ

2
GP

p þ 3tησ

2
GT

p

�
; ð95Þ

and the perturbative viscous correction to the photon rate
takes the final form

d3ΓVp
1

d3k
¼ −1

ð2πÞ32E ðG<
c þG<

p Þμ¼0 ð96Þ

after setting μ ¼ 0 in (93). In Appendix B, we make explicit
the contributions to(96). The ratio of the leading shear and
bulk thermal contributions in (96) to the leading thermal
perturbative photon contribution (87) is found to be

Rη ¼
d3ΓVp

shear

d3ΓT
0

≈
�
Eþ 1

β

�
A1 − 2A2 −

1

3
−
7ζ3
π2

��
tησ

Rζ ¼
d3ΓVp

bulk

d3ΓT
0

≈
�
Eþ 1

β

�
2

3
þ 14ζ3

π2

��
tζθ ð97Þ

with E ¼ ω ¼ k0. Here, A1;2 are functions of E defined in
(B10), which asymptote zero at largeE exponentially, and ζ3
refers to the Riemann zeta function. In Fig. 5, we show the
ratios (97) vs βω with ω ¼ E, for tζ ¼ tη ¼ β and fixed
θ ¼ σ ¼ 1. The thermal viscous corrections to the photon
emissivities become linearly large at large E ¼ ω ≫ 1=β.
Since Eq. (97) were derived for largeE ¼ ω ≫ 1=β, the low
E ¼ ω ≪ 1=β part of the curve receives additional correc-
tions. Note that the constants contributions were dropped
from both the perturbative and viscous rates at large
E ¼ ω ≫ 1=β.

4. Thermal nonperturbative contributions

To obtain the thermal nonperturbative corrections to the
photon rates, we proceed as in the case of the dilepton rates

above, by expanding (93) to order μ2 and then trading μ2 as
in (62). With this in mind, we have

−Gcjμ2 ¼ ðβμÞ2ðG1 þG2Þ ð98Þ

with

G1 ¼
N

16ð2πÞ3βEnBð1þ nBÞð1þ 2nBÞ

×
Z

dsdt
s

jMcðs; tÞj2 lnð1þ e− s
4EÞ

G2 ¼
N

16ð2πÞ3βEnB

Z
dsdt
s

jMcðs; tÞj2
e
βs
4

ð1þ e
βs
4 Þ2

: ð99Þ

The associated nonperturbative photon rate is

−
β2

ð2πÞ32E hðgA4Þ2iðG1 þ G2Þμ¼0; ð100Þ

which corresponds to the leading soft gluon insertion to the
Compton process. We now note that, even though the
perturbative annihilation process qq̄ → γ is kinematically
forbidden, its counterpart in the presence of external fields
ðgEÞ and ðgBÞ is not. This contribution can be obtained
from the γ� → qq̄ process in (66) after suitably multiplying
by q2 and then taking q2 → 0 to recover the photon point
through the dilepton-photon identity

q0
d3Γ
d3q

¼ 3π

2αB
lim
q2→0

�
q2

d4R
d4q

�
: ð101Þ

The outcome combined with (100) gives

d3ΓTn
0

d3k
¼ α

2π2E
1

eβE − 1

�
1

4π
dF

X
f

ê2f

�

×

�
1

6
hðgEÞ2i − 1

3
hðgBÞ2i

�

×

�
β

jqj
�
ðnþð1 − nþÞ − n−ð1 − n−ÞÞ

�

−
β2

ð2πÞ32E hðgA4Þ2iðG1 þ G2Þμ¼0: ð102Þ

The explicit forms ofG1;2 follow the same analysis detailed
in Appendix B. This is our final result for the thermal and
nonperturbative contributions for the photon emissivity, in
leading mass dimensions.

5. Viscous nonperturbative contributions

The viscous nonperturbative contributions of the type
hðgA4Þ2i are readily obtained by expanding (93) in powers

FIG. 5. Ratios (97) for the photon thermal bulk contribution Rζ

(blue-solid curve) vs βω, and for the photon thermal shear
contribution Rη (orange-dashed curve) vs βω and equal relaxation
times tζ ¼ tη ¼ β for fixed θ ¼ σ ¼ 1.
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of μ2 and using the identification μ2 → −hðgA4Þ2i as we
discussed above. We note that the μ dependence drops out
of the pair production rate (94). More specifically, we have
for the Compton contribution to second order in μ2

GP
c jμ2 ¼ ðβμÞ2G3 GT

c jμ2 ¼ ðβμÞ2G4 ð103Þ

with

G3 ¼ð1þnBðEÞÞð1þ2nBðEÞÞGP
c þ

N
8ð2πÞ3EnBðEÞ

Z
dsdt
s

jMcðs;tÞj2
Z

∞

s
8E

ðð2xþEÞfð1−fÞ−2xfð1−fÞð6f2−6fþ1ÞÞ

G4 ¼ð1þnBðEÞÞð1þ2nBðEÞÞGT
c þ

N
8ð2πÞ3EnBðEÞ

Z
dsdt
s

jMcðs; tÞj2
Z

∞

s
8E

��
2xþE−

s
E
þ t2þðsþ tÞ2

8xE2

�
fð1−fÞ

−2x

�
1−

s
4Ex

�
2

fð1−fÞð6f2−6fþ1Þ
�
: ð104Þ

Here, we have set f ¼ fð2xÞ ¼ 1=ðeβ2x þ 1Þ. The nonperturbative viscous corrections to the photon rates are

d3ΓVn
1

d3k
¼ −1

ð2πÞ32EG<ðEÞ

¼ þ α

2π2E
1

eβE − 1

�
1

4π
dF

X
f

ê2f

�
β2

πE

�
1

6
hðgEÞ2i − 1

3
hðgBÞ2i

�

×

�
2tζθ − tησ

2
ðnBF1 þ nBð1þ nBÞF2 þ n2Bð1þ nBÞF3Þ þ

3tησ

2
ðnB ~F1 þ nBð1þ nBÞ ~F2 þ n2Bð1þ nBÞ ~F3Þ

�

−
β2

ð2πÞ32E hðgA4Þ2i
�
2tζθ − tησ

2
G3 þ

3tησ

2
G4

�
: ð105Þ

The first contribution stems again from the q2 → 0 of the
nonperturbative viscous contribution for the γ� → qq̄ rate
in (73) using (101), and the last contribution follows from
(103) after inserting it in (95) and combining it with (96)
following the substitution μ2 → −hðgA4Þ2i. Again, the
explicit forms of G3;4 follow the same analysis detailed
in Appendix B. Equation (105) is our final result for the
viscous and nonperturbative corrections to the photon rates
in leading mass dimensions.

VI. CONCLUSION

We have provided a general framework for analyzing
near-equilibrium hydrodynamical corrections to the photon
and dilepton emissivities in QCD. Assuming that the
emission times are short in comparison to the hydrody-
namical evolution times, we have developed the rates by
expanding the evolving fluid density matrix in derivatives
of the fluid gradients. In leading order, the electromagnetic
rates get corrected by bulk and shear viscous contributions
in the form of Kubo-like response functions involving the
energy-momentum tensor.
We have analyzed the viscous corrections in a hadronic

fluid below the QCD transition temperature for both the
photon and dilepton emissivities. A simple estimate of the
photon rate using vector dominance in the chiral limit

shows that the bulk viscosity corrections are much larger
than the shear viscosity corrections for about all frequen-
cies. The former are still sizable in the late stages of the
hadronic evolution. These observations are interesting to
check in a full hydrodynamical analysis of the photon
emissivities at present colliders. Similar corrections were
also shown to occur in the dilepton emission rates.
We have also analyzed the viscous corrections in a

strongly coupled quark gluon plasma for temperatures
higher than but close to the transition temperature, as probed
by current colliders. The nonperturbative character of the
sQGP is developed by correcting the thermal perturbative
rates with soft gluonic insertions in the form of gluonic
operators of increasing mass dimensions, in the spirit of the
OPE expansion for the QCD vacuum correlation functions.
The partonic thermal bulk viscous corrections to the dilepton
and photon rates are observed to be more sizable than their
shear counterparts with increasing dilepton and photon
energies. As our calculations were carried out at finite
chemical potential μ which was traded by an expansion
with igA4, they also provide for the viscous corrected
electromagnetic rates at finite chemical potential as well.
The shortcomings of our analysis stem from our decou-

pling approximation that the hydrodynamical gradients
decorrelate on time scales that are larger than the electro-
magnetic emission times and also our also assessment of
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only the leading gradient corrections. To improve on this is
more challenging technically, but straightforward concep-
tually. Without the viscous corrections, the hadronic rates
and the partonic rates with the leading soft corrections are
discussed in details in Refs. [4,28], and their implementa-
tion in a realistic hydrodynamical simulation is carried out
in Ref. [28]. The rates are summarized in Appendix C for
convenience by any hydrodynamical collaboration. The
viscous corrections to the hadronic and partonic emissiv-
ities can and should be assessed in current analyses with
hydrodynamical base evolution, in particular, their effects
on the currently reported photon flow [6,15,28].
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APPENDIX A: BACKGROUND FIELD ANALYSIS

In this Appendix, we briefly outline how to correct the
Wightman function for the JJ correlator using the back-
ground field method as initially discussed in Ref. [24] and
illustrated in Fig. 6. The soft gluon corrections are indicated
by a blob. For the case of the leading ðgA4Þ2 insertion
discussed above, this construction relies directly on
Feynman diagrams in the background field method, rather
than the observation that A4 plays the role of a colored
chemical potential, and therefore can be traded by a real
chemical potential as we discussed above. It also shows
how the ðgEÞ2 and ðgBÞ2 corrections are obtained.
Throughout this Appendix, the analysis is in Euclidean
space, and we will set A4 ¼ A0.
Using the Fock-Schwinger gauge for the background

fields, we can explicitly rewrite the gauge fields as an
expansion in increasing covariant derivatives of the field
strengths,

A0 ¼ A0 þ xiDiA0 þ � � �

Ai ¼ xjFji þ
X
k¼1

kþ 2

k!
xjxj1 � � � xjkDj1 � � �DjkFji: ðA1Þ

The fermion propagator in these external fields takes the
form

SðqÞ ¼
Z

d4xe−iq·x
�
x

���� 1

−iγ ·D

����0
�
: ðA2Þ

For simplicity, consider first the presence of a magnetic
field B by limiting the external gauge field in D to Ai.
Expanding (A2) to first order in B, we have

S1ðqÞ¼−g
Z

d4q1d4q2
ð2πÞ4ð2πÞ4

q1 ·γ
q21

Fijγ
jq2 ·γ
q22

i
∂δ4ðq1−q2Þ
∂ðq1−q2Þi

eiq1·x;

ðA3Þ

using ∂δ4ðq1−q2Þ
∂ðq1−q2Þi ¼ − ∂δ4ðq1−q2Þ

∂qi
2

, we obtain

S1ðqÞ ¼ −igS0ðqÞFijγ
j∂iS0ðqÞ

S0ðqÞ ¼
q
q2

: ðA4Þ

After a simple reduction, we have to first order in B

S1½B� ¼ −i
gFij

q4
γi=qγj: ðA5Þ

The second-order correction in B follows by expanding
further in (A2), giving the contribution

− g2S0ðq1ÞFijγ
jS0ðq2ÞFklγ

lS0ðq3Þ
× ∂q2−q3δðq2 − q3Þ∂q1−q2δðq1 − q2Þ; ðA6Þ

which can be reduced by first partially integrating with
respect to q3, and then partially integrating with respect to
q2, to obtain

S2½B� ¼ −
g2FijFkl

q6
q

�
γjγkγiγl −

4qiγj
q2

γkqγl
�
: ðA7Þ

Color-spin averaging (A7) using

hFklFmni ¼
1

8

1

3
hB2iðδkmδln − δknδlmÞ

leads to the B2 correction to the fermionic propagator

hS2½B�i ¼
2hðgBÞ2i

3q6

�
q0γ0 −

q20
q2

q

�
: ðA8Þ

Using similar arguments to those presented for the
magnetic B, we can derive the corrections in A0 and E
to second order. The results are for the electric field

FIG. 6. The thermal JJ correlation function in Euclidean space.
The soft gluon insertions of the type ðgA4Þ2, ðgEÞ2, ðgBÞ2 are
indicated by a blob.
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S1½E� ¼ −i
gDiA0

q4

�
γiqγ0 −

4q0qi
q2

q

�

hS2½E�i ¼
hðgEÞ2i
8q6

ðqf1 þ q0γ0f2Þ

f1 ¼
1

3
þ 28q20

3q2
−
16q20jq⃗j2

q4

f2 ¼ −
20

3
þ 8jq⃗j2

3q2
ðA9Þ

and for A0

S1½A0� ¼ −
gA0

q4
=qγ0=q

S2½A0� ¼
g2A2

0

q6
=qγ0=qγ0=q: ðA10Þ

The leading magnetic correction to the Wightman
function for the JJ correlator in Euclidean space is

hΓE
μμðq; ½B�Þi ¼ e2hðgBÞ2iðI1 þ I2Þ

I1 ¼ −
16

3

X
q1þq2¼q

jq⃗1j2ω1ω2 − ω2
1q⃗1 · q⃗2

q81q
2
2

I2 ¼ −2
X

q1þq2¼q

ω1ω2 þ q⃗1·q⃗2
3

q41q
4
2

ðA11Þ

with q ¼ ðω; q⃗Þ and the shorthand notation

X
q

≡ X
ωn¼πTð2nþ1Þ

Z
d3q⃗
ð2πÞ3 :

The leading A0 correction is

hΓE
μμðq; ½A�Þi ¼ e2hðgA0Þ2iðI3 þ I4Þ

I3 ¼ −8
X

q1þq2¼q

ω1ω2ðω2
1 − 3jq⃗1j2Þ þ ð3ω2

1 − jq⃗1j2Þq⃗1 · q⃗2
q61q

2
2

I4 ¼ −4
X

q1þq2¼q

ðω2
1 − jq⃗1j2Þðω2

2 − jq⃗2j2Þ þ 4ω1ω2q⃗1 · q⃗2
q41q

4
2

: ðA12Þ

Here, I4 follows from the soft insertion in the second
contribution (bottom) of Fig. 6, and I3 follows from
the soft insertion in the first contribution (bottom) of
Fig. 6.
If we set the external momentum q ¼ ðq0; 0⃗Þ, then (A11)

and (A12) can be reduced to

I1 ¼
32

3
ð2q0I031 þ I0031 þ q20I

00
41 − I0040Þ

I2 ¼
−1
3

ð2I12 − q20I22 þ 4q0I022 þ 4I0022Þ
I3 ¼ 4ð−3q0I021 þ 4q0I00031 þ 2I0021 − I11Þ
I4 ¼ 2ðþ2q20I

00
22 − q20I12 þ 2q0I012 þ I02Þ ðA13Þ

with the following notation:

I
μ1…μj
mn ≡X

k

kμ1…kμj

k2mðkþ qÞ2n : ðA14Þ

Some useful properties of these integrals can be found in
Ref. [29]. In particular, we have the identity

2I12 − q20I22 ¼ 4q0I022 þ 4I0022: ðA15Þ

The magnetic contribution I2 in (A13) diverges in the
infrared at zero temperature. This contribution can be
reabsorbed in the definition of mq̄q at zero temperature.
This will be assumed at finite temperature as well. Since
the chiral condensate vanishes in the partonic phase, we
will set this self energy–type contribution to zero. The same
will be assumed for the analog electric contribution. With
this in mind, the electric and magnetic contributions
following from the soft gluon insertions contribute to the
JJ correlator as

hΓE
μμðq; ½E;B�Þi ¼ −4e2hðgEÞ2ið2I12 − q20I22Þ

þ 4e2

3
ðhðgEÞ2i þ hðgBÞ2iÞ

× ð2I12 − q20I22 þ 4q0I022 þ 4I0022Þ:
ðA16Þ

The asymmetry between the electric and magnetic field is
due to the breaking of Lorentz invariance introduced by the
heat bath. The Matsubara summation in the I integrals
reduces to a zero temperature plus a finite temperature part
through the use of
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X
ωn¼πTð2nþ1Þ

βFðωnÞ ¼
Z þi∞þi0

−i∞þi0

dz
2iπ

�
1

2
− fðzÞ

�
ðFðzÞ þ Fð−zÞÞ ðA17Þ

with fðzÞ a thermal Fermi distribution. The analytical continuation of the Euclidean correlator to its Minkowski counterpart
follows through the discontinuity

Γμ<
μ ðωÞ ¼ 1

iðeβω − 1ÞDiscΓ
E
μμðq0 → −iðω� iϵÞÞ: ðA18Þ

The results for the ðgA0Þ2 insertion are in complete agreement with those obtained using a chemical potential and then the
substitution (62). The results for the ðgEÞ2, ðgBÞ2 insertions correspond to the substitution (65).

APPENDIX B: LEADING THERMAL VISCOUS PHOTON CORRECTION

In this Appendix, we detail the calculations leading to (97). We start by performing the integrals

Z
dt
s
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: ðB1Þ

Much like the leading perturbative thermal contribution (87), the viscous thermal contributions are also infrared sensitive.
The leading singularities are logarithmic. For the Compton Gc and the pair Gp amplitudes, they are

GP
c ≈

N
8ð2πÞ3βE
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and
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For a small infrared cutoff mT , we now define the useful integrals
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Collecting the above results yields for the Compton and pair amplitudes
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where we have defined
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Here, C1;2;3;4 are constants. After further simplifications,
we finally obtain
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with the E-dependent functions
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Here, ζ3 ≡ ζð3Þ ≈ 1.202 refers to the Riemann zeta func-
tion. Throughout, N is given in (78).

APPENDIX C: FORMULA SUMMARY

Here, we summarize our pertinent results for the viscous
corrections for the electromagnetic emissivities, which
could be used in hydrodynamical calculations:
(1) Viscous photon hadronic rates: Equation (32),

which is equal to (30) plus (31).
(2) Viscous dilepton hadronic rates: Equation (47),

which is equal to (44) plus (46).
(3) Viscous dilepton hadronic rates: Equation (49),

which is equal to (54) plus (61) plus (66) plus (73).
(4) Viscous photon partonic rates: Equation (74), which

is equal to (87) plus (96) plus (102) plus (105).
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