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This work gives a general overview of phenomenology developed for neutral-meson searches for CPT
violation in the framework of the Standard-Model Extension with focus on meson factories. It gives a
comparison of notations and fundamental approach in the formalism used by the different experiments.
Asymmetries and possible experimental investigations are presented for tests of the momentum-dependent
phenomenological parameter of CPT violation in correlated neutral-meson oscillations. The general results
apply to any mesons produced as correlated meson pairs and address the issue of decoherence as a
consequence of direction dependence. An analysis is given considering kinematics and orientation of the
improved Belle II experiment.
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I. INTRODUCTION

Neutral-meson oscillations are one of the classic tests of
CPT symmetry, the combined symmetry of (C) charge
conjugation, (P) parity and (T) time reversal. According to
the CPT theorem, any local Lorentz-invariant relativistic
quantum field theory of point particles is invariant under
this combination. It is one of the few exact symmetries of
the standard model; so any violation would indicate physics
beyond it. The violation of CP symmetry has been
identified as a necessary physical phenomenon for the
baryon-antibaryon asymmetry of the universe, but known
violations do not offer sufficient explanation for it.
Being identical for strong and electromagnetic inter-

actions but oscillating into one another by higher-order
weak processes, the neutral mesons present a highly
sensitive interferometric system and a rich source of tests
for new physics. Due to the observed CP and T violation,
special attention is paid to its spacetime-symmetry experi-
ments. The phenomenology to conduct these searches is
well established.
CP and T violation have been observed and some

significant constraints were given on CPT violation.
High-sensitivity detectors studying neutral mesons, includ-
ing high-energy colliders and particle-specific meson
factories such as the K and B factories, are steadily probing
the boundaries between the standard model and beyond, to
find evidence of Planck-scale physics in quantum-gravity
scenarios.
One of these scenarios is the Standard-Model Extension

(SME), a framework based on spontaneous CPT symmetry
breaking. Theories with extended particles in higher
dimensions have explored spontaneous symmetry breaking
involving tensor fields, leading to models with possible
Lorentz and CPT violation [1]. Discussions of spontaneous
local Lorentz and diffeomorphism symmetry breaking [2],
and some simplified vector field models called “bumble-
bee” models have addressed the phenomenon at a more

fundamental level [3]. Spontaneous Lorentz breaking is
mandated by compatibility with general relativity in
Riemannian spacetime, however explicit breaking can be
reconciled if we expand to Riemann-Finsler geometries.
The interpretation for this scenario would be to consider
relativistic particles as following trajectories governed by a
pseudo-Riemann-Finsler metric [4].
The SME is formulated as an effective field theory,

independent of any underlying model, which allows testing
of any type of Lorentz or CPT violation. It describes the
effects of nonzero CPT-violating vacuum expectation
values on conventional fields of the SM. The effects are
represented with CPT-violating coupling coefficients of
the SM fields to the nonzero background [5]. The violation
of CPT also implies Lorentz violation [6]. These coef-
ficients are testable at available energy scales, and bounds
have been established in all sectors of the SM. These are
published in data tables updated yearly [7].
The framework of Lorentz and CPT violation was

incorporated into general relativity with [8], which also
expanded experimental searches to short-range gravity [9]
and gravitational-waves [10]. Some recent work uses
bounds on Lorentz violation to constrain other possible
subtle effects such as torsion [11] and nonmetricity [12].
Investigations here address the minimal SME which is

power counting renormalizable, constraining the mass
dimension of the SME coefficients. A nonminimal expan-
sion of this to fermions with operators of arbitrary mass
dimension was done in [13].
In establishing SME phenomenology for neutral mesons,

the traditional SM-based formalism has to be extended to
include effects of the CPT-violating background. This
formalism can be applied to design CPT tests consistent
with the symmetry-breaking mechanism and the physics
involved.
Experiments with neutral mesons were the first to place

bounds on an SME coefficient. It is the best experimental
ground to study a particular quark-sector coefficient.
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Early SME investigations used the constant parameter
defined in terms of the components of the effective
hamiltonian describing the meson oscillations. This param-
eter describes CPT violation as mass and decay rate
asymmetries between particle and antiparticle.
However, in the proper adaptation of the SME phenom-

enology it was shown that if the CPT violation is rooted in
coupling to a constant background, resulting from sponta-
neous symmetry breaking, the phenomenological param-
eter has to be momentum dependent to be consistent with
quantum field theory. Based on this insight, a new
formalism was developed in [14–16]. It addresses the issue
that the laboratory moves compared to the constant back-
ground. It also takes into account momentum variations due
to individual particle kinematics. The formalism is flavor
dependent, since coupling to the background is specific to
each quark field.
The present work offers new ways to apply the existing

neutral-meson SME phenomenology to the specific
study of correlated meson decays. The analysis involves
the definition of new asymmetries in the momentum-
dependent approach to isolate the phenomenological
parameter. Bounding the direction-dependent parameter
places limits on the components of the SME coefficient,
and provides new insights about the related physics.
The SME approach was used in experiments performed

for over a decade in all neutral meson systems. The
different collaborations contributed different constraints
on various components, or combinations of components
of the quark sector SME coefficient. As indicated above,
the detectors fall into two categories: detectors involving
uncorrelated mesons with high boost, and those using
quantum correlated pairs produced nearly at rest. The latter
are the meson factories, which have the advantage of low
background and high precision.
This distinction, however, is less clear now, with LHCb

capable of limiting all four components of the SME
coefficient with high precision, previously available only
from meson factories [17]. Similarly impressive improve-
ments have been seen at D∅ [18]. Meanwhile, KLOE has
achieved comparable bounds to high-boost experiments,
and placed component-by-component limits on the SME
coefficient [19]. It also did important measurements for
quantum coherence of the correlated decays [20].
The high-boost kaon experiments used to calculate

bounds in Ref. [16] and results from KTeV [21] still hold
as the best limits on SME coefficients, due to their boost
factor. For the B factories only BABAR set SME limits,
collecting data between 1999 and 2008 [22] while Belle ran
its tests between 1998 and 2010 in the context of traditional
searches. Latest bounds from BABAR come from evaluating
existing data [23]. There are separate studies of Lorentz
violation involving the top quark [24]. In general, experi-
ments in the last few years have achieved bounds of 1 to 3
orders of magnitude better than before for the components
of the CPT-violating coefficient.

This paper focuses on the updated Belle detector. Earlier
SME formalism is expanded to give explicit results for
studying CPT in meson factories. Currently, Belle II
provides the only ongoing data collection on B mesons
produced in an entangled state. Using the findings pre-
sented here, experiments can probe SME-type CPT vio-
lation in all its facets. It is shown that all four components
of the relevant quark sector coefficient can be bound. Due
to better detection methods and higher luminosity,
improved bounds are expected. Since the relevant SME
coefficient depends on quark flavor [25], and possibly on
mass or lepton, baryon number [26], the B factory searches
could be significant.
The approach here discusses a basic difference between

original phenomenology assuming only mass and decay
rate differences of particle and antiparticle, and the frame-
work also considering directional dependence. The former
is signified by a constant phenomenological parameter.
The analysis throughout the paper shows that by focusing
on correlated decay analysis specific to B mesons, it is
possible to isolate the features of momentum-dependence at
the detection level.
This difference manifests in B factories in a unique way.

Some of the general correlated decay study, however, is
equally applicable for experiments at KLOE. Investigating
it is of particular importance both, experimentally and
theoretically.
For full understanding, the time development before the

decay of the first B meson is properly included, leading to
modified decay rate asymmetries. Since the time of the first
decay cannot be measured accurately, detection has to rely
on an analysis of kinematics, quantum correlations and
decay rate asymmetries.
One signal of a direction-dependent effect can be a

nonzero asymmetry between conjugate same-flavor decay
rates, which vanishes to first order in a formalism with
constant CPT violating parameter. Due to the character-
istics of the kinematics of B meson propagation, it can also
be observed with detector binning of flavor-specific decays
products.
A third test is a study of possible decoherence effects. It

is shown here that propagation considered from the
production of the B meson pair in a nonzero background
can produce disentangled states to second-order in the CPT
violating parameter. These investigations provide a more
fundamental test of the underlying physics.
The paper starts in Sec. II with a review of the formalism

developed previously for momentum dependent CPT
violation searches. This section closely follows the now-
standard SME phenomenology for neutral mesons, sum-
marizing key equations and the connection to the relevant
SME coefficient as introduced by Refs. [14,15,25].
Section II A gives the minimal SME Lagrangian with
the testable term, the Hamiltonian parametrization, eigen-
states and basic time development of the meson states and

ÁGNES ROBERTS PHYSICAL REVIEW D 96, 116015 (2017)

116015-2



connects to it the SME coefficients. Section II B gives an
overview of the relevant entangled state and amplitude for
correlated decays. Following it Sec. III presents specific
adaptations of the phenomenology to Belle II type searches.
The reader familiar with the neutral meson experiments can
advance to this section. Section III A discusses formal and
fundamental differences in phenomenology of BABAR,
Belle, and the SME, summarized in Table I. In Sec. III B
the specifics of semileptonic decays in the approximation of
small CPT violating parameter are discussed. Section III C
addresses issues of geography and kinematics, and Sec. III D
analyzes possible decoherence effects. Section IV gives an
outlook for possible investigations for the new Belle II
detector.

II. MOMENTUM-DEPENDENT NEUTRAL-MESON
PHENOMENOLOGY

A. General basics

In this section the neutral-meson phenomenology is
presented briefly in the SME framework. It follows the
original formalism created specifically for SME-based
neutral-meson searches. It is a short but complete summary
applied later in the paper to searches in a meson factory.
The reader is referred for a detailed discussion to [5,14–16].
To start, a simplified form of the Lagrangian of the

minimal SME is given, containing only renormalizable
terms. For massive spin-1

2
fermions it has the general form

L ¼ 1

2
iψ̄Γν∂↔νψ − ψ̄Mψ ; ð1Þ

where the extension defines Γ and M including the SME
coefficients as

Γν ≔ γν þ cμνγμ þ dμνγ5γμ þ eν þ ifνγ5 þ
1

2
gλμνσλμ; ð2Þ

and

M ≔ mþ aμγμ þ bμγ5γμ þ
1

2
Hμνσμν: ð3Þ

Here, γ5, γμ,γ5γμ, σμν represent conventional gamma
matrices, while aμ; bμ; cμν;…; Hμν are determined by back-
ground expectation values of Lorentz tensors arising from
the spontaneous Lorentz breaking [5]. Comparing proper-
ties of these terms to the properties of the neutral-meson
oscillations a particular coefficient of the SME was
identified as one that can be tightly constrained only in
this system [15,16].
The neutral-meson pairs differ only in flavor and present

a unique physical phenomenon where particle and anti-
particle can oscillate into each other via weak processes,
providing a sensitive interferometric probe for CPT tests.
The standard approach for describing the coupled oscil-
lation of the mesons uses a Schrödinger-type equation for a
linear combination of the wave functions comprised of B0

and B0, represented as a two-component object ΨðtÞ. Here
B0 can represent B0

d or B0
s but it can stand for any neutral

meson. The time evolution is described by a 2 × 2 effective
hamiltonian Λ,

i∂tΨ ¼ ΛΨ; ð4Þ
for a full treatment of the quantum system see for instance
Ref. [27]. There are also classical models illustrating the
physics [28].
The Hamiltonian (4) has many different parametriza-

tions. In Ref. [14] a comparative summary is given and a
convenient parametrization is presented for the SME
searches. Following that parametrization Λ has the form

Λ ¼ 1

2
Δλ

�
U þ ξ VW−1

VW U − ξ

�
: ð5Þ

U, V, W, ξ are all complex parameters with W ¼
w expðiωÞ, while ξ ¼ Reξþ iImξ. This allows description
of spacetime symmetry violations in this system with four
independent dimensionless real phenomenological param-
eters, which are independent of phase conventions and of
the particular model.
In the Hamiltonian (5), off-diagonal components of Λ

control the flavor oscillations between B0 and B0 and are
described by the CP violation parameter w. In case of T
symmetry, w ¼ 1.
Meanwhile, indirect CPT violation occurs if and only if

the difference of the diagonal elements in the effective
hamiltonian above is nonzero; ΔΛ ¼ Λ11 − Λ22 ≠ 0. This
property compels us to look for flavor diagonal SME terms
to be tested. Inspecting Λ, it is clear that CPT violation is
described by a nonzero ξ. The final step is to express the
quantities w, ξ and V in terms of the components of the
Hamiltonian Λ, giving

TABLE I. Comparison of phenomenological descriptions.

SME BABAR, Belle II

ξ1 ¼ ξ1ðt1; p1Þ 0
ξ2 ¼ ξ2ðt2; p2Þ −z
V1 ≡

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ21

p
1

V2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ22

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
W ¼ weiω W ¼ q

p

t1 time of first decay t0 ¼ 0
t2 time of second decay Δt ¼ t2 − t1
C1 ¼ 1

2
ðe−iλLt þ e−iλHtÞ, t ≤ t1 time development before decay

S1 ¼ 1
2
ðe−iλLt − e−iλHtÞ, t ≤ t1 time development before decay

CðΔtÞ ¼ 1
2
ðe−iλLΔt þ e−iλHΔtÞ gþ ¼ 1

2
ðe−iωLt þ e−iωHtÞ

SðΔtÞ ¼ 1
2
ðe−iλLΔt − e−iλHΔtÞ g− ¼ 1

2
ðe−iωLt − e−iωHtÞ

λL;H ωL;H

F1;2 A1;2

F̄1;2 Ā1;2
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w¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΛ21=Λ12j

p
; ξ¼ΔΛ=Δλ; V ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξ2

p
: ð6Þ

The physical propagating states of the neutral B system,
jBLi and jBHi, are the eigenstates of Λ. The neutral B
particles are produced as strong interaction eigenstates with
definite parity, carrying the same parity eigenvalue. Hence
they remain parity eigenstates. The corresponding SME
coefficient has to match this behavior and has to be parity
preserving while violating charge conjugation.
Connecting to the general SME Lagrangian a single term

was found that is flavor diagonal and is parity preserving
while violating C symmetry. The relevant term is the flavor
dependent −aq0q̄γ0q, where a

q
0 is the zeroth component of a

vector coefficient in the quark sector describing coupling to
the background, stemming from the spontaneous Lorentz
symmetry breaking [14,16].
In Minkowski spacetime the coefficient is aq0, in itself, is

undetectable with a single flavor fermion and could be
arbitrarily large. It could be observed in the presence of
gravity, but there it is countershaded by the weakness of the
gravitational coupling [26,29]. Instead the difference
Δa0 ≡ aq10 − aq20 is observed, which can only be done in
flavor changing of neutral meson or neutrino oscillations.
In neutral meson, as well as neutrino oscillations an
interferometric effect allows placing tight bounds on
Δa0. Anomalous oscillations have been reported for both
systems [30,31].
Neutrino oscillations are more involved than meson

oscillations. This area constitutes its own field in SME
searches. Theoretical descriptions are found in [32], for the
nonminimal extension [33].
Bounding Lorentz violation in the neutrino sectors can

be done by finding limits of sidereal variations of oscil-
lations or distortions of the oscillation spectra. A large
number of operators are needed to describe Lorentz
violation. Some of these are probed looking at sidereal
variations in neutrino oscillations, such as astrophysical
[34], reactor [35], accelerator based short-baseline [36] and
long-baseline [37] investigations, atmospheric [38] and
solar neutrino oscillations [39]. Countershaded violations
involving oscillation-free operators are investigated in β
and double β decay [40].
In neutral meson oscillations, the difference of the

diagonal elements is proportional to Δa0 for the valence
quarks of different flavor, and can be detected with the
proper decay rate asymmetry. The difference is the conse-
quence of an energy shift of the rest energies due to
coupling to the CPT violating background, and is equal but
opposite for the meson and its antimeson. Its manifestation
is a corresponding difference in lifetime and/or mass of
particle and anti-particle. This translates into a relationship
between the SME coefficients and the difference in
diagonal elements Λ given by ΔΛ ≈ Δa0 ≡ aq10 − aq20 , for
the two valence quarks in the B0 meson, with q1 and q2
indicating the flavors [25].

In traditional phenomenology this parameter is defined
for particles at rest where Δa0 is rotationally invariant.
However, for boosted mesons the formalism changes and
momentum dependence has to be considered as shown in
detail in Sec. III C. In general

ΔΛ ≈ βμΔaμ; ð7Þ

where βμ ¼ γð1; β⃗Þ is the four-velocity of the meson state,
defined as usual by v⃗ ¼ dx⃗

dt. Δaμ is the symmetry-violating
coefficient given in the observer frame.
This dependence on boost and angular distribution is a

key experimental issue in the SME phenomenology. While
high boost experiments deliver enhanced signal for CPT
violation, here the focus is on directional dependence.
The full treatment of this dependence is postponed for
Sec. III C. The only fact accented here is that the correlated
wave function, decay amplitudes, decay rate probabilities
and asymmetries carry dependence on direction and the
sidereal time of Earth’s rotation relative to the constant
background. The time development of the states is modified
accordingly.
Comparing this to expressions (6), the connection

between the phenomenological parameter ξ and Δaμ is
established in the form

ξ ¼ ΔΛ=Δλ ≈
βμΔaμ
Δλ

; ð8Þ

where βμ denotes the four-velocity.
For a full study of the oscillation and propagation the

time development of the eigenstates of Hamiltonian (4) are
needed. They evolve in time according to

jBLðtÞi ¼ expð−iλLtÞjBLi;
jBHðtÞi ¼ expð−iλHtÞjBHi; ð9Þ

where the eigenvalues are composed of the propagating
masses mL, mH and decay rates ΓL, ΓH according to

λL ≡mL −
1

2
iγL; λH ≡mH −

1

2
iγH: ð10Þ

One can also define the sum and difference of the
eigenvalues

λ≡ λL þ λH ¼ m −
1

2
iγ;

Δλ≡ λL − λH ¼ −Δm −
1

2
iΔγ; ð11Þ

where for the masses and decay rates we define
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m ¼ mL þmH; Δm ¼ mH −mL;

γ ¼ γH þ γL; Δγ ¼ γH − γL: ð12Þ

These quantities play a role in the oscillation characteristics
of the mesons and without spacetime-symmetry violations
would entirely determine the time development. Their
values are also important for experiments, since they
characterize the interference and the difference in acces-
sibility to discrete symmetry measurements for neutral
mesons of different quark content. They also greatly
influence design requirements for their respective detectors.
Finally, the normalized physical states in the above

formalism can be expressed in terms of the strong eigen-
states. This allows to continue on to the full time depend-
ence of the correlated neutral meson states in the upcoming
sections. The relation according to the Hamiltonian is

jBLi ∼ jB0i þ ð1 − ξÞW=VjB0i;
jBHi ∼ jB0i − ð1þ ξÞW=VjB0i: ð13Þ

Once the full time dependence is known, decay rate
probabilities are determined for the coherent states. Their
asymmetries place limits on the phenomenological param-
eter. Those limits in turn give constraints on the SME
coefficient.

B. Meson factory basics

This section presents the phenomenology of correlated
meson decays characteristic for meson factories. The
first step is to determine the time-dependent states B0ðtÞ,
B0ðtÞ as

hB0ðt; t̂; p⃗Þj ¼ ðCþ SξÞhB0j þ ðSVWÞhB0j;
hB0ðt; t̂; p⃗Þj ¼ ðSVW−1ÞhB0j þ ðC − SξÞhB0j; ð14Þ

where functions C and S of the meson proper time t are
defined as

C ¼ cos

�
1

2
Δλt

�
exp

�
−
1

2
iλt

�

¼ 1

2
ðe−iλLt þ e−iλHtÞ;

S ¼ −i sin
�
1

2
Δλt

�
exp

�
−
1

2
iλt

�

¼ 1

2
ðe−iλLt − e−iλHtÞ: ð15Þ

Later in this section, a detailed correspondence is given
to relate the formalism here to that of BABAR and Belle.
However, to fully understand these relations it is better to
first write down the correlated decay amplitude, shown
below. After the production, the neutral B meson pair

emerges in a coherent state of quantum entanglement. This
correlation can be described by

jii ¼ 1ffiffiffi
2

p ðjB0ðþÞijB0ð−Þi − jB0ð−ÞijB0ðþÞiÞ; ð16Þ

where (þ) and (−) refer to the opposing directions in the
quarkonium rest frame in which the particle pair is moving.
Following Ref. [14], the amplitudes Fa and F̄a, a ¼ 1, 2

into final states f1 at time t1, and into f2 at time t2 are
given by

hfajTjB0i ¼ Fa; hfajTjB0i ¼ F̄a: ð17Þ

Time t2 is assumed to be the time of the second decay. The
dependence on both decay times is observed throughout, to
account for possible physics stemming from interaction
with the background before the first decay.
As discussed above, in the approach used in this work,

these amplitudes are a function of three-momentum p⃗1 and
p⃗2 of the two particles. The four-momentum is an eigen-
value of the translation operator and is conserved. As
indicated in Eq. (7) above, the difference in the diagonal
elements of the effective Hamiltonian depends on the four-
velocity. Note that for the case of directionally-dependent
Lorentz violation the relation of the velocity and momen-
tum generally differs from that in the special relativistic
case. This modification by the background is only second
order in any of the Lorentz-violating coefficients and hence
here it is neglected. For an explicit relationship between
velocity and the canonical momentum in the SME frame-
work the reader is referred to [5]. The relevant details will
be discussed in Sec. III C.
Changes in orientation relative to the constant back-

ground resulting from the Earth’s daily rotation is included
as sidereal time dependence of the amplitude, denoted here
as t̂. While the sidereal time is considered fixed during the
decay process, variations with sidereal time overall provide
the means of constraining some of the individual compo-
nents of the SME coefficient.
With these considerations the probability amplitude

Af1f2 for the decays becomes

Af1f2 ≡ Af1f2ðt1; t2; t̂; p⃗1; p⃗2Þ ¼ hf1f2jTjii

¼ 1ffiffiffi
2

p ½hf1jTjB0ðt1; t̂; p⃗1Þihf2jTjB0ðt2; t̂; p⃗2Þi

− hf1jTjB0ðt1; t̂; p⃗1Þihf2jTjB0ðt2; t̂; p⃗2Þi�: ð18Þ

In the SME formalism with definitions (17), the amplitude
can be expanded using the separate time development
functions Ca ¼ CðtaÞ, Sa ¼ SðtaÞ, a ¼ 1, 2. This gives the
expression for the amplitude in the form
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Af1f2 ¼
1ffiffiffi
2

p ½F1F̄2ðξ1S1C2 − ξ2S2C1 þ C1C2 − ðξ1ξ2 þ V1V2ÞS1S2Þ

þ F2F̄1ðξ1S1C2 − ξ2S2C1 − C1C2 þ ðξ1ξ2 þ V1V2ÞS1S2Þ
þ F1F2W−1ðV2C1S2 − V1S1C2 þ ðξ1V2 − ξ2V1ÞS1S2Þ
þ F̄1F̄2WðV1S1C2 − V2C1S2 þ ðξ1V2 − ξ2V1ÞS1S2Þ�: ð19Þ

This general form implicitly carries all information about
the possible decays. The quantities V1 ≡

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ21

p
, V2 ≡ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ22
p

are defined in terms of ξ1ðp⃗1Þ, ξ2ðp⃗2Þ, while
W ¼ w expðiωÞ as in (6).

III. NEW SEARCHES IN MESON FACTORIES

A. Comparison of phenomenologies

Expression (19) shows an extended formalism, different
from those found in the BABAR and Belle papers, which are
based on a phenomenology developed for the particular
experimental methods adapted in B factories and is detailed
in, for example, Ref. [41]. Connecting these formalisms
requires two things to be taken into consideration.
The first is the correspondence in notation, which is

simply a matter of denoting certain functions and quantities
with different symbols. Such notational difference can be
seen for instance in the decay amplitudes for the decay
modes, defined for BABAR and Belle as A1;2 or by Atag, Arec
corresponding to F1;2 here. The functions C and S
correspond to functions gþ;− in BABAR’s notation. The
correlated double decay amplitude in BABAR’s formalism
is divided into symmetry violating and non-violating by
introducing aþ;−. They are combined with the respective
time functions gþ,g− for the time development. The terms
aþ;− are denoted at Belle as ηþ;−. Important is also that the
CP violating parameter W corresponds to q

p and the CPT
violating parameter ξ to −z.
The second is more fundamental, and is based in the

underlying physics due to the different mechanism by
which violation of CPT symmetry can occur as compared
to CP violation. At the B factories, the time for the decay of
the first meson is difficult to measure, and with flavor
tagging and using only the difference of decay times, it is
unnecessary to determine. The oscillations up to the first
decay point are correlated and once the flavor of one B
meson is known the other can be inferred as well.
Searches are done by taking one of the mesons to be the

tagging meson and fully reconstructing the other. The zero
of the decay time is considered to be at the time of the first
decay, and further time evolution can be taken as a function
of the time measured after the first decay until the time of
the second one. This can be experimentally determined and
is denoted by Δt (sometimes just t). This is a great
simplification for the formalism.

Meanwhile, in case of CPT violation, the background
can have an effect on the meson-antimeson pair depending
on their momenta immediately after production. Due to
this, the time development in the SME formalism has to be
described from the moment the particles are produced in
the decay of ϒð4SÞ, analogous to when quantum correla-
tions are studied [42]. Here time variables are defined as
Δt ¼ t2 − t1 and t ¼ t2 þ t1. CðtÞ and SðtÞ have separate
time dependence for the two mesons marked as
C1 ¼ Cðt1Þ, C2 ¼ Cðt2Þ, S1 ¼ Sðt1Þ, S2 ¼ Sðt2Þ. The
CPT violation parameter also carries separate indices
denoted as ξ1ðt̂; p⃗1Þ and ξ2ðt̂; p⃗2Þ to account for the
momentum dependence. A summary of all correspond-
ences is given in Table I. It should be noted that neutral
meson searches have been done with a number of different
parametrizations. A summary of them is given in [14] for
the most generally used notations or found in relevant
works giving relation to the BABAR notation as, for
instance, in [43].
For an explicit illustration on how to use Table I an

example is given for the case of no CPT violation below.
In that case ξ1 ¼ ξ2 ¼ 0 and V1 ¼ V2 ¼ 1, while the
amplitude and CP violating parameter correspondences
are explicitly shown connecting to the formalism at B
factories as

A1 → F1; A2 → F2;

Ā1 ≡ F̄1; Ā2 ≡ F̄2;
p
q
→ W−1;

q
p
→ W: ð20Þ

The CPT preserving amplitude expressed in the SME
formalism is

Af1f2 ¼
1ffiffiffi
2

p ½ðF1F̄2ÞC − ðF2F̄1ÞC

þ ðF1F2W−1ÞSþ ðF̄1F̄2WÞS�; ð21Þ
while the same amplitude expressed in BABAR’s notation
has the form

Af1f2 ¼
1ffiffiffi
2

p
�
ðA1Ā2Þgþ − ðA2Ā1Þgþ

þ
�
A1A2

p
q

�
g− þ

�
Ā1Ā2

q
p

�
g−

�
: ð22Þ
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B. Semileptonic decay rates

The general amplitude of Eq. (19) is valid for any size
CPT violations. Expanding it with the specific time
dependent oscillation and decay functions, however, is
involved. Here it is only done in a small ξ approximation to
first order in ξ. As we will see, in this approximation
decoherence effects are not a concern, but they do appear in

an extension to second order. The following definitions are
used for clarity,

ξ ¼ ξ1 þ ξ2; Δξ ¼ ξ1 − ξ2: ð23Þ

For the overall time evolution factor kðtÞ≡ expð−i · λt=2Þ
is defined.

This gives the amplitude for final states f1 and f2

Af1f2 ¼
1ffiffiffi
2

p kðtÞ
�
F1F̄2

�
cos

ΔλΔt
2

þ i
2

�
ξ sin

ΔλΔt
2

− Δξ sin
Δλt
2

��

þ F2F̄1

�
− cos

ΔλΔt
2

þ i
2

�
ξ sin

ΔλΔt
2

− Δξ sin
Δλt
2

��

þ F1F2W−1
�
−i sin

ΔλΔt
2

þ 1

2
Δξ

�
cos

Δλt
2

− cos
ΔλΔt
2

��

þ F̄1F̄2W

�
i sin

ΔλΔt
2

þ 1

2
Δξ

�
cos

Δλt
2

− cos
ΔλΔt
2

���
: ð24Þ

Here, the detailed oscillation and decay information is still
contained in λ and Δλ. This amplitude will be calculated
more explicitly later, with the simplification of focusing
only on semileptonic decays. At this stage, however, some
important points can be made.
The first two terms pertain to conjugate decay products

occurring in different time order. Their first time develop-
ment function depends only on decay time differences Δt
and indicates physics without symmetry violations. This
term switches sign as the decay products switch and is even
for Δt.
In the parentheses the two other terms describe time

evolution combined with the CPT violating parameter.
They are both odd functions of time but the term with ξ
depends on the traditional time variable Δt ¼ t2 − t1, while
the term containing Δξ is a function of t ¼ t2 þ t1. This
term contains the time before the first decay and cannot be
absorbed in the usual formalism based on measuring only
Δt. The parameterΔξ is tied to momentum dependence and
is only present in the SME phenomenology. Since these
terms represent opposite flavor decays, a nonzero ampli-
tude for the states to coincide is consistent with quantum
entanglement.
All terms, where time development before the first decay

cannot be removed usingΔt, are connected to onlyΔξ in any
case. It stems from the fact that particles with different
momenta interact different with the symmetry-breaking
background. These terms do not vanish as Δt goes to zero.
As will be discussed in Sec. III D, they carry special
relevance for the last two parts of amplitude (24), expressing
decays into same-flavor states. Those terms are expected to

be zero for Δt ¼ 0 for same-flavor decays occurring at the
same time.
The decay amplitudes into the same-flavor modes have a

first term that is odd in Δt and is imaginary. It describes
oscillation without CPT violation. The next two terms only
contain Δξ, indicating, that to first order in ξ, the same-
flavor symmetry violation would be zero. Its appearance in
correlated decays is a special feature of the directionally
dependent phenomenology. By inspection ones sees, that to
first order in Δξ, the decay rate probability is zero for the
two particles decaying into the same mode at the same
time, because the multiplying sine function is zero at
Δt ¼ 0. That means that at this level of approximation
no decoherence occurs.
Turning attention to semileptonic decays further analysis

can be done.Note that decays toCP eigenstates are discussed
in detail in searches done at CERN [44]. There are other
broader decay mode specific analyses available for intance
by [43,45]. For flavor specific semileptonic decays the basic
transition amplitudes can be rewritten as

hfjTjP0i ¼ F; hfjTjP0i ¼ 0;

hf̄jTjP0i ¼ F̄; hf̄jTjP0i ¼ 0: ð25Þ

The time development functions are somewhat lengthy
and obscure their actual effect on the amplitudes. So for
further clarity functions h1ðtÞ≡ sinΔλt=2 and h2ðtÞ≡
cosΔλt=2 are also defined. This gives the following
form in the momentum dependent formalism for the
semileptonic decay amplitudes,
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Aff̄ ¼ ðFF̄Þ
2

ffiffiffi
2

p kðtÞ½iξh1ðΔtÞ − iΔξh1ðtÞ þ 2h2ðΔtÞ�;

Af̄f ¼ ðF̄FÞ
2

ffiffiffi
2

p kðtÞ½iξh1ðΔtÞ − iΔξh1ðtÞ − 2h2ðΔtÞ�;

Aff ¼ F2W−1

2
ffiffiffi
2

p kðtÞ½Δξh2ðtÞ − Δξh2ðΔtÞ − 2ih1ðΔtÞ�;

Af̄ f̄ ¼ F̄2W

2
ffiffiffi
2

p kðtÞ½Δξh2ðtÞ − Δξh2ðΔtÞ þ 2ih1ðΔtÞ�: ð26Þ

The decay rates are again calculated only to first order in ξ
and Δξ.
Note that these explicit forms now show the dependence

on the imaginary and real part of ξ. In the SME framework
there is a constraint between them founded in the fact that
the perturbation Hamiltonian is hermitian, so ΔΛ is real.

Reξ ¼ −2ΔmImξ=Δγ: ð27Þ

Relationship (27) is not used in general here. However, it
can be helpful in a treatment that assumesΔγ to be zero and
contains limits only on the value of Imξ and ImΔξ.
The flavor specific decay rate probabilities can now be

calculated and take the form

Pff̄ ¼ kff̄

�
cosh

ΔγΔt
2

þ cosΔmΔt

þ Imξ sinΔmΔtþ Reξ sinh
ΔγΔt
2

− 2ImðΔξ⋆h⋆1ðtÞh2ðΔtÞÞ
�
;

Pf̄f ¼ Pff̄ðΔξ → −Δξ; ξ → −ξÞ; ð28Þ

Pff ¼ kff

�
cosh

ΔγΔt
2

− cosΔmΔt

− ImΔξ sinΔmΔtþ ReΔξ sinh
ΔγΔt
2

− 2ImðΔξ⋆h⋆2ðtÞh1ðΔtÞÞ
�
;

Pf̄ f̄ ¼ PffðΔξ → −Δξ; kff → kf̄ f̄Þ; ð29Þ

where kf̄f; kff̄; kff; kf̄ f̄ are defined as:

kff̄ ≡ kf̄f ¼ 1

4
ðFF̄Þ2e−γt

2 ;

kff ¼
1

4
ðjF2jÞ2e−γt

2 ; kf̄ f̄ ¼ 1

4
ðjF̄2jÞ2e−γt

2 : ð30Þ

The last term in these expressions is complicated by the fact
that it carries the time dependence before the first decay
(t1), along with functions depending on Δt. Its expansion is

lengthy and the information contained is difficult to apply
to any specific experimental scenario.
To be able to make some important points, the functions

fi ¼ fiðt1;ΔtÞ, i ¼ 1…8 are defined below. This allows an
analysis of their properties and the influence on the
probabilities. Some of those relevant properties of fi are
summarized in Table II.

f1 ¼ sinh
ΔγΔt
2

cosΔmt1 cosh
Δγt1
2

;

f2 ¼ sinΔmΔt sinΔmt1 sinh
Δγt1
2

;

f3 ¼ cosh
ΔγΔt
2

cosΔmt1 sinh
Δγt1
2

;

f4 ¼ cosΔmΔt cosΔmt1 sinh
Δγt1
2

;

f5 ¼ sinh
ΔγΔt
2

sinΔmt1 sinh
Δγt1
2

;

f6 ¼ sinΔmΔt cosΔmt1 cosh
Δγt1
2

;

f7 ¼ cosh
ΔγΔt
2

sinΔmt1 cosh
Δγt1
2

;

f8 ¼ cosΔmΔt sinΔmt1 cosh
Δγt1
2

: ð31Þ

Defining also some combinations of the fi, belonging to
the different semileptonic decay outcomes, and separated
for the imaginary and real parts of the CPT violating
parameter the probability expression can be simplified even
further with

fR
ff̄

≡−f1 þ f2 − f3 − f4; fI
ff̄

≡−f5 − f6 − f7 − f8;

fRff ≡ f1 þ f2 − f3 þ f4; fIff ≡ f5 − f6 − f7 þ f8:

ð32Þ

In this formalism of the decay rates, all information is
accessible for the direction-dependent phenomenology.
Some general tendencies can be noted.
Decay rates into mode F at time t1, and its conjugate F̄ at

time t2, and its reverse, have some terms appearing with the

TABLE II. Properties of the time development functions fi.

fi Pff̄ Pf̄f Pff Pf̄ f̄ Δt Δγ ¼ 0

f1 − þ þ − odd 0
f2 þ − þ − odd 0
f3 − þ − þ even 0
f4 − þ þ − even 0
f5 − þ − þ odd � � �
f6 − þ þ − odd 0
f7 − þ − þ even � � �
f8 − þ þ − even � � �
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same sign while others with the opposite. The same sign
terms are functions only of Δt and are even functions of it.
They indicate oscillations without spacetime-symmetry
violations. The factors kff̄ and kf̄f carry information about
direct symmetry violation in the amplitudes, but in the
investigations here are assumed to be equal kff̄ ¼ kf̄f.
The probabilities now change to the form to

Pff̄ ¼ kff̄

�
cosh

ΔγΔt
2

þ cosΔmΔt

þ Imξ sinΔmΔtþ Reξ sinh
ΔγΔt
2

þ ReΔξfR
ff̄

þ ImΔξfI
ff̄

�
;

Pf̄f ¼ Pff̄ðΔξ → −Δξ; ξ → −ξÞ; ð33Þ
and

Pff ¼ kff

�
cosh

ΔγΔt
2

− cosΔmΔt

þ ImΔξ sinΔmΔtþ ReΔξ sinh
ΔγΔt
2

þ ReΔξfRff þ ImΔξfIff

�
;

Pf̄ f̄ ¼ PffðΔξ → −Δξ; kff → kf̄ f̄Þ: ð34Þ

To isolate the parameter ξ, decay rate asymmetries need to
be set up. To do that one can use the parity properties of the
trigonometric functions describing time developments or
the asymmetries due to the time development differences
between particle and antiparticle in the CPT violating
scenario. The former was explored in Ref. [14].
Some properties of the fi which facilitate the analysis of

possible asymmetries of this nature are given in Table II.
Here no attention is given to mixing due to CP violation
and so W is considered equal to 1. Direct CPT or CP
violation is also disregarded. This can, however, be probed
with differences in integrated rates of opposite-sign and
same-sign events.
The focus here is to isolate information about ξ and limit

the components of Δaμ. That has to be done in two steps.
First, the needed decay rate asymmetry has to be defined,

containing information about ξ and/or Δξ. Second, specif-
ics of decay kinematics and orientation dependence of ξ
have to be analyzed to find methods of component-by-
component analysis of the SME coefficient. This will be
done in Sec. III C.
Here two asymmetries are considered. The first one

below is the difference of Pff̄ and Pf̄f

Pff̄ − Pf̄f

Pff̄ þ Pf̄f
¼

�
cosh

ΔγΔt
2

þ cosΔmΔt
�

−1

×

�
Imξ sinΔmΔtþ Reξ sinh

ΔγΔt
2

− ReΔξfR
ff̄

− ImΔξfI
ff̄

�
: ð35Þ

This contains information about Imξ, Reξ as well as ReΔξ
and ImΔξ.
The second asymmetry is the difference between rates of

Pf̄ f̄ and Pff. This is only dependent on the differences of ξ,
which in turn comes from differences in meson momenta

Pf̄ f̄ − Pff

Pf̄ f̄ þ Pff
¼

�
cosh

ΔγΔt
2

− cosΔmΔt
�

−1

×

�
ImΔξðsinΔmΔt − fIffÞ

− ReΔξ
�
sinh

ΔγΔt
2

− fRff

��
: ð36Þ

The smallness of the quantity Δξ limits the ability to make
measurements in the neutral B system. However, since
oscillation time scales are comparable to the time for which
the different momenta persist, it is worthwhile to inves-
tigate such effects. It is theoretically significant because it is
the quantity that directly relates to a CPT violating
mechanism rooted in a direction-dependent background.
It also is the quantity that relates to the second-order
decoherence effect discussed in Sec. III D.
To see more explicitly the oscillation time development,

the decay rate asymmetries are also presented here with Δγ
very small, characteristic of the B system. Measuring Δγ is
one way Belle II is hoped to contribute to B system studies.
However, these simplified forms facilitate function fitting
and comparison with no violations.

Pf̄f − Pf̄f

Pf̄f þ Pf̄f
¼ ð1þ cosΔmΔtÞ−1

�
Imξ sinΔmΔtþ ImΔξðsinΔmt1 þ sinΔmðΔtþ t1ÞÞ

þ ΔγΔt
2

ðReξþ ReΔξ cosΔmt1Þ þ
Δγ
2
t1ðcosΔmt1 þ cosΔmðΔtþ t1ÞÞ

�
;

Pf̄ f̄ − Pff

Pf̄ f̄ þ Pff
¼ ð1 − cosΔmΔtÞ−1

�
ImΔξ sinΔmΔtþ ImΔξðsinΔmΔt1 þ sinΔmðΔt − t1ÞÞ

−
ΔγΔt
2

ReΔξ cosΔmt1 −
ΔγΔt1

2
ðcosΔmt1 − cosΔmðΔt − t1ÞÞ

�
: ð37Þ
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The above asymmetries can be expressed using only Imξ
and ImΔξ with relation (27). In summary: the second
asymmetry is only dependent on Δξ. Its nonzero value is a
feature of momentum dependence. It would vanish to first
order in the traditional approach, even if mass or decay rate
difference exists between the particles, due to some explicit
CPT breaking.
Such phenomenon is included here in the terms con-

taining the sum of the ξ’s, defined originally as the constant
ξ parameter. It appears in the first asymmetry, which can be
nonzero to first order in both approaches. Traditionally,
however, it would only vary with Δt.
Both asymmetries show that the time development

before the first decay influences the asymmetries. This
influence always enters with Δξ, and is a manifestation of
different interaction of the two B particles propagating in
different directions relative to the background.

C. Direction dependence

To take into account the direction dependence in the
SME framework, two coordinate systems are defined. The
standard frame used to describe the orientation of the B
momenta relative to the background as the Earth rotates is a
Sun-centered frame. Its Ẑ axis points to the celestial north
pole at equinox 2000.0 at declination 90°. The standard
X̂; Ŷ axes are at declination 0°, with right ascension 0° for X̂
and 90° for Ŷ. In this frame ΔaX;ΔaY;ΔaZ are the three
spatial components of Δaμ.
There is also a local laboratory coordinate system

defined. In this paper the laboratory frame is named with
vertical up (Û), East (Ê) and South (Ŝ) axes, corresponding
to the natural geographic directions to form the ðÊ; Ŝ; ÛÞ
coordinate system. Both frames are shown in Fig. 1. In the
figure Ωt̂ indicates the sidereal rotation of the lab frame.

The colatitude χ of the detector is marked both in the X̂ Ŷ Ẑ
frame and the laboratory frame. Û is shown as pointing
along Earth’s radius in the upward direction at the location
of the detector. It precesses about Ẑ with the Earth’s
sidereal frequency Ω.
In the marked square section the intersection of a latitude

and longitude circle defines the detector location. Axes Ê
and Ŝ are defined tangential to these latitude and longitude
lines, respectively. The figure also shows axis z0 indicating
a beam direction in the Ê-Ŝ plane. For detailed original
description of the two coordinates systems see, for exam-
ple, Ref. [46].
In the directional analysis, what is sought is the sum and

difference in ξ of B0 and B0, which is a velocity-dependent
measure. However, experimentally, conservation of
momentum is used in evaluating the detector kinematics,
which detects momenta, rather than velocity. As was
discussed in Sec. II B, in the SME the velocity vector is
not necessarily parallel to the momentum, which was
neglected in the indicated momentum dependencies due
to it being second order in the SME coefficients. Here the
differences in ξ depend on small but macroscopically
significant differences in particle-antiparticle momenta of
the detector kinematics, which dominate over any differ-
ence in direction between velocity and momentum vectors
in a Lorentz-violating background.
In the laboratory frame the general form of the B meson

velocity vector, β⃗, is

β⃗ ¼ βðsin θ cosϕŜþ sin θ sinϕÊþ cos θÛÞ; ð38Þ

where the angles θ and ϕ are the conventional polar
coordinates within the laboratory frame, with θ being
the angle to the Û direction, and ϕ giving the direction
East of South of the beam. The geographic directions
connect to the Sun-centered frame as

Ŝ ¼ cos χ cosΩt̂ X̂þ cos χ sinΩt̂ Ŷ − sin χẐ;

Ê ¼ cosΩt̂ Ŷ − sinΩt̂ X̂;

Û ¼ sin χ cosΩt̂ X̂þ sin χ sinΩt̂ Ŷþ cos χẐ: ð39Þ

The most general expression for ξ is given in Eq. (14)
of Ref. [14].
Since the CPT violation depends on relative orientation

to the background, detector location influences the meas-
urement of the SME coefficient. Note, however, that
components of Δaμ lying in the equatorial plane are
isolated by analyzing the sidereal rotation of Earth. This
rotation and sidereal time dependence involved is the same
for all detectors. It can be constrained for instance by
sidereal binning. Here those components are the ΔaX and
ΔaY components. The time and Ẑ components are often
determined together, since neither has sidereal dependence.FIG. 1. Standard coordinate systems.
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In what follows, the specific kinematics of the Belle II
experiments is discussed with recommendations for appro-
priate analysis in the above context.
To understand better the geometry of the decay direction

with respect to the constant background specific to Belle II,
it is necessary to look at the form of ξ and Δξ. The sum of
ξ1 and ξ2 in an asymmetric collider allows the constraining
of all four components of the SME coefficient while
the difference of them can constrain the spatial ones.
The equations below show that ξ depends on the sum
of the velocities βμ ≡ βμ1 þ βμ2 while Δξ on the difference
Δβμ ≡ βμ1 − βμ2.
Observationof effects related toΔξ lead to informationnot

only about CPT violation in general, but to a specific
presentation and type of underlying mechanism of such
violation. If the consistency of CPT violation with quantum
field theory mandates momentum dependence, then experi-
ments investigating Δξ carry fundamental importance. In
observing it in B decays, it amounts to looking at Δβμ.
The ϒð4SÞ particle at Belle is boosted such that the B0

and B0 are projected into a narrow cone. At the boost of
βγ ¼ 0.28, the maximum opening angle is only about 25°.
Figure 2 illustrates the situation when the angle between

the two velocities β⃗1 and β⃗2 is maximal and nearly equal. It
shows the sum and the difference of the velocities, given
explicitly as β⃗1 þ β⃗2, and β⃗1 − β⃗2, respectively.
Angle δ in the figure describes the rotation of Δβ⃗ ¼

β⃗1 − β⃗2 perpendicular to the horizontal plane containing the
axis marked out by β⃗ ¼ β⃗1 þ β⃗2. Since the assumption here
is that this plane coincides with the Ê-Ŝ plane, compared to
the definitions of Fig. 1, δ is taken counterclockwise from
the direction of West.
In reality this distribution is valid only to a good

approximation. Analyzing the kinematics, one also sees
that one velocity vector subtends at most 3° more than the
other relative to the beam axis, so Fig. 2 represents closely
the situation for any case. The only difference lies in the
magnitude of Δβ⃗. The sum of the velocities, β⃗, is nearly
parallel to the beam axis while Δβ⃗ is distributed in an
approximately perpendicular circle around the beam.
This simplifies the expressions for the sum and differ-

ence of the momentum. Expressed in the laboratory frame,

β⃗ is fixed by the orientation of the beam at Belle II with
known colatitude χB. Assuming the beam is in the E-S
plane, there is no up component, and the East of South
direction is at a given angle ϕB.
The only variation is in the sidereal rotation. In the

expression below, fixed quantities carry index B. Based on
the above description β⃗ and Δβ⃗ are expressed in the
laboratory frame by

β⃗ ¼ βðcosϕBŜþ sinϕBÊÞ;
Δβ⃗ ¼ Δβðsin δÛ þ cos δ cosϕBÊ − cos δ sinϕBŜÞ: ð40Þ

According to expression (8) the dependence of ξ and Δξ on
β and Δβ follows as

ξ ¼ ξ1 þ ξ2 ¼
ðβμ1 þ βμ2ÞΔaμ

Δλ
;

Δξ ¼ ξ1 − ξ2 ¼
ðβμ1 − βμ2ÞΔaμ

Δλ
: ð41Þ

As discussed in Sec. III B, Δξ plays an important role in
uncovering the momentum dependent CPT violating phe-
nomena. Expanding the second relation of Eq. (41) it takes
the form

Δξ ¼ γΔβ
Δλ

f½ðsin δ sin χB − cos δ sinϕB cos χBÞ cosΩt̂
− cos δ cosϕB sinΩt̂�ΔaX
þ ½ðsin δ sin χB − cos δ sinϕB cos χBÞ sinΩt̂
− cos δ cosϕB cosΩt̂�ΔaY
þ ½sin δ cos χB þ cos δ sinϕB sin χB�ΔaZg: ð42Þ

Inspecting expression (42) suggests the detailed obser-
vation of both, sidereal time dependence as well angular
distribution cylindrically around the detector. This can be
done for instance by binning around the beam in δ, as well
as binning in sidereal time. Detector binning can lead to
bounds on the ΔaZ component, while sidereal binning can
be used to give separate bounds on ΔaX and ΔaY .
For ξ in asymmetry (35) the suitable form for Belle II

using (42) becomes

ξ¼ γ

Δλ
f2Δa0þβ½ðcosϕB cosχB cosΩt̂− sinϕB sinΩt̂ÞΔaX

þðcosϕB cosχB sinΩt̂− sinϕB cosΩt̂ÞΔaY
− cosϕB sinχBΔaZ�g: ð43Þ

Since this expression is not a function of δ, here only the
sidereal variation plays a role and binning data with Earth’s
rotation can give information about ΔaX and ΔaY .
Information gained in Eq. (42) can then help isolate Δa0
from ΔaZ.FIG. 2. Directional characteristics of β⃗ and Δβ⃗ at Belle II.
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D. Decoherence

Any time a boosted particle interacts with a constant
Lorentz-violating background, which remains unchanged
under particle transformations, the phenomenological
parameter of CPT violation becomes dependent on boost
and orientation. Inspecting the progression of how such
phenomenology effects the time evolution of the neutral
mesons, one finds that the time evolution before the decay
of the first particle has significance and a small probability
for decoherence of the entangled states exists.
It was already discussed that such effect occurs only due

to the difference between the CPT violation parameter for
different momenta and only to second order in Δξ, a feature
of the SME framework [14–16]. In this framework it is also
assumed that quark fields of different flavor couple to the
background differently. Such effect, however, does not
appear in the usual formalism that assumes CPT violation
only as a mass and/or decay rate difference of particle and
antiparticle.
Consider what would happen if the two particles would

decay at the same time into an inclusive mode F ¼ l−X,
producing same sign leptons. We expect this decay to occur
with a vanishing amplitude, since by Bose statistics both
B’s cannot oscillate into the same state at any given time.
The last two equations of Eq. (24) give the amplitudes that
describe decays into the same-flavor states.
Some properties were previously discussed and it was

shown that to first order these give zero probability. Note that
to go to second order, the original amplitude equation has to
be evaluated. However, the extra term that appears in the full
calculation does not produce any nonzero terms compared to
using the expression below. The reason is that the relevant
extra term has either a multiplying function that is zero for
Δt ¼ 0 or produces higher than second order ξ terms. There
are two relevant amplitudes for coherence studies,

Aff ¼ F2W−1

2
ffiffiffi
2

p kðtÞ½Δξh2ðtÞ − Δξh2ðΔtÞ − 2ih1ðΔtÞ�;

Af̄ f̄ ¼ F̄2W

2
ffiffiffi
2

p kðtÞ½Δξh2ðtÞ − Δξh2ðΔtÞ þ 2ih1ðΔtÞ�: ð44Þ

Take W ¼ 1 and F ¼ F̄. For decays at the same time
denote t1 ¼ t2 ≡ tD. The amplitude squared to second
order in Δξ for decays into same-flavor modes with
Δt ¼ 0 is

Pff ¼ Pf̄ f̄

¼ 1

4
jF2j2jΔξj2e−γtD

�
cosh

ΔγtD
2

− cosΔmtD

�
2

: ð45Þ

This gives specific means to constrain decoherence by
placing a bound on Δξ. The reverse is also true and limits
on decoherence constrain the CPT-violating phenome-
nological parameter and through that Δaμ. Technically,

tagging and reconstructing cannot be used if decoherence is
a possibility, hence for specific studies of quantum corre-
lations other methods must be applied.
CPT violation in relation to entangled neutral mesons

has also been studied in various quantum gravity scenarios
and early universe models the possible loss of quantum
coherence due to a topologically nontrivial spacetime has
been investigated and applied to studies of neutrinos and
neutral mesons [47]. There are also more general theory-
based searches proposed such as in [48,49].
In the SME CPT violation comes from an effective

hamiltonian that does not commute with the CPT operator
due to the unequal diagonal elements resulting from
spontaneous Lorentz violation. Disentanglement is a small
effect that emerges naturally from the proper field theory
that yields directional dependence. The searches described
here take advantage of a thorough analysis of specific SME
phenomenology to constrain that decoherence. There exists
another approach leading to what is called the “ω effect,”
where the influence of a quantum gravity background leads
to an ill-defined CPT operator and hence to an effective
low-energy decoherence. In this case the entangled wave
function is extended with a coherence weakening term [50].
While the two frameworks differ, their experimental

testing overlaps and can be used to gain information about
SME based distanglement both inK and B factories. One of
the best bounds come from KLOE where the ω parameter
was constrained to 10−7 [20,51]. It involves plotting the
intensity for decays into the same final states as a function
of the decay time difference scaled over lifetimes. This
method is viable for SME-based tests as well. While KLOE
has good kinematic properties for studying this phenome-
non due to its low boost, the assumed flavor and possible
mass dependence of the SME formalism motivates searches
in the other neutral meson systems as well.
There are various proposals for investigations for the B

factory. Belle II can provide very high integrated luminos-
ity. An observation of a significant number of decays into
the same neutral B state at the same time would be a clear
signal of Planck-scale physics. A detailed discussion with
focus on decay modes for a separate study of the T, CP and
CPT symmetries, including CPT violation of the ω type
and of the type involving unequal masses of particles and
antiparticles, has been recently given for the B system [52].
The approach presented in Ref. [42] for searching for

disentanglement in the B system uses the raw asymmetry of
opposite-flavor and same-flavor decay rates for a compari-
son study of the symmetry-breaking scenarios. Δγ is
assumed zero, so standard quantum mechanics would
predict a cosΔmΔt function. Shifts from this function
would be due to the terms containing Δξ in Eq. (34).
Similar plots can be created using Δt binning and detector
binning with the decay rate asymmetry that specifically
relates the decoherence toΔξ. As is seen in Sec. III C, the B
decays have their particular distribution of the difference in
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momenta that Δξ depends on. These investigations are
within the reach of the improved detector.

IV. SUMMARY

This work has studied the phenomenology of correlated
neutral meson decays within a general momentum-
dependent formalism based on the SME framework of
possible spontaneous CPT symmetry breaking. The phe-
nomenology is suitable for any meson factory search, with
a specific study focusing on possible experiments for the
updated B factory at Belle II.
It is concluded that a component-by-component test of the

relevant SME coefficient is feasible by studying appro-
priate decay rate asymmetries containing the sum and
difference of the CPT-violating phenomenological para-
meter ξ. Appropriate bounds can be placed also using the
kinematic properties of the decays. Earth geometry and
kinematics are presented in detail. An understanding of
momentum dependence and suitable binning of data facili-
tates the isolation of separate bounds on the components.
In the phenomenology, decoherence effects could only

be ruled out to first order in this approach. Because of its

theoretical significance of connecting the momentum
dependence to nonzero asymmetries between same-flavor
rates and to disentanglement, an investigation of quantum
correlations was proposed. The analysis involves more
detailed observation of same sign decay rates and specific
study of same-flavor decays occurring at the same decay
times. Based on detailed expansion of the time develop-
ment functions to allow better fitting, keeping track of the
influence the background has on the oscillation amplitudes,
even before the decay of the first meson.
The increase in integrated luminosity of Belle II is

expected to give an order of magnitude raw increase in
limits placed on the SME coefficient. However, improve-
ments in data gathering and processing based on the
more detailed phenomenology must be explored to give
both qualitative and further quantitative improvement.
Momentum and direction-dependent studies have a much
better outlook due to better full event identification and
vertex detection. While KLOE has excellent results con-
straining all aspects of this formalism, dependence on
quark content of the SME coefficients encourages searches
at the B factory as well.
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